Novel approach for nonlinear time-fractional Sharma-Tasso-Olever equation using Elzaki transform
DOI:
https://doi.org/10.11121/ijocta.2023.1265Keywords:
Sharma-Tasso-Olever equation, Liouville-Caputo derivative, q-homotopy analysis method, Elzaki transformAbstract
In this article, we demonstrated the study of the time-fractional nonlinear Sharma-Tasso-Olever (STO) equation with different initial conditions. The novel technique, which is the mixture of the q-homotopy analysis method and the new integral transform known as Elzaki transform called, q-homotopy analysis Elzaki transform method (q-HAETM) implemented to find the adequate approximated solution of the considered problems. The wave solutions of the STO equation play a vital role in the nonlinear wave model for coastal and harbor designs. The demonstration of the considered scheme is done by carrying out some examples of time-fractional STO equations with different initial approximations. q-HAETM offers us to modulate the range of convergence of the series solution using , called the auxiliary parameter or convergence control parameter. By performing appropriate numerical simulations, the effectiveness and reliability of the considered technique are validated. The implementation of the new integral transform called the Elzaki transform along with the reliable analytical technique called the q-homotopy analysis method to examine the time-fractional nonlinear STO equation displays the novelty of the presented work. The obtained findings show that the proposed method is very gratifying and examines the complex nonlinear challenges that arise in science and innovation.
Downloads
References
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies.
Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego, CA.
Xin, Z., Jing, Z., Wenru, L., Wenbo, X. (2021). Research on fractional sliding mode synchronous control of robotic arms under uncertain disturbance. Atomatic Control and Computer Sciences, 55(1), 26-37. DOI: https://doi.org/10.3103/S0146411621010107
Wang, X., Petru, M., Xia, L., (2021). Modelling the dynamical behaviour of the flax fibre rainforced composite after water using a modified Huet-Sayegh viscoelastic model with fractional derivatives. Construction and building Materials, 290, 122879. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122879
Ghamisi, P., Couceiro, J. A., Benediktsson, J. A., Ferreira, N. M. (2012). An efficient method for segementation of images based on fractional calculus and natural selection. Expert Systems with Applications, 39(16), 12407-12417. DOI: https://doi.org/10.1016/j.eswa.2012.04.078
Rashid, S., Kubra, T., Ullah, S. (2021). Fractional spatial diffusion of a biological population model via a new integral transform in the setting of power and Mittag-Leffler nonsingular kernel. Physica Scripta, 96(11), 114003. DOI: https://doi.org/10.1088/1402-4896/ac12e5
Veeresha, P., Prakasha, D. G., Baskonus, H. M. (2019). New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo frcational derivatives. Chaos, 29, 013119. DOI: https://doi.org/10.1063/1.5074099
El Mfadel, A., Melliani, S., & Elomari, M. H. (2021). A note on the stability analysis of fuzzy nonlinear fractional differential equations involving the Caputo fractional derivative. International Journal of Mathematics and Mathematical Sciences, 2021, 1-6. DOI: https://doi.org/10.1155/2021/7488524
