On the upper bounds of Hankel determinants for some subclasses of univalent functions associated with sine functions
DOI:
https://doi.org/10.11121/ijocta.1392Keywords:
Analytic functions, Coefficient estimates, Subordination, Hankel determinant, Starlike functions, Convex function, Sine functionAbstract
Let a normalized analytic function be given on the open unit disk. In this paper, we define and consider some familiar subsets of analytic functions associated with sine functions in the region of unit disk on the complex plane. For these classes, we aim to find the upper bounds of the modules of the Hankel determinants obtained from the coefficients of the functions belonging to some classes defined by subordination.
Downloads
References
Bieberbach, L. (1916). ¨Uber die Koeffizienten derjenigen Pottenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preussische Akademie der Wissenschaften, 138, pp. 940-955.
De-Branges, L. (1985). A proof of the Beiberbach conjecture. Acta Mathematica, 154, 137-152.
Cho, N.E., Kumar, V., Kumar, S.S. & Ravichandran, V. (2019). Radius problems for starlike functions associated with the sine function. Bulletin of the Iranian Mathematical Society, 45, 213–232.
Pommerenke, C. (1975). On the coefficients and Hankel determinants of univalent functions. Journal of the London Mathematical Society, 41, 111–122.
Pommerenke, C. (1967). On the Hankel determinants of univalent functions. Mathematika, 14, 108–112.
Janteng, A., Halim, S.A. & Darus, M. (2006). Coefficient inequality for a function whose derivative has a positive real part. Journal of Inequalities in Pure and Applied Mathematics, 7, 1-5.
Janteng, A., Halim, S.A. & Darus, M. (2007). Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis, 1, 619-625.
Babalola, K.O. (2010). On Hankel determinants for some classes of univalent functions. Inequality Theory and Applications, 6, 1-7.
Altinkaya, S. & Yalcin, S. (2016). Third Hankel determinant for Bazilevic functions. Advances in Mathematics, 5, 91-96.
Bansal, D., Maharana, S. & Prajapat, J.K. (2015). Third order Hankel determinant for certain univalent functions. Journal of Korean Mathematical Society, 52, 1139–1148.
Krishna, D.V., Venkateswarlu, B. & RamReddy, T. (2015). Third Hankel determinant for bounded turning functions of order alpha. Journal of the Nigerian Mathematical Society, 34, 121–127.
Raza, M. & Malik, S.N. (2013). Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. Journal of Inequalities and Applications, 412.
Shanmugam, G., Stephen, B.A. & Babalola, K.O. (2014). Third Hankel determinant for alpha- starlike functions. Gulf Journal of Mathematics, 2, 107–113,
Zhang, H.Y., Tang, H. & Ma, L.N. (2017). Upper bound of third Hankel determinant for a class of analytic functions. Pure and Applied Mathematics, 33(2), 211- 220.
Breaz, D., Catas, A. & Cotirla, L. (2022). On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function. Analele Stiintifice ale Universitatii ‘’Ovidius Constanta. Seria Mathematica, 30(1), 75-89.
Orhan, H., Caglar, M. & Cotirla, L. (2023). Third Hankel determinant for a subfamily of holomorphic functions related with lemniscate of Bernoulli. Mathematics, 11, 1147.
Zaprawa, P. (2019). Third Hankel determinants for subclasses of univalent functions. Mediterranean Journal of Mathematics, 14, 19.
Kowalczyk, B., Lecko, A. & Sim,Y.J. (2018). The sharp bound of the Hankel determinant of the third kind for convex functions. Bulletin of the Australian Mathematical Society, 97, 435–445.
Lecko,A., Sim, Y.J. & Smiarowska, B. (2018).The sharp bound of the Hankel determinant of the third kind for starlike functions of order. Complex Analysis and Operator Theory, 1–8.
Arif, M., Raza, M., Tang, H., Hussain, S. & Khan, H. (2019). Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Mathematics, 17, 1615-1630.
Shi, L., Ali, I., Arif ,M., Cho ,N.E., Hussain ,S. & Khan, H. (2019). A Study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7, 418.
Zaprawa, P. (2019). Hankel Determinant for univalent functions related to the exponential function. Symmetry, 11, 1211.
Salagean, G. (1983). Subclasses of Univalent Functions. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1013, 362-372.
Al-Oboudi, F.M. (2004). On univalent functions defined by a generalized Salagean operator. Indian Journal of Mathematics and Mathematical Sciences, 25-28, 1429-1436.
Oros, I.O. & Oros, G. (2008). On a class of univalent functions defined by a generalized Salagean operator. Complex Variables and Elliptic Equations, 53(9), 869-877.
Caratheodory, C. (1911). Uber den variabilitatsbereich der Fourier’schen Konstanten Von Positiven harmonischen. Rendiconti del Circolo Mathematico di Palermo, 32, 193–217.
Duren, P.L. (1983). Univalent functions, (Springer-Verlag), 114–115. Mathematicheskii Sbornik, 37 (79), 471–476.
Libera, J. & Zlotkiewicz, E.J. (1982). Early coefficients of the inverse of a regular convex Function. Proceedings of American Mathematical Society, 85(2), 225–230.
Libera, J. & Zlotkiewicz, E.J. (1983). Coefficient bounds for the inverse of a function with derivative in P. Proceedings of American Mathematical Society, 87(2), 251–257,
Ayinla, R.O.B. & Risikat, A. (2021). Toeplitz determinants for a subclass of analytic functions. Journal of Progressive Research in Mathematics, 18(1), 99-106.
Keough, F. & Merkes, E. (1996). A coefficient inequality for certain subclasses of analytic functions. Proceedings of American Mathematical Society, 20, 8–12.
Pommerenke, C. (1975). Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck & Ruprecht, Gottingen, vol. 25.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammet Kamali, Alina Riskulova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.