The effect of a psychological scare on the dynamics of the tumor-immune interaction with optimal control strategy
DOI:
https://doi.org/10.11121/ijocta.1520Keywords:
Immune system, Local stability, Global stability, Bifurcation analysis, Numerical simulationAbstract
Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consistently exhibit stability under the defined conditions. The bifurcations occurring at the equilibrium sites are derived. Specifically, we obtained transcritical, pitchfork, and saddle-node bifurcation. Numerical simulations are employed to validate the theoretical study and ascertain the minimum therapy dosage necessary for eradicating cancer in the presence of psychological distress, thereby mitigating harm to patients. Fear could be a significant contributor to the spread of tumors and weakness of immune functionality.
Downloads
References
Gershenfeld, N. A. (1999). The nature of mathematical modeling. Cambridge university press, Cambridge, United Kingdom.
Thirthar, A. A. (2023). A mathematical modelling of a plant-herbivore community with additional effects of food on the environment. Iraqi Journal of Science, 64(7), 3551-3566.
Murray, J. D. (2002). Models for Interacting Populations. In: J. D. Murray, ed., Mathematical Biology: I. An Introduction. Springer, New York, 79-118. https://doi.org/10.1007/978-0-387-22437-4_3
Murray, J. D. (2002). Continuous Population Models for Single Species. In: J. D. Murray, eds., Mathematical Biology: I. An Introduction. Springer, New York, 1-43. https://doi.org/10.1007/978-0-387-22437-4_1
Shalan, R. N., Shireen, R., & Lafta, A. H. (2021). Discrete an SIS model with immigrants and treatment. Journal of Interdisciplinary Mathematics, 24(5), 1201-1206. https://doi.org/10.1080/09720502.2020.1814496
Sk, N., Mondal, B., Thirthar, A. A., Alqudah, M. A., & Abdeljawad, T. (2023). Bistability and tristability in a deterministic prey-predator model: Transitions and emergent patterns in its stochastic counterpart. Chaos, Solitons & Fractals, 176, 114073. https://doi.org/10.1016/j.chaos.2023.114073
Chatterjee, A., & Pal, S. (2023). A predator-prey model for the optimal control of fish harvesting through the imposition of a tax. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 68-80. https://doi.org/10.11121/ijocta.2023.1218
Sene, N. (2022). Theory and applications of new fractional-order chaotic system under Caputo operator. An International Journal of Optimization and Control, 12(1), 20-38. https://doi.org/10.11121/ijocta.2022.1108
Hoang, M. T., Ngo, T. K. Q., & Truong, H. H. (2023). A simple method for studying asymptotic stability of discrete dynamical systems and its applications. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 10-25. https://doi.org/10.11121/ijocta.2023.1243
Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. OUP Oxford, Oxford, England. https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
Allee, W. C., & Bowen, E. S. (1932). Studies in animal aggregations: mass protection against colloidal silver among goldfishes. Journal of Experimental Zoology, 61(2), 185-207. https://doi.org/10.1002/jez.1400610202
Gomez-Llano, M., Germain, R. M., Kyogoku, D., McPeek, M. A., & Siepielski, A. M. (2021). When ecology fails: how reproductive interactions promote species coexistence. Trends in Ecology & Evolution, 36(7), 610-622. https://doi.org/10.1016/j.tree.2021.03.003
Jawad, S., Sultan, D., & Winter, M. (2021). The dynamics of a modified Holling-Tanner prey-predator model with wind effect. International Journal of Nonlinear Analysis and Applications, 12(Special Issue), 2203-2210.
Al Nuaimi, M., & Jawad, S. (2022). Modelling and stability analysis of the competitional ecological model with harvesting. Communications in Mathematical Biology and Neuroscience, 2022, 1-29.
Hassan, S. K., & Jawad, S. R. (2022). The Effect of Mutual Interaction and Harvesting on Food Chain Model. Iraqi Journal of Science, 63(6), 2641-2649. https://doi.org/10.24996/ijs.2022.63.6.29
Dawud, S., & Jawad, S. (2022). Stability analysis of a competitive ecological system in a polluted environment. Communications in Mathematical Biology and Neuroscience, 2022, 1-34.
