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In this paper, a novel peak observer based adaptive multi-input multi-output
(MIMO) fuzzy proportional-integral-derivative (PID) controller has been in-
troduced for MIMO time delay systems. The adaptation mechanism proposed
by Qiao and Mizumoto [1] for single-input single-output (SISO) systems has
been enhanced for MIMO system adaptive control. The tracking, stabilization
and disturbance rejection performances of the proposed adaptation mecha-
nism have been evaluated for MIMO systems by comparing with non-adaptive
fuzzy PID and classical PID controllers. The obtained results indicate that
the introduced adjustment mechanism for MIMO fuzzy PID controller can be
successfully deployed for MIMO time delay systems.
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AMS Classification 2010:
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1. Introduction

Fuzzy controller (FC) has a more effective con-
trol performance compared to standard controller
structures with fixed parameters since FC inher-
ently has naturally changing dynamics due to its
structure. The FC exhibits a time-varying PD
controller behavior when examined under certain
conditions as given in [1]. Considering that the
system dynamics are uncertain and may change
over time in controller structures, controller per-
formances can be improved by integrating adap-
tive structures into classical control structures.
For this reason, fuzzy PID structures that com-
bine the nonlinear inference competence of fuzzy
mechanisms(FM) with the robustness of classical
PID structures are very often opted. By combin-
ing FM with adaptive control structures, the con-
trol performance of fuzzy PID architectures can
be enhanced and empowered against uncertainty
in control systems.

In technical literature, there are various parame-
ter adjustment mechanisms for fuzzy controllers.

Peak observer based adaptation method intro-
duced in [1] can be considered as the simplest of
these adaptation structures. Qiao and Mizumoto
have proposed to tune the controller parameters
by taking into account the overshoot value of the
controlled systems. In [1], one of the scaling coef-
ficients for controller input and output has been
considered to enhance the closed-loop system per-
formance. Chou and Lu introduced a real time
implantable self-tuning fuzzy controller based on
adjustment of scaling factors [2]. The update val-
ues of the controller parameters (∆K) are calcu-
lated over the look-up tables created depending
on the tracking error and the derivative of the
error [2]. Adaptation schemes are to adjust the
scaling factors according to individual adjustment
rules and look-up tables [2]. Adjustments of scal-
ing factors are converted into numerical adjust-
ment tables by applying appropriate membership
functions, with only matrix maps [2]. Jung et
al. [3] deployed a real-time self-tuning mechanism
based on variable reference tuning index to con-
trol the steam generator of a nuclear power plant
for overshoot and non-overshoot cases. Maeda

*Corresponding Author

139

http://creativecommons.org/licenses/by/4.0/
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and Murakami [4] proposed to tune scaling co-
efficients and rule base to improve fuzzy con-
troller performance by considering the reaching
time of the system output, overshoot and ampli-
tude of oscillations in system response. Mudi and
Pal [5] introduced a robust gain tuning mecha-
nism based on an additional fuzzy architecture
to adjust output scaling coefficients of Fuzzy PI
and PD controllers. The rule base required for
the output scaling coefficients is defined depend-
ing on the derivative of the tracking error and the
tracking error [5]. Zheng [6] proposed to update
cores, supports, boundaries and the universe of
discourse of the fuzzy variables to enhance con-
troller performance. Chung et al. [7] utilized a
fuzzy tuner to adapt the input-output scaling co-
efficients of a fuzzy PI controller to improve rise
time, overshoot and steady state error of the con-
trolled system. Chao and Teng [8] introduced
two stage mechanism which is composed of a di-
rect adaptation and a gradient descent based in-
direct adaptation mechanism to tune scaling co-
efficients of a PD type fuzzy controller for lin-
ear and nonlinear dynamical systems. Woo et
al proposed an adaptation mechanism in which
the controller parameters are adapted through-
out the entire transient state [9]. Hu et al. ob-
tained a PID mechanism with non-linear behavior
by introducing a nonlinearity to the tracking er-
ror signal through a fuzzy mechanism [10]. The
parameters of the fuzzy mechanism are seeked via
genetic algorithms (GA) [10]. Ketata et al. have
presented various look-up table-based fuzzy con-
troller architectures constituted over tracking er-
ror and derivative of tracking error [11]. Kim and
Chung introduced a fuzzy PID controller which is
composed of fuzzy “PD” and linear “I” parts [12].
Kien et al. proposed a fuzzy inverse controller
structure that tries to perform the inverse of the
dynamics of the system [13]. Jaya algorithm is
deployed for parameter adaptation [13]. In or-
der to ensure stability, a sliding mode control
surface is utilized [13]. Cherrat et al. proposed
a fuzzy-based self-tuning mechanism to estimate
the PID controller [14]. Gil et al. introduced a
fuzzy adaptation mechanism in which the fuzzy
PID controller parameters are adapted offline via
the non-linear model and online via the local lin-
ear model [15]. Yordanova et al. [16] introduced a
novel model free supervisor based adaptive fuzzy
controller for nonlinear dynamical systems. Pinto
et al. developed a fuzzy adaptation mechanism
for SISO and MIMO systems, which estimates
the gains of the PID controller [17]. Yeşil et
al. presented a review paper that aims to ex-
amine various studies on fuzzy PID controllers

in the literature and to classify these fuzzy con-
trollers into categories [18]. In the related review
paper, fuzzy controller architectures were cate-
gorized under three main headings: Direct ac-
tion (DA) type fuzzy PID controllers, fuzzy gain
scheduling (FGS) type fuzzy PID controllers and
mixed type fuzzy PID controllers [18]. Kumaar
et al unveiled a deep survey of classical and fuzzy
PID controllers [19]. The paper [19] presents the
historical development of fuzzy logic-based struc-
tures. Guzelkaya et al. [20] utilized a relative rate
observer to tune the input scaling factor corre-
sponding to the derivative coefficient and the out-
put scaling factor corresponding to the integral
coefficient of the PID type FLC. Peak observer
based adaptation mechanisms have been utilized
in various studies [21, 22], but only two scaling
coefficients have been adapted in all these struc-
tures, as proposed in [1].

In this paper, the adjustment mechanism pro-
posed by Qiao and Mizumoto [1] has been en-
hanced for all scaling coefficients of the fuzzy PID
controller. Thus, all scaling coefficients of the
controller can be tuned by considering the over-
shoot value observed via peak observer. In addi-
tion to this, the adaptation mechanism proposed
for SISO systems has been improved for MIMO
systems. Therefore, the introduced MIMO fuzzy
PID has 16 parameters to be optimized. The in-
troduced adaptation mechanism has been exam-
ined on a MIMO time-delay system. The tracking
and stabilization performance of the introduced
controller has been evaluated.

This paper is organized as follows: The basics of
the adaptive fuzzy PID based on peak observer [1]
has been overviewed in Section 2. In section 3, the
introduced adjustment mechanism for MIMO sys-
tems has been presented. The performance eval-
uation of the introduced method has been exam-
ined on a MIMO time delay system in Section 4.
The paper ends with a brief conclusion part in
Section 5.

2. Adaptive fuzzy PID controller

2.1. An overview of fuzzy PID controller

The structure of the incremental PID Type Fuzzy
controller is illustrated in Figure 1 where K and
Kd are input scaling coefficients, and α and β
are output scaling coefficients of PD and PI part
of the PID controller, respectively. The mathe-
matical expression of the produced control law is
derived as follows [1, 23–25]:
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Figure 1. Fuzzy PID controller [1, 23–26].

uPID [n] =

uPD[n]︷ ︸︸ ︷
αfFLC (es [n] ,∆es [n])

+ βfFLC (es [n] ,∆es [n]) + uPI [n− 1]︸ ︷︷ ︸
uPI[n]

(1)

where es [n] and ∆es [n] are scaled error and de-
rivative of error. Triangular type input member-
ship functions with cores {−1,−0.4, 0, 0.4, 1} [1]
depicted in Figure 2 are deployed. For given in-
puts of es [n] and ∆es [n], four(4) rules illustrated
in Figure 2 are fired at each sampling time. Thus,
the output of the FLC can be obtained as follows
using product-sum inference method and center
of gravity method for defuzzification [1, 23–25]:

fFLC (es [n] ,∆es [n]) =

wi j︷ ︸︸ ︷
Ai (es [n])Bj (∆es [n])ui j

+

wi+1 j︷ ︸︸ ︷
Ai+1 (es [n])Bj (∆es [n])ui+1 j

+Ai (es [n])Bj+1 (∆es [n])︸ ︷︷ ︸
wi j+1

ui j+1

+Ai+1 (es [n])Bj+1 (∆es [n])︸ ︷︷ ︸
wi+1 j+1

ui+1 j+1

(2)

where wij ’s stand for the firing strength of fired
rule, and membership values are given as follows
[1, 23–25]:

Ai (es [n]) =
ei+1 − es [n]

ei+1 − ei

Ai+1 (es [n]) =
es [n]− ei
ei+1 − ei

Bj (∆es [n]) =
ėj+1 −∆es [n]

ėj+1 − ėj

Bj+1 (∆es [n]) =
∆es [n]− ėj
ėj+1 − ėj

(3)

The fuzzy control rule base utilized to constitute
the FLC controller introduced in [1] is given in
Table 1 for corresponding membership functions.

Table 1. Fuzzy control rule base [1, 25,27].

MFs ė−2 ė−1 ė0 ė1 ė2
e−2 -1.0 -0.7 -0.5 -0.3 0.0
e−1 -0.7 -0.4 -0.2 0 0.3
e0 -0.5 -0.2 0.0 0.2 0.5
e1 -0.3 0.0 0.2 0.4 0.7
e2 0.0 0.3 0.5 0.7 1.0

Linearization can be conducted in the neighbor-
hood of the fired rules as detailed in [1] in or-
der to analyze the dynamic behavior of the fuzzy
PID controller by comparing with standard PID.
Thus, the produced fuzzy control law can be
rewritten as [1, 25]:

u = A+ Pes [n] +D∆es [n]

A = uij − Pei −Dėj

P =
ui+1 j − uij
ei+1 − ei

D =
ui j+1 − uij
ėj+1 − ėj

(4)

Using α and β parameters, the equivalent stan-
dard PID components can be derived as follows:
”αKP+βKdD” represents the proportional term,
”βKP” stands for the integral term and ”αKdD”
can be interpreted as the derivative term [1,25].

2.2. Peak observer based adaptation
mechanism

The adjustment mechanism based on peak ob-
server [1,18,20,21] is shown in Figure 3. Qiao and
Mizumoto [1] aimed to decrease the integral coef-
ficient while increasing the derivative parameter
to increase the resistance against the overshoot
and oscillation of the system by keeping the pro-
portional term constant.

Therefore, Qiao and Mizumoto [1] proposed to
update Kd and β parameters by observing the
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Figure 2. Input membership functions and fuzzy rule base [1, 23–25].

Figure 3. Peak observer based adaptation mechanism [1,18,20,21].

absolute error value (δk = |ek|) at peak times as
follows:

Kd =
Kd0

δk
, β = β0δk (5)

where tk, k ∈ {1, 2, 3, · · · } are the peak times.

3. Adaptive MIMO fuzzy PID
controller

In this study, firstly, it is aimed to adapt all pa-
rameters of a fuzzy PID controller, inspired by the
peak observer approach of Qiao and Mizumoto
in [1]. In addition, it is intended to extend the
enhanced mechanism to MIMO fuzzy PID con-
trollers. The proposed adaptation mechanism for

a MIMO system is shown in Figure 4 where m
stands for the mth system input and k denotes
the kth controlled output of the MIMO system.

The input-output scaling coefficients of the
MIMO Fuzzy PID controller are adapted as fol-
lows: 

Kmknew

Kdmknew

αmknew

βmknew

 =


Kmkδm
Kdmk
δm
αmk
δm

βmkδm

 (6)

where δm indicates the corresponding peak ob-
server value [1, 25]. Thus, the derivative coeffi-
cient is increased while the integrator is decreased
by keeping the proportional term fixed [25]. The
internal structure of MIMO fuzzy PID controller
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Figure 4. Adaptive MIMO fuzzy PID controller based on peak observer [1, 25].

Figure 5. Inner structure of adaptive MIMO fuzzy PID controller [25].

representing the main and coupling controllers is
given in Figure 5. Triangular type membership
functions given in Figure 2 are used as input mem-
bership functions, and the fuzzy rule base in Ta-
ble 1 is deployed to construct the fuzzy rules. As
the inference mechanism and the defuzzification
method, product operation and center of gravity
method are used respectively.

In the case that δ term is interfused to the stan-
dard PID terms, the proportional term is fixed
and acquired as αKP + βKdD, the integral term
is derived as β0K0δ

2P , and the derivative term is
given as αKdD

δ2
[25].

4. Simulation results

The tracking and stabilization performances of
the introduced adaptation mechanism have been
evaluated using the following two input two out-
put(TITO) time delay system.

[
y1 (s)
y2 (s)

]
=

[
6

(s+1)(s+2)(s+3)
1

(s+15)e
−0.25 s

1
(s+14)e

−0.275 s 6
(s+1)(s+2)(s+3)

] [
u1 (s)
u2 (s)

]
(7)

As given in (7), the coupling dynamics of the sys-
tem have time delay dynamics. Considering the

pade approximation, the time delay can be de-
fined by an infinite number of zero-pole pairs. For
this reason, there is a serious interaction between
system dynamics. This interaction directly affects
the controller performance.

4.1. Tracking performance

The tracking performance of the adaptation
mechanism is examined for staircase input signals.
The initial values of the fuzzy PIDs are given in
Table 2. The performance of the non-adaptive
and adaptive MIMO fuzzy PID controller and
control signals are depictured in Figure 6 where
black trajectory refers to non-adaptive mecha-
nism and blue trajectory belongs to peak observed
based adaptation mechanism.

Table 2. Initial controller parame-
ters for tracking case.

Parameters FLC11 FLC12 FLC21 FLC22

Kmk 0.25 0.125 0.125 0.25
Kdmk

0.25 0.125 0.125 0.25
αmk 0.25 0.125 0.125 0.25
βmk 0.75 0.125 0.125 0.75
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Figure 6. System outputs(a,c), control signals(b,d) for non-adaptive and adaptive MIMO
fuzzy PID (Tracking Case).

As can be clearly seen from Figure 6(a,c), os-
cillations observed in non-adaptive fuzzy con-
troller are suppressed successfully in case the peak
observer-based adaptation mechanism is active.
The adaptation mechanism is activated with the
first peak and improves the control performance.
In order to numerically evaluate the performances
of the controllers, the behaviors between 50 and
100 sec are observed by taking into account the
overshoots(OS %), settling times(ts) and steady
state errors(ess). While the non-adaptive system
has 22.87 % overshoot(OS) and 18.5 sec settling
time, peak observer based adaptive system has no
overshoot and 15.5 sec settling time. Both con-
trollers has no steady-state errors. These numer-
ical values are tabulated in Table 3.

Table 3. Comparion of non-adaptive
fuzzy PID and peak observer based
fuzzy PID with respect to overshoot,
settling time and steady state error.

Controller Type OS % ts ess
Non-adaptive FLC 22.87 18.5 0
Peak Observer FLC 0 15.5 0

The evaluations of the main fuzzy PID controller
parameters are shown in Figure 7. The alter-
nation of the coupling fuzzy PID controllers are
depictured in Figure 8. By dynamically adapt-
ing the controller parameters, a closed-loop sys-
tem response with less oscillations or even without
overshoot can be achieved.

Table 4. Initial controller parame-
ters for stabilization case.

Parameters FLC11 FLC12 FLC21 FLC22

Kmk 0.485 0.2 0.1 0.5
Kdmk

0.5 0.25 0.2 0.475
αmk 7.5 0.25 0.5 7
βmk 2 0.1 0.2 2

4.2. Stabilization performance

In order to examine the effectiveness of the pro-
posed adjustment mechanism, the controller per-
formance has been evaluated for the stabilization
problem. For this purpose, the case that the
non-adaptive MIMO fuzzy PID controller cannot
control is considered. The initial values of the
controller parameters are given in Table 4. As
can be seen from Figure 9, non-adaptive MIMO
fuzzy PID controller can not control the system
dynamics. In case the peak observer based mech-
anism is activated, the system dynamics can be
successfully forced to track the desired reference
signals as illustrated in Figure 10. The evalua-
tion of input-output scaling coefficients are given
in Figures 11-12.

