Rotor design optimization of a synchronous generator by considering the damper winding effect to minimize THD using grasshopper optimization algorithm
DOI:
https://doi.org/10.11121/ijocta.2022.1181Keywords:
Grasshopper optimization algorithm, Rotor design optimization, Synchronous generator, Total harmonic distortion, Damper windingAbstract
The aim of this study is to calculate the optimum factor levels for the design parameters namely slot pitch, center slot pitch, and damper width to keep the magnetic flux density distribution in a desired range while minimizing the total harmonic distortion (THD). For this purpose, the numerical simulations are performed in the Maxwell environment. Then by the aid of regression modeling over this simulation results; the mathematical equations between the responses (THD and magnetic flux density distribution) and the factors are calculated. After the modeling phase, grasshopper optimization algorithm (GOA) is run through these regression equations to determine the optimum values of the rotor design parameters (factors). The confirmations are also performed in the Maxwell environment and the result indicated that the THD is minimized and the magnetic flux density distribution on the teeth is kept in a desired range.
Downloads
References
De La Rosa, F. (2006). Harmonics and Power Systems. Taylor & Francis, Hazelwood, Missouri, USA. DOI: https://doi.org/10.1201/9781420004519
Arrillaga, J., & Watson, N.R. (2003). Power System Harmonics (2nd ed.). John Wiley & Sons, USA. DOI: https://doi.org/10.1002/0470871229
Bakshi, U.A., & Godse, A.P. (2008). Electronic Circuits and Applications (3rd ed.). Technical Publications Pune, Pune, India.
Matsuki, J., Katagi, T., & Okada, T. (1992). Effect of slot ripples on damper windings of synchronous machines. Proc. of the IEEE International Symposium on Industrial Electronics, 2, 864-865, Xian, China. DOI: https://doi.org/10.1109/ISIE.1992.279716
Matsuki, J., Katagi, T., & Okada, T. (1994). Damper windings phenomena of synchronous machines during system oscillations. IEEE Transactions on Energy Conversion, 9(2), 376-382. DOI: https://doi.org/10.1109/60.300134
Vetter, W., & Reichert, K. (1994). Determination of damper winding and rotor iron currents in convertor and line-fed synchronous machines. IEEE Transactions on Energy Conversion, 9(4), 709-716. DOI: https://doi.org/10.1109/60.368337
Knight, A.M., Karmaker, H., & Weeber, K. (2002). Use of a permeance model to predict force harmonic components and damper winding effects in salient-pole synchronous machines. IEEE Transactions on Energy Conversion, 17(4), 478-484. DOI: https://doi.org/10.1109/TEC.2002.805227
Arjona, M.A. (2004). Parameter calculation of a turbogenerator during an open-circuit transient excitation. IEEE Transactions on Energy Conversion, 19(1), 46-52. DOI: https://doi.org/10.1109/TEC.2003.821838
Lundstrom, L., Gustavsson, R., Aidanpaa, J.O., Dahlback, N., & Leijon, M. (2007). Influence on the stability of generator rotors due to radial and tangential magnetic pull force. IET Electric Power Applications, 1(1), 1-8. DOI: https://doi.org/10.1049/iet-epa:20050430
Kinnunen, J.A., Pyrhonen, J., Niemela, M., Liukkonen, O., & Kurronen, P. (2007). Design of damper windings for permanent magnet synchronous machines. International Review of Electrical Eng?neering-IREE, 2(2), 260-272.
Despalatovic, M., Jadric, M., & Terzic, B. (2009). Influence of saturation on on-line estimation of synchronous generator parameters. Automatika, 50(3-4), 152-166.
