# A simple method for studying asymptotic stability of discrete dynamical systems and its applications

## DOI:

https://doi.org/10.11121/ijocta.2023.1243## Keywords:

Discrete dynamical systems, Lyapunov's indirect method, Asymptotic stability, Non-hyperbolic equilibrium point, Nonstandard finite difference methods## Abstract

In this work, we introduce a simple method for investigating the asymptotic stability of discrete dynamical systems, which can be considered as an extension of the classical Lyapunov's indirect method. This method is constructed based on the classical Lyapunov's indirect method and the idea proposed by Ghaffari and Lasemi in a recent work. The new method can be applicable even when equilibia of dynamical systems are non-hyperbolic. Hence, in many cases, the classical Lyapunov's indirect method fails but the new one can be used simply. In addition, by combining the new stability method with the Mickens' methodology, we formulate some nonstandard finite difference (NSFD) methods which are able to preserve the asymptotic stability of some classes of differential equation models even when they have non-hyperbolic equilibrium points. As an important consequence, some well-known results on stability-preserving NSFD schemes for autonomous dynamical systems are improved and extended. Finally, a set of numerical examples are performed to illustrate and support the theoretical findings.

### Downloads

## References

Allen. L. J. S. An Introduction to Mathematical Biology. Prentice Hall, Upper Saddle River, NJ.

Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin, Heidelberg, 2010.

Khalil, H. K. (2022). Nonlinear Systems. 3rd Edition, Pearson.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier.

LaSalle, J. P. (1976). The Stability of Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Perko. L. (20221). Differential Equations and Dynamical Systems, Springer, New York.

Podlubny. I. (1999). Fractional Differential Equations. Academic Press, San Diego.

Stuart, A., & Humphries. A. R. (1998). Dynamical systems and numerical analysis. Cambridge University Press.

Alzabut. J., Tyagi. S., & Martha. S. C. (2020). On the stability and Lyapunov direct method for fractional difference model of BAM neural networks. Journal of Intelligent & Fuzzy Systems, 38(3), 2491-2501.

Alzabut. J., Tyagi. S., & Abbas. S. (2020). Discrete Fractional-Order BAM Neural Networks with Leakage Delay: Existence and Stability Results. Asian Journal of Control, 22(1), 143-155.

Alzabut. J., George Maria Selvam, A., Dhineshbabu. R., Tyagi. S., Ghaderi. M., & Rezapour. S. (2022). A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality. Journal of Inequalities and Applications, (2022), Article number: 56.

Alzabut. J., George Maria Selvam. A., Dhakshinamoorthy. V., Mohammadi. H., & Rezapour, S. (2022). On Chaos of Discrete Time Fractional Order Host-Immune-Tumor Cells Interaction Model. Journal of Applied Mathematics and Computing, https://doi.org/10.1007/s12190-022-01715-0.

Dianavinnarasi. J., Raja. R., Alzabut. J., Cao. J., Niezabitowski. M., & Bagdasar, O. (2022). Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach. Mathematics and Computers in Simulation, 201, 462-485.

Goufo. E. F. D., Ravichandran. C., & Birajdar. G. A. (2021). Self-similarity techniques for chaotic attractors with many scrolls using step series switching. Mathematical Modelling and Analysis, 26(4), 591-611.

Iswarya. M., Raja, R., Cao, J., Niez- abitowski, M., Alzabut, J., & Maharajan. C. (2022). New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays. Mathematics and Computers in Simulation, 201, 440-461.

Kaliraj, K., Manjula, M., Ravichandran, C., & Nisar, K. S. (2022). Results on neutral differential equation of sobolev type with non-local conditions. Chaos, Solitons & Fractals, 158, 112060.

Kongson, J., Sudsutad. W., Thaiprayoon. C., Alzabut. J., & Tearnbucha, C. (2021). On analysis of a nonlinear fractional system for social media addiction involving Atangana- Baleanu-Caputo derivative. Advances in Difference Equations, (2021), Article number: 356.

Logeswari, K., Ravichandran. C., & Nisar, K. S. (2020). Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel. Numerical Methods for Partial Differential Equations, https://doi.org/10.1002/num.22652.

Maji, C., Basir, F. A., Mukherjee, D., Nisar, K. S., & Ravichandran, C. (2022). COVID-19 propagation and the usefulness of awareness-based control measures: A mathematical model with delay. AIMS Mathematics, 7(7), 12091-12105.

Matar, M. M., Skhail, E. S. A., & Alzabut, J. (2021). On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Mathematical Methods in the Applied Sciences, 44(10), 2021.

