Rotor design optimization of a synchronous generator by considering the damper winding effect to minimize THD using grasshopper optimization algorithm

Authors

DOI:

https://doi.org/10.11121/ijocta.2022.1181

Keywords:

Grasshopper optimization algorithm, Rotor design optimization, Synchronous generator, Total harmonic distortion, Damper winding

Abstract

The aim of this study is to calculate the optimum factor levels for the design parameters namely slot pitch, center slot pitch, and damper width to keep the magnetic flux density distribution in a desired range while minimizing the total harmonic distortion (THD). For this purpose, the numerical simulations are performed in the Maxwell environment. Then by the aid of regression modeling over this simulation results; the mathematical equations between the responses (THD and magnetic flux density distribution) and the factors are calculated. After the modeling phase, grasshopper optimization algorithm (GOA) is run through these regression equations to determine the optimum values of the rotor design parameters (factors). The confirmations are also performed in the Maxwell environment and the result indicated that the THD is minimized and the magnetic flux density distribution on the teeth is kept in a desired range.

Downloads

Download data is not yet available.

Author Biographies

Aslan Deniz Karaoglan, Department of Industrial Engineering, Balikesir University, Turkey

Aslan Deniz Karaoglan received a diploma degree in industrial engineering from Gazi University in 2001 (Turkey), MSc. in industrial engineering from Balikesir University in 2006 (Turkey), and Ph.D. in industrial engineering from Dokuz Eylul University in 2010 (Turkey). His research interests are design of experiments, statistical process control, artificial intelligence, and optimization. He is an associate professor at Balikesir University (Turkey), Department of Industrial Engineering.

Deniz Perin, Department of R&D, ISBIR Electric Company, Turkey

Deniz Perin received MSc. and Ph.D. Degrees in Physics from Balikesir University in 2015 (Turkey). He has studied magnetic flux leakage (MFL) and magnetic non-destructive testing in Ph.D. and in research program of Cardiff University Wolfson Centre for magnetics. From 2017 till now, he is working on magnetic design & simulations of synchronous generators with ANSYS Maxwell in Isbir Electric Co Research & Development Department as a research and development expert.

References

De La Rosa, F. (2006). Harmonics and Power Systems. Taylor & Francis, Hazelwood, Missouri, USA. DOI: https://doi.org/10.1201/9781420004519

Arrillaga, J., & Watson, N.R. (2003). Power System Harmonics (2nd ed.). John Wiley & Sons, USA. DOI: https://doi.org/10.1002/0470871229

Bakshi, U.A., & Godse, A.P. (2008). Electronic Circuits and Applications (3rd ed.). Technical Publications Pune, Pune, India.

Matsuki, J., Katagi, T., & Okada, T. (1992). Effect of slot ripples on damper windings of synchronous machines. Proc. of the IEEE International Symposium on Industrial Electronics, 2, 864-865, Xian, China. DOI: https://doi.org/10.1109/ISIE.1992.279716

Matsuki, J., Katagi, T., & Okada, T. (1994). Damper windings phenomena of synchronous machines during system oscillations. IEEE Transactions on Energy Conversion, 9(2), 376-382. DOI: https://doi.org/10.1109/60.300134

Vetter, W., & Reichert, K. (1994). Determination of damper winding and rotor iron currents in convertor and line-fed synchronous machines. IEEE Transactions on Energy Conversion, 9(4), 709-716. DOI: https://doi.org/10.1109/60.368337

Knight, A.M., Karmaker, H., & Weeber, K. (2002). Use of a permeance model to predict force harmonic components and damper winding effects in salient-pole synchronous machines. IEEE Transactions on Energy Conversion, 17(4), 478-484. DOI: https://doi.org/10.1109/TEC.2002.805227

Arjona, M.A. (2004). Parameter calculation of a turbogenerator during an open-circuit transient excitation. IEEE Transactions on Energy Conversion, 19(1), 46-52. DOI: https://doi.org/10.1109/TEC.2003.821838

Lundstrom, L., Gustavsson, R., Aidanpaa, J.O., Dahlback, N., & Leijon, M. (2007). Influence on the stability of generator rotors due to radial and tangential magnetic pull force. IET Electric Power Applications, 1(1), 1-8. DOI: https://doi.org/10.1049/iet-epa:20050430

Kinnunen, J.A., Pyrhonen, J., Niemela, M., Liukkonen, O., & Kurronen, P. (2007). Design of damper windings for permanent magnet synchronous machines. International Review of Electrical Eng?neering-IREE, 2(2), 260-272.

Despalatovic, M., Jadric, M., & Terzic, B. (2009). Influence of saturation on on-line estimation of synchronous generator parameters. Automatika, 50(3-4), 152-166.

