Further refinements and inequalities of Fejer's type via GA-convexity
DOI:
https://doi.org/10.11121/ijocta.1482Keywords:
Hermite-Hadamard inequality, convex function, GA-convex function, Fejer inequalityAbstract
In this study, we introduce some new mappings in connection with Hermite-Hadamard and Fejer type integral inequalities which have been proved using the GA-convex functions. As a consequence, we obtain certain new inequalities of the Fejer type that provide refinements of the Hermite-Hadamard and Fejer type integral inequalities that have already been obtained.
Downloads
References
Hermite, C. (1893). Sur deux limites d’une int´egrale d´e finie. Mathesis, 3, 82.
Hadamard, J. (1893). Etude sur les propri´et´es des´ fonctions enti´eres en particulier d’une function consid´er´e par Riemann. ournal de Math´ematiques Pures et Appliqu´ees, 9, 171–215.
Fejer, L. (1906). Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24, 369–390.
Ardic, M. A., Akdemir, A. O. & Set, E. (2016). New Ostrowski like inequalities for GG-convex and GA-convex functions. Mathematical Inequalities & Applications, 19(4), 1159–1168. https://doi.org/10.7153/mia-19-85
Ardic, M. A., Akdemir, A. O. & Yildiz, K. (2018). On some new inequalities via GG-convexity and GA-convexity. Filomat, 32(16), 5707–5717. https://doi.org/10.2298/FIL1816707A
Dragomir, S. S., Latif, M. A. & Momoniat, E. (2019). Fejer type integral inequalities related with geometrically-arithmetically convex functions with applications. Acta et Commentationes Universitatis Tartuensis de Mathematica, 23(1), 51–64. https://doi.org/10.12697/ACUTM.2019.23.05
Dragomir, S. S. (2018). Some new inequalities of Hermite-Hadamard type for GA-convex functions. Annales Universitatis Mariae Curie Sklodowska Lublin-Polonia, 72(1), 55–68. https://doi.org/10.17951/a.2018.72.1.55-68
Dragomir, S. S. (2018). Inequalities of HermiteHadamard type for GA-convex functions. Annales Mathematicae Silesianae, 32, 145–168. https://doi.org/10.2478/amsil-2018-0001
Dragomir, S. S. (2018). Inequalities of Jensen type for GA-convex functions. Nonlinear Functional Analysis and Applications, 23(2), 275-304.
Dragomir, S. S., Cho, Y. J. & Kim, S. S. (2000). Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. Journal of Mathematical Analysis and Applications, 245, 489–501. https://doi.org/10.1006/jmaa.2000.6769
Dragomir, S. S., Milosevic, D. S. & Sandor, J. (1993). On some refinements of Hadamard’s inequalities and applications. Publikacije Elektrotehnickog Fakulteta. Serija Matematika, 4, 3– 10.
Dragomir, S. S. (1992). On Hadamard’s inequality for convex functions. Mathematica Balkanica, 6, 215–222.
Kashuri, A. & Liko, R. (2019). Some new Hermite-Hadamard type inequalities and their applications. Studia Scientiarum Mathematicarum Hungarica, 56(1), 103–142. https://doi.org/10.1556/012.2019.56.1.1418
Kashuri, A., Sahoo, S. K., Mohammed, P. O., Sarairah, E. A. & Hamed, Y. S. (2023). Some new Hermite-Hadamard type inequalities pertaining to fractional integrals with an exponential kernel for subadditive functions. Symmetry, 15, 748. https://doi.org/10.3390/sym15030748
Dragomir, S. S. (2000). On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Mathematical Inequalities & Applications, 3(2), 177–187. https://doi.org/10.7153/mia-03-21
Dragomir, S. S. (1996). On some integral inequalities for convex functions. Zb.-Rad. (Kragujevac), 18, 21–25.
Dragomir, S. S. & Agarwal, R. P. (1998). Two new mappings associated with Hadamard’s inequalities for convex functions. Applied Mathematics Letters, 11(3), 33–38. https://doi.org/10.1016/S0893-9659(98)00030-5
Dragomir, S. S. (1992). Two mappings in connection to Hadamard’s inequalities. Journal of Mathematical Analysis and Applications, 167, 49–56. https://doi.org/10.1016/0022-247X(92)90233-4
Kunt, M. & Iscan, I. (2018). Fractional HermiteHadamard-Fejer type inequalities for GA-convex functions. Turkish Journal of Inequalities, 2, 1– 20.
Iscan, I. (2014). Hermite-Hadamard type inequalities for GA-s-convex functions. Le Matematiche, 19, 129–146.
Latif, M. A., Kalsoom, H., Khan, Z. A., & Al-moneef, A. A. (2022). Refinement mappings related to Hermite-Hadamard type inequalities for GA-convex function. Mathematics, 10, 1398. https://doi.org/10.3390/math10091398
Latif, M. A. (2014). New Hermite-Hadamard type integral inequalities for GA-convex functions with applications. Analysis, 34, 379–389. https://doi.org/10.1515/anly-2012-1235
Latif, M. A., Dragomir, S. S. & Momoniat, E. (2017). Some estimates on the Hermite-Hadamard inequality through geometrically quasi-convex functions. Miscolc Mathematical Notes, 18(2), 933–946. https://doi.org/10.18514/MMN.2017.1819
Latif, M. A. (2015). Hermite-Hadamard type inequalities for GA-convex functions on the coordinates with applications. Proceedings of the Pakistan Academy of Sciences, 52(4), 367–379.
