Free terminal time optimal control problem for the treatment of HIV infection
DOI:
https://doi.org/10.11121/ijocta.01.2016.00270Abstract
In this work, an optimal control approach is presented in order to propose an optimal therapy for the treatment HIV infection using a combination of two appropriate treatment strategies. The optimal treatment duration and the optimal medications amount are considered. The main objective of this study is to be able to maximize the benet based on number of healthy CD4+ T-cells and CTL immune cells and to minimize the infection level and the overall treatment cost while optimizing the duration of therapy. The free terminal time optimal control problem is formulated and the Pontryagin's maximum principle is employed
to provide the explicit formulations of the optimal controls. The corresponding optimality system with the additional transversality condition for the terminal time is derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order scheme and a gradient method routine.
Downloads
References
Agosto, L. M., Zhong, P., Munro, J. and Mothes, W. Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. PLoS Pathog, 10, e1003982 (2014). Crossref
Arlinghaus, S. Practical handbook of curve fitting. CRC press (1994).
Boccia, A., Falugi, P., Maurer, H. and Vinter, R. B. Free time optimal control problems with time delays. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference, 520-525 (2013). Crossref
Bonhoeffer, S., Coffin, J. M. and Nowak, M. A. Human immunodeficiency virus drug therapy and virus load. Journal of Virology, 71(4),3275-3278 (1997).
Burden, T. N., Ernstberger, J. and Fister, K. R. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems Series B, 4(1), 135-146 (2004).
Butler, S., Kirschner, D. and Lenhart, S. Optimal control of chemotherapy affecting the infectivity of HIV. Ann Arbor, 1001, 48109-0620 (1997).
Cai, L., Guo, S. and Wang, S. Analysis of an extended HIV/AIDS epidemic model with treatment. Applied Mathematics and Computation, 236, 621-627 (2014). Crossref
Callaway, D. S. and Perelson, A. S. HIV-1 infection and low steady state viral loads. Bulletin of mathematical biology, 64(1), 29-64 (2002). Crossref
Cassels, S., Jenness, S. M. and Khanna, A. S. Conceptual Framework and Research Methods for Migration and HIV Transmission Dynamics. AIDS and Behavior, 18(12), 2302-2313 (2014). Crossref
Cheney, E. and Kincaid, D. Numerical mathematics and computing. Cengage Learning, (2012).
Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science, 267(5197), 483-489 (1995). Crossref
Culshaw, R. V. and Ruan, S. A delaydifferential equation model of HIV infection of CD4+ T-cells. Mathematical biosciences, 165(1), 27-39 (2000). Crossref
Culshaw, R. V., Ruan, S. and Spiteri, R. J. Optimal HIV treatment by maximising immune response. Journal of Mathematical Biology, 48(5), 545-562 (2004). Crossref
Elmouki, I., Saadi, S. Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superficial bladder cancer. Optimal Control Applications and Methods. (2015).
Elmouki, I., Saadi, S. BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superficial bladder cancer. International Journal of Dynamics and Control. 1-7, (2014).
Fauci, A.S., Desrosiers, R.C. Pathogenesis of HIV and SIV, 587-636. Cold Spring Harbor Laboratory Press, New York (1997).
Fleming, W.H., Rishel, R.W. Deterministic and stochastic optimal control. Springer Verlag, New York (1975). Crossref
Gray, C.M., Lawrence, J., Schapiro, J.M., Altman, J.D., Winters, M.A., Crompton, M., Loi, M., Kundu, S.K., Davis, M.M. and Merigan, T.C. Frequency of Class I HLARestricted anti-HIV CD8+ T-cells in individuals receiving Highly Active Antiretroviral Therapy (HAART). The journal of immunology. 162, 1780-1788 (1999).
Gumel, A.B. Spread and control of HIV: a mathematical model. Accromath. 26(8), (2013).
Hamdache, A., Saadi, S., Elmouki, I., Zouhri, S. Two Therapeutic Approaches for the Treatment of HIV Infection in AIDS Stage. Journal of Applied Mathematical sciences. 7(105), 5243-5257 (2013).
Hamdache, A., Elmouki, I., Saadi, S. Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy. International Journal of Computer Applications. 94(15), 31-37 (2014). Crossref
Hamdache, A., Saadi, S. and Elmouki, I. Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer. International Journal of Dynamics and Control, 1-16 (2015).
Hlavacek, W.S., Wofsy, C. and Perelson, A.S. Dissociation of HIV-1 from follicular dendritic cells during HAART: mathematical analysis. Proceedings of the National Academy of Sciences. 96(26), 14681-14686 (1999). Crossref
Iversen, A.K., Shafer, R.W., Wehrly, K., Winters, M.A., Mullins, J.I., Chesebro, B. and Merigan, T.C. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. Journal of Virology. 70(2), 1086-1090 (1996).
Jacobson, E.L., Pilaro, F. and Smith, A.K. Rationnal IL-2 therapy for HIV positifs individuals: daily low doses enhance immune function without toxicity. Proc. Natl. Acad. Sci USA. 93, 10405-10410 (1996). Crossref
Janeway, C., Murphy, K. P., Travers, P. and Walport, M. Janeway's immunobiology, 530- 535. Garland Science, London (2008).
