Mixed type second-order symmetric duality under F-convexity

Authors

  • Tilak Raj GULATI Indian Institute of technology Roorkee, India
  • Khushboo VERMA Indian Institute of technology Roorkee, India

DOI:

https://doi.org/10.11121/ijocta.01.2013.00122

Keywords:

Mixed integer programming, Second-order symmetric duality, F-convexity.

Abstract

We introduce a pair of second order mixed symmetric dual problems. Weak, strong and converse duality theorems for this pair are established under $F-$convexity assumptions.

Downloads

Download data is not yet available.

References

Ahmad, I., Multiobjective mixed symmetric duality with invexity, New Zealand Journal of Mathematics 34, 1-9 (2005).

Ahmad, I., Husain, Z., Multiobjective mixed symmetric duality involving cones, Computers and Mathematics with Applications, 59, 319-316 (2010). CrossRef

Bector, C. R., Chandra, S., Abha, On mixed symmetric duality in multiobjective programming, Opsearch 36, 399-407 (1999).

Dantzig, G. B., Eisenberg, E., Cottle, R. W., Symmetric dual nonlinear programming, Pacific Journal of Mathematics 15, 809-812 (1965). CrossRef

Dorn, W. S., A symmetric dual theorem for quadratic programming, Journal of Operations Research Society of Japan 2, 93-97 (1960).

Kailey, N., Gupta, S.K., Dangar, D., Mixed second-order multiobjective symmetric duality with cone constraints, Nonlinear Analysis:Real World Applications 12, 3373-3383 (2011). CrossRef

Mangasarian, O. L., Nonlinear Programming, McGraw-Hill, New York (1969).

Mangasarian, O. L., Second and higher-order duality in nonlinear programming, Journal of Mathematical Analysis and Applications 51, 607-620 (1975). CrossRef

Mond, B., Asymmetric dual theorem for nonlinear programs, Quarterly Journal of Applied Mathematics 23, 265-269 (1965).

Mond, B., Second order duality for nonlinear programs, Opsearch 11, 90-99 (1974).

Yang, X.M., Second order symmetric duality for nonlinear programs, Opsearch 32, 205-209 (1995).

Downloads

Published

2012-08-26
CITATION
DOI: 10.11121/ijocta.01.2013.00122
Published: 2012-08-26

How to Cite

GULATI, T. R., & VERMA, K. (2012). Mixed type second-order symmetric duality under F-convexity. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 3(1), 1–5. https://doi.org/10.11121/ijocta.01.2013.00122

Issue

Section

Applied Mathematics & Control