On Hermite-Hadamard type inequalities for S-Phi_preinvex functions by using Riemann-Liouville fractional integrals

Authors

DOI:

https://doi.org/10.11121/ijocta.01.2019.00549

Keywords:

Fractional Integral, Riemann-Liouville Fractional Integral, Integral Inequalities.

Abstract

In this study, we have obtained some Hermite-Hadamard type integral inequalities for S_phi_preinvex functions. These inequalities are a generalization of some of the results in the literature.

Downloads

Download data is not yet available.

Author Biography

Seda Kılınç, Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaraş Sütçü imam

Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaraş Sütçü imam, 46000, Kahramanmaraş, Turkey

References

Katugampola, U. N. (2011). New Approach to a generalized fractional integral. Applied Mathematics and Computation, 218(3), 860-865.

Kilbas, A., Srivastava, H. M. and Trujillo, J.J. (2006). Theory and applications of fractional differantial equations. Elsevier B.V., Amsterdam Netherlands.

Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integral and Derivatives, Theory and Applications. Gordon and Breach, Yverdon et alibi.

Ozdemir, M. E., Yildiz, C. and Kavurmaci, H. (2015). Fractional integral inequalities for different functions. New Trends in Mathematical Sciences, 3(2)2, 110-117.

Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N. (2013). Hermite-Hadamard’s. inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling 57, 2403-2407.

Wang, J., Li, X., Feckan, M. and Zhou, Y. (2012). Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Applicable Analysis, doi:10.1080/00036811.2012.727986.

Yıldırım, H. and Kırtay, Z. (2014). Ostrowski Inequality for Generalized Fractional Integral and Related Inequalities. Malaya Journal of Mathematics, 2(3) 322-329.

Das, S. (2011). Functional Fractional Calculus. Springer-Verlag, Berlin Heidelberg.

Sarikaya, M. Z., Dahmani, Z., Kiris, M. and Ahmad, F. (2016). (k, s)−Riemann-Liouville fractional integral and applications. Hacettepe Journal of Mathematics and Statistics, 45(1), 77 – 89.

Akkurt, A. and Yıldırım, H. (2013). On Feng Qi type integral inequalities for generalized fractional integrals. International Anatolia Academic Online Journal, Scientific Science, 1(2), 22-25.

Noor, M. A. and Awan, M. U. (2013). Some Integral inequalities for two kinds of convexities via fractional integrals. Transylvanian Journal of Mathematics and Mechanics, 5(2), 129-136.

Cristescu, G. (2004). Hadamard type inequalities for '−convex functions, Annals of the University of Oradea, Fascicle of Management and Technological Engineering, CDRom Edition, III (XIII).

Dragomir, S. S. and Pearce, C. E. M. (2000). Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia.

Dragomir, S. S., Pe´cari´c, J. and Persson, L. E. (1995). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21, 335-341.

Cristescu, G. (2005). Improved integral inequalities for products of convex functions. Journal of Inequalities in Pure and Applied Mathematics, 6(2).

Zhang, T. Y., Ji, A. P. and Qi, F. (2013). Some inequalities of Hermite-Hadamard type for s-convex functions with applications to means, Le Matematiche LXVIII, Fasc. I, 229- 239, doi:10.4418/2013.68.1.17.

Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80(2), 545-550.

Noor, M. A., Awan, M. U., Noor, K. I. and Khan, S. (2015). Hermite–Hadamard type inequalities for differentiable h'-preinvex functions.

Downloads

Published

2019-07-31
CITATION
DOI: 10.11121/ijocta.01.2019.00549
Published: 2019-07-31

How to Cite

Kılınç, S., Akkurt, A., & Yıldırım, H. (2019). On Hermite-Hadamard type inequalities for S-Phi_preinvex functions by using Riemann-Liouville fractional integrals. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(2), 253–260. https://doi.org/10.11121/ijocta.01.2019.00549

Issue

Section

Research Articles

Most read articles by the same author(s)