Jang, T., Kwon, H. D. and Lee, J. Free terminal time optimal control problem of an HIV model based on a conjugate gradient method. Bulletin of mathematical biology, 73(10), 2408-2429 (2011). Crossref
Jiang, C., Lin, Q., Yu, C., Teo, K. L. and Duan, G. R. An exact penalty method for free terminal time optimal control problem with continuous inequality constraints. Journal of Optimization Theory and Applications, 154(1), 30-53 (2012). Crossref
Joshi, H. R. Optimal control of an HIV immunology model. Optimal control applications and methods, 23(4), 199-213 (2002). Crossref
Kirschner, D.E., Webb, G.F. Immunotherapy of HIV-1 infection. Journal of Biological Systems. 6(1), 71-83 (1998). Crossref
Khanna, A. S., Dimitrov, D. T. and Goodreau, S. M. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical biosciences and engineering: MBE, 11(5), 1065-1090 (2014). Crossref
Klatzmann, D. and Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature Reviews Immunology, (2015). Crossref
Lenhart, S., Workman, T. Optimal control applied to biological models, 49-55. Chapman and Hall/CRC Mathematical and Computational Biology Series, New York (2007).
Levy, Y. Immunoth´erapie de l'infection par le VIH par l'utilisation de cytokines: un ´etat des lieux. M/S: m´edecine sciences. 22(8-9), 751-754 (2006).
Lukes, D. L. Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, (1982).
Maartens, G., Celum, C. and Lewin, S. R. HIV infection: epidemiology, pathogenesis, treatment, and prevention. The Lancet, 384(9939), 258-271 (2014). Crossref
MacArthur, R.D., Novak, R.M. Maraviroc: The First of a New Class of Antiretroviral Agents. Oxford journals. 47(2), 236-241 (2008).
McAsey, M., Mou, L., Han, W. Convergence of the Forward-Backward Sweep Method in optimal control. Comput Optim Appl. 3, (2012). Crossref
Mastroberardino, A., Cheng, Y., Abdelrazec, A. and Liu, H. Mathematical modelling of the HIV/AIDS epidemic in Cuba. International Journal of Biomathematics, 1550047 (2015).
Merry, C., Barry, M.G., Mulcahy, F., Ryan, M., Heavey, J., Tjia, J.F., Gibbons, S.E., Breckenridge, A.M. and Back, D.J. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS. 11(4), (1997). Crossref
Palanki, S., Kravaris, C. and Wang, H. Y. Optimal feedback control of batch reactors with a state inequality constraint and free terminal time. Chemical engineering science, 49(1), 85-97 (1994). Crossref
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. and Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271(5255), 1582-1586 (1996). Crossref
Perelson, A. S., Kirschner, D. E. and De Boer, R. Dynamics of HIV infection of CD4+T cells. Mathematical biosciences, 114(1), 81-125 (1993). Crossref
Pontryagin, L. S. Mathematical theory of optimal processes. CRC Press, (1987).
Pontryagin, L. S., Boltyanskii, V. G. and Gamkrelidze, R. V. EF Mishchenko The Mathematical Theory of Optimal Processes. New York: Interscience (1962).
Pooseh, S., Almeida, R. and Torres, D. F. Fractional order optimal control problems with free terminal time. arXiv preprint arXiv: 1302.1717 (2013).
Qun, L., Loxton, R., Teo, K. L. and Wu, Y. H. A new computational method for a class of free terminal time optimal control problems. Pacific Journal of Optimization. 7(1), 63-81 (2011).
Raffi, F.: Enfuvirtide, premier inhibiteur de fusion dans le traitement de l'infection par le virus de l'immunod’eficience humaine: m’ecanisme d'action et pharmacocintique. M’edecine et maladies infectieuses. 34, 3-7 (2004).
Roshanfekr, M., Farahi, M. H. and Rahbarian, R. A different approach of optimal control on an HIV immunology model. Ain Shams Engineering Journal, 5(1), 213-219 (2014). Crossref
Roy, P.K., Chatterjee, A.N. T-cell proliferation in a mathematical model of CTL activity through HIV-1 infection. Proceedings of the World Congress on Engineering. 1, (2010).
Roy, P. K., Saha, S. and Al Basir, F. Effect of awareness programs in controlling the disease HIV/AIDS: an optimal control theoretic approach. Advances in Difference Equations, 2015(1), 1-18 (2015). Crossref
Saadi, S., Elmouki, I. and Hamdache, A. Impulsive control dosing BCG immunotherapy for non-muscle invasive bladder cancer. International Journal of Dynamics and Control, 1-11 (2015).
Stengel, R. F., Ghigliazza, R. M. and Kulkarni, N. V. Optimal enhancement of immune response Bioinformatics,18(9), 1227-1235 (2002). Crossref
Su, B., Lederle, A., Laumond, G., Schmidt, S., Decoville, T., Ducloy, C. and Moog, C. Antibody Inhibition of HIV-1 Transmission from Antigen-presenting Cells to CD4 T Lymphocytes Involves Immune Cell Activation. AIDS research and human retroviruses, 30(S1), A154-A154 (2014). Crossref
Tr’elat, E. Controle optimal: th’eorie et applications. Paris: Vuibert (2005).
Wang, L. and Li, M. Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells. Mathematical Biosciences, 200(1), 44-57 (2006). Crossref
Zhou, X., Song, X. and Shi, X. A differential equation model of HIV infection of CD4+ Tcells with cure rate. Journal of Mathematical Analysis and Applications, 342(2), 1342-1355 (2008). Crossref
Zurakowski, R. and Teel, A. R. A model predictive control based scheduling method for HIV therapy. Journal of Theoretical Biology, 238(2), 368-382 (2006). Crossref
Downloads
Published
How to Cite
Issue
Section
License
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.