Rahimian, M.M., & Butler-Purry, K. (2009). Modeling of synchronous machines with damper windings for condition monitoring. 2009 IEEE International Electric Machines and Drives Conference, 577-584, Miami, FL. DOI: https://doi.org/10.1109/IEMDC.2009.5075264
Traxler-Samek, G., Lugand, T., & Schwery, A. (2010). Additional losses in the damper winding of large hydrogenerators at open-circuit and load conditions. IEEE Transactions on Industrial Electronics, 57(1), 154-160. DOI: https://doi.org/10.1109/TIE.2009.2026773
Zarko, D., Ban, D., Vazdar, I., & Jaric, V. (2012). Calculation of Unbalanced Magnetic Pull in a Salient-Pole Synchronous Generator Using Finite-Element Method and Measured Shaft Orbit. IEEE Transactions on Industrial Electronics, 59(6), 2536-2549. DOI: https://doi.org/10.1109/TIE.2011.2160515
Matsuki, J., Taoka, H., Hayashi, Y., Iwamoto, S., & Daikoku, A. (2014). Improvement of three-phase unbalance due to connection of dispersed generator by damper windings of synchronous generator. Electrical Engineering in Japan, 186(1), 43-50. DOI: https://doi.org/10.1002/eej.22305
Wallin, M., Bladh, J., & Lundin, U. (2013). Damper winding influence on unbalanced magnetic pull in salient pole generators with rotor eccentricity. IEEE Transactions on Magnetics, 49(9), 5158-5165. DOI: https://doi.org/10.1109/TMAG.2013.2259633
Nuzzo, S., Degano, M., Galea, M., Gerada, C., Gerada, D., & Brown, N. (2017). Improved damper cage design for salient-pole synchronous generators. IEEE Transactions on Industrial Electronics, 64(3), 1958-1970. DOI: https://doi.org/10.1109/TIE.2016.2619321
Qiu, H., Fan, X., Feng, J., & Yang, C. (2018). Influence factors to affect eddy current loss of damper winding in 24 MW bulb tubular turbine generator. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 37(1), 375-385. DOI: https://doi.org/10.1108/COMPEL-11-2016-0488
Elez, A., PetriniC, M., PetriniC, M., Vaseghi, B., & Abasian, A. (2018). Salient pole synchronous generator optimization by combined application of slot skew and damper winding pitch methods. Progress in Electromagnetics Research M, 73, 81-90. DOI: https://doi.org/10.2528/PIERM18070508
Mandrile, F., Carpaneto, E., & Bojoi, R. (2019). Virtual synchronous generator with simplified single-axis damper winding. 28th IEEE International Symposium on Industrial Electronics (IEEE-ISIE), Vancouver, Canada, Jun. 12-14. DOI: https://doi.org/10.1109/ISIE.2019.8781233
Nuzzo, S., Bolognesi, P., Gerada, C., & Galea, M. (2019). Simplified damper cage circuital model and fast analytical-numerical approach for the analysis of synchronous generators. IEEE Transactions on Industrial Electronics, 66(11), 8361-8371. DOI: https://doi.org/10.1109/TIE.2018.2885737
Vanco, W.E., Silva, F.B., de Oliveira, J.M.M., & Monteiro, J.R.B.A. (2020). Effects of harmonic pollution on salient pole synchronous generators and on induction generators operating in parallel in isolated systems. International Transactions on Electrical Energy Systems, 30(6), Article Number: e12359. DOI: https://doi.org/10.1002/2050-7038.12359
Perin, D., Karaoglan, A.D., & Yilmaz, K. (2021). Using grey wolf optimizer to minimize voltage total harmonic distortion of a salient-pole synchronous generator. Scientia Iranica. DOI: 10.24200/SCI.2021.57657.5349 (Inpress). DOI: https://doi.org/10.24200/sci.2021.57657.5349
Sayyah, A., Aflaki, M., & Rezazade, A.R. (2006). Optimization of THD and suppressing certain order harmonies in PWM inverters using genetic algorithms. IEEE International Symposium on Intelligent Control, Munich, Germany, Oct. 4-6. DOI: https://doi.org/10.1109/ISIC.2006.285612
De Almeida, A.M.F., Pamplona, F.M.P, Braz, H.D.M., da Silva, J.A.C.B., & Barros, L.S. (2014) Multiobjective optimization for volt/THD problem in distribution system. 6th World Congress on Nature and Biologically Inspired Computing (NaBIC), Porto, Portugal, Jul 30-Aug 01. DOI: https://doi.org/10.1109/NaBIC.2014.6921893
Pradigta, S.R.L., Asrarul, Q.O., Arief, Z., & Windarko, N.A. (2017). Reduction of total harmonic distortion (THD) on multilevel inverter with modified PWM using genetic algorithm. Emitter-International Journal of Engineering Technology, 5(1), 91-118. DOI: https://doi.org/10.24003/emitter.v5i1.174
Rodriguez, J.L.D., Fernandez, L.D.P., & Penaranda, E.A.C. (2017). Multiobjective genetic algorithm to minimize the THD in cascaded multilevel converters with V/F control. 4th Workshop on Engineering Applications (WEA), Univ Tecnologica Bolivar, Cartagena, COLOMBIA, Sep. 27-29. DOI: https://doi.org/10.1007/978-3-319-66963-2_41
