Anti-Synchronization of Tigan and Li Systems with Unknown Parameters via Adaptive Control
DOI:
https://doi.org/10.11121/ijocta.01.2012.0076Keywords:
Anti-synchronization, adaptive control, Tigan system, Li system.Abstract
In this paper, we apply adaptive control method toderive new results for the anti-synchronization of identical Tigansystems (2008), identical Li systems (2009) and non-identical Tiganand Li systems. In adaptive anti-synchronization of identical chaoticsystems, the parameters of the master and slave systems are unknownand we devise feedback control law using the estimates of the systemparameters. In adaptive anti-synchronization of non-identical chaoticsystems, the parameters of the master system are known, but theparameters of the slave system are unknown and we devise feedbackcontrol law using the estimates of the parameters of the slave system.Our adaptive synchronization results derived in this paper for theuncertain Tigan and Li systems are established using Lyapunovstability theory. Since the Lyapunov exponents are not required forthese calculations, the adaptive control method is very effective andconvenient to achieve anti-synchronization of identical and nonidenticalTigan and Li systems. Numerical simulations are shown todemonstrate the effectiveness of the adaptive anti-synchronizationschemes for the uncertain chaotic systems addressed in this paper.Downloads
References
Alligood, K.T., Sauer, T. & Yorke, J.A., Chaos: An Introduction to Dynamical Systems, Springer, New York (1987).
Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sciences, 20, 130-141 (1963). CrossRef
Pecora, L.M. & Carroll, T.L., Synchronization in chaotic systems, Phys. Rev. Letters, 64, 821-824 (1990). CrossRef
Lakshmanan, M. & Murali, K., Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore (1996).
Han, S.K., Kerrer, C. & Kuramoto, Y., Dephasing and bursting in coupled neural oscillators, Phys. Rev. Letters, 75, 3190-3193 (1995). CrossRef
Blasius, B., Huppert, A. & Stone, L., Complex dynamics and phase synchronization in spatially extended ecological system, Nature, 399, 354-359 (1999). CrossRef
Cuomo, K.M. & Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Letters, 71, 65-68 (1993). CrossRef
Li, Z., Li, K., Wen, C. & Soh, Y.C., A new chaotic secure communication system, IEEE Trans. Comm, 51 (8), 1306-1312 (2003). CrossRef
Ott, E., Grebogi, C. & Yorke, J.A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990). CrossRef
Bai, E.W. & Longren, K.E., Synchronization of two Lorenz systems using active control, Chaos, Solit. Fractals, 8, 51-58 (1997).
Ho, M.C. & Hung, Y.C., Synchronization of two different chaotic systems using generalized active control, Phys. Lett. A, 301, 424-428 (2002). CrossRef
Huang, L., Feng, R. & Wang, M., Synchronization of chaotic systems via nonlinear control, Phys. Lett. A, 320, 271-275 (2005). CrossRef
Lei, Y., Xu, W., Shen, J. & Fang, T., Global synchronization of two parametrically excited systems using active control, Chaos Solit. Fract., 28, 428-436 (2006). CrossRef
Chen, H.K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos Solit. Fract., 23, 1245-1251 (2005).
Vincent, U.E., Synchronization of identical and non-identical 4-D systems via active control, Chaos Solit. Fract., 31, 119-129 (2007).
Sundarapandian, V. & Karthikeyan, R., Global chaos synchronization of hyperchaotic Liu and hyperchaotic Chen systems by active nonlinear control, CIIT Int. J. Digital Signal Processing, 3 (3), 134-139 (2011).
Sundarapandian, V. & Karthikeyan, R., Global chaos synchronization of Chen and Cai systems by active nonlinear control, CIIT Int. J. Digital Signal Processing, 3 (3), 140-144 (2011).
Lu, J., Wu, X., Han, X. & Lü, J., Adaptive feedback stabilization of a unified chaotic system, Phys. Lett. A, 329, 327-333 (2004). CrossRef
Chen, S.H. & Lü, J., Synchronization of an uncertian unified system via adaptive control, Chaos Solit. Fract., 14, 643-647 (2002). CrossRef
Aghababa, M.P. & Aghababa, H.P., Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters, Mech. Research Commun., 38, 500-505 (2011). CrossRef
Aghababa, M.P., A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs, Chinese Phys. B, 20, 090505 (2011). CrossRef
Aghababa, M.P. & Aghababa, H.P., Synchronization of nonlinear chaotic electromechanical gyrostat systems with undertainties, Nonlinear Dynamics, doi:10.1007/s11071-011-0181-5 (2011). CrossRef
Aghababa, M.P. & Heydari, A., Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities, Applied Math. Modelling, doi:10.1016/j.apm.2011.09.023 (2011). CrossRef
Indra Cellular. (2020). Indra Cellular - Tips Dan Trik Smartphone Terkini. [online] Available at: http://www.indracellular.my.id/ [Accessed 13 Jan. 2020].
Yu, Y.G. & Zhang, S.C., Adaptive backstepping synchronization of uncertain chaotic systems, Chaos Solit. Fract., 27, 1369-1375 (2006).
Idowu, B.A., Vincent, U.E. & Njah, A.N., Generalized adaptive backstepping synchronization for non-identical parametrically excited systems, Nonlinear Analysis: Modelling and Control, 14 (2), 165-176 (2009).
Zhao, J. & Lü, J., Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system, Chaos Solit. Fract., 35, 376-382 (2006). CrossRef
Konishi, K., Hirai, M. & Kokame, H., Sliding mode control for a class of chaotic systems, Phys. Lett. A, 245, 511-517 (1998). CrossRef
Haeri, M. & Emazadeh, A.A., Synchronization of different chaotic systems using active sliding mode control, Chaos Solit. Fract., 119-129 (2007).
Pourmahamood, M., Khanmohammadi, S. & Alizadeh, G., Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun. Nonlinear Sci. Numerical Simulat., 16, 2853-2868 (2011). CrossRef
Aghababa, M.P. & Khanmohammadi, S. & Alizadeh, G., Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Appl. Math. Model, 35, 3080-3091 (2011). CrossRef
Tigan, G. & Opris, D., Analysis of a 3D chaotic system, Chaos Solit. Fract., 36, 1315-1319 (2008). CrossRef
Li, X.F., Chlouverakis, K.E. & Xu, D.L., Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lü, Nonlinear Analysis, 10, 2357-2368 (2009). CrossRef
Hahn, W., The Stability of Motion, Springer, New York (1967).
Downloads
Published
How to Cite
Issue
Section
License
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.