As given in Figures 11-12, since α and Kd pa-
rameter values increase, the derivative laws can
increase the resistance against the overshoot and
oscillation of the system [1]. Similarly, K and
β parameter values decrease, thus decreasing the
equivalent integral terms. The fact that the con-
troller parameters are not updated until the next
peak value can be considered as one of the most
important disadvantages of this structure. How-
ever, this structure is open to development.
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Figure 7. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC11 and
FLC22 (Tracking Case) .

Figure 8. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC12 and
FLC21 (Tracking Case) .

Figure 9. Syste outputs (a,c), control signals for non-adaptive MIMO fuzzy PID (Stabiliza-
tion Case).
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Figure 10. System outputs (a,c), control signals (b,d) for adaptive MIMO fuzzy PID (Stabi-
lization Case).

Figure 11. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC11

and FLC22 (Stabilization Case) .

Figure 12. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC12

and FLC21 (Stabilization Case) .
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Figure 13. System outputs (a,c), control signals (b,d) for adaptive MIMO fuzzy PID (Dis-
turbance Rejection Case)

.

Figure 14. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC11

and FLC22 (Disturbance Rejection Case)

.

Figure 15. Input scaling coefficients (a,c), and output scaling coefficients (b,d) for FLC12

and FLC21 (Disturbance Rejection Case

.
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Figure 16. System outputs (a,c), control signals (b,d) for MIMO PID (Tracking Performance
Case).

Figure 17. System outputs (a,c), control signals (b,d) for MIMO PID (Disturbance Rejection
Case).

4.3. Disturbance rejection performance

In order to examine the robustness of the adap-
tation mechanism, a step type input disturbance
is applied to the system at 50 seconds.

The disturbance rejection performance of the
adaptation mechanism is illustrated in Figure
13. The adaptations of the controller parameters
against the disturbance case are shown in Fig-
ures 14-15. The adaptation mechanism readjusts
all controller parameters to suppress the distur-
bance.

As can be clearly seen from Figures 14-15, it can
be observed that the coefficients of the deriva-
tive parts are very sensitive to disturbances. The
introduced adaptation mechanism effectively re-
jects the step type input disturbances. The dis-
turbance rejection performance of this structure
is an open problem to be developed.

4.4. Comparison with conventional PID

The control performances of the non-adaptive
fuzzy PID and peak observer based fuzzy PID
are compared with the classical PID controller.
Equivalent PID11 and PID22 values have been cal-
culated with the help of the initial values of Fuzzy
PID controllers in Table 4. The parameters of the
coupling (PID12 and PID21) controllers are cho-
sen as 5 times the equivalent parameters obtained
via Table 4. Thus, the parameters of MIMO PID
are given in Table 5.

Table 5. MIMO PID controller parameters.

Parameters PID11 PID12 PID21 PID22

Kp 1.25 0.78125 0.78125 1.25
Ki 0.9375 0.390625 0.390625 0.9375
Kd 0.3125 0.390625 0.390625 0.3125
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In order to compare the controller performances,
the following performance index function is uti-
lized to constitute the comparison table in Ta-
ble 6.

Jc =
∫ tf
t=0 |e1

(
t
)
|+ λ1|

du1

(
t
)

dt |+ |e2
(
t
)
|+ λ2|

du2

(
t
)

dt | dt
(8)

where λ1 = λ2 = 20 is chosen to minimize and
limit the variation of the control signal.

Table 6. Performance comparisons(Jc).

Cases FPIDpo FPIDn−po MIMO PID
Nominal 28.033 31.832 180.422
Disturbance 48.393 48.393 201.04

The tracking and disturbance rejection perfor-
mances of MIMO PID controller have been illus-
trated in Figure 16 and 17.

As can be seen from Figure 16, MIMO PID con-
troller provokes too much oscillation and over-
shoot. As can be seen from Table 6, the perfor-
mance of MIMO PID is the worst for both track-
ing and disturbance rejection performances. It is
observed that the adaptation mechanism in FLC
significantly improves the controller performance.

5. Conclusion

In this paper, an adaptation mechanism for
MIMO fuzzy PID controller has been introduced
for MIMO systems. The performance of the pro-
posed mechanism is examined on tracking, stabi-
lization and disturbance rejection problems. In
order to examine the effect of the proposed adap-
tation structure in depth, it is compared with
non-adaptive fuzzy PID and classical PID con-
troller. The obtained results indicate that the
introduced adjustment mechanism provides quite
successful tracking, stabilization and disturbance
rejection performances for the control of MIMO
systems. As future works, the drawbacks of peak
observer can be resolved by constantly observing
the tracking error, not just at peak times. For
this purpose, it is aimed to propose novel adap-
tive control architectures in which the tracking
error is constantly deployed in the adaptation
mechanism.
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[22] Yeşil, E., Kumbasar, T., Dodurka, M. & Sakallı,
A. (2014). Peak observer based self-tuning of type-
2 fuzzy PID controller. 10th IFIP International
Conference on Artificial Intelligence Applications
and Innovations (AIAI), Rhodes, Greece, 487–
497.
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 The rapid increase in the number of Electrical Vehicles (EVs) will bring 

difficulties in the management of charging process and pose serious grid problems 

at low voltage levels. Particularly, with employment of wireless power transfer 

(WPT) system in a charging station, harmonic interference will increase. The main 

reason of that poor power quality lies on high frequency square wave output of 

transmitter side of WPT. In this study, a support vector machine (SVM) is 

proposed to design an optimal C-type passive filter in order to mitigate voltage 

and current total harmonic distortions (THD) of WPT system. Hereby, SVM-based 

model is constructed which consists of THD indices and power factor (PF) as 

outputs whereas filter parameters are inputs. The main aim of optimization process 

is minimization of distortions and correction of PF while searching the filter 

parameters. Particle swarm optimization (PSO) algorithm is employed to find the 

optimal filter parameters. To show the efficiency of proposed method, simulation 

studies are carried out on Matlab®/SimulinkTM environment. It is observed that 

voltage total harmonic distortion (THDv) and current total harmonic distortion 

(THDi) are calculated as 1.03%, 2.23%, respectively, and the power factor is 

improved to 0.995% when the designed C-type filter is utilized.    
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1. Introduction 

In recent years, carbon-based energy generation 

systems that cause environmental damage such as 

global warming, air pollution, water pollution, etc. have 

begun to replace systems that produce electrical energy 

through renewable and environmental friendly [1]. In 

addition, vehicles using carbon-based fuels are one of 

the important causes of environmental pollution. In 

order to solve this problem, it is great importance that 

vehicles working with electric energy should become 

widespread. In the event that the use of electric vehicle 

(EV) becomes widespread, another problem, which is 

efficient charging station design and easy access to 

stations, comes to the fore. According to the IEC61851 

standard prepared for electric vehicle charging stations 

(EVCS), it is allowed to draw currents up to 32 A in 

residential uses and draw up to 250 A in alternating 

current in different charging modes. However, the rapid 

increase in the number of EVs will bring difficulties in 

the management of the charging process and pose 

serious grid problems at low voltage levels [2, 3]. 

Increasing load demand will create the need for 

additional facility investment. By using various 

heuristic algorithms, the effects of EVs on the 

distribution grid can be reduced and the load profile can 

be slightly smoothed [4]. However, it is still difficult to 

meet the desired electrical energy need without a 

facility investment. 

Wireless charging methods, on the other hand, have 

come as a major innovation to the EV industry. 

Compared to conventional charging units, they do not 

require power connection. Wireless power transfer 

(WPT) is divided into static and dynamic structures. 

Static wireless power transfer systems by placing a 

single coil under a parked vehicle were proposed by 

General Motors in 1998 [5]. WPT is a safer and more 

convenient method for electrical charging due to its 

cable-free structure and resistant to environmental 

factors such as water and dust. When the reported 

studies are examined, it is seen that WPT is frequently 

employed in charging EVs. Li and Mi [6] present a 

study on magnetic coupling design in wireless power 

http://www.ams.org/msc/msc2010.html
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transfer for EVs. They show the circuit compensation 

with power control via converters. Musavi and Eberle 

[7] compared the current wireless charging 

technologies for EVs on the basis of values such as 

efficiency, cost, capacity, and system complexity. They 

present two different wireless/built-in fast charging 

circuit models which are integrated into the vehicle, 

separately for passenger cars and large public 

transportation vehicles. Sun et al. [8] review existing 

wireless charging technologies for EVs and their 

applications. They examine different types of wireless 

charging applications for EVs and their economic 

feasibility is analyzed. In addition, electromagnetic 

field shielding methods for WPTs are also investigated.  

Most of the aforementioned WPT applications include 

DC-DC or AC-DC converters. In fact, AC-DC 

converters in WPT systems are more convenient for 

grid-connected applications [9]. However, these 

converters contain high-frequency triggering and 

induce harmonic distortion on the voltage and current 

waveforms. These harmonics may cause unexpected 

impacts on the equipment in the system such as heating, 

malfunction on the actuator and line loss of the network 

[10]. Therefore, filters are generally designed in order 

to cope with these harmonics. Among the power filter 

types, passive filters are easy to implement and cost-

effective. So, they are widely employed in power 

systems. Further, they are preferred to handle the 

harmonics particularly in electrical vehicle charging 

station. In this regards, Yang et al. [11] design a single-

tuned passive filter which combines reactance and 

capacitor and creates a low resistance channel for 

specific order harmonics. According to their analyses, 

they find that the fifth and seventh orders are the most 

part of harmonics of EVCS. By using the designed 

single-tuned filter they decrease the THDi to a low 

level. Zao and Yue [12] take the effects of the electric 

vehicle six-pulse rectifier charger into account and 

design single-tuned filter as well as high pass filter. 

Their simulation results show that a good harmonic 

suppression is achieved with the presented passive 

filter. Khudher et al. [13] present the design of output 

filter with shunt passive filters to decrease impact of 

electrical car charging stations on power grid 

harmonics. They reduce the THDi from 46.19% to 

3.73% by combining the double-tuned filters with high 

pass filter. 

Alongside the conventional filters such as combination 

of single-tuned LC and high pass filter, parallel 

resonance can be avoided in the system by using C-type 

passive filter. Furthermore, it has lower loss than high-

pass filter at fundamental frequency [14]. Due to these 

advantages, it is widely used in different applications 

such as loading capability improvement of transformers 

under non-sinusoidal conditions [15], filtration of 

higher harmonics injected into the transfer system by 

arc furnaces [16] and capacity reduction of hybrid 

power quality conditioner in co‐phase traction power 

system [17].  

According to the author’s knowledge, there is lack of 

study in the implementation of C-type passive filter for 

WPT system which is the main contribution of this 

study. However, an optimal design of a C-type filter 

requires the analysis of system with single-phase 

equivalent circuit. Therefore, most of the equivalent 

circuit parameters such as linear impedance parameters 

of load and Thevenin equivalents have to be known. 

However, some studies construct a model between 

THD values and specified input parameters. In this 

context, Response Surface Method [18] and 

comparison of artificial neural network and SVM [19] 

are reported. However, in [19], SVM method is 

employed only for harmonic estimation. 

In this study, SVM-based optimal design of C-type 

passive filter is proposed for an EVCS which contains 

AC-DC converter, a high frequency single phase 

inverter and WPT. The main advantage of the proposed 

method is no need of equivalent circuit parameters of 

the system while determining the model. THDv, THDi 

and PF are chosen as output parameters of the model 

whereas the filter parameters are assigned as input 

parameters. Afterwards, a traditional PSO method is 

applied on that model to minimize THDv and THDi as 

well as to maximize PF.          

The organization of this manuscript is as follows: 

Section 2 describes EVCS with WPT. Section 3 defines 

the main problem of this study with THD indices. 

Section 4 explains C-type passive filter design. Section 

5 details SVM-based modeling and PSO based 

optimization studies. Section 6 contains results and 

discussion. Section 7 is the conclusion. 

2. Description EVCS with WPT system 

The proposed EVCS basically contains three-phase 

rectifier, DC-link buffer, full-bridge resonant inverter, 

series-resonant LC tank, vehicle-side rectifier. Figure 1 

shows the general scheme of system with C-type filter 

which is detailed in the next sections. In this system, 

proposed resonant inverter is grouped as Class D and is 

most popular for practical WPT systems [20]. 

As shown in Figure 1, proposed EVCS has series-series 

compensation topology. In this method, Lp, Cp, Ls and 

Cs stand for primary, secondary coils and compensated 

capacitors, respectively. If the primary and secondary 

coil currents are defined as Ip and Is, effect of the 

secondary impedance to the primary side is expressed 

as in Eq. (1) 

 
2 2

= s
r

p s

j MI M
Z

I Z

 −
=  (1) 

where M denotes the mutual inductance and calculated 

by 

 
p sM k L L=  (2) 

where k is the coupling coefficient and ranged between 

0 and 1 ( 0 1k  ). The impedance of the secondary 

side Zs is determined as in Eq. (3).  
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Figure 1. Block scheme of the EVCS 
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s s L

s

Z j L R
j C




= + +  (3) 

where RL is the load resistance and resonant frequency 

is calculated by 1/ .r s sL C =  Consequently, the 

equivalent load impedance on the primary side is 

determined as in Eq. (4). 

 1
s p r

p

Z j L Z
j C




= + +  (4) 

Alongside the WPT of EVCS, 3-phase, 380 V, 50 Hz 

AC grid voltage is rectified to 360 Vdc on the DC bus. 

Afterwards, it is inverted to 360 V, 30 kHz square wave 

AC voltage by means of full bridge resonant inverter. 

This signal is transferred to secondary side wirelessly. 

Lastly, vehicle-side converter rectifies the AC voltage 

to 360 V DC voltage in order to charge the lithium-ion 

batteries. Equivalent circuit parameters of the designed 

WPT system are given in Table 1. With given circuit 

parameters, resonant frequency is calculated as 30 kHz, 

approximately. 

Table 1. The equivalent circuit parameters of WPT 

Parameter Value 

Cp  105.74e-9 F 

Cs 109.69e-9 F 

Lp 266.16e-6 H 

Ls 256.79e-6 H 

M 85.46e-6 H 

3. Problem definition 

Regarding the presented EVCS, full-bridge resonant 

inverter converts the 360 V DC input into 360 V AC 

square wave output. The Fourier transform of the 

converted square wave is given by Eq. (5) [21]. 

 

1,3,5

4 1
sin( )TX DC r

n

U U n t
n






=

=   (5) 

where UTX is the output voltage of full-bridge resonant 

inverter as well as the input voltage of the WPT 

transmitter side. UDC is the input of inverter when 
r

is chosen as resonant frequency and n is the harmonic 

order. It can be seen from Eq. (5) that UTX includes 

harmonics. According to the harmonic analysis of WPT 

system given in [21], despite the harmonic current is 

reduced effectively by adjusting Q value of the resonant 

circuit, in some cases, harmonic current required to be 

reduced. So, the balance between Q value and harmonic 

voltage loaded on the transmitter coil should be 

adjusted accurately. Moreover, fundamental energy to 

harmonic energy ratio is given by Eq. (6). 

 
22

2

2

1 1

1 1
( )

Harmonic

Fundamental

r

P

P n L
n k

R k k


=
 

− + 
 

 (6) 

It can be deduced from Eq. (6) that the energy of 

harmonic transmission decreases since the k decreases.  

However, when the k is chosen around 0.9, maximum 

harmonic transmission ratio is observed [21]. It is also 

proven that when the harmonic-related reactive power 

accumulation increases, efficiency of the inverter-

driven WPT system decreases. So, an appropriate 

control for inverter can overcome the harmonic related 

reactive power accumulation [22]. Additionally, 

aforementioned studies generally employ DC source 

and focus on harmonics on the WPT side. Since the 

EVCS is fed by the grid, the energy consumed via WPT 

draws non-sinusoidal currents from the grid. THDi and 

THDv can be calculated as in Eqs. (7) and (8)  

considering the fundamental frequency active power 

(P1), reactive power (Q1), fundamental frequency RMS 

current (I1) and sinusoidal-rated supply voltage (V1) 

[23]. 