Fernandez, L.D.P., Rodriguez, J.L.D., & Penaranda, E.A.C. (2018). Optimization of the THD and the RMS voltage of a cascaded multilevel power converter. IEEE International Conference on Automation (ICA) / 23rd Congress of the Chilean-Association-of-Automatic-Control (ACCA), Concepcion, CHILE, Oct. 17-19. DOI: https://doi.org/10.1109/ICA-ACCA.2018.8609770
Fernandez, L.D.P., Rodriguez, J.L.D., & Penaranda, E.A.C. (2019). A multiobjective genetic algorithm for the optimization of the THD and the RMS output voltage in a multilevel converter with 17 levels of line voltage. IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia, Jun 5-7. DOI: https://doi.org/10.1109/ColCACI.2019.8781801
Booln, M.B., & Cheraghi, M. (2019). THD Minimization in a Five-Phase Five-Level VSI Using a Novel SVPWM Technique. 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz Univ, Shiraz, Iran, Feb. 12-14. DOI: https://doi.org/10.1109/PEDSTC.2019.8697810
Alinejad-Beromi, Y., Sedighizadeh, M., & Sadighi, M. (2008). A particle swarm optimization for sitting and sizing of distributed generation in distribution network to improve voltage profile and reduce THD and losses. 43rd International-Universities-Power-Engineering Conference, Padova, Italy, Sep. 1-4. DOI: https://doi.org/10.1109/UPEC.2008.4651544
Gallardo, J.A.A., Rodriguez, J.L.D., & Garcia, A.P. (2013). THD optimization of a single phase cascaded multilevel converter using PSO technique. Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, Jul 6-7. DOI: https://doi.org/10.1109/PEPQA.2013.6614944
Kanth, D.S.K., & Lalitha, M.P. (2014). Mitigation of real power loss, THD & enhancement of voltage profile with optimal DG allocation using PSO & sensitivity analysis. Annual International Conference on Emerging Research Areas - Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, Jul. 24-26. DOI: https://doi.org/10.1109/AICERA.2014.6908247
Memon, M.A., Memon, S., & Khan, S. (2017). THD minimization from H-bridge cascaded multilevel inverter using particle swarm optimization technique,” Mehran University Research Journal of Engineering and Technology, 36(1), 33-38. DOI: https://doi.org/10.22581/muet1982.1701.04
Dhanalakshmi, M.A., Ganesh, M.P., & Paul, K. (2016). Analysis of optimum THD in asymmetrical H-bridge multilevel inverter using HPSO algorithm. 2nd International Conference on Intelligent Computing and Applications (ICICA), KCG Coll Technol, Chennai, India, Feb. 5-6.
Francis, R., & Meganathan, D. (2018). An Improved ANFIS with Aid of ALO Technique for THD Minimization of Multilevel Inverters. Journal of Circuits Systems and Computers, 27(12), Article Number: 1850193. DOI: https://doi.org/10.1142/S0218126618501931
Khalid, S., & Verma, S. (2019). THD and compensation time analysis of three-phase shunt active power filter using adaptive mosquito blood search algorithm (AMBS). International Journal of Energy Optimization and Engineering (IJEOE), 8(1), 25-46. DOI: https://doi.org/10.4018/IJEOE.2019010102
Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47. DOI: https://doi.org/10.1016/j.advengsoft.2017.01.004
Wolpert, D.H., & Macready, W.G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82 . DOI: https://doi.org/10.1109/4235.585893
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., & Mirjalili, S.M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. DOI: https://doi.org/10.1016/j.advengsoft.2017.07.002
Montgomery, D.C. (2013). Design and analysis of experiments (8th ed.). John Wiley & Sons, New Jersey, USA.
Mason, R.L., Gunst, R.F., & Hess, J.L. (2003). Statistical Design and Analysis of Experiments (2nd ed.). John Wiley & Sons, New Jersey, USA. DOI: https://doi.org/10.1002/0471458503
Ileri, E., Karaoglan, A.D., & Akpinar, S. (2020). Optimizing cetane improver concentration in biodiesel-diesel blend via grey wolf optimizer algorithm. Fuel, 273, article number:117784. DOI: https://doi.org/10.1016/j.fuel.2020.117784
Karaoglan, A.D., Ocaktan, D.G., Oral, A., & Perin, D. (2020). Design Optimization of Magnetic Flux Distribution for PMG by Using Response Surface Methodology. IEEE Transactions on Magnetics, 56(6), 1-9, article number: 8200309. DOI: https://doi.org/10.1109/TMAG.2020.2986187
Mirjalili, S. (2020). Grasshopper optimisation algorithm [online]. Available from: http://www.alimirjalili.com. Accessed 01 June 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aslan Deniz Karaoglan, Deniz Perin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.