Hollingsworth, T. D. (2009). Controlling infectious disease outbreaks: Lessons from mathematical modelling. Journal of public health policy, 30, 328-341. https://doi.org/10.1057/jphp.2009.13
White, P. J., & Enright, M. C. (2010). Mathematical models in infectious disease epidemiology. Infectious Diseases, 70-75. https://doi.org/10.1016/B978-0-323-04579-7.00005-8
Huppert, A., & Katriel, G. (2013). Mathematical modelling and prediction in infectious disease epidemiology. Clinical microbiology and infection, 19(11), 999-1005. https://doi.org/10.1111/1469-0691.12308
Kareem, A. M., & Al-Azzawi, S. N. (2021). A stochastic differential equations model for the spread of coronavirus COVID-19): the case of Iraq. Iraqi Journal of Science, 63(3), 1025-1035. https://doi.org/10.24996/ijs.2021.62.3.31
Hameed, H. H., & Al-Saedi, H. M. (2021). Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function. Baghdad Science Journal, 18(2), 0296-0296. https://doi.org/10.21123/bsj.2021.18.2.0296
Kareem, A. M., & Al-Azzawi, S. N. (2022). Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans. Baghdad Science Journal, 19(5), 1140-1140. https://doi.org/10.21123/bsj.2022.6111
Kirschner, D., & Panetta, J. C. (1998). Modeling immunotherapy of the tumor-immune interaction. Journal of mathematical biology, 37, 235-252. https://doi.org/10.1007/s002850050127
Frascoli, F., Kim, P. S., Hughes, B. D., & Landman, K. A. (2014). A dynamical model of tumour immunotherapy. Mathematical biosciences, 253, 50-62. https://doi.org/10.1016/j.mbs.2014.04.003
Villasana, M., & Radunskaya, A. (2003). A delay differential equation model for tumor growth. Journal of mathematical biology, 47, 270-294. https://doi.org/10.1007/s00285-003-0211-0
Huang, M., Liu, S., Song, X., & Zou, X. (2022). Control strategies for a tumor-immune system with impulsive drug delivery under a random environment. Acta Mathematica Scientia, 42(3), 1141-1159. https://doi.org/10.1007/s10473-022-0319-1
Saeed, T., Djeddi, K., Guirao, J. L., Alsulami, H. H., & Alhodaly, M. S. (2022). A discrete dynamics approach to a tumor system. Mathematics, 10(10), 1774. https://doi.org/10.3390/math10101774
Iarosz, K. C., Borges, F. S., Batista, A. M., Baptista, M. S., Siqueira, R. A., Viana, R. L., & Lopes, S. R. (2015). Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment. Journal of theoretical biology, 368, 113-121. https://doi.org/10.1016/j.jtbi.2015.01.006
Colli, P., Gilardi, G., & Sprekels, J. (2019). A distributed control problem for a fractional tumor growth model. Mathematics, 7(9), 792. https://doi.org/10.3390/math7090792
Alharbi, S. A., & Rambely, A. S. (2020). A new ODE-based model for tumor cells and immune system competition. Mathematics, 8(8), 1285. https://doi.org/10.3390/math8081285
Ghanbari, B. (2020). On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators. Advances in Difference Equations, 2020(1), 1-32. https://doi.org/10.1186/s13662-020-03040-x
Arshad, S., Yildiz, T. A., Baleanu, D., & Tang, Y. (2020). The role of obesity in fractional order tumor-immune model. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, 82(2), 181-196.
Akman Yildiz, T., Arshad, S., & Baleanu, D. (2018). Optimal chemotherapy and immunotherapy schedules for a cancer-obesity model with Caputo time fractional derivative. Mathematical Methods in the Applied Sciences, 41(18), 9390-9407. https://doi.org/10.1002/mma.5298
Alqudah, M. A. (2020). Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alexandria Engineering Journal, 59(4), 1953-1957. https://doi.org/10.1016/j.aej.2019.12.025
Jawad, S., Winter, M., Rahman, Z. A. S., Al-Yasir, Y. I., & Zeb, A. (2023). Dynamical behavior of a cancer growth model with chemotherapy and boosting of the immune system. Mathematics, 11(2), 406. https://doi.org/10.3390/math11020406
Letellier, C., Sasmal, S. K., Draghi, C., Denis, F., & Ghosh, D. (2017). A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos, Solitons & Fractals, 99, 297-311. https://doi.org/10.1016/j.chaos.2017.04.013
De Pillis, L. G., & Radunskaya, A. (2001). A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Computational and Mathematical Methods in Medicine, 3(2), 79-100. https://doi.org/10.1080/10273660108833067
De Pillis, L. G., Gu, W., & Radunskaya, A. E. (2006). Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. Journal of theoretical biology, 238(4), 841-862. https://doi.org/10.1016/j.jtbi.2005.06.037
Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D., & Zanette, L. Y. (2016). Fear of large carnivores causes a trophic cascade. Nature communications, 7(1), 10698. https://doi.org/10.1038/ncomms10698
