Generalized synchronization of identical and nonidentical chaotic dynamical systems via master approaches

Authors

  • Shko Ali-Tahir
  • Murat Sari Yildiz Technical University
  • Abderrahman Bouhamidi

DOI:

https://doi.org/10.11121/ijocta.01.2017.00509

Abstract

The main objective of this work is to discuss a generalized synchronization of a coupled chaotic identical
and nonidentical dynamical systems. We propose a method used to study generalized synchronization in masterslave
systems. This method, is based on the classical Lyapunov stability theory, utilizes the master continuous time
chaotic system to monitor the synchronized motions. Various numerical simulations are performed to verify the
effectiveness of the proposed approach.

Downloads

Download data is not yet available.

References

Huygens, (1973). Horoloquim oscilatoruim apud f.muquet,parisiis, The pendulum clock, Ames:Iowa state university press, (English translation).

Pecora, L.M., Carroll, T.L. (1990). Synchronization in chaotic systems.Phys Rev Lett., 64, 821-824.

Gonzalez-Miranda, J.M. (2002). Generalized synchronization in directionaly coupled systems with identical individual dynamics. Phys Rev E, 65, 047202-4.

Kocarev, L., Partlitz, U., (1996). Generalized synchronization predictability and equivalence of undirectionally coupled dynamical systems. Phys Rev Lett., 76, 1816-1819.

Du, H.Y., Shi, P., Lu, N. (2013). Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal. Real., 14, 1182-90.

Jin, X.Z., Yang, G.H. (2013). Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time- delays. J. Franklin Inst., 350, 1206-1220.

Mei, J., Jiang, M.H., Xu, W.M., Wang, B. (2013). Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simulat., 18, 2262-478.

Quiroga, R.Q., Arnhold, J., Grassberger, P. (2000). Learning driver- response relationships from synchronization patterns. Physical Review E, 61, 5142-5148.

Tahir, S.A., (2013). The synchronization of identical Memristors systems via Lyapunov direct method. Applied and Computational Mathematics, 6, 130-136.

Zhou, J.P., Wang, Z., Wang, Y., Kong, Q.K. (2013). Synchronization in complex dynamical networks with interval time-varying coupling delays. Nonlinear Dyn., 72, 2487-2498.

Peitgen, H-O., Ju¨rgens, H., Saupe, D. (1992). Chaos and fractals, Springer-Verlag.

Ahmada, I., Bin Saabana, A., Binti Ibrahima, A., Shahzadb, M., Naveedc, N. (2016). The synchronization of chaotic systems with diff t dimensions bya robust generalized active control. Optik, 127, 8594871.

Hindmarsh, J.L., Rose, R.M. (1984). A model for neuronal bursting using three coupled diff tial equations. Proc. R. Soc. Lond., , 221, 87-102.

Hrg, D. (2013). Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling. Neural Netw., 40, 73-79.

Downloads

Published

2017-10-25
CITATION
DOI: 10.11121/ijocta.01.2017.00509
Published: 2017-10-25

How to Cite

Ali-Tahir, S., Sari, M., & Bouhamidi, A. (2017). Generalized synchronization of identical and nonidentical chaotic dynamical systems via master approaches. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(3), 248–254. https://doi.org/10.11121/ijocta.01.2017.00509

Issue

Section

Research Articles