Further refinements and inequalities of Fejer's type via GA-convexity

Authors

DOI:

https://doi.org/10.11121/ijocta.1482

Keywords:

Hermite-Hadamard inequality, convex function, GA-convex function, Fejer inequality

Abstract

In this study, we introduce some new mappings in connection with Hermite-Hadamard and Fejer type integral inequalities which have been proved using the GA-convex functions. As a consequence, we obtain certain new inequalities of the Fejer type that provide refinements of the Hermite-Hadamard and Fejer type integral inequalities that have already been obtained.

Downloads

Download data is not yet available.

Author Biographies

Muhammad Amer Latif, Basic Sciences Unit, Preparatory Year, King Faisal University, Hofuf 31982, Al-Hasa, Saudi Arabia

Muhammad Amer Latif is an assistant professor at Department of Basic Unit, Preparatory Year, King Faisal University. He received his Ph.D. in Mathematics from the University of Witwatersrand, Johannesburg, South Africa. His research interest is in Mathematical Inequalities, Special Functions, Fractional Calculus, Quantum Calculus, Numerical Analysis and Applied Mathematics. He has more than 150 published papers in high reputation journals.

Huseyin Budak, Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce 81620, Turkiye

Huseyin Budak is an associate professor at Department of Mathematics, Faculty of Science and Arts, Duzce University. He received his Ph.D. in Mathematics from the Duzce University, Turkiye. His research interest is in Mathematical Inequalities, Special Functions, Fractional Calculus, Quantum Calculus, Qualitative Analysis, Numerical Analysis and Applied Mathematics. He has more than 400 published papers in high reputation journals.

Artion Kashuri, Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana 1001, Albania

Artion Kashuri is an associate professor at Department of Mathematical Engineering, Polytechnic University of Tirana. He received his Ph.D. in Mathematics from the University of Vlora, Albania. His research interest is in Mathematical Inequalities, Special Functions, Fractional Calculus, Quantum Calculus, Numerical Analysis and Applied Mathematics. He has more than 200 published papers in high reputation journals.

References

Hermite, C. (1893). Sur deux limites d’une int´egrale d´e finie. Mathesis, 3, 82.

Hadamard, J. (1893). Etude sur les propri´et´es des´ fonctions enti´eres en particulier d’une function consid´er´e par Riemann. ournal de Math´ematiques Pures et Appliqu´ees, 9, 171–215.

Fejer, L. (1906). Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24, 369–390.

Ardic, M. A., Akdemir, A. O. & Set, E. (2016). New Ostrowski like inequalities for GG-convex and GA-convex functions. Mathematical Inequalities & Applications, 19(4), 1159–1168. https://doi.org/10.7153/mia-19-85

Ardic, M. A., Akdemir, A. O. & Yildiz, K. (2018). On some new inequalities via GG-convexity and GA-convexity. Filomat, 32(16), 5707–5717. https://doi.org/10.2298/FIL1816707A

Dragomir, S. S., Latif, M. A. & Momoniat, E. (2019). Fejer type integral inequalities related with geometrically-arithmetically convex functions with applications. Acta et Commentationes Universitatis Tartuensis de Mathematica, 23(1), 51–64. https://doi.org/10.12697/ACUTM.2019.23.05

Dragomir, S. S. (2018). Some new inequalities of Hermite-Hadamard type for GA-convex functions. Annales Universitatis Mariae Curie Sklodowska Lublin-Polonia, 72(1), 55–68. https://doi.org/10.17951/a.2018.72.1.55-68

Dragomir, S. S. (2018). Inequalities of HermiteHadamard type for GA-convex functions. Annales Mathematicae Silesianae, 32, 145–168. https://doi.org/10.2478/amsil-2018-0001

Dragomir, S. S. (2018). Inequalities of Jensen type for GA-convex functions. Nonlinear Functional Analysis and Applications, 23(2), 275-304.

Dragomir, S. S., Cho, Y. J. & Kim, S. S. (2000). Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. Journal of Mathematical Analysis and Applications, 245, 489–501. https://doi.org/10.1006/jmaa.2000.6769

Dragomir, S. S., Milosevic, D. S. & Sandor, J. (1993). On some refinements of Hadamard’s inequalities and applications. Publikacije Elektrotehnickog Fakulteta. Serija Matematika, 4, 3– 10.

