On some properties of generalized Fibonacci and Lucas polynomials

Authors

  • Sümeyra Uçar Sümeyra UÇAR Balikesir University Department of Mathematics 10145 Cagis, Balikesir TURKEY

DOI:

https://doi.org/10.11121/ijocta.01.2017.00398

Abstract

In this paper we investigate some properties of generalized Fibonacci and Lucas polynomials. We give some new identities using matrices and Laplace expansion for the generalized Fibonacci and Lucas polynomials. Also, we introduce new families of tridiagonal matrices whose successive determinants generate any subsequence of these polynomials.

Downloads

Download data is not yet available.

References

Cahill, N. D., D'Errico, J.R., Spence, J. S., Complex factorizations of the Fibonacci and Lucas numbers. Fibonacci Quart., 41, 1, 13-19, (2003).

Catarino, P., On some idenitities for k-Fibonacci sequence. Int. J. Contemp. Math. Sciences, 9, 1, 37-42, (2014).

Doman, B. G. S., Generating functions for Chebyshev polynomials. Int. J. Pure Appl. Math. 63, 2, 197-205, (2010).

Falcon, S., Plaza, A., On the Fibonacci k-numbers. Chaos Solitons Fractals. 32, 5, 1615-1624, (2007).

Falcon, S., On the k-Lucas numbers. Int. J. Contemp. Math. Sci. 6, 21-24, 1039-1050, (2011).

Feng, J., Fibonacci identities via the determinant of tridiagonal matrix. Appl. Math. Comput. 217, 12, 5978-5981, (2011).

Godase, A. D., Dhakne, M. B., On the properties of k-Fibonacci and $k$-Lucas numbers. Int. J. Adv. Appl. Math. Mech. 2, 1, 100-106, (2014).

Kalman, D., Mena, R., The Fibonacci Numbers-Exposed. Math. Mag. 76, 3, 167-181, (2003).

Kılıç, E., Stanica, P., Factorizations and representations of binary polynomial recurrences by matrix methods. Rocky Mountain J. Math. 41, 4, 1247-1264, (2011).

Koshy, T., Fibonacci and Lucas numbers with applications. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, (2001).

Lee, G. Y., Asci, M. Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials. J. Appl. Math., (2012).

Mason, J. C., Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration and integral transforms. Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991). J. Comput. Appl. Math. 49, 1-3, 169-178, (1993).

Mason, J. C., Handscomb, D. C., Chebyshev polynomials. Chapman&Hall/CRC, Boca Raton, FL, 2003. xiv+341 pp.

Meyer, C., Matrix analysis and applied linear algebra, With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.). Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2000). xii+718 pp.

Özgür, N. Y., Uçar, S., Öztunç, Ö. Complex Factorizations of the k-Fibonacci and k-Lucas numbers. An. c{S}tiinc{t}. Univ. Al. I. Cuza Iac{s}i. Mat. (N.S.) 62, 1, 13-20, (2016).

Nalli, A., Haukkanen, P., On generalized Fibonacci and Lucas polynomials. Chaos Solitons Fractals 42, 5, 3179-3186, (2009).

Rivlin, J. T., The Chebyshev polynomials. Pure and Applied Mathematics, Wiley-Interscience [John Wiley&Sons], New York-London-Sdyney, (1974). vi+186 pp.

Şiar, Z., Keskin, R., Some new identites concerning Generalized Fibonacci and Lucas Numbers. Hacet. J. Math. Stat. 42, 3, 211-222, (2013).

Wang, J., Some new results for the (p,q)- Fibonacci and Lucas polynomials. Adv Differ Equ. 64, (2014).

Downloads

Published

2017-07-17
CITATION
DOI: 10.11121/ijocta.01.2017.00398
Published: 2017-07-17

How to Cite

Uçar, S. (2017). On some properties of generalized Fibonacci and Lucas polynomials. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(2), 216–224. https://doi.org/10.11121/ijocta.01.2017.00398

Issue

Section

Research Articles