 

2

1

1

n

n

I

THDi
I

=


 (7) 

 

2

1

1

n

n

V

THDv
V

=


 (8) 

where In and Vn stand for nth harmonic current and 

voltage. Additionally, PF can be calculated as in Eq. (9) 

in terms of both powers. 

 1
1

1 1

cos
P

PF
V I

= =  (9) 

where 
1  denotes phase angle difference between 

fundamental frequency voltage and current. To avoid 

drawing of harmonically contaminated currents and 

improve PF, C-type passive filter is designed to fulfill 

the desired criteria which are minimization of THDv, 

THDi as well as maximizing the PF. 
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4. C-type passive filter design 

Circuit of the typical C-type passive filter is given in 

Figure 2. Design procedure of the filter begins with the 

determination of reactive power Qt at fundamental 

frequency f0, which is 50 Hz, regarding to nominal 

voltage Un and tuning frequency fn.  

 

Figure 2. Circuit of the C-type filter 

After specifying the necessary parameters, C2 should be 

chosen large enough in order to meet the desired 

reactive power of the system. Afterwards, C1 is 

calculated by means of following equation [24]. 

 
2

1 2

0

1nfC C
f

  
 = − 
   

 (10) 

Then, series L1-C1 are tuned to f0 as follows: 

 
0

1 1

1

2
f

L C
=  (11) 

From Eq. (11), L1 value is calculated since the tuning is 

realized. In order to have more effective filter a low 

value quality factor Q at the designed frequency fn is 

chosen within 2 or 3. Damping resistance Rd is 

specified as in Eq. (12). 

 12 n
d

f L
R

Q


=  (12) 

It is seen from Eqs. (10), (11) and (12) that the design 

problem of a C-type passive filter can be solved via 

foreknowledge of the system characteristics. In this 

study, without knowledge of these parameters an 

optimal filter design is aimed which employs a support 

vector machine-based modeling technique. Note that, 

alongside the C-type passive filter a serial connected 

input inductance Li is also employed in the system.    

5. Support vector machine-based optimization of 

C-type passive filter  

This study intends to find optimal C-type passive filter 

parameters. While searching filter parameters, THDv, 

THDi values are aimed to be minimized and PF values 

is aimed to be close to 1. Hence, SVM regression 

method is utilized to model the system, PSO is operated 

to reach optimal filter parameters. The entire modeling 

and optimization processes are given as flowchart in 

Figure 3. The proposed method mainly targets to obtain 

optimal C-type filter parameters. But, modeling with 

high accuracy is the key procedure. Since the SVM is 

not able to well perform in estimation, PSO algorithm 

will not give the best filter parameters. Therefore, high 

accuracy in modeling is necessary to be succesful in 

optimization. After ensuring the model certainty, for a 

given search space, PSO is employed to reach desired 

metrics by means of calculating the best filter 

parameters. The details of modeling and optimization 

are reported in subsections.   

 

Figure 3. Flowchart of SVM-based optimization of C-type 

filter parameters 

5.1. Support vector machine-based modelling 

There are lots of machine learning-based modeling 

method in literature such as RSM [25], Artificial 

Neural Network [26]  and Long Short-term Memory 

[27]. Support vector machine is also one of a machine 

learning methods and was proposed presented in 1995 

by Cortes and Vapnik [28]. The general structure of an 

SVM is given in Figure 4. It is widely employed in the 

literature for the purpose of estimation, analysis and 

regression problems [19]. The main advantage of SVM 

is showing better performance against getting stuck 

with local minimum problem [29].   

 

Figure 4. General scheme of SVM 

Support vector regression (SVR) is an utilization of 

SVM and uses distinct kernel functions such as 

polynomial, radial basis function, sigmoid and linear. 

Since a training dataset contains input vector xi and 
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output vector 
o , regression model can be formed as 

given in Eq. (13). 

 ( )T

o ix b  − +  (13) 

where  , b, ()  stand for weighting vector, bias and 

nonlinear mapping function, respectively. In order to 

determine weighting parameters of regression model, 

the distance between margin and input vector that lie on 

the wrong side must be measured. Furthermore, the 

confidence interval and the empirical risk should be 

adjusted by penalty parameters. These two 

requirements yield a minimization problem as given in   

Eq. (14) to be solved [30].    

 2 (*)

1

1

1

2

N

p i

i

k  
=

+ +  (14) 

where i denotes the slack variable and kp is a constant 

penalization parameter. Weighting parameters are 

calculated when the function given in Eq. (14) is 

minimized. Lastly, Lagrange multipliers are introduced 

to solve the support vector regression problem. 

Since this study aims to determine optimal C-type 

passive filter, input-output data of SVM are appointed 

as filter parameters and harmonic values, respectively. 

To elaborate more, filter parameters which are given in 

Eqs. (10), (11) and (12) are denoted as inputs, THDv, 

THDi and PF values are specified as outputs. Training 

dataset is formed by input-output data which is derived 

from simulation studies. Matlab®/SimulinkTM program 

is chosen as simulation platform and min-max values 

of inputs are determined as given in Table 2. 

Considering the increment (step) values, simulation is 

run 180 times and THDv, THDi and PF values are 

recorded to be used in modeling procedure.    

Table 2. Filter parameters constraints 

Parameter min step max 

C2  1.2e-4 2e-5 2e-4 

fn/f0  3 2 7 

Q  3 2 7 

Li 5e-3 5e-3 2e-2 

 

After constructing the input-output training data set 

Matlab® ‘fitrsvm’ command is employed to train SVM 

regression model. Note that normalization pre-process 

on the dataset is applied before training by using 

maximum values of each parameter as given in Table 

2. Data mapping is occurred with Gaussian kernel 

functions and all elements of the predictor matrix 

divided by the value of appropriate KernelScale (auto). 

Using the chosen specifications, SVM model is 

obtained with 0.94 r-squared (R2). To summarize, SVM 

predicts harmonic distortions and power factor with the 

high accuracy for the given filter parameters. It proves 

that the model can be used in optimization precisely. 

 

 

 

5.2. Particle swarm optimization 

PSO method is used for different applications in 

industry such as renewable energy [31], automation 

[32] and adaptive wireless power transfer [33]. 

Specifying the C-type filter parameters is a complex 

problem due to the nonlinearity of the EVCS. The 

performance of the filter can be improved by reducing 

THDi and THDv likewise by approximating to 1 in 

terms of PF. Additionally, it is well-known fact that 

THDi and THDv should be kept under limitation 

defined by IEEE Standard 519-2014 [34]. The THDi 

limit is recommended as 8% when the ratio between 

maximum short-circuit current (ISC) and maximum 

demand load current (IL) at common coupling point 

(PCC) is less than 20. On the other hand, THDv limit is 

defined as 5% since the bus voltage is less than 1 kV. 

Considering these limitations and handling PF as a 

percentage, the fitness function (FF) is designed by 

taking the limits equal to each other as 5%. Therefore, 

in this study, after well modeling of the EVCS with 

SVM, a fitness function is identified to be minimized 

and as given in Eq. (15). Note that, THDi, THDv and PF 

values given in Eq. (15) are predicted by SVM during 

the optimization process. 

 
1 2 3. . (1 )i vFF w THD w THD w PF= + + −  (15) 

where w1, w2, w3 are weightings of each parameter. As 

shown in Eq. (15), optimization problem has two 

parameters to be minimized and third parameter to be 

maximized which yields multi-objective optimization 

problem. However, considering the significance and 

goal value of each parameter, the problem can be 

converted to a single objective optimization by 

choosing the weightings equal. Hereby, minimization 

of THD values and maximization of PF can be done 

with equal importance. A set of lower and upper bounds 

on the design variables are given in Table 2. The 

optimization problem to get mentioned values under 

predefined constraints can be summarized as given in 

Eq. (16).  

In this problem, search space is defined by  . The 

problem has four filter parameters to be optimized, 

where their general form can be indicated as 

min maxfp fp fp  . Note that C1 and Rd are not included 

in optimization problem. Because, these two 

parameters are calculated by Eqs. (10) and (12), since 

the given parameters are determined. 
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Classical PSO algorithm of Matlab® is used in this 

study. The parameters of PSO are given in Table 3. As 

mentioned before, applied SVM is done with 

normalized dataset during the modelling step. 

Therefore, each parameter of fp is normalized using the 

same method. After several optimization processes, 

best FF is obtained as 3.27 when the filter parameters 

are calculated as given in Table 4. By using ‘rng’ 

function of Matlab®, random number generation is 

controlled for reproducibility. Hereby, it is confirmed 

in each trial that, PSO is started with different 

initialization which yields not trapping by a local 

minimum solution.   

Table 3. PSO tuning parameters 

Parameter Value 

Function tolerance  1e-6 

Initial swarm span 2000 

Min neighbors fraction 0.25 

Self-adjustment weight 1.49 

Swarm size [100,300] 

 

Table 4. Obtained filter parameters 

Parameter Value 

C2  1.6e-4 F 

C1 9.6e-3 F 

L1 1.1e-3 H 

Li 2e-2 H 

Rd 121 Ω 

 

Regarding to the obtained C-type filter, performance of 

the system is analyzed in the next section. 

6. Results and discussion 

This section presents and compares numerical results 

obtained by simulating EVCS with and without C-type 

passive filter. Matlab®/SimulinkTM environment is 

employed for simulation studies. For the simulated 

EVCS, the equivalent circuit parameters are chosen as 

descripted in Section 2. Additionally, lithium-ion 

battery with a rectifier is connected to the secondary 

side of WPT. The system is supplied by three phase grid 

voltage which is 400 V in fundamental frequency and 

specifications of battery are as follows; nominal 

voltage=360 V, rated capacity=100 Ah, initial state-of-

charge (SoC)=50%, battery response time=10 s, battery 

internal resistance=0.036 Ω.    

Initially, the system is simulated without passive filter. 

Figure 5 shows the charging current and state of charge 

of lithium-ion battery. It is seen from figure that battery 

drawn around 15 A from DC link and keep being 

charged. It is clear that charging process works 

effectively.  

 

(a) State of charge 

 

(b) Change in charging current 

Figure 5. Charging of the battery without C-type filter 

In the case of operating the EVCS without filter, 

waveform of the voltage at the point of common 

coupling is demonstrated in Figure 6a with harmonic 

spectrum. The magnitude and harmonic spectrum of 

current drawn from the grid is obtained as illustrated in 

Figure 6b. It is seen from Figure 6 that THDv  and THDi 

are measured as 13.99% and 22.23%, respectively. The 

system has also low PF which is measured as 0.91. It is 

clear that THD values are above the limits and should 

be mitigated. Moreover, mitigation of harmonics may 

increase the effectiveness of the WPT and may 

accelerate the battery charging process.    

Measured voltage and current with harmonic spectrums 

are illustrated in Figure 7 when the system is operated 

with designed C-type filter. In this case, voltage and 

current harmonics are reduced to 1.03% and 2.23%, 

respectively. PF is improved to 0.995. The absolute 

differences between the results show that the designed 

C-type filter keeps the THDv, THDi indices and PF 

within limits defined by IEEE Standard 519-2014. So, 

the results show that optimal C-type filter is determined 

effectively by using the SVM-based approach.    



Optimal C-type filter design for wireless power transfer system by using support vector machines        157 

 

 

(a) Supply voltage and THDv 

 

 

 

(b) Supply current and THDi 

Figure 6. THD values without C-type filter 

Figure 8 indicates that performance of the battery 

charging process enhances as compared to without 

filter operation. As mentioned in [35], after 

compensation and harmonic elimination, the dc voltage 

may be higher for an uncontrolled rectifier. A slight 

increase in Vdc yields a large increase in the output 

power. It is clearly seen from the Figure 9 that with the 

mitigation of harmonics and power factor 

improvement, output voltage of converter structure 

increases from 388.4 to 388.58 Vdc on average. This 

observation is reflected in battery charging current too, 

while the input power is maintained constant, charging 

current increases from 18 A to 23 A on average. The 

small change in charging voltage (0.18 Vdc) leads an 

increase of 5 A which can be calculated by change in 

Vdc / battery internal resistance (0.18 Vdc/0.036 Ω). It 

can be concluded that speed of the battery charging 

process under the same operation conditions increases 

by 21% in case of using C-type filter. Therefore, the 

SoC curve as shown in Figure 8a goes up faster than 

without filter operation during the charging (Figure 5a).  

 

 

(a) Supply voltage and THDv 

 

 

(b) Supply current and THDi 

Figure 7. THD values with C-type filter 

7. Conclusion 

WPT systems are widely employed in EVCS. 

However, structure of WPT causes current with 

harmonics and thus causes non-sinusoidal voltage 

drops. In this study, SVM-based optimal C-type 

passive filter design problem is taken into account in 

order to mitigate these harmonics and to increase PF. 

Therefore, firstly modeling of EVCS is realized by 

utilizing filter coefficients as inputs where THDi, 

THDv, PF are chosen as outputs. Secondly, PSO 

algorithm is employed on the SVM to find best filter 

parameters. 
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(a) State of charge 

 

(b) Change in charging current 

Figure 8. Charging of the battery with C-type filter 

 
Figure 9. Comparison of charging voltage values with and 

without filter operation 

The main advantage of the presented method is that it 

does not require any equivalent circuit parameters of 

the WPT system while determining the filter 

parameters. However, a single-output FF is employed 

in this study which is the main drawback of the method. 

It does not have the capability to find solutions in all 

objective contributions. After successful modelling and 

optimization process, the designed filter is employed in 

EVCS by using Matlab®/SimulinkTM environment. 

Simulation results prove that THDv and THDi decrease 

under the limits defined by IEEE Standard 519-2014 

and PF approaches to 1. Future works will be directed 

to compare different types of passive filter structures as 

well as various optimization methods such as chaotic 

PSO for the purpose of mitigating harmonics in WPT 

system.  

Acknowledgments 

The author would like to thank the anonymous 

reviewers for their valuable comments. This work was 

funded by Balikesir University under research grant 

BAP 2022/079. 

References 

[1] Demirtas, M., Calgan, H., & Ilten, E. (2022). 

Elektrikli Araçlar için Şebekeden bağımsız 

Kablosuz Şarj İstasyonu Tasarımı, Mühendislikte 

Araştırma ve Değerlendirmeler. Gece Kitaplığı, 

241–266. 

[2] Yağcıtekin, B., Uzunoğlu, M. & Karakaş, A. (2011). 

Elektrikli araçların şarjı ve dağıtım sistemi üzerine 

etkileri. Elektronik ve Bilgisayar Sempozyumu, Fırat 

Üniversitesi-Elazığ, 316-320. 

[3] Güneş, D., Tekdemir, İ. G., Karaarslan, M. Ş., & 

Alboyacı, B. (2018). Assessment of the impact of 

electric vehicle charge station loads on reliability 

indices. Journal of the Faculty of Engineering and 

Architecture of Gazi University, 33(3), 1073-1084. 

[4] Alonso, M., Amaris, H., Germain, J. G., & Galan, J. 

M. (2014). Optimal charging scheduling of electric 

vehicles in smart grids by heuristic algorithms. 

Energies, 7(4), 2449-2475. 

[5] Spaur, C. W. , Braitberg, M. F., Kennedy, P. J., & 

Hatcher, L. B. (1998). Mobile portable wireless 

communication system. Google Patents. 

[6] Li, S., & Mi, C. C. (2014). Wireless power transfer 

for electric vehicle applications. IEEE Journal of 

Emerging and Selected Topics in Power Electronics, 

3(1), 4-17. 

[7] Musavi, F., & Eberle, W. (2014). Overview of 

wireless power transfer technologies for electric 

vehicle battery charging. IET Power Electronics, 

7(1), 60-66. 

[8] Sun, L., Ma, D., & Tang, H. (2018). A review of 

recent trends in wireless power transfer technology 

and its applications in electric vehicle wireless 

charging. Renewable and Sustainable Energy 

Reviews, 91, 490-503. 

[9] Liu, J., Xu, F., Sun, C., & Loo, K. H. (2022). A 

Compact Single-Phase AC–DC Wireless Power 

Transfer Converter With Active Power Factor 

Correction. IEEE Transactions on Industrial 

Electronics, 70(4), 3685-3696. 

[10] Gündüz, H., Demirtas, M., Ilten, E., & Calgan, H. 