Dragomir, S. S. (1992). On Hadamard’s inequality for convex functions. Mathematica Balkanica, 6, 215–222.

Kashuri, A. & Liko, R. (2019). Some new Hermite-Hadamard type inequalities and their applications. Studia Scientiarum Mathematicarum Hungarica, 56(1), 103–142. https://doi.org/10.1556/012.2019.56.1.1418

Kashuri, A., Sahoo, S. K., Mohammed, P. O., Sarairah, E. A. & Hamed, Y. S. (2023). Some new Hermite-Hadamard type inequalities pertaining to fractional integrals with an exponential kernel for subadditive functions. Symmetry, 15, 748. https://doi.org/10.3390/sym15030748

Dragomir, S. S. (2000). On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Mathematical Inequalities & Applications, 3(2), 177–187. https://doi.org/10.7153/mia-03-21

Dragomir, S. S. (1996). On some integral inequalities for convex functions. Zb.-Rad. (Kragujevac), 18, 21–25.

Dragomir, S. S. & Agarwal, R. P. (1998). Two new mappings associated with Hadamard’s inequalities for convex functions. Applied Mathematics Letters, 11(3), 33–38. https://doi.org/10.1016/S0893-9659(98)00030-5

Dragomir, S. S. (1992). Two mappings in connection to Hadamard’s inequalities. Journal of Mathematical Analysis and Applications, 167, 49–56. https://doi.org/10.1016/0022-247X(92)90233-4

Kunt, M. & Iscan, I. (2018). Fractional HermiteHadamard-Fejer type inequalities for GA-convex functions. Turkish Journal of Inequalities, 2, 1– 20.

Iscan, I. (2014). Hermite-Hadamard type inequalities for GA-s-convex functions. Le Matematiche, 19, 129–146.

Latif, M. A., Kalsoom, H., Khan, Z. A., & Al-moneef, A. A. (2022). Refinement mappings related to Hermite-Hadamard type inequalities for GA-convex function. Mathematics, 10, 1398. https://doi.org/10.3390/math10091398

Latif, M. A. (2014). New Hermite-Hadamard type integral inequalities for GA-convex functions with applications. Analysis, 34, 379–389. https://doi.org/10.1515/anly-2012-1235

Latif, M. A., Dragomir, S. S. & Momoniat, E. (2017). Some estimates on the Hermite-Hadamard inequality through geometrically quasi-convex functions. Miscolc Mathematical Notes, 18(2), 933–946. https://doi.org/10.18514/MMN.2017.1819

Latif, M. A. (2015). Hermite-Hadamard type inequalities for GA-convex functions on the coordinates with applications. Proceedings of the Pakistan Academy of Sciences, 52(4), 367–379.

Latif, M. A., Dragomir, S. S. & Momoniat, E. (2018). Some Fej´er type integral inequalities for geometrically-arithmetically-convex functions with applications. Filomat, 32(6), 2193–2206. https://doi.org/10.2298/FIL1806193L

Latif, M. A. (2022). Weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasi-convex mappings. Rocky Mountain Journal of Mathematics, 51(6),1899– 1908. https://doi.org/10.1216/rmj.2021.51.1899

Latif, M. A. Fejer type inequalities for GA-convex functions and related results. (Submitted)

Latif, M. A. Fejer type inequalities and GAconvex functions. (Submitted)

Latif, M. A. Some companions of Fejer type inequalities using GA-convex functions. (Submitted)

Niculescu, C. P. (2000). Convexity according to the geometric mean. Mathematical Inequalities and Applications, 3, 155–167. https://doi.org/10.7153/mia-03-19

Noor, M. A., Noor, K. I. & Awan, M. U. (2014). Some inequalities for geometrically-arithmetically h-convex functions. Creative Mathematics and Informatics, 23(1), 91–98. https://doi.org/10.37193/CMI.2014.01.14

Obeidat, S. & Latif, M. A. (2018). Weighted version of Hermite-Hadamard type inequalities for geometrically quasi-convex functions and their applications. Journal of Inequalities and Applications, 2018, Article 307. https://doi.org/10.1186/s13660-018-1904-7

