A multi-parametric programming algorithm for special classes of non-convex multilevel optimization problems

Authors

  • Abay Molla Kassa Department of Chemical Engineering, Addis Ababa Institute of Technology, Ethiopia
  • Semu Mitiku Kassa Department of Mathematics, Addis Ababa University Ethiopia

DOI:

https://doi.org/10.11121/ijocta.01.2013.00156

Keywords:

Multi-level programming, Multi-parametric programming, Branch-and-bound, Convexification

Abstract

A global solution strategy for multilevel optimization problems with special non-convexityformulation in the objectives of the inner level problems is presented based on branch-and-bound andmulti-parametric programming approach. An algorithm to such problems is proposed by convexifyingthe inner level problem while the variables from upper level problems are considered as parameters.The resulting convex parametric under-estimator problem is solved using multi-parametric program-ming approach. A branch-and-bound procedure is employed until a pre-specied positive tolerance issatised. Moreover, a ϵ-convergence proof is given for the algorithm.

Downloads

Download data is not yet available.

Author Biography

Semu Mitiku Kassa, Department of Mathematics, Addis Ababa University Ethiopia

Associate Professor of Applied Mathemiacs,

Addis Ababa University

References

Migdalas, A., Pardalos, M.P., and V¨arbrand, P., Multilevel optimization: algorithm, theory and applications. Kluwer Acadamic Publisher, (1992).

Vicente, N.L. and Calamai, H.P., Bilevel and multilevel programming: a bibliography review. Journal of Global Optimization, 5, 1 - 9 (1994). Crossref

Hansen, P., Jaumard, B., and Savard, G., New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientiï¬c and Statistical Computing, 13, 1194 - 1217 (1992). Crossref

Blair, C., The computational complexity of multi-level linear programs. Annals of Operations Research, 34, 13 - 19 (1992). Crossref

Bard, J.F., An investigation of the linear three level programming problem. IEEE Transactions on Systems, Man, and Cybernetics, 14, 711 – 717 (1984). Crossref

Zhang, G., Lu, J., Montero, J., Zeng, Y., Model, solution concept, and Kth-best algorithm for linear trilevel programming. Information Sciences, 180, 481 - 492 (2010). Crossref

Mersha, A.Y., Dempe S., Feasible direction method for bilevel programming problem. Optimization, 61(5), 597 - 616 (2012). Crossref

Gumus, Z.H., Floudas C.A., Global Optimization of Nonlinear Bilevel Programming Problems. Journal of Global Optimization, 20, 1 - 31 (2001). Crossref

Tilahun, S.L., Kassa S.M., and Ong, H.C., A new algorithm for multilevel optimization problems using evolutionary strategy, inspired by natural selection. In: Anthony, A., Ishizuka, M., and Lukose, D., (Eds.): PRICAI 2012, LNAI 7458, Springer-Verlag, Berlin Heidelberg, 577 - 588 (2012).

Faisca, P.N., Dua, V., Rustem, B., Saraiva, M.P., Pistikopoulos, N.E., Parametric global optimisation for bilevel programming. Journal of Global Optimization, 38, 609 - 623 (2006). Crossref

Faisca, P.N., Saraiva, M.P., Rustem, B., Pistikopoulos, N.E., A multiparametric programming approach for multilevel hierarchical and decentralized optimization problems. Computational Management Science, 6, 377 - 397 (2009). Crossref

Fiacco, V.A., Sensitivity analysis for nonlinear programming using penalty methods. Mathematical Programming, 10, 287 - 311 (1976). Crossref

Dua, V., Pistikopoulos, N.E., An algorithm for the solution of multiparametric mixed integer linear programming problems. Annals of Operations Research, 99, 123 - 139 (2001). Crossref

Pistikopoulos, N.E., Georgiadis C.M. and Dua V., (Editors) Multiparametric programming: Theory, algorithm, and application. WILEY-VCH Verlag GmbH and Co. KGaA, (2007).

Penginapan Ciawi. (2020). Retrieved 21 May 2020, from http://www.penginapanciawi.my.id/

Al-Khayyal, F.A., Jointly constrained bilinear programs and related problems: an overview. Computers Math. Applic., 19(11), 53 - 62 (1990). Crossref

Androulakis, P.I., Maranas, D.C., and Floudas, A.C., αBB: A Global optimization method for general constrained nonconvex problems. Journal of Global Optimization, 7, 1 - 27 (1995). Crossref

Adjiman, S.C., Dallwing, S., Floudas, A.C., Neumaier, A., A global optimization method, αBB, for general twice-defferentiable constrained NLPs – I. Theoretical advances. Computers and Chemical Engineering, 22, 1137 - 1158 (1998). Crossref

Adjiman, S.C., Androulakis, P.I., Floudas, A.C., A global optimization method, αBB, for general twice-defferentiable constrained NLPs – II. Implementaion and Computational results. Computers and Chemical Engineering, 22, 1159 - 1179 (1998). Crossref

Published

2013-05-29
CITATION
DOI: 10.11121/ijocta.01.2013.00156
Published: 2013-05-29

How to Cite

Kassa, A. M., & Kassa, S. M. (2013). A multi-parametric programming algorithm for special classes of non-convex multilevel optimization problems. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 3(2), 133–144. https://doi.org/10.11121/ijocta.01.2013.00156

Issue

Section

Optimization & Applications