(2020). Paralel aktif güç filtresi için bulanık 



Optimal C-type filter design for wireless power transfer system by using support vector machines        159 

uyarlamalı kesirli PI denetleyici tasarımı. Düzce 

Üniversitesi Bilim ve Teknoloji Dergisi, 8(3), 1975-

1994. 

[11] Yang, W., Wang, J., Zhang, Z., & Gao, Y. (2012). 

Simulation of electric vehicle charging station and 

harmonic treatment. In 2012 International 

Conference on Systems and Informatics  (pp. 609-

613). 

[12] Zhao, G., & Yue, Y. (2017). Harmonic analysis and 

suppression of electric vehicle charging station. 

IEEE International Conference on Mechatronics 

and Automation  (pp. 347-351). 

[13] Khudher, S. M., Aris, I. B., Othman, M., & Mailah, 

N. (2021). Output-Input Hybrid Passive Filter 

Design for Electric Vehicle Charging Station. Al-

Rafidain Engineering Journal (AREJ), 26(2), 132-

142. 

[14] Balci, M. E. (2014). Optimal C-type filter design to 

maximize transformer's loading capability under 

non-sinusoidal conditions. Electric Power 

Components and Systems, 42(14), 1565-1575. 

[15] Karadeniz, A., & Balci, M. E. (2018). Comparative 

evaluation of common passive filter types regarding 

maximization of transformer’s loading capability 

under non-sinusoidal conditions. Electric Power 

Systems Research, 158, 324-334. 

[16] Lange, A. G., & Redlarski, G. (2020). Selection of 

C-type filters for reactive power compensation and 

filtration of higher harmonics injected into the 

transmission system by arc furnaces. Energies, 

13(9), 2330. 

[17] Habibolahzadeh, M., Mahdinia Roudsari, H., 

Jalilian, A., & Jamali, S. (2021). Using C‐type filter 

with partial compensation method for capacity 

reduction of hybrid power quality conditioner in co‐

phase traction power system. IET Power 

Electronics, 14(14), 2350-2373. 

[18] Balci, M. E., & Karaoglan, A. D. (2013). Optimal 

design of C-type passive filters based on response 

surface methodology for typical industrial power 

systems. Electric Power Components and Systems, 

41(7), 653-668. 

[19] Ozdemir, S., Demirtas, M., & Aydin, S. (2016). 

Harmonic Estimation Based Support Vector 

Machine For Typical Power Systems. Neural 

Network World, 26(3), 233-252. 

[20] Koizumi, H., & Kurokawa, K. (2007). Analysis of 

the class DE inverter with thinned-out driving 

patterns. IEEE Transactions on Industrial 

Electronics, 54(2), 1150-1160. 

[21] Hu, J., & Zhao, J. (2020). Design of wireless power 

transfer system with inputfilter. IET Power 

Electronics, 13(7), 1393-1402. 

[22] Sis, S. A., & Akca, H. (2020). Maximizing the 

efficiency of wireless power transfer systems with an 

optimal duty cycle operation. AEU-International 

Journal of Electronics and Communications, 116, 

153081. 

[23] Calgan, H., Ilten, E., & Demirtas, M. (2020). 

Thyristor controlled reactor‐based voltage and 

frequency regulation of a three‐phase self‐excited 

induction generator feeding unbalanced load. 

International Transactions on Electrical Energy 

Systems, 30(6), e12387. 

[24] Xiao, Y., Zhao, J., & Mao, S. (2004). Theory for the 

design of C-type filter. 11th International 

Conference on Harmonics and Quality of Power,  

(pp. 11-15).  

[25] Ilten, E., & Demirtas, M. (2016). Off-Line Tuning of 

Fractional Order PIλ Controller by Using Response 

Surface Method for Induction Motor Speed Control. 

Journal of Control Engineering and Applied 

Informatics, 18(2), 20–27. 

[26] Demirtas, M., Ilten, E., & Calgan, H. (2019). Pareto-

based multi-objective optimization for fractional 

order PIλ speed control of induction motor by using 

Elman neural network. Arabian Journal for Science 

and Engineering, 44(3), 2165-2175. 

[27] Ilten, E., Calgan, H., & Demirtas, M. (2022). Design 

of induction motor speed observer based on long 

short-term memory. Neural Computing and 

Applications, 34(21), 18703-18723. 

[28] Cortes, C., & Vapnik, V. (1995). Support-vector 

networks. Machine Learning, 20, 273-297. 

[29] Pala, M. A., Çimen, M. E., Akgül, A., Yıldız, M. Z., 

& Boz, A. F. (2022). Fractal dimension-based 

viability analysis of cancer cell lines in lens-free 

holographic microscopy via machine learning. The 

European Physical Journal Special Topics, 231(5), 

1023-1034. 

[30] Türkan, Y. S., Aydoğmuş, H. Y., & Erdal, H. (2016). 

The prediction of the wind speed at different heights 

by machine learning methods. An International 

Journal of Optimization and Control: Theories & 

Applications (IJOCTA), 6(2), 179-187. 

[31] Taibi, D., Amieur, T., Laamayad, T., & Sedraoui, M. 

(2022). Improvement of the Standard Perturb & 

Observe MPPT control strategy by the proposed 

Fuzzy Logic Mechanism for a Cascade Regulation 

of a PMSM-based PV pumping system. Arabian 

Journal for Science and Engineering, 1-17. 

[32] Ilten, E. (2022). Conformable fractional order 

controller design and optimization for sensorless 

control of induction motor. COMPEL: Int Journal 

for Computation and Mathematics in Electrical and 

Electronic Engineering, 41(5), 1528-1541. 

[33] Kilic, F., Sezen, S., & Sis, S. A. (2020). A 

misalignment-adaptive wireless power transfer 

system using PSO-based frequency tracking. An 

International Journal of Optimization and Control: 

Theories & Applications (IJOCTA), 10(2), 206-217. 

[34] I. F. II (2014). IEEE Recommended Practice and 

Requirements for Harmonic Control in Electric 

Power Systems, in IEEE Std 519-2014 (Revision of 



160                                          H. Calgan / IJOCTA, Vol.13, No.2, pp.151-160 (2023) 

IEEE Std 519-1992). 

[35] Balcı, M. E., &. Emanuel, A. E. (2011). Apparent 

power definitions: a comparison study. International 

Review of Electrical Engineering, 6, 2713–2722. 

 

 

Haris Calgan received Ph.D. Degree in Electrical-

Electronics Engineering from Balikesir University 

(Turkey) in 2020. His research interests are robust 

control, artificial intelligence, renewable energy. From 

2014 till now, he is working as research assistant at 

Balikesir University (Turkey).  

 http://orcid.org/0000-0002-9106-8144  

 

 

 

 
An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr) 

 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the 

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, 

so long as the original authors and source are credited. To see the complete license contents, please visit 

http://creativecommons.org/licenses/by/4.0/.  

 
 

http://ijocta.balikesir.edu.tr/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9106-8144
http://creativecommons.org/licenses/by/4.0/


An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.13, No.2, pp.161-170 (2023)

http://doi.org/10.11121/ijocta.2023.1286

RESEARCH ARTICLE

On the regional boundary observability of semilinear time-fractional
systems with Caputo derivative

Khalid Zguaid, Fatima Zahrae El Alaoui*

TSI Team, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
k.zguaid@edu.umi.ac.ma, f.elalaoui@umi.ac.ma

ARTICLE INFO ABSTRACT

Article History:
Received 7 July 2022
Accepted 24 April 2023
Available 9 July 2023

This paper considers the regional boundary observability problem for semilin-
ear time-fractional systems. The main objective is to reconstruct the initial
state on a subregion of the boundary of the evolution domain of the consid-
ered fractional system using the output equation. We proceed by providing a
link between the regional boundary observability of the considered semilinear
system on the desired boundary subregion, and the regional observability of
its linear part, in a well chosen subregion of the evolution domain. By adding
some assumptions on the nonlinear term appearing in the considered system,
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1. Introduction

The analysis of distributed parameter systems
leads to the introduction of many useful con-
cepts such as controllability, stability, detectabil-
ity, and observability [1,2]. These notions permit
researchers to understand those systems and their
behaviors, which enable us to manipulate them.
In the nineties, the concept of regional analysis
was brought to life in [3,4], bringing with it many
tools for investigating real-world problems [5]. In
particular, the concept of regional observability,
which consists of finding and reconstructing the
initial state in a desired subregion of the evolu-
tion domain, has great importance in the domain
of control theory [3, 6–8].

Fractional calculus (FC) is a field of mathematics
that investigates the notions of integration and
differentiation of arbitrary or non-integer order.
By fractional systems, we mean systems in which
a fractional derivative appears. FC is growing
in a fast manner nowadays, and this is because

fractional operators present a powerful tool for
modeling real-world phenomena [9–11]. For ex-
ample, in [12], authors have generalized the lin-
ear prediction (LP) to fractional linear prediction
(FLP) and described it with applications to one-
dimensional (1D) and two-dimensional (2D) sig-
nals. They presented some numerical simulations
where, for the 1D case, authors considered stan-
dard test signals, namely the square wave, sine
wave, sawtooth wave, and real data signals such as
speech and electrocardiogram. As for the 2D case,
they choose grayscale images. The authors stated
that, for the 1D case, the proposed FLP has the
same construction as the LP, i.e. it uses linear
combinations of non-integer derivatives with non-
identical orders of derivatives. As for the 2D case,
the FLP model uses a linear combination of frac-
tional derivatives in horizontal and vertical direc-
tions. After comparing the performance of LP
and FLP, the authors concluded that FLP could
be used in processing 1D and 2D signals due to
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the comparable or better performance, using the
same or even smaller number of parameters.

Recently, FC started to penetrate the domain
of control theory [10, 13, 14]; in particular, it is
used to investigate the notion of regional observ-
ability; see [15–18] for linear fractional systems
and [19,20] for semilinear ones. In this paper, we
investigate the notion of regional boundary ob-
servability, which is basically regional observabil-
ity where the desired subregion is a part of the
boundary of the evolution domain [21, 22]. The
principal goal is to reconstruct the initial state
of the considered system, on a desired boundary
subregion B, of the evolution domain Ω. Our
contribution can be summarized in the follow-
ing: Firstly, we define a new internal subregion
ωp ⊂ Ω, such that B ⊂ ∂ωp, which enables us to
give a link between regional boundary observabil-
ity of the considered semilinear system on B, and
the regional observability of its linear part in ωp.
Secondly, we develop a method, which is based on
the Hilbert uniqueness method (HUM), in order
to reconstruct the initial state in ωp, and from it
we extract the value of the initial state on B.

The proposed method can be applied to real-
world situations; for instance, we can use it to de-
termine the initial population for a certain species
at the frontiers of some geographical place. The
diffusive logistic population growth model is given
in general by,

Dαy(x, t)−∆y(x, t) = my(x, t)

(
1− y(x, t)

b

)
,

where x is the spacial variable, t is time and Dα

is some type of a fractional derivative. The above
system is given with some boundary conditions
and an unknown initial state. The quantities m
and b are positive constants that are given de-
pending on the species under investigation.

This manuscript is organized as follows: In sec-
tion (2), we lay out the considered system and its
properties, we also give some basic definitions and
recalls covering both the field of control theory
and fractional calculus. Section (3) is reserved for
showing the link between the regional boundary
observability of the considered semilinear system
and the regional observability of its linear part
throughout the subregion ωp. In section (4), we
use an extension of the Hilbert uniqueness method
to reconstruct the considered system’s initial state
in ωp, which led us to give an algorithm that was
implemented numerically and gave us some satis-
fying numerical results.

2. Considered system and problematic

Let Ω be a bounded domain of Rn, n ≥ 2, with
smooth enough boundary ∂Ω, let [0, T ] be a time
interval and α an element of ]0, 1]. From now on,
we denote Q := Ω×]0, T [ and Σ := ∂Ω×]0, T [.
Let X = H1(Ω) be the state space and O a
Hilbert space called the observation space, we
consider the following fractional system,

C
D

α

0+y(x, t) = Ay(x, t) + Fy(x, t) in Q,
∂y

∂νA
(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,
(1)

augmented with the output equation,

z(t) = Cy(., t), 0 ≤ t ≤ T , (2)

where :
- A is a second order linear differential operator
which generates a C0-semigroup {R(t)}t≥0 on X.
- F is a nonlinear, globally Lipschitz and contin-
uous operator.
- C : X −→ O is the observation operator, con-
sidered to be bounded.

-
C
D

α

0+y(x, t) :=
1

Γ(1− α)

∫ t

a
(t−s)−α ∂

∂s
y(x, s)ds,

is the left sided time-fractional derivative, of or-
der α, of y in the sense of Caputo and Γ(α) =∫ +∞

0
tα−1e−tdt is the Euler gamma function.

-
∂y

∂νA
is the co-normal derivative of y with re-

spect to A, see [23].
- y0 is the initial state in X, supposedly unknown.

Definition 1. [20] A function y ∈ C(0, T ;X),
is called a mild solution of (1), if it satisfies

y(., t) = (Rα(t)y0)(.) +

∫ t

0
(t− τ)α−1Wα(t− τ)Fy(., τ)dτ,

(3)

in [0, T ] , where Rα(t) =

∫ ∞

0
ϖα(θ)R(tαθ)dθ and

Wα(t) = α

∫ ∞

0
θϖα(θ)R(tαθ)dθ.

In addition,

ϖα(θ) =

∞∑
n=1

(−θ)n−1

Γ(n)Γ(1− αn)
, θ ≥ 0, (4)

is the Mainardi function.

Proposition 1. [24] The operators Rα and Wα

are strongly continuous. Furthermore,

∃M > 0, such that ∥Rα(t)∥L(X)
≤ M. (5)
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For the sake of simplicity, we define the operator

K : L
2
(0, T ;X) −−−−→ L

2
(0, T ;X) by

(Ky)(t) =

∫ t

0
(t− τ)α−1Wα(t− τ)y(., τ)dτ,

∀y ∈ L
2
(0, T ;X), ∀t ∈ [0, T ].

For the rest of this paper and without any loss of
generality, we denote y(t) := y(., t) and for every
operator A we denote its adjoint by A∗.

Let B be a non empty subset of the boundary ∂Ω
with positive Lebesgue measure. We recall the
following operators,

• γ0 : H1(Ω) −−−−→ H
1
2 (∂Ω), the trace op-

erator of order zero, from Ω, on ∂Ω. It is
defined by γ0v = v|∂Ω .

• χB : H
1
2 (∂Ω) −−−−→ H

1
2 (B), the restric-

tion operator, from ∂Ω, on B. It is defined
by χBv = v|B .

• Hα : X −−−−→ L2(0, T ;O), the observ-
ability operator which is defined as follows
(Hαx)(t) = CRα(t)x.

This manuscript aims to study the regional
boundary observability of the system (1). In other
words, we are looking to reconstruct the initial
state of system (1) on the boundary subregion
B; this is equivalent to recover the value of y0
on B, which we denote by y10. One can see that
y10 = χBγ0y0. Then, we give the following defini-
tion.

Definition 2. We say that system (1), aug-
mented with (2), is B-observable on B (B stands
for boundary), if it is possible to reconstruct y10
using the output equation (2).

Remark 1. An alternative way to define the re-
gional boundary observability on B is that for two
different measurements, z1(.) and z2(.), we obtain
two different values of y10 on B.

We associate to the considered system (1) the fol-
lowing linear system,

C
D

α

0+y(x, t) = Ay(x, t) in Q,
∂y

∂νA
(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(6)

which plays an important role in achieving the
goal of this paper. We formulate the problem of
this work as follows.

Problem: Given any system (1) with the out-
put equation (2), can we reconstruct y10?

3. Link between boundary and internal
observability

In this section, we design a method for linking the
regional boundary observability on B and the re-
gional internal observability in a well-chosen sub-
region ω ⊂ Ω, such that B ⊂ ∂ω. After recon-
structing y0 in ω, we obtain y10 by taking the re-
striction on B of the trace of the reconstructed
initial state on ∂ω.
For a sufficiently small number p > 0, we define

Up =
⋃
ξ∈B

B(ξ, p) and wp = Up

⋂
Ω,

where B(ξ, p) is the closed ball of center ξ and
radius p.

Remark 2. Notice that ωp ⊂ Ω and B ⊂ ∂Ω ∩
∂ωp.