Qi, F. & Xi, B. Y. (2014). Some HermiteHadamard type inequalities for geometrically quasi-convex functions. Indian Academy of Sciences Proceedings - Mathematical Sciences, 124(3), 333–342. https://doi.org/10.1007/s12044-014-0182-7

Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2007). On some new inequalities of HermiteHadamard- Fej´er type involving convex functions. Demonstratio Mathematica, 40(1), 51–64. https://doi.org/10.1515/dema-2007-0108

Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2010). Fejer-type inequalities (I). Journal of Inequalities and Applications, 2010, Article 531976. https://doi.org/10.1155/2010/531976

Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2015). Some companions of Fej´er’s inequality for convex functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109, 645–656. https://doi.org/10.1007/s13398-014-0206-2

Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2017). Fejer-type Inequalities (II). Math. Slovaca, 67(1), 109–120. https://doi.org/10.1515/ms-2016-0252

Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2011). On some weighted integral inequalities for convex functions related Fej´er result. Filomat, 25(1), 195–218. https://doi.org/10.2298/FIL1101195T

Tseng, K. L., Yang, G. S. & Hsu, K. C. (2009). On some inequalities for Hadamard’s type and applications. Taiwanese Journal of Mathematics, 13(6B), 1929–1948. https://doi.org/10.11650/twjm/1500405649

Xiang, R. (2015). Refinements of HermiteHadamard type inequalities for convex functions via fractional integrals. Journal of Applied Mathematics & Informatics, 33(1-2), 119–125. https://doi.org/10.14317/jami.2015.119

Yang, G. S. & Hong, M. C. (1997). A note on Hadamard’s inequality. Tamkang Journal of Mathematics, 28(1), 33–37. https://doi.org/10.5556/j.tkjm.28.1997.4331

Yang, G. S. & Tseng, K. L. (1999). On certain integral inequalities related to Hermite-Hadamard inequalities. Journal of Mathematical Analysis and Applications, 239, 180–187. https://doi.org/10.1006/jmaa.1999.6506

Yang, G. S. & Tseng, K. L. (2001). Inequalities of Hadamard’s type for Lipschitzian mappings. Journal of Mathematical Analysis and Applications, 260, 230–238. https://doi.org/10.1006/jmaa.2000.7460

Yang, G. S. & Tseng, K. L. (2002). On certain multiple integral inequalities related to HermiteHadamard inequalities. Utilitas Mathematica, 62, 131–142.

Yang, G. S. & Tseng, K. L. (2003). Inequalities of Hermite-Hadamard-Fejer type for convex functions and Lipschitzian functions. Taiwanese Journal of Mathematics, 7(3), 433–440.

Zhang, X. M., Chu, Y. M. & Zhang, X. H. (2010). The Hermite-Hadamard type inequality of GA-convex functions and its application. Journal of Inequalities and Applications, 2010, Article 507560. https://doi.org/10.1155/2010/507560

Kashuri, A. & Liko, R. (2020). Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 10(2), 226- 236. https://doi.org/10.11121/ijocta.01.2020.00795

Kadakal, M. (2020). Some Hermite-Hadamard type inequalities for(P, m)-function and quasi mconvex functions. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 10(1), 78–84. https://doi.org/10.11121/ijocta.01.2020.00787

Okur, N., Iscan, I. & Dizdar, E. Y. (2019). Hermite-Hadamard type inequalities for p-convex stochastic processes. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(2), 148–153. https://doi.org/10.11121/ijocta.01.2019.00602

Kadakal, H. (2019). Some integral inequalities for multiplicatively geometrically P-functions. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(2), 216–222. https://doi.org/10.11121/ijocta.01.2019.00738

Downloads

Published

2024-07-12
CITATION
DOI: 10.11121/ijocta.1482
Published: 2024-07-12

How to Cite

Amer Latif, M. ., Budak, H. ., & Kashuri, A. (2024). Further refinements and inequalities of Fejer’s type via GA-convexity. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 229–248. https://doi.org/10.11121/ijocta.1482

Issue

Section

Research Articles