On the Hermite-Hadamard-Fejer-type inequalities for co-ordinated convex functions via fractional integrals
DOI:
https://doi.org/10.11121/ijocta.01.2017.00405Keywords:
Riemann-Liouville fractional integrals, convex function, co-ordinated convex mapping and Hermite-Hadamard-Fejer inequality.Abstract
In this paper, using Riemann-Liouville integral operators, we establish new fractional in- tegral inequalities of Hermite-Hadamard-Fejer type for co-ordinated convex functions on a rectangle of R^2. The results presented here would provide extensions of those given in earlier works.
Downloads
References
Alomari, M., Darus, M., Co-ordinated s- convex function in the first sense with some Hadamard-type inequalities, Int. J.
Contemp. Math. Sciences, 3 (32),1557-1567 (2008).
Alomari, M., Darus, M., On the Hadamard’s inequality for log-convex functions on the co- ordinates, J. of Inequal. and Appl, Article ID 283147, 13 pages,(2009).
Alomari, M., Darus, M., Fejer inequality for double integrals, Facta Universitatis (Nis) Ser. Math. Inform., 24 , 15-28(2009).
Kilbas, A.A., Srivastava H.M., Trujillo, J.J., Theory and Applications of Fractional Differ- ential Equations, North-Holland Mathemat- ics Studies, 204, Elsevier Sci. B.V., Amster- dam, (2006).
Belarbi, S., Dahmani, Z., On some new frac- tional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3) , Art. 86, (2009). [6] Dahmani, Z., New inequalities in fractional integrals, International Journal of Nonlinear Scinece, 9(4) , 493-497, (2010).
Dahmani, Z., On Minkowski and Hermite- Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1), 51-58, (2010).
Dahmani, Z., Tabharit, L., Taf, S., Some fractional integral inequalities, Nonl. Sci. Lett. A, 1(2) , 155-160, (2010).
Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gru ̈ss inequality usin Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) , 93-99, (2010).
Dragomir, S.S., On Hadamard’s inequality for convex functions on the co-ordinates in arectangle from the plane, Taiwanese Jour- nal of Mathematics, 4, 775-788, (2001).
Fej ́er, L., Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24, 369- 390(1906), (in Hungarian).
Gorenflo, R., Mainardi, F., Fractional cal- culus: integral and differential equations of fractional order, Springer Verlag, Wien, 223- 276, (1997).
Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier d’une fonc- tion considree par, Riemann, J. Math. Pures. et Appl. 58, 171–215,(1893).
Iscan, I., Hermite-Hadamard-Fejer type in- equalities for convex functions via fractional integrals, 2014, arXiv:1404.7722v1.
Latif, M.A., Alomari, M., Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4(47), 2327-2338,(2009).
Latif, M.A., Alomari, M., On the Hadamard-type inequalities for h-convex functions on the co-ordinetes, Int. J. of
Math. Analysis, 3(33), 1645-1656,(2009).
Latif, M.A., Hussain, S., New inequalities of Ostrowski type for co-ordineted convex func- tions via fractional integrals, Journal of Frac- tional Calculus and Applications,Vol. 2, No.
, pp. 1-15, (2012).
Miller, S., Ross, B., An introduction to the
fractional calculus and fractional differential equations, John Wiley & Sons, USA, p.2, (1993).
Minculete, N., Mitroi, F-C.,Fejer-type in- equalities, Aust. J. Math. Anal. Appl. 9, no. 1, Art. 12, 8pp,(2012).
Ozdemir,M.E.,Set,E.,Sarikaya,M.Z.,New some Hadamard’s type inequalities for co- ordinated m-convex and (α, m)-convex func- tions, Hacettepe Journal of Mathematics and Statistics , 40(2), 219-229, (2011).
Sarikaya, M.Z., On new Hermite Hadamard Fej ́er type integral inequalities, Stud. Univ. Babe ̧s-Bolyai Math. 57 (3), 377–386, (2012).
Sarikaya, M.Z., Set, E., Ozdemir M.E., Dragomir, S.S., New some Hadamard’s type inequalities for co-ordinated convex func- tions, Tamsui Oxford Journal of Informa- tion and Mathematical Sciences, 28(2),137- 152, (2012) .
Sarikaya M.Z., Ogunmez, H., On new in- equalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.
Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57, 2403–2407,(2013).
Sarikaya, M.Z., Ostrowski type inequalities involving the right Caputo fractional deriva- tives belong to Lp, Facta Universitatis, Series Mathematics and Informatics , Vol. 27 No 2, 191-197, (2012).
Sarikaya, M.Z., Yaldiz, H., On weighted Montogomery identities for Riemann- Liouville fractional integrals, Konuralp Journal of Mathematics, Volume 1 No. 1 pp. 48-53, (2013).
Sarikaya, M.Z., Yaldiz, H., On the Hadamard’s type inequalities for L- Lipschitzian mapping, Konuralp Journal of Mathematics, Volume 1 No. 2 pp. 33–40 (2013).
Sarikaya, M.Z., On the Hermite–Hadamard- type inequalities for co-ordinated convex function via fractional integrals, Integral
Transforms and Special Functions, Vol. 25, No. 2, 134–147, (2014).
Downloads
Published
How to Cite
Issue
Section
License
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.