Some results regarding observability and initial state reconstruction for time-fractional systems
DOI:
https://doi.org/10.11121/ijocta.1468Keywords:
Fractional calculus, Control theory, Time-fractional systems, Global observability, HUM approach, Numerical approach, numerical simulationsAbstract
The aim of this study is to present the notion of observability for a specific class of linear time-fractional systems of Riemann-Liouville type with a differentiation order between 1 and 2. To accomplish this goal, we first define the concept of observability and its features, then we extend the Hilbert Uniqueness Method (HUM) to determine the system's initial state. This method converts the reconstruction problem into a solvability one, leading to an algorithm that calculates the initial state. The effectiveness of the proposed algorithm is demonstrated through numerical simulations, which are presented in the final section.
Downloads
References
Renardy, M., Hrusa, W.J., & Nohel, J.A. (1987). Mathematical Problems in Viscoelasticity. Longman Science & Technology, Longman Scientific and Technical, Essex.
Metzler, R., & Klafter, J. (2000). The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339(1), 1–77. DOI: https://doi.org/10.1016/S0370-1573(00)00070-3
Atangana, A. (2014). Convergence and stability analysis of a novel iteration method for fractional biological population equation. Neural Computing and Applications, 25(5), 1021-1030. DOI: https://doi.org/10.1007/s00521-014-1586-0
Hilfer, R. (2000). Applications of Fractional Calculus in Physics. World Scientific, Singapore.
Sabatier, J., Agrawal, O.P. & Machado, J.A.T. (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht.
Wang, P.K.C. (1964). Control of Distributed Parameter Systems. Advances in Control Systems, 1, 75–172. DOI: https://doi.org/10.1016/B978-1-4831-6717-6.50008-5
Goodson, R., & Klein, R.A. (1970). Definition and Some Results for Distributed System Observability. IEEE Transactions on Automatic Control, 15(2), 165–174. DOI: https://doi.org/10.1109/TAC.1970.1099407
Boutoulout, A., Bourray, H., & El Alaoui, F.Z. (2010). Regional Boundary Observability for Semi-Linear Systems Approach and Simulation. International Journal of Mathematical Analysis, 4(24), 1153–1173.
Boutoulout, A., Bourray, H., & El Alaoui, F.Z. (2013). Boundary gradient observability for semilinear parabolic systems: Sectorial approach. Mathematical Sciences Letters, 2(1), 45–54.
Zouiten, H., Boutoulout, A., & El Alaoui, F.Z. (2017). On the Regional Enlarged Observability for Linear Parabolic Systems. Journal of Mathematics and System Science, 7, 79-87.
Ge, F., Chen, Y., & Kou, C. (2016). On the Regional Gradient Observability of Time Fractional Diffusion Processes. Automatica, 74, 1–9. DOI: https://doi.org/10.1016/j.automatica.2016.07.023
Zguaid, K., El Alaoui, F.Z., & Boutoulout, A. (2021). Regional Observability for Linear Time Fractional Systems. Mathematics and Computers in Simulation, 185, 77-87. DOI: https://doi.org/10.1016/j.matcom.2020.12.013
Awais, Y., Javaid, I., & Zehra, A. (2017). On Controllability and Observability of Fractional Continuous- Time Linear Systems with Regular Pencils. Bulletin of the Polish Academy of Sciences Technical Sciences, 65(3), 297-304. DOI: https://doi.org/10.1515/bpasts-2017-0033
Cai, R., Ge, F., Chen, Y., & Kou, C. (2019). Regional Observability for Hadamard-Caputo Time Fractional Distributed Parameter Systems. Applied Mathematics and Computation, 360, 190–202. DOI: https://doi.org/10.1016/j.amc.2019.04.081
Sabatier, J., Farges, C., Merveillaut, M., & Feneteau, L. (2012). On Observability and Pseudo State Estimation of Fractional Order Systems. European Journal of Control, 18(3), 260–271. DOI: https://doi.org/10.3166/ejc.18.260-271
Zguaid, K., & El Alaoui, F.Z. (2023). The Regional Observability Problem for a Class of Semilinear Time- Fractional Systems With Riemann-Liouville Derivative. In: Advanced Mathematical Analysis and its Applications, P. Debnath, D. F. M. Torres, and Y. Je Cho, eds., CRC Press, Boca Raton, 251–264.
Boutoulout, A., Bourray, H., & El Alaoui, F.Z. (2012). Regional Gradient Observability for Distributed Semi-linear Parabolic Systems. Journal of Dynamical and Control Systems, 18(2), 159–179. DOI: https://doi.org/10.1007/s10883-012-9138-3
Boutoulout, A., Bourray, H., El Alaoui, F.Z., & Benhadid, S. (2014). Regional Observability for Distributed Semi-Linear Hyperbolic Systems. International Journal of Control, 87(5), 898–910.
Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for linear time-fractional systems. Partial Differential Equations in Applied Mathematics, 6, 100432.
Zguaid, K., & El Alaoui, F.Z. (2023). Regional Boundary Observability for Semilinear Fractional Systems with Riemann-Liouville Derivative. Numerical Functional Analysis and Optimization, 44(5), 420–437.
El Alaoui, F.Z., Boutoulout, A., & Zguaid, K. (2021). Regional Reconstruction of Semilinear Caputo Type Time-Fractional Systems Using the Analytical Approach. Advances in the Theory of Nonlinear Analysis and its Application, 5(4), 580-599.