Rahimian, M.M., & Butler-Purry, K. (2009). Modeling of synchronous machines with damper windings for condition monitoring. 2009 IEEE International Electric Machines and Drives Conference, 577-584, Miami, FL. DOI: https://doi.org/10.1109/IEMDC.2009.5075264

Traxler-Samek, G., Lugand, T., & Schwery, A. (2010). Additional losses in the damper winding of large hydrogenerators at open-circuit and load conditions. IEEE Transactions on Industrial Electronics, 57(1), 154-160. DOI: https://doi.org/10.1109/TIE.2009.2026773

Zarko, D., Ban, D., Vazdar, I., & Jaric, V. (2012). Calculation of Unbalanced Magnetic Pull in a Salient-Pole Synchronous Generator Using Finite-Element Method and Measured Shaft Orbit. IEEE Transactions on Industrial Electronics, 59(6), 2536-2549. DOI: https://doi.org/10.1109/TIE.2011.2160515

Matsuki, J., Taoka, H., Hayashi, Y., Iwamoto, S., & Daikoku, A. (2014). Improvement of three-phase unbalance due to connection of dispersed generator by damper windings of synchronous generator. Electrical Engineering in Japan, 186(1), 43-50. DOI: https://doi.org/10.1002/eej.22305

Wallin, M., Bladh, J., & Lundin, U. (2013). Damper winding influence on unbalanced magnetic pull in salient pole generators with rotor eccentricity. IEEE Transactions on Magnetics, 49(9), 5158-5165. DOI: https://doi.org/10.1109/TMAG.2013.2259633

Nuzzo, S., Degano, M., Galea, M., Gerada, C., Gerada, D., & Brown, N. (2017). Improved damper cage design for salient-pole synchronous generators. IEEE Transactions on Industrial Electronics, 64(3), 1958-1970. DOI: https://doi.org/10.1109/TIE.2016.2619321

Qiu, H., Fan, X., Feng, J., & Yang, C. (2018). Influence factors to affect eddy current loss of damper winding in 24 MW bulb tubular turbine generator. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 37(1), 375-385. DOI: https://doi.org/10.1108/COMPEL-11-2016-0488

Elez, A., PetriniC, M., PetriniC, M., Vaseghi, B., & Abasian, A. (2018). Salient pole synchronous generator optimization by combined application of slot skew and damper winding pitch methods. Progress in Electromagnetics Research M, 73, 81-90. DOI: https://doi.org/10.2528/PIERM18070508

Mandrile, F., Carpaneto, E., & Bojoi, R. (2019). Virtual synchronous generator with simplified single-axis damper winding. 28th IEEE International Symposium on Industrial Electronics (IEEE-ISIE), Vancouver, Canada, Jun. 12-14. DOI: https://doi.org/10.1109/ISIE.2019.8781233

Nuzzo, S., Bolognesi, P., Gerada, C., & Galea, M. (2019). Simplified damper cage circuital model and fast analytical-numerical approach for the analysis of synchronous generators. IEEE Transactions on Industrial Electronics, 66(11), 8361-8371. DOI: https://doi.org/10.1109/TIE.2018.2885737

Vanco, W.E., Silva, F.B., de Oliveira, J.M.M., & Monteiro, J.R.B.A. (2020). Effects of harmonic pollution on salient pole synchronous generators and on induction generators operating in parallel in isolated systems. International Transactions on Electrical Energy Systems, 30(6), Article Number: e12359. DOI: https://doi.org/10.1002/2050-7038.12359

Perin, D., Karaoglan, A.D., & Yilmaz, K. (2021). Using grey wolf optimizer to minimize voltage total harmonic distortion of a salient-pole synchronous generator. Scientia Iranica. DOI: 10.24200/SCI.2021.57657.5349 (Inpress). DOI: https://doi.org/10.24200/sci.2021.57657.5349

Sayyah, A., Aflaki, M., & Rezazade, A.R. (2006). Optimization of THD and suppressing certain order harmonies in PWM inverters using genetic algorithms. IEEE International Symposium on Intelligent Control, Munich, Germany, Oct. 4-6. DOI: https://doi.org/10.1109/ISIC.2006.285612

De Almeida, A.M.F., Pamplona, F.M.P, Braz, H.D.M., da Silva, J.A.C.B., & Barros, L.S. (2014) Multiobjective optimization for volt/THD problem in distribution system. 6th World Congress on Nature and Biologically Inspired Computing (NaBIC), Porto, Portugal, Jul 30-Aug 01. DOI: https://doi.org/10.1109/NaBIC.2014.6921893

Pradigta, S.R.L., Asrarul, Q.O., Arief, Z., & Windarko, N.A. (2017). Reduction of total harmonic distortion (THD) on multilevel inverter with modified PWM using genetic algorithm. Emitter-International Journal of Engineering Technology, 5(1), 91-118. DOI: https://doi.org/10.24003/emitter.v5i1.174

Rodriguez, J.L.D., Fernandez, L.D.P., & Penaranda, E.A.C. (2017). Multiobjective genetic algorithm to minimize the THD in cascaded multilevel converters with V/F control. 4th Workshop on Engineering Applications (WEA), Univ Tecnologica Bolivar, Cartagena, COLOMBIA, Sep. 27-29. DOI: https://doi.org/10.1007/978-3-319-66963-2_41