Pal, S., Pal, N., Samanta, S., & Chattopadhyay, J. (2019). Effect of hunting cooperation and fear in a predator-prey model. Ecological Complexity, 39, 100770. https://doi.org/10.1016/j.ecocom.2019.100770
Sarkar, K., & Khajanchi, S. (2020). Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecological Complexity, 42, 100826. https://doi.org/10.1016/j.ecocom.2020.100826
He, M., & Li, Z. (2022). Stability of a fear effect predator-prey model with mutual interference or group defense. Journal of Biological Dynamics, 16(1), 480-498. https://doi.org/10.1080/17513758.2022.2091800
Yousef, A., Thirthar, A. A., Alaoui, A. L., Panja, P., & Abdeljawad, T. (2022). The hunting cooperation of a predator under two prey’s competition and fear-effect in the prey-predator fractional-order model. AIMS Math, 7(4), 5463-5479. https://doi.org/10.3934/math.2022303
Thirthar, A. A., Abboubakar, H., Khan, A., & Abdeljawad, T. (2023). Mathematical modeling of the COVID-19 epidemic with fear impact. AIMS Math, 8(3), 6447-6465. https://doi.org/10.3934/math.2023326
Doshi, D., Karunakar, P., Sukhabogi, J. R., Prasanna, J. S., & Mahajan, S. V. (2021). Assessing coronavirus fear in Indian population using the fear of COVID-19 scale. International journal of mental health and addiction, 19, 2383-2391. https://doi.org/10.1007/s11469-020-00332-x
Gormley, M., Knobf, M. T., Vorderstrasse, A., Aouizerat, B., Hammer, M., Fletcher, J., & D’Eramo Melkus, G. (2021). Exploring the effects of genomic testing on fear of cancer recurrence among breast cancer survivors. Psycho-Oncology, 30(8), 1322-1331. https://doi.org/10.1002/pon.5679
Niknamian, S. (2019). The impact of stress, anxiety, fear and depression in the cause of cancer in humans. American Journal of Biomedical Science and Research, 3(4), 363-370. https://doi.org/10.34297/AJBSR.2019.03.000696
Epstein, J. M., Parker, J., Cummings, D., & Hammond, R. A. (2008). Coupled contagion dynamics of fear and disease: mathematical and computational explorations. PloS one, 3(12), e3955. https://doi.org/10.1371/journal.pone.0003955
Vrinten, C., McGregor, L. M., Heinrich, M., von Wagner, C., Waller, J., Wardle, J., & Black, G. B. (2017). What do people fear about cancer? A systematic review and meta-synthesis of cancer fears in the general population. Psycho-oncology, 26(8), 1070-1079. https://doi.org/10.1002/pon.4287
Lebel, S., Tomei, C., Feldstain, A., Beattie, S., & McCallum, M. (2013). Does fear of cancer recurrence predict cancer survivors’ health care use?. Supportive Care in Cancer, 21, 901-906. https://doi.org/10.1007/s00520-012-1685-3
De Pillis, L. G., & Radunskaya, A. (2003). - A mathematical model of immune response to tumor invasion. In: K. J. Bathe, ed., Computational Fluid and Solid Mechanics 2003. Elsevier Science Ltd, 1661-1668. https://doi.org/10.1016/B978-008044046-0.50404-8
Wang, X., Zanette, L., & Zou, X. (2016). Modelling the fear effect in predator-prey interactions. Journal of mathematical biology, 73(5), 1179-1204. https://doi.org/10.1007/s00285-016-0989-1
Das, A., Dehingia, K., Ray, N., & Sarmah, H. K. (2023). Stability analysis of a targeted chemotherapy-cancer model. Mathematical Modelling and Control, 3(2), 116-126. https://doi.org/10.3934/mmc.2023011
Hubbard, J. H., & West, B. H. (2012). Differential equations: a dynamical systems approach: higher-dimensional systems. Vol. 18. Springer Science & Business Media, New York.
Perko, L. (2013). Differential equations and dynamical systems. Vol. 7. Springer Science & Business Media, New York.
Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic press, New York. https://doi.org/10.1016/B978-0-12-382010-5.00015-4
Place, C. M. (2017). Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour. Routledge, London.
Jawad, S. R., & Al Nuaimi, M. (2023). Persistence and bifurcation analysis among four species interactions with the influence of competition, predation and harvesting. Iraqi Journal of Science, 64(3) 1369-1390. https://doi.org/10.24996/ijs.2023.64.3.30
Jawad, S., & Hassan, S. K. (2023). Bifurcation analysis of commensalism intraction and harvisting on food chain model. Brazilian Journal of Biometrics, 41(3), 218-233. https://doi.org/10.28951/bjb.v41i3.609
Lukes, D. L. (1969). Optimal regulation of nonlinear dynamical systems. SIAM Journal on Control, 7(1), 75-100. https://doi.org/10.1137/0307007
Kopp, R. E. (1962). Pontryagin Maximum Principle. In: G. Leitmann, ed., Mathematics in Science and Engineering. Elsevier, 255-279. https://doi.org/10.1016/S0076-5392(08)62095-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rafel Ibrahim Salih, Shireen Jawad, Kaushik Dehingia, Anusmita Das
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.