Zerrik, E., Bourray, H., & El Jai, A. (2004). Regional Observability for Semilinear Distributed Parabolic Systems. Journal of Dynamical and Control Systems, 10(3), 413–430.
Zguaid, K., El Alaoui, F.Z., & Torres, D. F. M. (2023). Regional Gradient Observability for Fractional Differential Equations with Caputo Time-Fractional Derivatives. International Journal of Dynamics and Control, 11(5), 2423-2437. DOI: https://doi.org/10.48550/arXiv.2301.00238
Zguaid, K., El Alaoui, F.Z., & Boutoulout, A. (2021). Regional Observability of Linear Fractional Systems Involving Riemann-Liouville Fractional Derivative. In: Z. Hammouch, H. Dutta, S. Melliani, and M. Ruzhansky, eds. Nonlinear Analysis: Problems, Applications and Computational Methods. Springer, Cham, 164-179.
Enrique, C., Jimenez, P., Menendez, J.M., & Conejo, A.J. (2008) The Observability Problem in Traffic Models: Algebraic and Topological Methods. IEEE Transactions on Intelligent Transportation Systems, 9(2), 275-87.
Jose, A.L.G., Maria, N., Enrique, C., & Jose, T. (2013) Application of Observability Techniques to Structural System Identification. Computer-Aided Civil and Infrastructure Engineering, 28(6), 434-450. DOI: https://doi.org/10.1111/mice.12004
Elbukhari, A.B., Fan, Z., & Li, G. (2023) The Regional Enlarged Observability for Hilfer Fractional Differential Equations. Axioms 12(7), 648. DOI: https://doi.org/10.3390/axioms12070648.
Viti, F., Rinaldi, M., Corman, F., & Tamp`ere, C.M.J. (2014) Assessing partial observability in network sensor location problems. Transportation Research Part B: Methodological, 70, 65-89. DOI: https://doi.org/10.1016/j.trb.2014.08.002
Lions, J.L. (1998). Controlabilite Exacte Perturbations et Stabilisation de Systemes Distribues, Tome 1: Controlabilit eexacte. Dunod, Paris.
Zguaid, K., El Alaoui, F.Z., & Boutoulout, A. (2023). Regional observability of Caputo semilinear fractional systems, Asian Journal of Control. DOI: https://doi.org/10.1002/asjc.3218
Lagnese, J. (2006). The Hilbert Uniqueness Method: A Retrospective. In: K.H. Hoffmann, W. Krabs, eds. Optimal Control of Partial Differential Equations. Springer, Berlin, 158–181.
Zguaid, K., & El Alaoui, F.Z. (2023). On the regional boundary observability of semilinear time-fractional systems with Caputo derivative. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(2), 161-170.
Pedersen, M. (2020). Functional Analysis in Applied Mathematics and Engineering. CRC Press, Boca Raton.
Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for Riemann–Liouville linear fractional evolution systems. Mathematics and Computers in Simulation, 199, 272-286.
Kilbas, A.A., Srivastava, H.M. & Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier, Boston.
Travis, C.C., & Webb, G.F. (1978). Cosine Families and Abstract Nonlinear Second Order Differential Equations. Acta Mathematica Academiae Scientiarum Hungarica, 32(1), 75–96.
Vasil’ev, V.V., Krein, S., & Sergey, P. (1991). Semi-groups of Operators, Cosine Operator Functions, and Linear Differential Equations. Journal of Mathematical Sciences, 54, 1042–1129.
Boua, H. (2021). Spectral Theory for Strongly Continuous Cosine. Concrete Operators, 8, 40–47.
Hassani, R.A., Blali, A., Amrani, A.E., & Moussaouja, K. (2018). Cosine Families of Operators in a Class of Frechet Spaces. Proyecciones (Antofagasta), 37(1), 103–118.
Ge, F., Chen, Y., & Kou, C. (2018). Regional Analysis of Time-Fractional Diffusion Processes. Springer, Cham.
Gorenflo, R., Kilbas, A.A., Mainardi, F., & Rogosin, S. (2020). Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin.
Brahim, H.B., Zguaid, K., & El Alaoui, F.Z. (2024). A New and specific definition for the mild solution of Riemann-Liouville time-fractional systems with 1 < alpha < 2, To appear.
Tucsnak, M., & Weiss, G. (2009). Observation and Control for Operator Semigroups. Birkhauser, Basel.
El Jai, A., & Pritchard, A.J. (1986). Capteurs et actionneurs dans l’analyse des systemes distribues. Elsevier Masson, Paris.
Floridia, G., & Yamamoto, M. (2020). Backward Problems in Time for Fractional Diffusion-Wave Equation. Inverse Problems, 36(12), 125016. DOI: https://dx.doi.org/10.1088/1361-6420/abbc5e
Almeida, R. (2016). A Caputo Fractional Derivative of a Function with Respect to Another Function. Communications in Nonlinear Science and Numerical Simulation, 44. DOI: https://doi.org/10.1016/j.cnsns.2016.09.006
Lions, J.L., & Magenes, E. (1972). Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin.
Zhou, Y., & Wei, H.J. (2020). New Results on Controllability of Fractional Evolution Systems with Order alpha in (1, 2). Computers & Evolution Equations and Control Theory, 10(3), 491–509. DOI: https://doi.org/10.3934/eect.2020077
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hamza Ben Brahim, Fatima-Zahrae El Alaoui, Khalid Zguaid

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.