Intuitionistic fuzzy eigenvalue problem

Authors

DOI:

https://doi.org/10.11121/ijocta.1471

Keywords:

Heaviside function, Eigenvalue, Fuzzy eigenfunction, Zadeh's extension principle

Abstract

The purpose of this paper is the study of the eigenvalues of the second order fuzzy boundary value problem (FBVP). By using the (alpha-beta)-level set of intuitionistic fuzzy numbers and Zadeh's extension principle, the FBVP is solved with the proposed method. Furthermore, a numerical example is illustrated and the advantages of the proposed approach are compared with other well-known methods such as the solutions based on the generalized Hukuhara derivative.

Downloads

Download data is not yet available.

Author Biography

Tahir Ceylan, Department of Mathematics, University of Sinop, Türkiye

Tahir Ceylan He graduated from Atatürk University in Türkiye with B.S. degree (2009), Sinop University in Türkiye with M.S degree (2013) and Ondokuz Mayıs University in Türkiye with a Ph.D. degree (2018). He works currently research assistant at Sinop University. His main research topics are applied mathematics and boundary value problems for fuzzy linear differential equations.

References

Kaleva, O. (1987). Fuzzy Differential equations. Fuzzy Sets and Systems, (24), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7

Seikkala, S. (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems (24), 319-330. https://doi.org/10.1016/0165-0114(87)90030-3

Akgul, A., Hashemi, M.S. & Seyfi, N. (2021). On the solutions of boundary value problems. An International Journal of Optimization and Control: Theories & Applications, 11(2), 199-205. https://doi.org/10.11121/ijocta.01.2021.001015

Yildirim Aksoy, N., Celik, E., & Dadas, M. E. (2023). The solvability of the optimal control problem for a nonlinear Schrodinger equation. An International Journal of Optimization and Control: Theories & Applications, 13(2), 269-276. https://doi.org/10.11121/ijocta.2023.1371

Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering applications. Springer-Verlag, Berlin.

Casasnovas, J. F. (2005). Averaging fuzzy biopolymers. Fuzzy Sets and Systems (152), 139- 158. https://doi.org/10.1016/j.fss.2004.10.019

Khastan, A., & Nieto, J.J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, (72)9-10, 3583- 3593. https://doi.org/10.1016/j.na.2009.12.038

Khalilpour, K. & Allahviranloo, T., (2012). A numerical method for two-point fuzzy boundary value problems. World Applied Sciences Journal, (16), 46-56.

Gasilov, N., Amrahov, S .E., & Fatullayev, A.G. (2011). Linear differential equations with fuzzy boundary values. 2011 5th International Conference on Application of Information and Communication Technologies, 696-700. https://doi.org/10.1109/ICAICT.2011.6111018

Mondal, S.P., & Roy T.K. (2014). First order homogeneous ordinary differential equation with initial value as triangular intuitionistic fuzzy number. Journal of Uncertainty in Mathematics Science. https://doi.org/10.5899/2014/jums-00003

Gultekin Citil, H. (2018) The examination of eigenvalues and eigenfunctions of the Sturm-Liouville fuzzy problem according to boundary conditions. International Journal of Mathematical Combinatorics, (1), 51-60.

Gultekin Citil, H. (2019). Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Mathematical Notes, (20)2, 823-837. https://doi.org/10.18514/MMN.2019.2627

Ceylan, T., & Altinisik, N. (2018). Eigenvalue problem with fuzzy coefficients of boundary conditions. Scholars Journal of Physics, Mathematics and Statistics, (5)2, 187-193.

Ceylan, T. (2023). Two point fuzzy boundary value problem with extension principle using Heaviside function. Journal of Universal Mathematics, (6)2, 131-141. https://doi.org/10.33773/jum.1307156

Akram, M., Muhammad, G., & Allahviranloo, T. (2023). Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment. Information Sciences, (645), 1-27. https://doi.org/10.1016/j.ins.2023.119372

Akram, M., Muhammad, G., Allahviranloo, T., & Pedrycz, W. (2023). Incommensurate non-homogeneous system of fuzzy linear fractional differential equations using the fuzzy bunch of real functions. Fuzzy Sets and Systems, (473), 1-25. https://doi.org/10.1016/j.fss.2023.108725

Puri, M. L. & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, (91), 552-558. https://doi.org/10.1016/0022-247X(83)90169-5

Kandel, A., & Byatt, W.J. (1978). Fuzzy differential equations. Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1978.

Hullermeier E. (1997) An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, (5)2, 117-138. https://doi.org/10.1142/S0218488597000117

Barros, L.C., Bassanezi, R.C., & Tonelli, P.A. (1997). On the continuity of the Zadeh’s extension. In: Proceedings of Seventh IFSA World Congress, 1-6.

Klir, G.J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey. https://doi.org/10.1109/45.468220

Bede, B., & Stefanini, L. (2013). Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems, (230), 119-141. https://doi.org/10.1016/j.fss.2012.10.003

Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods & Applications, (71)3-4, 1311-1328. https://doi.org/10.1016/j.na.2008.12.005

Atanassov, K.T. (1983). Intuitionistic Fuzzy Sets. VII ITKR’s Session. Sofia, Bulgarian.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, (8)65, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Atanassov, K.T. (1999). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, (20)65, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3

Atanassov, K.T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Germany: Physica- Verlag, Heidelberg. https://doi.org/10.1007/978-3-7908-1870-3

Melliani, S., & Chadli, L.S. (2001). Introduction to intuitionistic fuzzy partial differential equations. Notes on Intuitionistic Fuzzy Sets, 7(3), 39-42.

Allahviranloo, T., & Abbasbandy, S. (2002). Numerical solution of fuzzy differential equation by Runge-Kutta method and the intutionistic treatment. Notes on Intuitionistic Fuzzy Sets, 8(3), 45- 53.

Nirmala, V., & Pandian, S.C. (2015). Numerical approach for solving intuitionistic fuzzy differential equation. Applied Mathematical Sciences, (9)367, 3337-3346 https://doi.org/10.12988/ams.2015.54320

Gultekin Citil, H. (2020). The problem with fuzzy eigenvalue parameter in one of the boundary conditions. An International Journal of Optimization and Control: Theories & Applications, (10)2, 159- 165. https://doi.org/10.11121/ijocta.01.2020.00947

Atanassov, K.T. (2007). On Intuitionistic Fuzzy Versions of L. Zadeh’s Extension Principle. Notes on Intuitionistic Fuzzy Sets, (13)65, 33-36.

Akin, O., & Bayeg, S. (2019). Intuitionistic fuzzy initial value problems an application. Hacettepe Journal of Mathematics and Statistics, (748)6, 1682 - 1694.

Titchmarsh, E.C. (1962). Eigenfunction expansions associated with second-order differential equations I. 2nd edition, Oxford University Press, London.

Ceylan, T., & Altinisik, N. (2021). Different solution method for fuzzy boundary value problem with fuzzy parameter. International Journal of Mathematical Combinatorics, (1), 11-29

Downloads

Published

2024-07-12
CITATION
DOI: 10.11121/ijocta.1471
Published: 2024-07-12

How to Cite

Ceylan, T. (2024). Intuitionistic fuzzy eigenvalue problem. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 220–228. https://doi.org/10.11121/ijocta.1471

Issue

Section

Research Articles