Latif, M. A., Dragomir, S. S. & Momoniat, E. (2018). Some Fej´er type integral inequalities for geometrically-arithmetically-convex functions with applications. Filomat, 32(6), 2193–2206. https://doi.org/10.2298/FIL1806193L
Latif, M. A. (2022). Weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasi-convex mappings. Rocky Mountain Journal of Mathematics, 51(6),1899– 1908. https://doi.org/10.1216/rmj.2021.51.1899
Latif, M. A. Fejer type inequalities for GA-convex functions and related results. (Submitted)
Latif, M. A. Fejer type inequalities and GAconvex functions. (Submitted)
Latif, M. A. Some companions of Fejer type inequalities using GA-convex functions. (Submitted)
Niculescu, C. P. (2000). Convexity according to the geometric mean. Mathematical Inequalities and Applications, 3, 155–167. https://doi.org/10.7153/mia-03-19
Noor, M. A., Noor, K. I. & Awan, M. U. (2014). Some inequalities for geometrically-arithmetically h-convex functions. Creative Mathematics and Informatics, 23(1), 91–98. https://doi.org/10.37193/CMI.2014.01.14
Obeidat, S. & Latif, M. A. (2018). Weighted version of Hermite-Hadamard type inequalities for geometrically quasi-convex functions and their applications. Journal of Inequalities and Applications, 2018, Article 307. https://doi.org/10.1186/s13660-018-1904-7
Qi, F. & Xi, B. Y. (2014). Some HermiteHadamard type inequalities for geometrically quasi-convex functions. Indian Academy of Sciences Proceedings - Mathematical Sciences, 124(3), 333–342. https://doi.org/10.1007/s12044-014-0182-7
Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2007). On some new inequalities of HermiteHadamard- Fej´er type involving convex functions. Demonstratio Mathematica, 40(1), 51–64. https://doi.org/10.1515/dema-2007-0108
Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2010). Fejer-type inequalities (I). Journal of Inequalities and Applications, 2010, Article 531976. https://doi.org/10.1155/2010/531976
Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2015). Some companions of Fej´er’s inequality for convex functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109, 645–656. https://doi.org/10.1007/s13398-014-0206-2
Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2017). Fejer-type Inequalities (II). Math. Slovaca, 67(1), 109–120. https://doi.org/10.1515/ms-2016-0252
Tseng, K. L., Hwang, S. R. & Dragomir, S. S. (2011). On some weighted integral inequalities for convex functions related Fej´er result. Filomat, 25(1), 195–218. https://doi.org/10.2298/FIL1101195T
Tseng, K. L., Yang, G. S. & Hsu, K. C. (2009). On some inequalities for Hadamard’s type and applications. Taiwanese Journal of Mathematics, 13(6B), 1929–1948. https://doi.org/10.11650/twjm/1500405649
Xiang, R. (2015). Refinements of HermiteHadamard type inequalities for convex functions via fractional integrals. Journal of Applied Mathematics & Informatics, 33(1-2), 119–125. https://doi.org/10.14317/jami.2015.119
Yang, G. S. & Hong, M. C. (1997). A note on Hadamard’s inequality. Tamkang Journal of Mathematics, 28(1), 33–37. https://doi.org/10.5556/j.tkjm.28.1997.4331
Yang, G. S. & Tseng, K. L. (1999). On certain integral inequalities related to Hermite-Hadamard inequalities. Journal of Mathematical Analysis and Applications, 239, 180–187. https://doi.org/10.1006/jmaa.1999.6506
Yang, G. S. & Tseng, K. L. (2001). Inequalities of Hadamard’s type for Lipschitzian mappings. Journal of Mathematical Analysis and Applications, 260, 230–238. https://doi.org/10.1006/jmaa.2000.7460
Yang, G. S. & Tseng, K. L. (2002). On certain multiple integral inequalities related to HermiteHadamard inequalities. Utilitas Mathematica, 62, 131–142.
Yang, G. S. & Tseng, K. L. (2003). Inequalities of Hermite-Hadamard-Fejer type for convex functions and Lipschitzian functions. Taiwanese Journal of Mathematics, 7(3), 433–440.
Zhang, X. M., Chu, Y. M. & Zhang, X. H. (2010). The Hermite-Hadamard type inequality of GA-convex functions and its application. Journal of Inequalities and Applications, 2010, Article 507560. https://doi.org/10.1155/2010/507560
Kashuri, A. & Liko, R. (2020). Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 10(2), 226- 236. https://doi.org/10.11121/ijocta.01.2020.00795
Kadakal, M. (2020). Some Hermite-Hadamard type inequalities for(P, m)-function and quasi mconvex functions. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 10(1), 78–84. https://doi.org/10.11121/ijocta.01.2020.00787
Okur, N., Iscan, I. & Dizdar, E. Y. (2019). Hermite-Hadamard type inequalities for p-convex stochastic processes. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(2), 148–153. https://doi.org/10.11121/ijocta.01.2019.00602
Kadakal, H. (2019). Some integral inequalities for multiplicatively geometrically P-functions. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(2), 216–222. https://doi.org/10.11121/ijocta.01.2019.00738
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Amer Latif, Huseyin Budak, Artion Kashuri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.