A numerical scheme for the one-dimensional neural field model
DOI:
https://doi.org/10.11121/ijocta.2022.1219Keywords:
Neural field, Integro-differential equation, Numerical methodsAbstract
Neural field models, typically cast as continuum integro-differential equations, are widely studied to describe the coarse-grained dynamics of real cortical tissue in mathematical neuroscience. Studying these models with a sigmoidal firing rate function allows a better insight into the stability of localised solutions through the construction of specific integrals over various synaptic connectivities. Because of the convolution structure of these integrals, it is possible to evaluate neural field model using a pseudo-spectral method, where Fourier Transform (FT) followed by an inverse Fourier Transform (IFT) is performed, leading to a new identical partial differential equation. In this paper, we revisit a neural field model with a nonlinear sigmoidal firing rate and provide an efficient numerical algorithm to analyse the model regarding finite volume scheme. On the other hand, numerical results are obtained by the algorithm.
Downloads
References
Horton, J. C., & Adams, D. L. (2005). The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 837-862. DOI: https://doi.org/10.1098/rstb.2005.1623
DeFelipe, J., Markram, H., & Rockland, K. S. (2012). The neocortical column. Frontiers in Neuroanatomy, 6, 22. DOI: https://doi.org/10.3389/fnana.2012.00022
Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, 20(4), 408-434. DOI: https://doi.org/10.1152/jn.1957.20.4.408
Martin, R. (2019). Neuroscience methods: a guide for advanced students. CRC Press. DOI: https://doi.org/10.1201/9780367810665
Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 55-94. DOI: https://doi.org/10.1098/rstb.1956.0012
Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1-24. DOI: https://doi.org/10.1016/S0006-3495(72)86068-5
Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55-80. DOI: https://doi.org/10.1007/BF00288786
Amari, S. I. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17(4), 211-220. DOI: https://doi.org/10.1007/BF00339367
Amari, S. I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77-87. DOI: https://doi.org/10.1007/BF00337259
Nunez, P. L. (1974). The brain wave equation: a model for the EEG. Mathematical Biosciences, 21(3-4), 279-297. DOI: https://doi.org/10.1016/0025-5564(74)90020-0
Coombes, S. (2010). Large-scale neural dynamics: simple and complex. NeuroImage, 52(3), 731-739. DOI: https://doi.org/10.1016/j.neuroimage.2010.01.045
Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34(3), 137- 150. DOI: https://doi.org/10.1007/BF00336965
Giese, M. A. (2012). Dynamic neural field theory for motion perception (Vol. 469). Springer Science & Business Media.
Laing, C. R. (2014). PDE methods for twodimensional neural fields. In Neural Fields (pp. 153-173). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-54593-1_5
Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural fields: theory and applications. Springer.
Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 123(3), 461-478. DOI: https://doi.org/10.1017/S030821050002583X
Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93(2), 91-108. DOI: https://doi.org/10.1007/s00422-005-0574-y
Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. Journal of Mathematical Neuroscience, 2(1), 1-27. DOI: https://doi.org/10.1186/2190-8567-2-9
Gokce, A. (2017). The interfacial dynamics of Amari type neural field models on finite domains. (Doctoral dissertation, University of Nottingham).
Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2(3), 487- 516. DOI: https://doi.org/10.1137/030600040
Laing, C. R. (2005). Spiral waves in nonlocal equations. SIAM Journal on Applied Dynamical Systems, 4(3), 588-606. DOI: https://doi.org/10.1137/040612890
Coombes, S., beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural fields: theory and applications. Springer. DOI: https://doi.org/10.1007/978-3-642-54593-1
Fedak, A. (2018). A compact fourth-order finite volume method for structured curvilinear grids. University of California, Davis.
Cueto-Felgueroso, L. (2009). Finite volume methods for one-dimensional scalar conservation laws. http://juanesgroup.mit.edu/lc ueto/teach.
Zoppou, C., Knight, J. H. (1999). Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Applied Mathematical Modelling, 23(9), 667-685. DOI: https://doi.org/10.1016/S0307-904X(99)00005-0
Eftekhari, A.A. et al. (2015). FVTool: a finite volume toolbox for Matlab. Zenodo. http: //doi.org/10.5281/zenodo.32745
Nordbotten, J. M. (2014). Cell-centered finite volume discretizations for deformable porous media. International Journal for Numerical Methods in Engineering, 100(6), 399-418. DOI: https://doi.org/10.1002/nme.4734
Mungkasi, S. (2008). Finite volume methods for the one-dimensional shallow water equations. (M. Math. Sc. thesis, Australian National University).
Eymard, R., Gallou¨et, T., Herbin, R., Latch´e, J. C. (2007). Analysis tools for finite volume schemes. Proceedings of Equa Diff 11, 111-136.
Versteeg, H. K., Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education.
Abbott, M. B., Basco, D. R. (1997). Computational fluid dynamics: an introduction for engineers. Longman.
Patankar, S. V. (1991). Computation of conduction and duct flow heat transfer. CRC Press.
Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC Press. DOI: https://doi.org/10.1201/9781482234213
Patankar, S. V. (1981). A calculation procedure for two-dimensional elliptic situations. Numerical Heat Transfer, 4(4), 409-425. DOI: https://doi.org/10.1080/01495728108961801
Evans, L.C. (2010). Partial differential equations. American Mathematical Society, Providence, Rhode Island. DOI: https://doi.org/10.1090/gsm/019
Anderson, J. D., Wendt, J. (1995). Computational fluid dynamics (Vol. 206, p. 332). New York: McGraw-Hill.
Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511812248
LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics. DOI: https://doi.org/10.1137/1.9780898717839
LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems (Vol. 31). Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511791253
Badr, M., Yazdani, A., & Jafari, H. (2018). Stability of a finite volume element method for the time-fractional advection-diffusion equation. Numerical Methods for Partial Differential Equations, 34(5), 1459-1471. DOI: https://doi.org/10.1002/num.22243
Syrakos, A., Goulas, A. (2006). Estimate of the truncation error of finite volume discretization of the Navier–Stokes equations on colocated grids. International journal for numerical methods in fluids, 50(1), 103-130. DOI: https://doi.org/10.1002/fld.1038
Fraysse, F., de Vicente, J., Valero, E. (2012). The estimation of truncation error by tau - estimation revisited. Journal of Computational Physics, 231(9), 3457-3482. DOI: https://doi.org/10.1016/j.jcp.2011.09.031
Ermentrout, G. B., Folias, S. E., & Kilpatrick, Z. P. (2014). Spatiotemporal pattern formation in neural fields with linear adaptation. In Neural Fields (pp. 119-151). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-54593-1_4
Benda, J., & Herz, A. V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15(11), 2523-2564. DOI: https://doi.org/10.1162/089976603322385063
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aytul Gokce, Burcu Gurbuz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.