Veeresha, P., W, Gao., Prakasha, D. G., Malagi, N. S., Ilhan, E., Baskonus, H. M. (2021). New dynamical behaviour of the coronavirus (2019-nCoV) infection system with nonlocal operator from reservoirs to people. Infornation Sciences Letters, 10(2), 205-212. DOI: https://doi.org/10.18576/isl/100206
Hammouch, Z., Yavuz, M., & Özdemir, N. (2021). Numerical solutions and synchronization of a variable-order fractional chaotic system. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 11-23. DOI: https://doi.org/10.53391/mmnsa.2021.01.002
Sunitha, M., Fehmi, G., Amal, A., Malagi, N. S., Sandeep, S., Rekha, J. G., Punith Gowda R. J. (2023). An efficient analytical approach with novel integral transform to study the two-dimensional solute tranport problem. Ain Shams Engineering Journal, 14(3), 101878. DOI: https://doi.org/10.1016/j.asej.2022.101878
Logeswari, K., Ravichandran, C., & Nisar, K. S. (2020). Mathematical model for spreading of COVID?19 virus with the Mittag–Leffler kernel. Numerical Methods for Partial Differential Equations, 2020, 1-16. DOI: https://doi.org/10.1002/num.22652
Yavuz, M., (2020). Europian option pricing models described by fractional operators with classical an generalized Mittag-Leffler kernels. Numerical Methods for Partial Differential Equations, 1-23. DOI: https://doi.org/10.1002/num.22645
Özköse, F., & Yavuz, M. (2022). Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in biology and medicine, 141, 105044. DOI: https://doi.org/10.1016/j.compbiomed.2021.105044
Veeresha, P., Yavuz, M., & Baishya, C. (2021). A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 11(3), 52-67. DOI: https://doi.org/10.11121/ijocta.2021.1177
Chalishajar, D., Ravichandran, C., Dhanalakshmi, S., & Murugesu, R. (2019). Existence of fractional impulsive functional integro-differential equations in Banach spaces. Applied System Innovation, 2(2), 18. DOI: https://doi.org/10.3390/asi2020018
Jothimani, K., Kaliraj, K., Panda, S. K., Nisar, K. S., & Ravichandran, C. (2021). Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations & Control Theory, 10(3), 619. DOI: https://doi.org/10.3934/eect.2020083
Nisar, K. S., Jothimani, K., Kaliraj, K., & Ravichandran, C. (2021). An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos, Solitons & Fractals, 146, 110915. DOI: https://doi.org/10.1016/j.chaos.2021.110915
Prakasha, D. G., Malagi, N. S., & Veeresha, P. (2020). New approach for fractional Schrödinger?Boussinesq equations with Mittag?Leffler kernel. Mathematical Methods in the Applied Sciences, 43(17), 9654-9670. DOI: https://doi.org/10.1002/mma.6635
Prakasha, D. G., Malagi, N. S., Veeresha, P., & Prasannakumara, B. C. (2021). An efficient computational technique for time?fractional Kaup?Kupershmidt equation. Numerical Methods for Partial Differential Equations, 37(2), 1299-1316. DOI: https://doi.org/10.1002/num.22580
Özköse, F., Yavuz, M., ?enel, M. T., & Habbireeh, R. (2022). Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157, 111954. DOI: https://doi.org/10.1016/j.chaos.2022.111954
Veeresha, P. (2021). A numerical approach to the coupled atmospheric ocean model using a fractional operator. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 1-10. DOI: https://doi.org/10.53391/mmnsa.2021.01.001
Yavuz, M., & Sene, N. (2020). Approximate solutions of the model describing fluid flow using generalized ?-laplace transform method and heat balance integral method. Axioms, 9(4), 123. DOI: https://doi.org/10.3390/axioms9040123
Valliammal, N., & Ravichandran, C. (2018). Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. Nonlinear Studies, 25(1), 159171.