As we did for Ω, we recall, for ωp, the following
operators:

• χωp
: H1(Ω) −−−−→ H1(ωp), the restric-

tion operator in ωp, which is defined by
χωp

v = v|ωp
.

• γ̃0 : H1(ωp) −−−−→ H
1
2 (∂ωp), the trace

operator of order zero, from ωp, on ∂ωp.
It is defined by γ̃0v = v|∂ωp

.

• χ̃B : H
1
2 (∂ωp) −−−−→ H

1
2 (B), the re-

striction operator, from ∂ωp, on B. It is
defined by χ̃Bv = v|B .

Remark 3. One can see that y10 = χBγ0y0 =
χ̃B γ̃0χωp

y0.

Remark 4. The adjoint of χωp
is given by

χ∗
ωp
g =

{
g in ωp.
0 in Ω \ ωp.

, ∀g ∈ H1(ωp).

Definition 3. [25] We say that the linear sys-
tem (6), augmented with (2), is approximately ωp-
observable if, and only if,

Ker
(
Hαχ

∗
ωp

)
= {0} .

Remark (3) allows us to deduce that in order to re-
construct y10, it is sufficient to reconstruct χωp

y0,
which is the initial state in ωp, after that, we take
the restriction on B, of its trace on ∂ωp. In order
to illustrate this, we have the following theorem.

Theorem 1. If the linear system (6), augmented
with (2), is approximately ωp-observable, then the
semilinear system (1), augmented with (2), is
B−observable on B, and y10 is the restriction on
B of the trace on ∂ωp of the restriction in ωp of
a fixed point of the function ϕ at t = 0, where
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ϕ : L
2
(0, T ;X) −−−−→ L

2
(0, T ;X) is defined, for

every (t, y) ∈ [0, T ]× L
2
(0, T ;X), as follows:

ϕ(y)(t) = Rα(t)y0 + (KFy)(t) +

Rα(t)χ
∗
ωp

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C(KFy)(.)

)
,

(7)
with[
Hαχ

∗
ωp

]†
:=

[(
Hαχ

∗
ωp

)∗ (
Hαχ

∗
ωp

)]−1 (
Hαχ

∗
ωp

)∗
,

is the pseudo (generalized) inverse of Hαχ
∗
ωp
.

Moreover, y0 has the value of y0 in Ω \ ωp and
zero in ωp.

Proof. Taking into account remark (4), we see
that equation (3) can be written as follows:

y(t) = Rα(t)χ
∗
ωp
χωp

y0+Rα(t)y0+(KFy)(t), (8)

Using equations (2) and (8), we have,

(Hαχ
∗
ωp
χωp

y0)(.) = z(.)−(Hαy0)(.)−C (KFy) (.),

(9)
and since (6) is approximately ωp-observable,
then, by the same arguments in [2], the oper-
ator Hαχ

∗
ωp

has a generalized inverse, denoted[
Hαχ

∗
ωp

]†
, hence:

χωp
y0 =

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C (KFy) (.)

)
.

(10)
So, by substituting (10) in (8), we get that:

y(t) = Rα(t)y0 + (KFy)(t) = ϕ(y)(t) +

Rα(t)χ
∗
ωp

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C (KFy) (.)

)
,

(11)
hence, y is a fixed point of ϕ and y(0)|ωp

= χωp
y0.

Thus y10 = χ̃B γ̃0y(0)|ωp
= χ̃B γ̃0χωp

y0. □

4. Reconstruction method

In consequence of theorem (1) and the discussion
in section (3), we shall reconstruct the initial state
in ωp. For that we use an extension of the Hilbert
uniqueness method for fractional systems. Let’s
start by introducing the following set,

E =
{
h ∈ H1(Ω)

∣∣ h = 0 in Ω \ ωp

}
,

in which we define the following semi-norm,

∥h∥E =

√∫ T

0
∥CRα(t)h∥

2

Odt,

=

√∫ T

0
∥(Hαh)(t)∥

2

Odt.

Remark 5. If g is in E, then χ∗
ωp
χωp

g = g.

For every Θ0 in E , we consider the system,
C
D

α

0+Θ(x, t) = AΘ(x, t) + FΘ(x, t) in Q,
∂Θ

∂νA
(ξ, t) = 0 on Σ,

Θ(x, 0) = Θ0(x) in Ω,
(12)

which has a unique mild solution, see [26], written
as follows,

Θ(t) = Rα(t)Θ0 + (KFΘ)(t), in [0, T ] , (13)

which we decompose as follows Θ = Θ1 + Θ2,
where Θ1 and Θ2 are given by the two systems:

C
D

α

0+Θ1(x, t) = AΘ1(x, t) in Q,
∂Θ1

∂νA
(ξ, t) = 0 on Σ,

Θ1(x, 0) = Θ0(x) in Ω,

. (14)

and



C
D

α

0+Θ2(x, t) = AΘ2(x, t) in Q,
+F (Θ1(x, t) + Θ2(x, t))

∂Θ2

∂νA
(ξ, t) = 0 on Σ,

Θ2(x, 0) = 0 in Ω,
(15)

with solutions,

Θ1(t) = Rα(t)Θ0, in [0, T ] , (16)

and

Θ2(t) = Rα(t)Θ0+(KF [Θ1+Θ2])(t), in [0, T ] .
(17)

Assumption : We assume, for the rest of this man-
uscript, that system (14), augmented with (2), is
approximately ωp-observable.

Proposition 2. [18] If the above Assumption
is satisfied, then the semi-norm ∥.∥E becomes a
norm on E.

We introduce the following auxiliary system

RL
D

α

T−Ξ(x, t) = A∗Ξ(x, t) in Q,
−FΞ(x, t)− C∗CΘ1(t)

∂Ξ

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ(x, t) = 0 in Ω,

(18)
where

Iα

T−y(x, t) := − 1

Γ(α)

∫ T

t
(s− t)α−1y(x, s)ds,

is the right sided Riemann-Liouville time-
fractional integral of order α, and

RL
D

α

T−y(x, t) := − 1

Γ(1− α)

∂

∂t

∫ T

t
(s−t)−αy(x, s)ds,
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is the right sided Riemann-Liouville time-
fractional derivative, of order α.

If Θ0 is chosen in E such that CRαΘ0(.) = z(.),
then (18) is considered to be the adjoint system
of (12).

System (18) has a unique mild solution, given by:

Ξ(x, t) =

∫ T

t
(s− t)α−1W∗

α(s− t) [−FΞ(s)

−C∗CΘ1(s)] ds,
(19)

which we also decompose into Ξ = Ξ1+Ξ2, where
Ξ1 and Ξ2 are solutions of



RL
D

α

T−Ξ1(x, t) = A∗Ξ1(x, t) in Q,
−C∗CΘ1(t)

∂Ξ1

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ1(x, t) = 0 in Ω,

(20)

and

RL
D

α

T−Ξ2(x, t) = A∗Ξ2(x, t) in Q,
−F [Ξ1(x, t) + Ξ2(x, t)]

∂Ξ2

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ2(x, t) = 0 in Ω.

(21)
Furthermore, they are written as follows,

Ξ1(x, t) = −
∫ T

t
(s− t)α−1W∗

α(s− t)C∗CΘ1(s)ds,

(22)
and

Ξ2(x, t) = −
∫ T

t
(s− t)α−1W∗

α(s− t)F [Ξ1(s) + Ξ2(s)] ds.

(23)
Let’s denote by Pωp := χ∗

ωp
χωp

the projection op-

erator in E , we have:

Pωp

(
I1−α

T− Ξ(0)
)

= ΛΘ0 + LΘ0,

:= Pωp

(
I1−α

T− Ξ1(0)
)
+ Pωp

(
I1−α

T− Ξ2(0)
)
,

where:

Λ : E −→ E ,
Θ0 7−→ Pωp

(
I1−α

T− Ξ1(0)
)
,

and

L : E −→ E ,
Θ0 7−→ Pωp

(
I1−α

T− Ξ2(0)
)
.

Thus,

ΛΘ0 = Pωp

(
I1−α

T− Ξ(0)
)
− LΘ0,

and, as proven in [18], since (14) is approximately
ωp-observable, then Λ is an isomorphism. There-
fore,

Θ0 = Λ−1Pωp

(
I1−α

T− Ξ(0)
)
− Λ−1LΘ0,

:= NΘ0.
(24)

Hence, in order to reconstruct the initial state in
ωp, it is sufficient to solve the fixed point problem
(24). For that, we give the following theorem.

Theorem 2. Under the following assumptions:

• H1 - System (14), augmented with (2), is ap-
proximately ωp-observable.

• H2 - ∃c > 0, such that:

∥Fu(t)∥X ≤ c∥I1−α

T− u(t)∥X , ∀u ∈ L2(0, T ;X).

The operator N has a unique fixed point which
corresponds with the initial state in ωp.

Before proving this last theorem, let us give the
following proposition.

Proposition 3. [18] Let α be in ]0, 1], t in [0, T ]
and f in L2(0, T ;X), we have:

I1−α

T−

∫ T

t
(s− t)α−1W∗

α(s− t)f(s)ds

=

∫ T

t
R∗

α(s− t)f(s)ds. (25)

Proof. : of theorem (2)
We use Schauder’s fixed point theorem in our
proof. In other words, we need to show that N
is compact and N (B(0, s)) ⊆ B(0, s) for some
s > 0, where B(0, s) is the open ball of center
zero and radius s.

Remark that N is compact if, and only if, L is
compact. The operator L is compact if,

L (B(0, r)) =
{
LΘ0 = Pωp

(
I1−α

T− Ξ2(0)
)
, Θ0 ∈ B(0, r)

}
,

is relatively compact, for every r > 0, and since

L (B(0, r)) ⊂ Jp,

with

Jp :=
{
Pωp

(
I1−α

T− Ξ2(t)
)
, Θ0 ∈ B(0, r), t ∈ [0, T ]

}
,

hence it is sufficient to prove that Jp is relatively
compact.

Step 1: We show that Jp is uniformly bounded.

From proposition (3) and (21), we have:

I1−α

T− Ξ2(t) = −
∫ T

t
R∗

α(s− t)F [Ξ1(s) + Ξ2(s)] ds,

which gives, by using the property (5) and H2,

∥I1−α

T− Ξ2(t)∥X ≤ Mc

∫ T

0
∥I1−α

T− Ξ1(s)∥Xds
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+Mc

∫ T

0
∥I1−α

T− Ξ2(s)∥Xds.

Furthermore, from (22) and proposition (3), we
have:

I1−α

T− Ξ1(t) = −
∫ T

t
R∗

α(s− t) [C∗CΘ1] ds,

hence, by using Cauchy-Schwartz,

∥I1−α

T− Ξ1(t)∥X ≤ M∥C∥L(X,O)

∫ T

0
∥CΘ1∥Ods,

≤ M∥C∥L(X,O)
T

1
2 ∥Θ0∥E ,

(26)
thus,

∥I1−α

T− Ξ2(t)∥X ≤ M2c∥C∥L(X,O)
T

3
2 ∥Θ0∥E

+Mc

∫ T

0
∥I1−α

T− Ξ2(s)∥Xds.

By Gronwall’s inequality, we obtain,

∥I1−α

T− Ξ2(t)∥X ≤ M2c∥C∥L(X,O)
T

3
2 ∥Θ0∥EeMcT .

(27)
Therefore, the set Jp is uniformly bounded.

Step 2: We show that Jp is equicontinuous.
Let’s consider ε > 0, for t1 and t2 in [0, T ], such
that t2 > t1, we have:

I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)

=∫ T

t2

R∗
α(s− t2)F [Ξ1(s) + Ξ2(s)] ds

−
∫ T

t1

R∗
α(s− t1)F [Ξ1(s) + Ξ2(s)] ds

=∫ T

t2

(R∗
α(s− t2)−R∗

α(s− t1))F [Ξ1(s) + Ξ2(s)] ds︸ ︷︷ ︸
:=R1

−
∫ t2

t1

R∗
α(s− t1)F [Ξ1(s) + Ξ2(s)] ds︸ ︷︷ ︸

:=R2

,

thus,

∥I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)∥X ≤ ∥R1∥X + ∥R2∥X .

Since the operator Rα is strongly continuous, then
for every ε1 > 0, ∃σ > 0, such that,

|t1−t2| < σ =⇒ ∥R∗
α(s−t2)−R∗

α(s−t1)∥L(X)
≤ ε1,

hence, by using (26) and (27), we get,

∥R1∥X ≤ ε1c

∫ T

0
∥I1−α

T− Ξ2(s)∥X + ∥I1−α

T− Ξ2(s)∥Xds,

≤ ε1 ×McT
1
2 ∥C∥L(X,O)

∥Θ0∥E
[
1 +McTeMcT

]︸ ︷︷ ︸
:=Z1

,

(28)

and

∥R2∥X ≤ Mc

∫ t2

t1

∥I1−α

T− Ξ2(s)∥X + ∥I1−α

T− Ξ2(s)∥Xds,

≤ σ ×M2cT
1
2 ∥C∥L(X,O)

∥Θ0∥E
[
1 +McTeMcT

]︸ ︷︷ ︸
:=Z2

.

(29)
Since Pωp is a projection operator, then, from (28)
and (29), we have

∥Pωp

(
I1−α

T− Ξ2(t1)
)
− Pωp

(
I1−α

T− Ξ2(t2)
)
∥X

≤ ∥I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)∥X ,

≤ ε1Z1 + σZ2,

therefore, by taking ε1 ≤ ε

2Z1
and σ ≤ ε

2Z2
, we

conclude that:

∥Pωp

(
I1−α

T− Ξ2(t1)
)
−Pωp

(
I1−α

T− Ξ2(t2)
)
∥X ≤ ε

2
+
ε

2
,

≤ ε.

Thus, Jp is equicontinuous.

From step 1 and 2, we get that L is compact hence
so does N .

Step 3: We show that N (B(0, s)) ⊆ B(0, s) for
some s > 0.

we have that

∥NΘ0∥X ≤ ∥Λ−1∥
(
∥I1−α

T− Ξ(0)∥X + ∥I1−α

T− Ξ2(0)∥X
)
.

We know that Ξ and Ξ2 are in C(0, T ;X), then so

does I1−α

T− Ξ and I1−α

T− Ξ2, which means that they

are in L∞(0, T ;X). Thus, ∃β1, β2 > 0 such that,

∥NΘ0∥X ≤ ∥Λ−1∥ (β1 + β2) .

In other words, if we take s > ∥Λ−1∥ (β1 + β2),
we get that N (B(0, s)) ⊆ B(0, s).

By Schauder’s fixed point theorem, N admits a
fixed point.

Step 4: We show that the fixed point is unique.

Let Θ̃0 and Θ0 be two fixed points of N . Then, as
discussed in the paragraph before equation (19),
they satisfy

CRα(.)Θ0 = CRα(.)Θ̃0 = z(.),

hence, using remark 5, we have:

CRα(.)
(
Θ̃0 −Θ0

)
= CRα(.)χ

∗
ωp
χωp

(
Θ̃0 −Θ0

)
= 0,

and since (14) is approximately ωp-observable, we
obtain that:

χωp

(
Θ̃0 −Θ0

)
= 0,

since Θ̃0 and Θ0 are in E , then:
Θ̃0 = Θ0.

Finally, N has a unique fixed point. □
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Now that we recovered the initial state in ωp, we
can apply, to the recovered function, the trace op-
erator γ̃0 and the restriction operator χ̃B to obtain
the initial state on B.

5. Algorithm and numerical Simulation

This section is reserved to give an algorithm that
allows us to reconstruct the initial state in ωp

and back up our theoretical results by present-
ing a successful numerical simulation. Following
the steps of the above method, we obtain the fol-
lowing algorithm.

5.1. Algorithm

1 - Initialization of : α, ωp, ε = 10−6, Θ0.
2 - Solve (14) and get Θ1.
3 - Solve (20) and get Ξ1.
4 - Solve (21) and get Ξ2.
5 - Do Ξ = Ξ1 + Ξ2.
7 - If ∥Θ0 −NΘ0∥ > ε, then:

- Θ0 = NΘ0.
- go back to step 2.

else
- Stop.

The reconstructed initial state in ωp is χωp
Θ0.

Therefore, y10 = χ̃B γ̃0χωp
Θ0 is the reconstructed

initial state on B.

