A numerical scheme for the one-dimensional neural field model

Authors

DOI:

https://doi.org/10.11121/ijocta.2022.1219

Keywords:

Neural field, Integro-differential equation, Numerical methods

Abstract

Neural field models, typically cast as continuum integro-differential equations, are widely studied to describe the coarse-grained dynamics of real cortical tissue in mathematical neuroscience. Studying these models with a sigmoidal firing rate function allows a better insight into the stability of localised solutions through the construction of specific integrals over various synaptic connectivities. Because of the convolution structure of these integrals, it is possible to evaluate neural field model using a pseudo-spectral method, where Fourier Transform (FT) followed by an inverse Fourier Transform (IFT) is performed, leading to a new identical partial differential equation. In this paper, we revisit a neural field model with a nonlinear sigmoidal firing rate and provide an efficient numerical algorithm to analyse the model regarding finite volume scheme. On the other hand, numerical results are obtained by the algorithm.

Downloads

Download data is not yet available.

Author Biographies

Aytul Gokce, Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

is a Research Fellow at Ordu University in Turkey, working in the broad area of applied mathematics. Aytül's research is mainly devoted to dynamical systems modelling in biology and medicine, and the understanding of patterning in real life problems.

Burcu Gurbuz, Institute of Mathematics, Johannes Gutenberg-University, Mainz, Germany

is a Research Associate in Johannes Gutenberg-University Mainz in Germany. Her main research interests ordinary and partial differential equations, integral and integro differential-difference equations, dynamical systems and their analysis, numerical methods, mathematical biology and scientific computation.

References

Horton, J. C., & Adams, D. L. (2005). The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 837-862. DOI: https://doi.org/10.1098/rstb.2005.1623

DeFelipe, J., Markram, H., & Rockland, K. S. (2012). The neocortical column. Frontiers in Neuroanatomy, 6, 22. DOI: https://doi.org/10.3389/fnana.2012.00022

Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, 20(4), 408-434. DOI: https://doi.org/10.1152/jn.1957.20.4.408

Martin, R. (2019). Neuroscience methods: a guide for advanced students. CRC Press. DOI: https://doi.org/10.1201/9780367810665

Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 55-94. DOI: https://doi.org/10.1098/rstb.1956.0012

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1-24. DOI: https://doi.org/10.1016/S0006-3495(72)86068-5

Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55-80. DOI: https://doi.org/10.1007/BF00288786

Amari, S. I. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17(4), 211-220. DOI: https://doi.org/10.1007/BF00339367

Amari, S. I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77-87. DOI: https://doi.org/10.1007/BF00337259

Nunez, P. L. (1974). The brain wave equation: a model for the EEG. Mathematical Biosciences, 21(3-4), 279-297. DOI: https://doi.org/10.1016/0025-5564(74)90020-0

Coombes, S. (2010). Large-scale neural dynamics: simple and complex. NeuroImage, 52(3), 731-739. DOI: https://doi.org/10.1016/j.neuroimage.2010.01.045

Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34(3), 137- 150. DOI: https://doi.org/10.1007/BF00336965

Giese, M. A. (2012). Dynamic neural field theory for motion perception (Vol. 469). Springer Science & Business Media.

Laing, C. R. (2014). PDE methods for twodimensional neural fields. In Neural Fields (pp. 153-173). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-54593-1_5

Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural fields: theory and applications. Springer.

Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 123(3), 461-478. DOI: https://doi.org/10.1017/S030821050002583X

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93(2), 91-108. DOI: https://doi.org/10.1007/s00422-005-0574-y

Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. Journal of Mathematical Neuroscience, 2(1), 1-27. DOI: https://doi.org/10.1186/2190-8567-2-9

Gokce, A. (2017). The interfacial dynamics of Amari type neural field models on finite domains. (Doctoral dissertation, University of Nottingham).

Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487- 516. DOI: https://doi.org/10.1137/030600040

Laing, C. R. (2005). Spiral waves in nonlocal equations. SIAM Journal on Applied Dynamical Systems, 4(3), 588-606. DOI: https://doi.org/10.1137/040612890

Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural fields: theory and applications. Springer. DOI: https://doi.org/10.1007/978-3-642-54593-1

Fedak, A. (2018). A compact fourth-order finite volume method for structured curvilinear grids. University of California, Davis.

Cueto-Felgueroso, L. (2009). Finite volume methods for one-dimensional scalar conservation laws. http://juanesgroup.mit.edu/lc ueto/teach.

Zoppou, C., Knight, J. H. (1999). Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Applied Mathematical Modelling, 23(9), 667-685. DOI: https://doi.org/10.1016/S0307-904X(99)00005-0

Eftekhari, A.A. et al. (2015). FVTool: a finite volume toolbox for Matlab. Zenodo. http: //doi.org/10.5281/zenodo.32745

Nordbotten, J. M. (2014). Cell-centered finite volume discretizations for deformable porous media. International Journal for Numerical Methods in Engineering, 100(6), 399-418. DOI: https://doi.org/10.1002/nme.4734

Mungkasi, S. (2008). Finite volume methods for the one-dimensional shallow water equations. (M. Math. Sc. thesis, Australian National University).

Eymard, R., Gallou¨et, T., Herbin, R., Latch´e, J. C. (2007). Analysis tools for finite volume schemes. Proceedings of Equa Diff 11, 111-136.

Versteeg, H. K., Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education.

Abbott, M. B., Basco, D. R. (1997). Computational fluid dynamics: an introduction for engineers. Longman.

Patankar, S. V. (1991). Computation of conduction and duct flow heat transfer. CRC Press.

Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC Press. DOI: https://doi.org/10.1201/9781482234213

Patankar, S. V. (1981). A calculation procedure for two-dimensional elliptic situations. Numerical Heat Transfer, 4(4), 409-425. DOI: https://doi.org/10.1080/01495728108961801

Evans, L.C. (2010). Partial differential equations. American Mathematical Society, Providence, Rhode Island. DOI: https://doi.org/10.1090/gsm/019

Anderson, J. D., Wendt, J. (1995). Computational fluid dynamics (Vol. 206, p. 332). New York: McGraw-Hill.

Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511812248

LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics. DOI: https://doi.org/10.1137/1.9780898717839

LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems (Vol. 31). Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511791253

Badr, M., Yazdani, A., & Jafari, H. (2018). Stability of a finite volume element method for the time-fractional advection-diffusion equation. Numerical Methods for Partial Differential Equations, 34(5), 1459-1471. DOI: https://doi.org/10.1002/num.22243

Syrakos, A., Goulas, A. (2006). Estimate of the truncation error of finite volume discretization of the Navier–Stokes equations on colocated grids. International journal for numerical methods in fluids, 50(1), 103-130. DOI: https://doi.org/10.1002/fld.1038

Fraysse, F., de Vicente, J., Valero, E. (2012). The estimation of truncation error by tau - estimation revisited. Journal of Computational Physics, 231(9), 3457-3482. DOI: https://doi.org/10.1016/j.jcp.2011.09.031

Ermentrout, G. B., Folias, S. E., & Kilpatrick, Z. P. (2014). Spatiotemporal pattern formation in neural fields with linear adaptation. In Neural Fields (pp. 119-151). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-54593-1_4

Benda, J., & Herz, A. V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15(11), 2523-2564. DOI: https://doi.org/10.1162/089976603322385063

Downloads

Published

2022-07-29
CITATION
DOI: 10.11121/ijocta.2022.1219
Published: 2022-07-29

How to Cite

Gokce, A., & Gurbuz, B. (2022). A numerical scheme for the one-dimensional neural field model. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 12(2), 184–193. https://doi.org/10.11121/ijocta.2022.1219

Issue

Section

Research Articles