Evirgen, F., & Yavuz, M. (2018). An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative. In ITM Web of Conferences (Vol. 22, p. 01009), EDP Sciences. DOI: https://doi.org/10.1051/itmconf/20182201009
Malagi, N. S., Veeresha, P., Prasannakumra, B. C., Prasanna, G, D., Prakasha, D. G. (2020). A new computational technique for the analytic treatment of time-fractional Emden-Fowler equations. Mathematics and Computers in Simulation, 190, 362-376. DOI: https://doi.org/10.1016/j.matcom.2021.05.030
Evirgen, F., Uçar, S., Özdemir, N., & Hammouch, Z. (2021). System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems-S, 14(7), 2199. DOI: https://doi.org/10.3934/dcdss.2020145
Wang, G. W., & Xu, T. Z. (2014). Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dynamics, 76(1), 571-580. DOI: https://doi.org/10.1007/s11071-013-1150-y
Chen, A. (2010). Multi-kink solutions and soliton fission and fusion of Sharma–Tasso–Olver equation. Physics Letters A, 374(23), 2340-2345. DOI: https://doi.org/10.1016/j.physleta.2010.03.054
Wang, G., Kara, A. H., & Fakhar, K. (2016). Nonlocal symmetry analysis and conservation laws to an third-order Burgers equation. Nonlinear Dynamics, 83(4), 2281-2292. DOI: https://doi.org/10.1007/s11071-015-2480-8
Liu, H. (2015). Painlevé test, generalized symmetries, Bäcklund transformations and exact solutions to the third-order Burgers’ equations. Journal of Statistical Physics, 158(2), 433-446. DOI: https://doi.org/10.1007/s10955-014-1130-8
Hirota, R. (1971). Exact solution of the Korteweg—de Vries equation for multiple collisions of solitons. Physical Review Letters, 27(18), 1192. DOI: https://doi.org/10.1103/PhysRevLett.27.1192
Ablowitz, M. J., Ablowitz, M. A., Clarkson, P. A., & Clarkson, P. A. (1991). Solitons, nonlinear evolution equations and inverse scattering (Vol. 149), Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511623998
Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., & Biswas, A. (2014). Application of first integral method to fractional partial differential equations. Indian Journal of Physics, 88(2), 177-184. DOI: https://doi.org/10.1007/s12648-013-0401-6
Eslami, M., Mirzazadeh, M., Vajargah, B. F., & Biswas, A. (2014). Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method. Optik, 125(13), 3107-3116. DOI: https://doi.org/10.1016/j.ijleo.2014.01.013
Sanchez, P., Ebadi, G., Mojaver, A., Mirzazadeh, M., Eslami, M., & Biswas, A. (2015). Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity. Acta Physica Polonica A, 127(6), 1577-1586. DOI: https://doi.org/10.12693/APhysPolA.127.1577
Dai, Z., Liu, J., & Liu, Z. (2010). Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev–Petviashvili equation. Communications in Nonlinear Science and Numerical Simulation, 15(9), 2331-2336. DOI: https://doi.org/10.1016/j.cnsns.2009.09.037
Xu, Z., Chen, H., & Dai, Z. (2014). Rogue wave for the (2+ 1)-dimensional Kadomtsev–Petviashvili equation. Applied Mathematics Letters, 37, 34-38. DOI: https://doi.org/10.1016/j.aml.2014.05.005
Mirzazadeh, M., & Biswas, A. (2014). Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method. Optik, 125(19), 5467-5475. DOI: https://doi.org/10.1016/j.ijleo.2014.02.042
Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K. R., Mahmood, M. F., & Belic, M. (2014). Singular solitons in optical metamaterials by ansatz method and simplest equation approach. Journal of Modern Optics, 61(19), 1550-1555. DOI: https://doi.org/10.1080/09500340.2014.944357
Wang, C. (2016). Spatiotemporal deformation of lump solution to (2+ 1)-dimensional KdV equation. Nonlinear Dynamics, 84(2), 697-702. DOI: https://doi.org/10.1007/s11071-015-2519-x
Khalid, M., Sultana, M., Zaidi, F., & Arshad, U. (2015). Application of Elzaki transform method on some fractional differential equations. Mathematical Theory and Modeling, 5(1), 89-96.
Liao, S. (2003). Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC.
Liao, S. J. (1995). An approximate solution technique not depending on small parameters: a special example. International Journal of Non-Linear Mechanics, 30(3), 371-380. DOI: https://doi.org/10.1016/0020-7462(94)00054-E
Liao, S. (2012). Homotopy analysis method in nonlinear differential equations (pp. 153-165). Beijing: Higher education press. DOI: https://doi.org/10.1007/978-3-642-25132-0
El-Tawil, M. A., & Huseen, S. N. (2012). The q-homotopy analysis method (q-HAM). International Journal of Applied Mathematics and Mechanics, 8(15), 51-75.
