Anti-Synchronization of Tigan and Li Systems with Unknown Parameters via Adaptive Control

Authors

  • Vaidyanathan SUNDARAPANDIAN Vel Tech Dr. RR & Dr. SR Technical University
  • Karthikeyan RAJAGOPAL Vel Tech University

DOI:

https://doi.org/10.11121/ijocta.01.2012.0076

Keywords:

Anti-synchronization, adaptive control, Tigan system, Li system.

Abstract

In this paper, we apply adaptive control method toderive new results for the anti-synchronization of identical Tigansystems (2008), identical Li systems (2009) and non-identical Tiganand Li systems. In adaptive anti-synchronization of identical chaoticsystems, the parameters of the master and slave systems are unknownand we devise feedback control law using the estimates of the systemparameters. In adaptive anti-synchronization of non-identical chaoticsystems, the parameters of the master system are known, but theparameters of the slave system are unknown and we devise feedbackcontrol law using the estimates of the parameters of the slave system.Our adaptive synchronization results derived in this paper for theuncertain Tigan and Li systems are established using Lyapunovstability theory. Since the Lyapunov exponents are not required forthese calculations, the adaptive control method is very effective andconvenient to achieve anti-synchronization of identical and nonidenticalTigan and Li systems. Numerical simulations are shown todemonstrate the effectiveness of the adaptive anti-synchronizationschemes for the uncertain chaotic systems addressed in this paper.

Downloads

Download data is not yet available.

References

Alligood, K.T., Sauer, T. & Yorke, J.A., Chaos: An Introduction to Dynamical Systems, Springer, New York (1987).

Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sciences, 20, 130-141 (1963). CrossRef

Pecora, L.M. & Carroll, T.L., Synchronization in chaotic systems, Phys. Rev. Letters, 64, 821-824 (1990). CrossRef

Lakshmanan, M. & Murali, K., Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore (1996).

Han, S.K., Kerrer, C. & Kuramoto, Y., Dephasing and bursting in coupled neural oscillators, Phys. Rev. Letters, 75, 3190-3193 (1995). CrossRef

Blasius, B., Huppert, A. & Stone, L., Complex dynamics and phase synchronization in spatially extended ecological system, Nature, 399, 354-359 (1999). CrossRef

Cuomo, K.M. & Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Letters, 71, 65-68 (1993). CrossRef

Li, Z., Li, K., Wen, C. & Soh, Y.C., A new chaotic secure communication system, IEEE Trans. Comm, 51 (8), 1306-1312 (2003). CrossRef

Ott, E., Grebogi, C. & Yorke, J.A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990). CrossRef

Bai, E.W. & Longren, K.E., Synchronization of two Lorenz systems using active control, Chaos, Solit. Fractals, 8, 51-58 (1997).

Ho, M.C. & Hung, Y.C., Synchronization of two different chaotic systems using generalized active control, Phys. Lett. A, 301, 424-428 (2002). CrossRef

Huang, L., Feng, R. & Wang, M., Synchronization of chaotic systems via nonlinear control, Phys. Lett. A, 320, 271-275 (2005). CrossRef

Lei, Y., Xu, W., Shen, J. & Fang, T., Global synchronization of two parametrically excited systems using active control, Chaos Solit. Fract., 28, 428-436 (2006). CrossRef

Chen, H.K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos Solit. Fract., 23, 1245-1251 (2005).

Vincent, U.E., Synchronization of identical and non-identical 4-D systems via active control, Chaos Solit. Fract., 31, 119-129 (2007).

Sundarapandian, V. & Karthikeyan, R., Global chaos synchronization of hyperchaotic Liu and hyperchaotic Chen systems by active nonlinear control, CIIT Int. J. Digital Signal Processing, 3 (3), 134-139 (2011).

Sundarapandian, V. & Karthikeyan, R., Global chaos synchronization of Chen and Cai systems by active nonlinear control, CIIT Int. J. Digital Signal Processing, 3 (3), 140-144 (2011).

Lu, J., Wu, X., Han, X. & Lü, J., Adaptive feedback stabilization of a unified chaotic system, Phys. Lett. A, 329, 327-333 (2004). CrossRef

Chen, S.H. & Lü, J., Synchronization of an uncertian unified system via adaptive control, Chaos Solit. Fract., 14, 643-647 (2002). CrossRef

Aghababa, M.P. & Aghababa, H.P., Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters, Mech. Research Commun., 38, 500-505 (2011). CrossRef

Aghababa, M.P., A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs, Chinese Phys. B, 20, 090505 (2011). CrossRef

Aghababa, M.P. & Aghababa, H.P., Synchronization of nonlinear chaotic electromechanical gyrostat systems with undertainties, Nonlinear Dynamics, doi:10.1007/s11071-011-0181-5 (2011). CrossRef

Aghababa, M.P. & Heydari, A., Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities, Applied Math. Modelling, doi:10.1016/j.apm.2011.09.023 (2011). CrossRef

Indra Cellular. (2020). Indra Cellular - Tips Dan Trik Smartphone Terkini. [online] Available at: http://www.indracellular.my.id/ [Accessed 13 Jan. 2020].

Yu, Y.G. & Zhang, S.C., Adaptive backstepping synchronization of uncertain chaotic systems, Chaos Solit. Fract., 27, 1369-1375 (2006).

Idowu, B.A., Vincent, U.E. & Njah, A.N., Generalized adaptive backstepping synchronization for non-identical parametrically excited systems, Nonlinear Analysis: Modelling and Control, 14 (2), 165-176 (2009).

Zhao, J. & Lü, J., Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system, Chaos Solit. Fract., 35, 376-382 (2006). CrossRef

Konishi, K., Hirai, M. & Kokame, H., Sliding mode control for a class of chaotic systems, Phys. Lett. A, 245, 511-517 (1998). CrossRef

Haeri, M. & Emazadeh, A.A., Synchronization of different chaotic systems using active sliding mode control, Chaos Solit. Fract., 119-129 (2007).

Pourmahamood, M., Khanmohammadi, S. & Alizadeh, G., Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun. Nonlinear Sci. Numerical Simulat., 16, 2853-2868 (2011). CrossRef

Aghababa, M.P. & Khanmohammadi, S. & Alizadeh, G., Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Appl. Math. Model, 35, 3080-3091 (2011). CrossRef

Tigan, G. & Opris, D., Analysis of a 3D chaotic system, Chaos Solit. Fract., 36, 1315-1319 (2008). CrossRef

Li, X.F., Chlouverakis, K.E. & Xu, D.L., Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lü, Nonlinear Analysis, 10, 2357-2368 (2009). CrossRef

Hahn, W., The Stability of Motion, Springer, New York (1967).

Downloads

Published

2011-12-21
CITATION
DOI: 10.11121/ijocta.01.2012.0076
Published: 2011-12-21

How to Cite

SUNDARAPANDIAN, V., & RAJAGOPAL, K. (2011). Anti-Synchronization of Tigan and Li Systems with Unknown Parameters via Adaptive Control. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 2(1), 17–28. https://doi.org/10.11121/ijocta.01.2012.0076

Issue

Section

Applied Mathematics & Control