Fernandez, L.D.P., Rodriguez, J.L.D., & Penaranda, E.A.C. (2018). Optimization of the THD and the RMS voltage of a cascaded multilevel power converter. IEEE International Conference on Automation (ICA) / 23rd Congress of the Chilean-Association-of-Automatic-Control (ACCA), Concepcion, CHILE, Oct. 17-19. DOI: https://doi.org/10.1109/ICA-ACCA.2018.8609770

Fernandez, L.D.P., Rodriguez, J.L.D., & Penaranda, E.A.C. (2019). A multiobjective genetic algorithm for the optimization of the THD and the RMS output voltage in a multilevel converter with 17 levels of line voltage. IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia, Jun 5-7. DOI: https://doi.org/10.1109/ColCACI.2019.8781801

Booln, M.B., & Cheraghi, M. (2019). THD Minimization in a Five-Phase Five-Level VSI Using a Novel SVPWM Technique. 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz Univ, Shiraz, Iran, Feb. 12-14. DOI: https://doi.org/10.1109/PEDSTC.2019.8697810

Alinejad-Beromi, Y., Sedighizadeh, M., & Sadighi, M. (2008). A particle swarm optimization for sitting and sizing of distributed generation in distribution network to improve voltage profile and reduce THD and losses. 43rd International-Universities-Power-Engineering Conference, Padova, Italy, Sep. 1-4. DOI: https://doi.org/10.1109/UPEC.2008.4651544

Gallardo, J.A.A., Rodriguez, J.L.D., & Garcia, A.P. (2013). THD optimization of a single phase cascaded multilevel converter using PSO technique. Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, Jul 6-7. DOI: https://doi.org/10.1109/PEPQA.2013.6614944

Kanth, D.S.K., & Lalitha, M.P. (2014). Mitigation of real power loss, THD & enhancement of voltage profile with optimal DG allocation using PSO & sensitivity analysis. Annual International Conference on Emerging Research Areas - Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, Jul. 24-26. DOI: https://doi.org/10.1109/AICERA.2014.6908247

Memon, M.A., Memon, S., & Khan, S. (2017). THD minimization from H-bridge cascaded multilevel inverter using particle swarm optimization technique,” Mehran University Research Journal of Engineering and Technology, 36(1), 33-38. DOI: https://doi.org/10.22581/muet1982.1701.04

Dhanalakshmi, M.A., Ganesh, M.P., & Paul, K. (2016). Analysis of optimum THD in asymmetrical H-bridge multilevel inverter using HPSO algorithm. 2nd International Conference on Intelligent Computing and Applications (ICICA), KCG Coll Technol, Chennai, India, Feb. 5-6.

Francis, R., & Meganathan, D. (2018). An Improved ANFIS with Aid of ALO Technique for THD Minimization of Multilevel Inverters. Journal of Circuits Systems and Computers, 27(12), Article Number: 1850193. DOI: https://doi.org/10.1142/S0218126618501931

Khalid, S., & Verma, S. (2019). THD and compensation time analysis of three-phase shunt active power filter using adaptive mosquito blood search algorithm (AMBS). International Journal of Energy Optimization and Engineering (IJEOE), 8(1), 25-46. DOI: https://doi.org/10.4018/IJEOE.2019010102

Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47. DOI: https://doi.org/10.1016/j.advengsoft.2017.01.004

Wolpert, D.H., & Macready, W.G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82 . DOI: https://doi.org/10.1109/4235.585893

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., & Mirjalili, S.M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. DOI: https://doi.org/10.1016/j.advengsoft.2017.07.002

Montgomery, D.C. (2013). Design and analysis of experiments (8th ed.). John Wiley & Sons, New Jersey, USA.

Mason, R.L., Gunst, R.F., & Hess, J.L. (2003). Statistical Design and Analysis of Experiments (2nd ed.). John Wiley & Sons, New Jersey, USA. DOI: https://doi.org/10.1002/0471458503

Ileri, E., Karaoglan, A.D., & Akpinar, S. (2020). Optimizing cetane improver concentration in biodiesel-diesel blend via grey wolf optimizer algorithm. Fuel, 273, article number:117784. DOI: https://doi.org/10.1016/j.fuel.2020.117784

Karaoglan, A.D., Ocaktan, D.G., Oral, A., & Perin, D. (2020). Design Optimization of Magnetic Flux Distribution for PMG by Using Response Surface Methodology. IEEE Transactions on Magnetics, 56(6), 1-9, article number: 8200309. DOI: https://doi.org/10.1109/TMAG.2020.2986187

Mirjalili, S. (2020). Grasshopper optimisation algorithm [online]. Available from: http://www.alimirjalili.com. Accessed 01 June 2020.

Downloads

Published

2022-06-13
CITATION
DOI: 10.11121/ijocta.2022.1181
Published: 2022-06-13

How to Cite

Karaoglan, A. D., & Perin, D. (2022). Rotor design optimization of a synchronous generator by considering the damper winding effect to minimize THD using grasshopper optimization algorithm . An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 12(2), 90–98. https://doi.org/10.11121/ijocta.2022.1181

Issue

Section

Research Articles