5.2. Numerical simulation

Let us take for this example Ω = [0, π] × [0, 1],
T = 2, α = 0.5, and B = {0} × [0, 1]. The
dynamic of the system, A, is considered to be

∆ =
∂2

∂x21
+

∂2

∂x22
, which has a complete set of

eigenfunctions,

{
φij(x1, x2) =

2√
π(1− λij)

cos (ix1) cos (jπx2)

}
i,j≥0

,

which forms an orthonormal basis of X,
associated with the set of eigenvalues{
λij = −

(
i2

π2 + j2
)
π2

}
i,j≥0

. The nonlinear op-

erator F is defined as follows :

Fy(x1, x2, t) =
∞∑

i,j≥0

⟨I1−α

T− y(t), φij⟩2Xφij(x1, x2).

After specifying all the needed parameters, we
consider now the semilinear system,



C
D

α

0+y(x1, x2, t) = ∆y(x1, x2, t) in Q,
+Fy(x1, x2, t)

∂y

∂ν∆
(ξ1, ξ2, t) = 0 on Σ,

y(x1, x2, 0) = y0(x1, x2) in Ω.
(30)

The output equation is given by a zonal sensor
(D, f), where D ⊂ Ω is called the geometric sup-
port (location) of the sensor and f ∈ L2(D) is its
spatial distribution. Note that O = R and (2)
takes the form:

z(t) = ⟨y(t), f⟩
L2(D)

, 0 ≤ t ≤ T.

We set f ≡ 1, D = [1.2 , 2.4] × [0.1 , 0.9],
B = {0} × [0, 1], ωp = [0 , 0.09]× [0, 1], and

y0(x1, x2) =
((x1

π
+ 1

)
ln

(x1

π
+ 1

)
− x1

π
− ln

(x1

π
+ 1

)2 )
.
(
(x2 + 1) ln(x2 + 1)− x2 − ln(x2 + 1)2

)
,

which we suppose to be unknown on B.

In order to solve the systems (14), (20), and (21),
we use a combination of two methods. The first is
the spectral method [27], where instead of solving
a fractional partial differential equation, we solve
multiple fractional ordinary differential equations.
The second method, which we use to solve the
fractional ordinary differential equations derived
from the first method, is the predictor-corrector
method presented in [28].

By applying the proposed algorithm, and after
eight iterations, we obtained the Figures (1), (2),
(3) and (4).
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Figure 1. Initial state in Ω.
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Figure 2. Reconstructed initial state in Ω.
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Figure 3. Initial state and the re-
constructed one in Ω.
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Figures 1, 2, and 3 represent, respectively, the
real initial state, the reconstructed initial state,
and both of them in Ω. By taking a vertical cut
in Figure 3 at x2 = 0, we obtain Figure 4 where
we can see the values of the two initial states on
the boundary subregion B. It is clear, in Figure 4,
that the initial state (y0) is very close to the es-
timated initial one (Θ0) on B. Furthermore, the

reconstruction error is:

∥y0 −Θ0∥2
L2(B)

= 6.41× 10−9.

In Figure 3, we remark that the two plots present
very different behaviors unless in the desired
boundary subregion, where they appear to be co-
inciding, which means that the proposed algo-
rithm does not take into consideration other re-
gions different than the desired one. This means
that the cost and time needed to observe the sys-
tem and reconstruct the initial state regionally is
less than if we do it globally.

The efficiency of the proposed method is shown
in Figure 4, where we can see that the plots of
the initial state and the reconstructed one coin-
cide. This is also backed up by the value of the
reconstruction error, which is small.

Table 1 shows how the reconstruction error
changes in the function of the sensor’s location.
We remark that the reconstruction error gets
smaller as the area of B gets smaller. This pro-
portionality proves that observing the initial state
in a subregion is less expansive than observing it
in the whole domain.

Table 1. Evolution of the recon-
struction error with respect to the
subregion B area.

Subregion B Error ∥y0 −Θ0∥2L2(B)

{0} × [0.00 , 1.00] 6.41× 10−9

{0} × [0.05 , 0.95] 5.80× 10−9

{0} × [0.10 , 0.90] 5.18× 10−9

{0} × [0.15 , 0.85] 4.55× 10−9

{0} × [0.20 , 0.80] 3.92× 10−9

{0} × [0.25 , 0.75] 3.27× 10−9

{0} × [0.30 , 0.70] 2.63× 10−9

{0} × [0.35 , 0.65] 1.67× 10−9

{0} × [0.40 , 0.60] 1.32× 10−9

{0} × [0.45 , 0.55] 6.59× 10−10

6. Conclusion

The present paper studied the regional bound-
ary observability problem for time-fractional sys-
tems. We succeeded in reconstructing the ini-
tial state of the considered system in the desired
boundary subregion by passing through an inter-
nal subregion and using the HUM approach. The
method used in this work is very effective for re-
gional boundary reconstruction problems. This is
shown in the numerical simulation, where we ob-
tained the initial state of a two-dimensional time-
fractional diffusion system on the desired bound-
ary subregion with a satisfying value of the recon-
struction error. All along this paper, we worked
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with a bounded observation operator, but we opt
to see what happens if we take an unbounded one
for future works. We are also investigating the
concept of regional gradient observability for frac-
tional systems, where the goal is to reconstruct
the gradient or flux of the initial state.
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 Drones have started to be used for surveillance within the cities, visually scanning 

the predefined zones, quickly detecting abnormal states such as fires, accidents, 

and pollution, or assessing the disaster zones. Coverage Path Planning (CPP) is a 

problem that aims to determine the most suitable path or motion plan for a vehicle 

to cover the entire desired area in the task. So, this paper proposes a novel two-

dimensional coverage path planning (CPP) mathematical model with the fact that 

a single drone may need to be recharged within its route based on its energy 

consumption, and the obstacles must be avoided while constructing the route. Our 

study aims to create realistic routes for drones by considering multiple charging 

stations and obstacles for surveillance. We tested the model for a grid example 

based on the scenarios obtained by changing the layout, the number of obstacles 

and recharging stations, and area size using the Python Gurobi Optimization 

library. As a contribution, we analyzed the impact of the number of existing 

obstacles and recharging stations, the size and layout of the area to be covered on 

total energy consumption, and the total solution time of CPP in our study for the 

first time in the literature, through a detailed Scenario Analysis. Results show that 

the map size and the number of covered cells affect the total energy consumption, 

but different layouts with shuffled cells are not effective.  The area size to be 

covered affects the total computation time, significantly. As the number of 

obstacles and recharging stations increases, the computation time decreases up to 

a certain limit, then stabilizes. 
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1. Introduction 

Technological developments such as unmanned aerial 

vehicles (UAVs) have significantly affected all 

industries in recent years. UAVs, which were first used 

for military purposes [1-2], soon attracted the attention 

of the private sector and commercial industries. With 

the new regulations made for air traffic management, 

drone studies have been channeled and increased 

accordingly. According to researchers, drones (UAVs) 

are currently used mostly in outdoor areas [3], and 

outdoor applications tend to increase in the future.  

When UAV technologies are examined under the title 

of sustainable cities, it aims to be a solution to the 

problems that come with sustainable cities [4]. It will 

be possible to use UAVs, which are expected to have 

an important role in the field of smart and sustainable 

cities, in city problems such as flood detection, disaster 

management, traffic management, health needs 

distribution, and last-mile delivery by connecting to all 

data links with IoT technology [5]. Otto et al. [6] also 

emphasized that UAVs may provide cost savings and 

capabilities for difficult-to-access infrastructure, 

environmental monitoring, and medical supplies 

distribution, and help save lives.  

In this study, we developed a mathematical model for 

the two-dimensional Coverage Path Planning Problem, 

which aims to minimize total energy consumption 

while considering the drone's recharging and the 

obstacles to be avoided within the path plan. Our study 

has the following contributions: Unlike the existing 

models for other vehicle types, the specialized energy 

consumption function for the drone has been added to 

the two-dimensional Coverage Path Planning (CPP) 

model. Besides, recharging the drones in the 

predetermined stations is decided in the model to 

overcome battery drain problems, and the obstacles are 

avoided during the path planning.  

Although the related CPP problem has been examined 

mailto:celika17@itu.edu.tr
mailto:ustaomer17@itu.edu.tr
mailto:onbaslis@itu.edu.tr
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from many perspectives, we analyzed the impact of the 

number of existing obstacles and recharging stations, 

the size and layout of the area to be covered on total 

energy consumption, and the total solution time in our 

study for the first time in the literature, through a 

Scenario Analysis. This is a unique aspect of our study. 

This comprehensive analysis brings useful insights to 

this field. To the best of our knowledge, none of the 

past studies included all these aspects in the two-

dimensional Coverage Path Planning of drones. 

The paper is organized as follows: In the following 

section, the related works are briefly explained. In 

Section 3, the CPP problem is introduced. In Section 4, 

the Proposed Mathematical Model is explained. Then, 

in Section 5, Scenario Analysis and application results 

are discussed in detail. Finally, the Conclusion and 

future work are presented. 

2. Literature review  

In this section, a brief overview of the civil applications 

of drones/UAVs will be made. Later, past studies 

regarding the CPP will be discussed, and the merit of 

our study in the current literature will be explained. Cai 

et al. [7] made a survey of advances in UAVs and future 

application prospects. Drone technologies were studied 

for different application areas such as logistics [8-9], 

manufacturing [10], surveillance [11], intralogistics 

[12-13], disaster management [14], inventory 

management [15-16], and agriculture [17-18]. Ozkan 

and Kaya [11] studied UAV path planning for border 

security and patrolling missions and solved the problem 

using a Genetic Algorithm-based Matheuristic for 

different scenarios based on departure basis, daily 

patrol numbers, and ranges of UAVs.  

Besides, Otto et al. [6] performed a comprehensive 

review study of the optimization approaches for civil 

applications of drones/UAVs. Coverage path planning 

for full and partial coverage, as well as, coverage from 

stationary positions were discussed in detail [6]. 

Readers may refer to this study for a comprehensive 

literature review. Glock and Meyer [19] developed a 

unified view for path planning and vehicle routing 

studies from many different disciplines that aim at 

spatial coverage. This study is also an interesting one 

that discusses the similarities between and the solution 

methods of these two problem types. 

The CPP problem has been studied for not only single-

drone but also multiple drones [20]. Avellar et al. found 

the optimum number of drones required to cover the 

entire designated area and tried to execute the task with 

multiple drones in a minimum time [21]. In another 

study, a suitable covering path was created for the 

mapping task to determine post-disaster risk with more 

than one drone [22]. Besides, Wang et al. [23] 

developed a model that allowed drones to cover the area 

more than once each time by improving the only one-

time coverage constraint. Zhang and Duan [24] added 

constraints for drones with different starting battery 

capacities to cover the space. The path routing problem 

for multiple drones that minimizes total traveling time 

was studied in an urban setting, considering battery 

limitations, obstacles, and recharging stations [25]. 

Although this study is like our work, one minimized 

total time spent during the route rather than total energy 

consumption. 

In addition to 2-dimensional studies, there are also 

instances of 3-dimensional (3D) CPP articles [26-27]. 

Bircher et al. [26] developed the routing optimization 

model and mostly focused on 3D structure inspections; 

while Balasubramanian et al. [27] determined the 

optimum route by considering different 3D static 

obstacles.  

Besides, there are some past studies that focused on 

energy-efficient CPP which is the main topic of this 

study. Balasubramanian et al. [27] used the ant colony 

optimization model to calculate the 3-dimensional 

energy-efficient route. Vasquez-Gomez et al. [28] 

developed an efficient route planning algorithm for the 

coverage of the convex regions of the drones, based on 

different starting and end points, but the algorithm did 

not guarantee optimality. Choi et al. [29] developed a 

column generation algorithm for solving the CPP based 

on a precise computation of the energy consumption 

during the missions. Aiello et al. [30] developed an 

energy-efficient algorithm for route planning of drones, 

but the authors did not consider the recharging stage 

within the routes. Modares et al. [31] formulated the 

energy-efficient CPP for multiple drones and 

minimized the maximum energy consumption among 

all of the UAVs paths. Shivgan and Dong [32] modeled 

the energy-efficient CPP in a similar way to the 

traveling salesman problem and solved it by means of 

Genetic and Greedy Algorithms. To sum up, algorithm-

based past papers for energy-efficient CPP are more 

common, but these do not guarantee optimality. Most 

of them do not consider recharging needs. However, 

our study considers both recharging states in the route 

and the time spent during the route including flight time 

and recharging time.  

Bezas et al. [33] studied the CPP for swarms of UAVs 

and solved the model considering paths of parallel lines 

and spiral coverage.  Vazquez-Carmona et al. [34] 

developed an efficient algorithm for the CPP, 

especially for disinfecting the areas, and simulated the 

routes that they developed. Tevyashov et al.[35] solved 

the multi-drone CPP of the agricultural fields, by 

minimizing the maximum time needed to cover 

assigned areas. The common objectives of the CPP 

models are maximum area coverage, minimum energy 

consumption, and minimum time [36]. For a detailed 

survey of the CPP with drones/UAVs, the readers may 

refer to [20].  

The impact of the number of existing obstacles and 

recharging stations, the size and layout of the area to be 

covered on total energy consumption, and the total 

solution time of the Energy-Efficient CPP were 

analyzed for the first time in the literature, using a 

comprehensive Scenario Analysis. This is a unique 

aspect of our study.   
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3. Problem definition  

Coverage Path Planning (CPP) is a problem that reveals 

the appropriate motion plan for a vehicle to cover the 

entire desired area in the task [20]. The mentioned 

vehicle could be a human, robot, flying vehicle, or any 

other mechanism which can move and turn. In this 

study, the area to be covered is thought to be covered 

with a multi-rotor UAV, commonly known as a drone.  

To properly construct the CPP problem, the area to be 

covered is identified as a certain map and it is assumed 

that the UAV knows the map beforehand. As also stated 

in the research, the problem logic is similar to the 

problem of TSP [32], in that the vehicle has to 

consecutively visit all of the nodes in the system. A 

similar type of this method is used in literature by 

dividing the space into grids for discretizing it, the only 

difference is that the CPP problem is turned into a VRP 

problem [37]. In the CPP problem, the map is divided 

into cells that have an equal area, and the cell is 

assumed to be covered when the drone is positioned in 

the center of the cell since the drone has a specific 

hovering height and the camera can capture an area at a 

time [31]. The area of the cell is proportionate to the 

camera angle of view and it is assumed to be a square 

view. UAV hovers at a specific height which makes the 

map a 2-D space. Because of the fixed hovering height, 

at all points of the map, the camera sees cells that have 

the same dimensions.  

Different types of UAVs can perform different 

movement types. To define the problem much more 

strictly, the type of movement that the UAV can 

perform has to be decided. In the literature, there are 

two types of approaches called the Von-Neumann and 

Moore Neighborhood movements which can be seen in 

Figure 1 [38]. Since drones can make diagonal moves 

by changing the power of rotors and it is more realistic, 

the Moore Neighborhood approach is more suitable for 

the application.

 

Figure 1. Von-Neumann movements (left) and Moore 

Neighborhood movements (right). 

 

To make the application more realistic the map includes 

obstacle cells that UAV has to avoid and does not have 

to cover. These obstacles can range from no-fly zones 

to buildings. In the literature, multi-UAV applications 

[39] and single-UAV applications [40] are available. In 

this work, a single UAV is chosen. The drones are fit 

for the use areas. However, the main problem with 

drones is the low fly durations because of the battery 

[41]. To solve the problem of battery recharging 

stations that are spread across the map are added to the 

problem definition. To calculate the energy 

consumption a unit energy cost is defined per cell, and 

this consumption is correlated with the distance 

traveled. While straight movements cost one unit of 

energy, diagonal movements cost according to the 

distance traveled. Recharging stations allow the drone 

to fully charge its battery when it lands at the cell of the 

recharging station. Although technology development 

studies are conducted to achieve better energy 

management in electric vehicles [42], recharging 

station cells still must be covered in the path planning.  