El-Tawil, M. A., & Huseen, S. N. (2013). On convergence of the q-homotopy analysis method. International Joyrnl of Contemporary Mathematical Sciences, 8(10), 481-497. DOI: https://doi.org/10.12988/ijcms.2013.13048
Kumar, S., Kumar, A., Kumar, D., Singh, J., & Singh, A. (2015). Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. Journal of the Egyptian Mathematical Society, 23(1), 102-107. DOI: https://doi.org/10.1016/j.joems.2014.02.004
Kumar, D., Singh, J., Kumar, S., & Singh, B. P. (2015). Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Engineering Journal, 6(2), 605-611. DOI: https://doi.org/10.1016/j.asej.2014.10.015
Khan, M., Gondal, M. A., Hussain, I., & Vanani, S. K. (2012). A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on a semi infinite domain. Mathematical and Computer Modelling, 55(3-4), 1143-1150. DOI: https://doi.org/10.1016/j.mcm.2011.09.038
Khan, M. (2014). A novel solution technique for two dimensional Burger’s equation. Alexandria Engineering Journal, 53(2), 485-490. DOI: https://doi.org/10.1016/j.aej.2014.01.004
Khuri, S. A. (2001). A Laplace decomposition algorithm applied to a class of nonlinear differential equations. Journal of Applied Mathematics, 1(4), 141-155. DOI: https://doi.org/10.1155/S1110757X01000183
Kumar, D., Singh, J., & Kumar, S. (2014). Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves. Journal of the Egyptian Mathematical Society, 22(3), 373-378. DOI: https://doi.org/10.1016/j.joems.2013.11.004
Veeresha, P., Prakasha, D. G., Singh, J., Kumar, D., & Baleanu, D. (2020). Fractional Klein-Gordon-Schrödinger equations with mittag-leffler memory. Chinese Journal of Physics, 68, 65-78. DOI: https://doi.org/10.1016/j.cjph.2020.08.023
Singh, J., Kumar, D., & Swroop, R. (2016). Numerical solution of time-and space-fractional coupled Burgers’ equations via homotopy algorithm. Alexandria Engineering Journal, 55(2), 1753-1763. DOI: https://doi.org/10.1016/j.aej.2016.03.028
Singh, J., Kumar, D., Purohit, S. D., Mishra, A. M., & Bohra, M. (2021). An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory. Numerical Methods for Partial Differential Equations, 37(2), 1631-1651. DOI: https://doi.org/10.1002/num.22601
Elzaki, T. M. (2011). The new integral transform Elzaki transform. Global Journal of pure and applied mathematics, 7(1), 57-64.
Khalid, M., Sultana, M., Zaidi, F., & Arshad, U. (2015). An Elzaki transform decomposition algorithm applied to a class of non-linear differential equations, Journal of Natural Sciences Research, 5, 48-56.
Manafian, J., & Zamanpour, I. (2014). Application of the ADM Elzaki and VIM Elzaki transform for solving the nonlinear partial differential equations, Sci. Road Journal, 2(4), 37-50.
Elzaki, T. M., Hilal, E. M., Arabia, J. S., & Arabia, J. S. (2012). Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Mathematical Theory and Modeling, 2(3), 33-42.
Yavuz, M. (2020). Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivatives with power and Mittag-Leffler kernel. Advances in Difference Equations. 2020(1), 1-18. DOI: https://doi.org/10.1186/s13662-020-02828-1
Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers & Mathematics with Applications, 62(3), 1602-1611. DOI: https://doi.org/10.1016/j.camwa.2011.03.036
Nawaz, R., & Zada, L. (2018). Solving time fractional Sharma-Tasso-Olever equation by optimal homotopy asymptotic method. In AIP Conference Proceedings, 1978(1), 310002. DOI: https://doi.org/10.1063/1.5043929
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Naveen Sanju Malagi, Pundikala Veeresha, Gunderi Dhananjaya Prasanna, Ballajja Chandrappa Prasannakumara, Doddabhadrappla Gowda Prakasha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.