Nisar, K. S., Logeswari, K., Vijayaraj, V., Baskonus, H. M., & Ravichandran. C. (2022). Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control. Fractal and Fractional, 6(2), 61.

Nisar, K. S., Jothimani, K., Ravichandran, C., Baleanu, D., & Kumar, D. (2022). New approach on controllability of Hilfer fractional derivatives with nondense domain. AIMS Mathematics, 7(6), 10079-10095.

Nisar, K. S., Jothimani, K, Kaliraj, K., & Ravichandran, C. (2021). An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with nondense domain. Chaos, Solitons & Fractals, 146, 110915.

Ravichandran, C., Jothimani, K., Nisar, K. S., Mahmoud, E. E., & Yahia, I. S. (2022). An interpretation on controllability of Hilfer fractional derivative with nondense domain. Alexandria Engineering Journal, 61(12), 9941-9948.

Ravichandran, C., Sowbakiya, V., Nisar, K. S. (2022). Study on existence and data dependence results for fractional order differential equations. Chaos, Solitons & Fractals, 160, 112232.

Selvam, G. M., Alzabut, J., Dhakshinamoorthy, V., Jonnalagadda, J. M., & Abodayeh. K. (2021). Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum. Mathematical Biosciences and Engineering, 18(4) 3907-3921.

Shammakh, W., George Maria Selvam, A., Dhakshinamoorthy, V., & Alzabut. J. (2022). A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal and Fractional, 6(3), 152.

Veeresha, P., Prakasha, D. G., Ravichandran, C., Akinyemi, L., & Nisar, K. S. (2022). Numerical approach to generalized coupled fractional Ramani equations, Numerical approach to generalized coupled fractional Ramani equations. International Journal of Modern Physics, 36(05), 2250047.

Lyapunov, A. M. (1992). The general problem of the stability of motion. International Journal of Control, 55(3), 531-534.

Ghaffari. A., & Lasemi. N. (2015). New method to examine the stability of equilibrium points for a class of nonlinear dynamical systems. Nonlinear Dynamics, 79, 2271-2277.

Elaydi, S. (2005). An Introduction to Difference Equations, Springer, New York.

Mickens, R. E. (1993). Nonstandard Finite Difference Models of Differential Equations. World Scientific.

Mickens, R. E. (2000). Applications of Nonstandard Finite Difference Schemes. World Scientific.

Mickens, R. E. (2005). Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, 2005.

Mickens. R. E. (2002). Nonstandard Finite Difference Schemes for Differential Equations. Journal of Difference Equations and Applications, 8(9), 823-847.

Mickens, R. E. (2020). Nonstandard Finite Difference Schemes: Methodology and Applications. World Scientific.

Anguelov. R., & Lubuma, J. M.-S. (2001). Contributions to the mathematics of the nonstandard finite difference method and Applications. Numerical Methods for Partial Differential Equations, 17(5), 518-543.

Patidar, K. C. (2005). On the use of non-standard finite difference methods. Journal of Difference Equations and Applications, 11(8), 735-758.

Patidar, K. C. (2016). Nonstandard finite difference methods: recent trends and further developments. Journal of Difference Equations and Applications, 22(6), 817-849.

Adamu, E. M., Patidar. C.,& Ramanantoanina. A. (2021). An unconditionally stable nonstandard finite difference method to solve a mathematical model describing Visceral Leishmaniasis. Mathematics and Computers in Simulation, 187, 171-190.

Adekanye. O.,& Washington. T. (2018). Nonstandard finite difference scheme for a Tacoma Narrows Bridge model. Applied Mathematical Modelling, 62, 223-236.

Agbavon. K. M., & Appadu. A. R. (2020). Construction and analysis of some nonstandard finite difference methods for the FitzHugh-Nagumo equation. Numerical Methods for Partial Differential Equations, 36(5), 1145-1169.

Anguelov. R., & Lubuma. J. M.-S. (2003). Nonstandard finite difference method by nonlocal approximation. Mathematics and Computers in Simulation, 61(3-6), 465-475.

Chapwanya. M., Jejeniwa. O. A., Appadu A. R., & Lubuma. J. M.-S. (2019). An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations. International Journal of Computer Mathematics, 96(10), 1993-2009.

Cresson. J., & Pierret. F. (2016). Non standard finite difference scheme preserving dynamical properties. Journal of Computational and Applied Mathematics, 303, 15-30.