4. Mathematical model 

We proposed a new mathematical model for the single-

vehicle (i.e. UAV), energy-efficient two-dimensional 

CPP, in this study. The model consists of sub-elements 

such as assumptions, sets, parameters, variables, 

objective functions, and constraints that are expressed 

mathematically. Each element has been meticulously 

developed to validate that the model is sustainable and 

does not give infeasible solutions, and is explained in 

detail in the following sections: 

Some assumptions have been made to reach feasible 

results and to increase the computational speed of the 

model. These assumptions are explained one by one in 

the following part: 

• A drone is deployed from and returned to a 

predefined point inside the grid, called the base. 

• If the area is not convex, it is converted into the 

convex hull of the area (square or rectangle). 

• A drone is equipped with an onboard 

camera/sensor pointing down and has a square 

viewing aspect, which equals one-grid size. 

• No external forces affecting the drones are 

considered, such as weather conditions (i.e. wind). 

• The number of visiting recharging stations must be 

equal to 1 for the other cells. Cells that contain 

recharging stations are also considered to be 

covered.  

• All coverage areas and recharging stations are at 

the same altitude; therefore, the problem is 2-

dimensional.  

• At any recharging station, the battery is charged to 

100% battery level. In other words, no partial 

charging is allowed. 

• The time spent at the charging stations varies 

according to the remaining charge of the drone. 

• The spent time for landing and take-off movements 

from the starting and charging points is neglected 

in the model. 

• Drone always moves at a constant speed, 

disregarding the extra time spent in turns. 

• Total energy consumption is related to the distance 

traveled and unit energy consumption of the 

vehicle per meter.  

• The battery needs to be always higher than a 

certain percent of its full battery level to provide 

enough energy to return home base in case of 

emergencies. 
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• The battery change times will not be included in 

the model since this is an energy-consumption-

based model. 

4.1. Sets  

The sets that are used in the model are described below. 

k: Step number (k = 0, 1, 2, …, K). 

i: The cell that the drone is leaving (i = 1, 2, …, I). 

j: The cell that the drone is entering (j = 1, 2, …, I) 

(i=j=1 represents depot/base). 

OC: The set of cells that have an obstacle. 

CC: The set of cells that needs to be covered. 

SC: The set of cells that have a charging station. 

4.2. Parameters  

The parameters used in the construction of the model 

are described below. 

p: Initial position of the drone. 

d: Energy spent in the movement of one cell. 

B: Full battery capacity of the drone. 

I: Number of cells to be covered. 

si: Whether cell i has a charging station or not. (si=1 ∀ i 
∈ SC, si=0 ∀ i  ∉ SC) 

cij: Energy consumption between cell i and cell j. 

rij: Time spent between cell i and cell j. 

g: Total amount of time to fully charge the drone 

battery. 

4.3. Decision variables 

The decision variables that the model decides on are 

described below. 

yk: The battery of the drone at the end of step k. 

hk: The cumulative sum of energy consumption from 

step 1 to k. 

ui: Dummy variable for sub-tour constraints. 

mij
k: Dummy multiplication variable. 

t: The total time of flight for the drone to cover all cells. 

xij
k={1, if the drone moves from cell i to cell j at step k; 

0, otherwise} . 

4.4. Mathematical model 

The objective function of the model is as given in (1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑖,𝑗,𝑘                (1) 

Subject to 

∑ 𝑥𝑖𝑗
𝑘

𝑖 = ∑ 𝑥𝑗𝑖
𝑘+1

𝑖 , ∀ 𝑗, 𝑘, 𝑘 ≠ 0, 𝑘 ≠ 𝐾            (2) 

∑ 𝑥𝑖𝑝
𝐾

𝑖 = 1                 (3) 

 𝑥𝑖𝑗
𝑘 = 0, ∀ 𝑖, 𝑗, 𝑘, 𝑖 = 𝑗                   (4) 

∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑘 ≥ 1, ∀ 𝑗, 𝑗 ∈ 𝐶𝐶               (5) 

𝑢𝑖 − 𝑢𝑗 + 𝐼 ∑ 𝑥𝑖𝑗
𝑘

𝑘 ≤ 𝐼 − 1, ∀ 𝑖 ≠ 𝑗, 𝑖 > 1, 𝑗 > 1      (6) 

𝑐𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ 𝑑√2  ∀ 𝑖, 𝑗, 𝑘               (7) 

∑ 𝑥𝑖𝑗
𝑘

𝑘 ≤ 1, ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑘 ≠ 0             (8) 

𝑥𝑖𝑗
0 = 0, ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗             (9) 

∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑗 = 1, ∀ 𝑘, 𝑘 ≠ 0              (10) 

ℎ𝑘 = ℎ𝑘−1 + ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗𝑖,𝑗 , ∀ 𝑘, 𝑘 ≠ 0            (11) 

ℎ0 = 0               (12) 

ℎ𝑘 ≤ ℎ𝑘+1, ∀ 𝑘, 𝑘 ≠ 𝐾            (13) 

∑ 𝑥𝑝𝑗
1

𝑗 = 1            (14) 

𝑦0 = 𝐵                (15) 

𝑚𝑖𝑗
𝑘 = 𝑠𝑖𝑥𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗, 𝑘            (16) 

𝑦𝑘 = 𝑦𝑘−1 − ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗𝑖,𝑗 + ∑ 𝑚𝑖𝑗

𝑘 (𝐵 − 𝑦𝑘−1)𝑖,𝑗 ∀ 𝑘, 𝑘 ≠ 0    (17) 

𝑡 =  ∑ 𝑥𝑖𝑗
𝑘 𝑟𝑖𝑗𝑖,𝑗,𝑘 + ∑ 𝑔𝑚𝑖𝑗

𝑘
𝑖,𝑗,𝑘;𝑘≠0 (𝐵 − 𝑦𝑘−1)/𝐵        (18) 

𝑦𝑘 ≥  0.2𝐵, ∀ 𝑘            (19) 

𝑥𝑖𝑗
𝑘 = {0, 1}, ∀ 𝑖, 𝑗, 𝑘           (20) 

𝑚𝑖𝑗
𝑘 = {0, 1}, ∀ 𝑖, 𝑗, 𝑘            (21) 

𝑦𝑘 , ℎ𝑘, 𝑢𝑖 , 𝑡 ≥ 0 ∀ 𝑖, 𝑘           (22) 

Objective (1) calculates the total energy consumption 

by the sum product of the given unit consumption cost 

and the decisions made by the model about the nodes to 

be visited at each step, considering all the decisions 

overall steps. Constraint in (2) applies the classical TSP 

approach by making sure that the number of elements 

that go into a cell goes out from it at all points. The only 

modification to the original equation is making sure the 

equality is according to the steps. With the constraint in 

(3) the UAV returns to its original position after 

covering every cell at the last step.  

Constraint in (4) is a simple constraint that prohibits the 

movement from a cell to itself. The Constraint in (5) is 

the main constraint that ensures every single cell is 

covered. This is an inequality that is greater than or 

equal to one, and there can be some circumstances 

where the UAV has to visit the same cell twice. Here, 

the set CC does not contain the obstacle cells, which 

means obstacle cells must be avoided. Constraint in (6) 

is the sub-tour elimination constraint which is a well-

known and standard constraint that prevents the system 

from going into a sub-tour and; thus, not being able to 

complete the whole path. Constraint in (7) ensures the 

drone movement is a type of Moore Neighborhood 

movement and other types of movements are not 

allowed. With the Constraint in (8) the same movement 

cannot be made in different steps. In other words, one 

movement can be made only in one step. Since the steps 

are defined starting from 0, the constraint in (9) ensures 

that there is no movement in step 0. Constraint in (10) 

ensures that one step includes only one movement. 

Constraint in (11) calculates the cumulative energy 

consumption to be used in the other constraints. 

Constraint in (12) initializes the sum of energy 

consumption to 0 at step 0. Constraint in (13) is the 

constraint that provides continuity to the model in terms 

of the steps. With this constraint, the order of steps is 
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correctly evaluated in the model. Constraint in (14) 

ensures the UAV starts from the initial point p at step 

1. Constraint in (15) is the initialization of battery level 

to B which is the maximum, at step 0. Constraint in (16) 

is added to the model as an intermediate calculation that 

calculates the auxiliary multiplication variable of 

whether the UAV is leaving the charging station or not. 

The Constraint in (17) is the battery update constraint 

which ensures the battery is lowered after a movement 

is made at any step. With the second part of the 

equation, the battery is fully charged if the UAV is 

exiting a charging station. The charging is made after 

the drone is done with its last step to ensure that there 

is no overplus of energy used when there is none. 

Constraint in (18) calculates the total flight time of the 

drone to fully cover all the cells that can be covered as 

well as the charging times in stations according to the 

amount of battery charged. Constraint (19) ensures that 

the battery is always more than 20% of full capacity 

[43]. Constraints in (20) and (21) are binary constraints 

for the variables x and m. Constraints in (22) are the 

nonnegativity constraints for the non-binary decision 

variables. 

5. Experimental design   

 In this section, scenario analysis is performed to 

analyze the model under different circumstances. The 

effects of parameters such as layout, number of 

obstacles, area size, and number of recharging stations 

of the model are examined in detail with four different 

main scenarios. 

The grid example shown below in Figure 2 illustrates 

the grid and cell design used by the model throughout 

the scenario analysis. While black cells represent 

barriers, the blue cell represents the recharging stations. 

Arrows also represent the optimal route that the model 

finds to cover all cells. As can be seen, the route 

manages to avoid obstacles while at the same time 

stopping by the charging station to avoid running out of 

battery. The battery needs to be always higher than 20% 

of its full battery level to provide enough energy to 

return home base in case of emergencies according to 

DJI which is one of the best drone producers [43]. 

As mentioned above, the model was examined under 

four different main scenarios. The changing parameters 

are as follows: 

1. Layout Design 

2. The number of Obstacles  

3. Area Size 

4. The number of Recharging Stations (RS)  

 

There are also the fixed parameters of the model which 

are not changed across scenarios. The list of parameters 

and their values are given in Table 1. However, other 

than these, drone type, processor power, and battery 

type situations, which may vary in real life, are not 

considered in our analysis. 

 
Figure 2. Grid example of the scenario analysis. 

 

Table 1. Fixed-parameter values. 

Parameter  Value 

Starting Cell  1  

Speed (Square/Unit Time)  1  

Average Energy Consumption Per Cell   1  

Maximum Battery Capacity (Unit Energy)  100  

 

In addition to the fixed parameters above, each scenario 

has Controlled Parameters (C), Independent 

(Changing) Parameters (I), and Dependent Parameters 

(D). The controlled parameters have fixed values 

through the associated scenario runs. The Independent 

Parameters are the ones with changing values within 

different runs of the associated scenario. The dependent 

parameters are the ones whose values may change 

according to the change of the Independent Parameters.  

The matrix of the scenarios and parameters is presented 

in Table 2. The dependent variables to be observed 

were determined as total energy consumption, average 

energy consumption, and computation time. In 

Scenario 1, area size, the number of obstacles, the 

number of covered cells, and the number of recharging 

stations were kept constant to observe the impact of the 

layout change, by shuffling only their places. In 

Scenario 1, ten different layouts were considered. In 

scenario 2, only one new obstacle is added each time, 

keeping the previous obstacle positions constant while 

increasing the number of obstacles. The layout is not 

shuffled every time. As the number of obstacles 

increased from two to eleven at each run, the number 

of covered cells decreased.  

Table 2. Parameters of the scenarios. 

 

Number 

of  
Cells 

Covered 

Layout 

Number  

of 

obstacles 

Area 
Size 

Number 

of 
Recharge 

Stations 

S-1 C I C C C 

S-2 D C I C C 

S-3 D C C I C 

S-4 C C C C I 
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In scenario 3, only the area size is increased by keeping 

the numbers and position of all obstacles and 

recharging stations constant. Accordingly, the number 

of coverable cells has increased. Six different area sizes 

changing from 3*3 to 8*8 were considered, at different 

runs. In scenario 4, the number of obstacles and area 

size are fixed. One new recharging station is added in 

each run, keeping the previous recharging stations' 

positions constant. The number of charging stations 

was increased from one to six at each iteration. The 

layout is not shuffled.  

6. Scenario results and discussion 

After deciding on the scenario setup, inputs, and 

outputs, the mathematical model was run by changing 

the parameter values at each scenario, iteratively, 

through the Gurobi Optimization Library. Recorded 

outputs were further prepared as bar/combo charts for 

each scenario. Throughout the analysis, the code for the 

model was compiled on the Gurobi Optimization 

Library in Python 3.8. The Gurobi version 9.1.2 was 

used to run the algorithm. The computer which was 

used to run the scenarios had a microprocessor of 

Intel(R) Core (TM) i7-7700HQ, and a total of four 

physical cores, and eight logical processors were used 

to run the scenarios with eight threads. We shared the 

Python codes of the mathematical model in [44].  

For the study, the total energy consumption which is 

the objective of the model is the primary concern in 

terms of the outputs. As shown in the scenario details, 

since some of the models included different numbers of 

cells, the total energy consumption would not provide 

accurate or meaningful results. Hence, not to lose any 

type of information and to better interpret the results, 

the average energy consumption per cell was also 

logged. Lastly, for any scenario application of the 

mathematical model, the total computational time was 

recorded and a chart of the computation time was 

created.  

 

 
Figure 3. Scenario results for energy consumption.

6.1. Total energy consumption analysis 

With the possible applications in mind, the most 

important performance metric in the covering mission 

is energy consumption. Drones are inadequate in terms 

of their battery capacity. Hence, utmost importance is 

given to the energy consumption. The four different 

scenarios have resulted as shown in Figure 3. The bars 

show the total energy consumption, whereas the red 

lines show the average energy consumption per cell.  

 

The first scenario was constructed to observe if the total 

energy consumption changes in different layouts. The 

model was found to be resilient for different types of 

layouts by having similar results in terms of both total 

and average energy consumption. This shows that the 

model accomplishes what it was constructed for. In 

scenario 2, as the number of obstacles increases, the 

total energy consumption decreases. However, if 

average energy consumption per cell is observed (that 

is plotted in red), it increases as the number of obstacle 
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cells increases. This indicates that the movements of 

the drone become more inefficient as the area becomes 

more restricted. In scenario 3, if there are more cells 

present on the map, the total energy consumption 

increases since the total area to be covered increases. 

The average energy consumption decreases slightly 

when the map size increases, but no significant changes 

are observed. Scenario 4 depicts the cases where the 

number of recharging stations increases in the same 

map setup (layout). The drone behaves differently and 

changes its path until a certain number of recharging 

stations. After that, the drone follows the same path 

since the battery does not become its primary concern. 

This behavior can be seen in Figure 3. After increasing 

the number of recharging stations beyond two, the 

model gives the same result in terms of total energy 

consumption.  

As a result, in different scenarios, the model manages 

the battery of the drone as efficiently as possible, while 

covering the whole area. The map size, the number of 

covered cells, and to a certain extent the number of 

recharging stations affect the total energy consumption. 

However, different layouts with shuffled cells do not 

affect the total energy consumption. 

6.2. Computation time analysis 

We illustrate the computational times spent in each 

scenario, in Figure 4. In Scenario 3, the computation 

time is affected at most, since the number of cells 

increases exponentially. Scenario 1 has similar 

computation times through different layouts with some 

variation. This shows that the model acts efficiently in 

different layouts. In the second scenario, except for the 

model that has three obstacles, the computation time 

decreases. This decrease can be due to the decrease in 

the total cells that need to be covered. In the fourth 

scenario, the computation time decreases until the 

saturation point of the charging stations. After that, the 

computation time stabilizes. To sum up, the area size to 

be covered affects the total computation time, 

significantly. As the number of obstacles and 

recharging stations increases, the computation time 

decreases up to a certain limit, then stabilizes. The 

layout does not much affect the computational time. 

 

 

 
Figure 4. Scenario results for computational time 

 

7. Conclusion 

In this study, a novel mathematical model was 

proposed for the single-drone two-dimensional 

Coverage Path Planning that minimized the total 

energy consumption. The specialized energy 

consumption function for the drone has been defined in 

the objective. Besides, the model builds the path and 

decides at which step the battery must be recharged in 

the predetermined recharging stations while avoiding 

obstacles during the path planning. In addition, the 

impacts of the number of existing obstacles and 

recharging stations, the size and layout of the area to be 

covered on the total and average energy consumption, 
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and total computational time were examined using a 

comprehensive Scenario Analysis. We explained our 

findings and proposed some insights. Some of the 

practical implications of this study are as follows:  

• Disaster commanders and local government 

officials may employ the proposed model 

embedded in a software platform to plan the route 

of the UAVs, in order to assess the impact of the 

disaster and determine the affected disaster zones. 

