Hermite-Hadamard's inequalities for conformable fractional integrals

Authors

DOI:

https://doi.org/10.11121/ijocta.01.2019.00559

Keywords:

Hölder's inequality, fractional derivative, factional integral, Confromable fractional integrals, trapezoid inequality, midpoint inequality.

Abstract

In this paper, we establish the Hermite-Hadamard type inequalities for
conformable fractional integral and we will investigate some integral
inequalities connected with the left and right-hand side of the
Hermite-Hadamard type inequalities for conformable fractional integral. The
results presented here would provide generalizations of those given in
earlier works and we show that some of our results are better than the other
results with respect to midpoint inequalities.

Downloads

Download data is not yet available.

References

Beckenbach, E. F. (1948). Convex functions, Bull. Amer. Math. Soc., 54 439-460. http://dx.doi.org/10.1090/s0002-9904-1948-08994-7.

Hermite, C. (1883). Sur deux limites d'une integrale definie, Mathesis, 3, 82.

Farissi, A.E. (2010). Simple Proof and Refinement of Hermite-Hadamard Inequality, J. Math.Inequal, 4(3), 365-369.

Sarikaya, M.Z., Set, E., Yaldız, H. and Başak, N. (2013). Hermite--Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput.Modell. 57 (9), 2403--2407.

Sarikaya, M.Z. and Aktan, N. (2011). On the generalization of some integral inequalities and their applications, Mathematical and Computer Modelling, Volume 54, Issues 9--10, Pages 2175--2182.

U.S. Kırmacı, U.S. (2004). Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (1), 137--146.

Dragomir, S.S. and Agarwal, R.P. (1998). Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters, 11 (5), 91-95.

Mitrinovic, D.S. (1970). Analytic inequalities. Springer, Berlin-Heidelberg-New York.

Abdeljawad, T. (2015). On conformable fractional calculus, Journal of Computational and Applied Mathematics 279, 57--66.

Anderson D.R. (2016). Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives. In: Pardalos P., Rassias T. (eds) Contributions in Mathematics and Engineering. Springer, Cham, pp 25-43 https://doi.org/10.1007/978-3-319-31317-7-2.

Khalil, R., Al horani, M., Yousef, A. and Sababheh, M. (2014). A new definition of fractional derivative, Journal of Computational Apllied Mathematics, 264, 65-70.

Iyiola, O.S. and Nwaeze, E.R. (2016). Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122.

Abu Hammad, M. and Khalil, R. (2014). Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), 177-183.

Abu Hammad, M. and Khalil, R. (2014). Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13( 3), 177-183.

Akkurt, A., Yıldırım, M.E. and Yıldırım, H. (2017). On Some Integral Inequalities for Conformable Fractional Integrals, Asian Journal of Mathematics and Computer Research, 15(3): 205-212.

Akkurt, A., Yıldırım, M.E. and Yıldırım, H. (2017). A new Generalized fractional derivative and integral, Konuralp Journal of Mathematics, Volume 5 No. 2 pp. 248-259.

Budak, H., Usta, F., Sarikaya, M.Z. and Ozdemir, M.E. (2018). On generalization of midpoint type inequalities with generalized fractional integral operators, Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas, https://doi.org/10.1007/s13398-018-0514-z

Usta, F., Budak, H., Sarikaya, M.Z. and Set, E. (2018). On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32(6).

Downloads

Published

2019-01-31
CITATION
DOI: 10.11121/ijocta.01.2019.00559
Published: 2019-01-31

How to Cite

Sarıkaya, M. Z., Akkurt, A., Budak, H., Yıldırım, M. E., & Yıldırım, H. (2019). Hermite-Hadamard’s inequalities for conformable fractional integrals. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(1), 49–59. https://doi.org/10.11121/ijocta.01.2019.00559

Issue

Section

Research Articles