Cresson. J., & Szafra ?nskac. A. (2017). Discrete and continuous fractional persistence problems-the positivity property and applications. Communications in Nonlinear Science and Numerical Simulation, 44, 424-448.

Egbelowo. O. F. (2018). Nonstandard fi- nite difference approach for solving 3- compartment pharmacokinetic models. International Journal for Numerical Methods in Biomedical Engineering, 34(9), e3114.

Elaiw. A. M., & Alshaikh. M. A. (2020). Stability preserving NSFD scheme for a general virus dynamics model with antibody and cellmediated responses. Chaos, Solitons & Fractals, 138, 109862.

Fatoorehchi. H., & Ehrhardt. M. (2022). Numerical and semi-numerical solutions of a modified Th ?evenin model for calculating terminal voltage of battery cells. Journal of Energy Storage, 45, 103746.

Khalsaraei, M. M., Shokri, A., Ramos, H., & Heydari, S. (2021). A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease. Mathematics and Computers in Simulation, 182, 397-410.

Kojouharov, H. V., Roy, S., Gupta, M., Alalhareth, F., & Slezak. J. M. (2021). A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. Applied Mathematics Letters, 112, 106775.

Namjoo, M., Zeinadini, M., Zibaei, S. (2018). Nonstandard finite-difference scheme to approximate the generalized Burgers-Fisher equation. Mathematical Methods in the Applied Sciences, 41(17) 8212-8228.

Sweilam, N. H., El-Sayed, A. A. E., & Boulaaras, S. (2021). Fractional-order advection-dispersion problem solution via the spectral collocation method and the nonstandard finite difference technique. Chaos, Solitons & Fractals, 144, 110736.

Tadmon. C., & Foko, S. (2020). Nonstandard finite difference method applied to an initial boundary value problem describing hepatitis B virus infection. Journal of Difference Equations and Applications, 26(1), 122- 139.

Dang. Q. A., & Hoang. M. T. (2020). Positive and elementary stable explicit nonstandard Runge-Kutta methods for a class of autonomous dynamical systems. International Journal of Computer Mathematics, 97(10), 2036-2054.

Dang. Q. A., & Hoang. M. T. (2020). Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. Journal of Computational and Applied Mathematics, 374, 112753.

Dang. Q. A., & Hoang. M. T. (2019). Nonstandard finite difference schemes for a general predator-prey system. Journal of Computational Science, 36, 101015.

Hoang. M. T. (2021). Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes. Mathematics and Computers in Simulation, 193, 32-56.

Hoang, M. T. (2022). Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model. Journal of Applied Mathematics and Computing, 68, 3397- 3423.

Hoang, M. T., Zafar, Z. U. A., & Ngo, T. K. Q. (2020). Dynamics and numerical approximations for a fractional-order SIS epidemic model with saturating contact rate. Computational and Applied Mathematics, 39, Article number: 277.

Dimitrov. D. T., & Kojouharov. H. V. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Applied Mathematics Letters, 18(7), 769-774.

Dimitrov. D. T., & Kojouharov. H. V. (2017). Stability-preserving Finite Difference Methods for General Multi-dimensional Autonomous Dynamical Systems. International Journal of Numerical Analysis and Modeling, 4(2), 280-290.

Gupta. M., Slezak, J. M., Alalhareth. F., Roy. S., & Kojouharov. H. V. (2020). Second-order Nonstandard Explicit Euler Method. AIP Conference Proceedings, 2302, 110003.

Wood, D. T., & Kojouharov, H. V. (2015). A class of nonstandard numerical methods for autonomous dynamical systems. Applied Mathematics Letters, 50, 78-82.

Tyrtyshnikov, E. E. (1997). A Brief Introduction to Numerical Analysis. Springer Science+Business Media, New York.

Smith, H. L., Waltman. P. (1995). The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press

## Downloads

## Published

## How to Cite

*An International Journal of Optimization and Control: Theories & Applications (IJOCTA)*,

*13*(1), 10–25. https://doi.org/10.11121/ijocta.2023.1243

## Issue

## Section

## License

Copyright (c) 2023 Manh Tuan Hoang, Thi Kim Quy Ngo, Ha Hai Truong

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.

Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.

**The readers are free to:**

**Share**— copy and redistribute the material in any medium or format**Adapt**— remix, transform, and build upon the material- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.

**under the following terms:**

**Attribution**— You must give**appropriate credit**, provide a link to the license, and**indicate if changes were made**. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

**No additional restrictions**— You may not apply legal terms or**technological measures**that legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution 4.0 International License.