• For very big-size disasters, the area to be covered 

may be broken into segments, and the model can 

be solved, in shorter computational times. 

• The availability of charging stations is a significant 

issue, especially for electric vehicles’ adaptation. 

The total flight time results of our model can be 

exploited for the new recharging stations’ location 

decisions. 

To give perspectives for future studies in this field, 

more detailed studies can be performed on battery, 

algorithm, time, camera parameters, and movement. 

Firstly, the model can be modified to allow partial 

battery charging. In this way, it will provide more 

convenient routing for a drone that needs a limited time 

at the charging station or needs a partial charge to 

complete the route. Secondly, while dividing the areas 

where CPP will be applied, the real camera angle can 

be considered and the grid can be created accordingly. 

In this way, a more realistic routing matrix will be 

obtained. 

Third, an objective function such as minimum time or 

latency can be written instead of energy consumption. 

In this way, the task assigned to the drone can be 

completed in a certain time instead of with minimum 

energy. Besides, the existing constraints in the model 

can be simplified, or some heuristic models can be 

developed for a faster solution. Because of the current 

complexity, serious computational power and time are 

needed. Lastly, the turning, accelerating, or 

decelerating movement of the drone can be added to 

make the work more realistic and applicable. For more 

advanced work, there could be an expansion by 

transitioning the 2-D space to a 3-D space with different 

obstacles, which could be buildings of different heights 

in the smart city application. 
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1. Introduction

Systems of nonlinear ordinary differential and in-
tegral equations make up a significant class of
nonlinear equations because they have been dis-
covered to be effective at simulating challenging
real-world issues that come up in various branches
of science, technology, and engineering [1–10]. We
will emphasize that a variety of differential op-
erators, including the most recent one proposed
in the literature, piecewise derivatives, fractional
derivatives, and classical derivatives, have been
employed to reflect the intricacies of nature. In
fact, no viable analytical solution that can be
solved analytically has been proposed in recent
years. Therefore, to arrive at numerical solu-
tions to these nonlinear systems of equations, re-
searchers frequently used numerical techniques.
Conditions do exist, nevertheless, in which they

acknowledge the need for exact solutions. How-
ever, it was also recently reported that certain
of these differential equations may not be able
to accurately depict complicated processes with
crossover tendencies when only utilizing a sin-
gle differential operator. A notion known as the
piecewise differential operator was proposed as a
solution and successfully applied in various signifi-
cant applications [11,12]. In this study, we intend
to investigate a model that has been studied in
a number of significant works a modified system
of nonlinear equations. Following that, we’ll use
various differential operator types and offer some
numerical and stability analyses.

2. Definitions of derivatives

In this section, we summarized some basic frac-
tional order definitions in the next section [11,13,
14].
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Definition 1. Caputo fractional derivative of or-
der γ > 0 of a function f : (0,∞) → R, according
to Caputo, the fractional derivative of a continu-
ous and differentiable function f is given as :

CDγ
t f(t) =

1

Γ(1− γ)

t∫
0

(t−x)−γ d

dx
f(x)dx, (1)

where 0 < γ ≤ 1.

Definition 2. Let f be differentiable, then a
piece-wise derivative with classical and fractional
derivative with power-law kernel is given as

PC
0 Dγ

t f(t) =

{
f

′
(t), if 0 ≤ t ≤ t1

C
t1D

γ
t f(t), if t1 ≤ t ≤ T

(2)

where PC
0 Dγ

t represents classical derivative on
0 ≤ t ≤ t1 and Caputo fractional derivative on
t1 ≤ t ≤ T.

Definition 3. The Riemann-Liouville fractional
integral of order γ > 0 of a function f : (0,∞) →
R, according to Riemann-Liouville, the fractional
integral is considered as anti-fractional derivative
of a function f is :

Iγt f(t) =
1

Γ(γ)

t∫
0

(t− x)γ−1f(x)dx, x > 0. (3)

Definition 4. Let f be continuous and γ > 0
then a piece-wise integral of f is given as

PPLJγ
t f(t) =


t∫
0

f(τ)dτ, if 0 ≤ t ≤ t1

1
Γ(γ)

t∫
t1

(t− τ)γ−1f(τ)dτ, if t1 ≤ t ≤ T

.

(4)

where PPLJγ
t f(t) represents classical integral on

0 ≤ t ≤ t1 and the integral with power-law kernel
on t1 ≤ t ≤ T.

3. Model derivation

Fractional order models are very important for
studying natural problems. It is well known that
the nature of the trajectory of the fractional or-
der derivatives is non-local, which describes that
the fractional order derivative has a memory ef-
fect, meaning that the future states depend on the
present as well as the past states. With this mo-
tivation in 2012, Ozalp and Koca have considered
Barley and Cherifs deterministic model as frac-
tional order dynamic [15, 16]. In this work, we

extended the fractional-order nonlinear model by
adding λx22 and λx21 factors where λ is 1 or 0. We
find these components sufficient to make relevant
practical conclusions. The model can be more
complex later, once that is shown to be necessary.
With these assumptions, the complete model is
given as

C
t1D

α
t x1(t) = −α1x1 + β1x2 − β1εx

3
2

+ λx22, 0 < α ≤ 1

C
t1D

α
t x2(t) = −α2x2 + β2x1 − β2εx

3
1 + λx21,

x1(0) = 0 , x2(0) = 0.

(5)

Positive values for the model show positive con-
scious experience, while negative values show neg-
ative conscious experience. Other parameters are
oblivion, reaction, and attraction constants. Sto-
chastic modeling is used in many places, from sta-
tistics to biology, from economics to physics. We
know that deterministic modeling is predictable,
so we know the future for sure, while stochastic
modeling is random, so we cannot predict the fu-
ture for sure. So we say that stochastic models
can give rise to deterministic behavior. In par-
ticular, we can construct a sequence of models
with a decreasing level of detail, from a determin-
istic model to a stochastic model or vice versa.
Stochastic modeling is random in nature, and un-
certain factors are included in the model. So in
this paper with a numerical part, we will con-
sider the fractional-order deterministic interac-
tion model as a fractional order stochastic model
with an added noise piece.

dx1(t) =
(
−α1x1 + β1x2 − β1εx

3
2 + λx22

)
dt

+ σ1x1dB1(t),

dx2(t) =
(
−α2x2 + β2x1 − β2εx

3
1 + λx21

)
dt

+ σ2x2dB2(t),

(6)

We believe that this nonlinear stochastic model
will explain the stochastic rates and factors (eco-
logical, historical, cultural and community condi-
tions) better than its deterministic version

4. Chaotic number for modified
nonlinear model

The concept of mathematical modeling is used to
analyze the between at least two variables. Peo-
ple who are in communication are aware of each
other, and their connection with each other is con-
scious. In this section, we search for the chaotic
number (C0), which has been worked on by some
researchers recently [17]. So we can have an idea
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about the future of communication. The function
F will be obtained from the nonlinear part of the
model, and the function V will be obtained from
the linear part of the model. Here we recall our
nonlinear model including classical derivative.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

(7)

with initial conditions x1(0) = 0 and x2(0) = 0.
We note that in analysis we take λ = 1.

To begin, we divide the system into two sections.

[ ′
x1
′
x2

]
= f − v. (8)

Here f is given as

f =

[
−β1εx

3
2 + x22

−β2εx
3
1 + x21

]
(9)

and v is given as

v =

[
α1x1 − β1x2
α2x2 − β2x1

]
. (10)

Let us take partial derivatives of f and v then we
get F and V which are given as below

F =

[
0 −3β1εx

2
2 + 2x2

−3β2εx
2
1 + 2x1 0

]
,

(11)

and

V =

[
α1 −β1
−β2 α2

]
. (12)

To obtain Chaotic number (C0), we have to cal-
culate NG = F.V −1 matrice which is named as
Next-Generation matrix of the system. Then (C0)
will be obtained from the spectral radius of the
matrix of NG.

First, we need to calculate V −1. If V is

V =

[
α1 −β1
−β2 α2

]
, (13)

then

V −1 =
1

α1α2 − β1β2

[
α2 β1
β2 α1

]
. (14)

So we get

F.V −1 =

[
0 −3β1εx

2
2 + 2x2

−3β2εx
2
1 + 2x1 0

]
×

[
α2

α1α2−β1β2

β1

α1α2−β1β2
β2

α1α2−β1β2

α1
α1α2−β1β2

]
(15)

F.V −1 =

 β2(−3β1εx2
2+2x2)

α1α2−β1β2

α1(−3β1εx2
2+2x2)

α1α2−β1β2

α2(−3β2εx2
1+2x1)

α1α2−β1β2

β1(−3β2εx2
1+2x1)

α1α2−β1β2

 .

Now we calculate the eigenvalues by solving

det
(
F.V −1 − λI

)
= 0, (16)

so we get

det
(
F.V −1 − λI

)
= det

∣∣∣∣∣∣
β2(−3β1εx2

2+2x2)
α1α2−β1β2

− λ
α1(−3β1εx2

2+2x2)
α1α2−β1β2

α2(−3β2εx2
1+2x1)

α1α2−β1β2

β1(−3β2εx2
1+2x1)

α1α2−β1β2
− λ

∣∣∣∣∣∣ .
(17)

Here we need simplification as

l1 = −3β2εx
2
1 + 2x1,

l2 = −3β1εx
2
2 + 2x2, (18)

k = α1α2 − β1β2.

So start from forming a new matrix by subtract-
ing λ from the diagonal entries of the given matrix
we have

det
(
F.V −1 − λI

)
= det

∣∣∣∣ β2l2
k − λα1l2

k
α2l1
k

β1l1
k − λ

∣∣∣∣ = 0,

=

(
β2l2
k

− λ

)(
β1l1
k

− λ

)
− α1α2l2l1

k2
= 0,

= λ2 − λ

(
β2l2
k

+
β1l1
k

)
− l2l1

k2
(α1α2 − β1β2) = 0.

(19)

We can have two roots from the last equality

λ1 =
β1l1+β2l2+

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2

(20)

and

λ2 =
β1l1+β2l2−

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2
.

(21)

We know that the maximum eigenvalue is the
spectral radius of the matrix, so the chaotic num-
ber is found for this model as
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C0 =
β1l1+β2l2+

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2
.

(22)

5. Global stability results for nonlinear
model

Explicit solutions to a given differential equation
are often difficult to find. In such cases, trying to
understand how the solutions of the system be-
have as time goes to infinity can give a lot of in-
formation about the system. Equilibrium points
are very important for systems because all solu-
tions converge on these fixed points. To achieve
this, we can use the Lyapunov method, which was
introduced by Aleksandr Mikhailovich Lyapunov
in 1982. So here, the Lyapunov function theory
will be used to investigate the global stability of
the system. Let us consider the model again.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

(23)

with initial conditions x1(0) = 0 and x2(0) = 0.

Theorem 1. If C0 ≥ 1, the equilibrium point of
model E∗(x∗1, x

∗
2) is globally asymptotically stable.

Proof. We prove this using the idea of the Lya-
punov function. We start by defining the Lya-
punov function associated with the system as be-
low:

L(E∗(x∗1, x
∗
2)) =

(
x1 − x∗1 + x∗1 log

x∗1
x1

)
+

(
x2 − x∗2 + x∗2 log

x∗2
x2

)
.

(24)

By the derivative of Lyapunov function with re-
spect to t, we get

dL(t)
dt =

(
x1−x∗

1
x1

)
dx1(t)
dt +

(
x2−x∗

2
x2

)
dx2(t)
dt .

(25)

Now we put values in the above equation for
derivatives

dL(t)

dt
=

(
1− x∗1

x1

)(
−α1x1 + β1x2 − β1εx

3
2 + x22

)
+

(
1− x∗2

x2

)(
−α2x2 + β2x1 − β2εx

3
1 + x21

)
.

(26)

Now we divide all items into positive and negative
parts,

dL(t)

dt
= L1 − L2, (27)

Here

L1 = β1x2 + x22 + x∗1α1 +
x∗1β1εx

3
2

x1
+ β2x1 + x21

+ x∗2α2 +
x∗2β2εx

3
1

x2
,

L2 = α1x1 + β1εx
3
2 +

x∗1β1x2
x1

+
x∗1x

2
2

x1
+ α2x2 + β2εx

3
1 +

x∗2β2x1
x2

+
x∗2x

2
1

x2
.

(28)

Therefore if

L1 − L2 > 0 then
dL(t)

dt
> 0,

L1 − L2 = 0 then
dL(t)

dt
= 0,

L1 − L2 < 0 then
dL(t)

dt
< 0.

(29)

□

5.1. Second derivative of Lyapunov

The Lyapunov function is used for reporting the
global stability of systems. The sign of the first
derivative of the Lyapunov function may not be
enough to say whether we are talking about the
local maximum or the local minimum. So we can
proceed with analysis to determine the sign of the
second derivative of the Lyapunov function. With
the following inequality, we obtain the second de-
rivative of the Lyapunov function for our model:

d

dt

(
dL(t)

dt

)
=

d

dt

((
x1 − x∗1

x1

)
dx1(t)

dt
+

(
x2 − x∗2

x2

)
dx2(t)

dt

)
,

=

 ′
x1
x1

2

x∗1+

 ′
x2
x2

2

x∗2+

(
x1 − x∗1

x1

)
d2x1(t)

dt2

+

(
x2 − x∗2

x2

)
d2x2(t)

dt2

(30)

Here we need first and second-order derivative
counterparts of equations.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

d2x1(t)

dt2
= −α1

dx1(t)

dt
+ β1

dx2(t)

dt
− 3β1εx

2
2

dx2(t)

dt
+ 2x2

dx2(t)

dt
,

d2x2(t)

dt2
= −α2

dx2(t)

dt
+ β2

dx1(t)

dt
− 3β2εx

2
1

dx1(t)

dt
+ 2x1

dx1(t)

dt
.

(31)



Theoretical and numerical analysis of a chaotic model with nonlocal and stochastic differential . . . 185

If we arrange the last two derivatives

d2x1(t)

dt2
= α2

1x1 + α1β1εx
3
2 + β1β2x1 + β1x

2
1 + 3β1εα2x

3
2

+ 3β1β2ε
2x22x

3
1 + 2β2x1x2 + 2x2x

2
1

− (α1β1x2 + α1x
2
2 + β1α2x2 + β1β2εx

3
1 + 3β1β2εx

2
2x1

+ 3β1εx
2
2x

2
1 + 2α2x

2
2 + 2x2β2εx

3
1),

(32)

and

d2x2(t)

dt2
= α2

2x2 + α2β2εx
3
1 + β1β2x2 + β2x

2
2 + 3β2εα1x

3
1

+ 3β1β2ε
2x21x

3
2 + 2x2x1β1 + 2x1x

2
2

− (α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+ 3β2εx
2
2x

2
1 + 2α1x

2
1 + 2x1β1εx

3
2).

(33)

Let us consider

d2x1(t)

dt2
= A1 +A2, (34)

d2x2(t)

dt2
= B1 +B2.

Here A1 and B1 are positive part and taken as

A1 = α2
1x1 + α1β1εx

3
2 + β1β2x1 + β1x

2
1 + 3β1εα2x

3
2

+3β1β2ε
2x22x

3
1 + 2β2x1x2 + 2x2x

2
1,

B1 = α2
2x2 + α2β2εx

3
1 + β1β2x2 + β2x

2
2 + 3β2εα1x

3
1

+3β1β2ε
2x21x

3
2 + 2x2x1β1 + 2x1x

2
2

(35)

and A2 and B2 are negative part and taken as

A2 = −(α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+3β1εx
2
2x

2
1 + 2α2x

2
2 + 2x2β2εx

3
1),

B2 = −(α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+3β2εx
2
2x

2
1 + 2α1x

2
1 + 2x1β1εx

3
2).

(36)

So we have

d2L(t)

dt2
=

 ′
x1
x1

2

x∗1 +

 ′
x2
x2

2

x∗2 (37)

+A1 +A2 −
x∗1
x1

A1 −
x∗1
x1

A2

+B1 +B2 −
x∗2
x2

B1 −
x∗2
x2

B2.

Now we divide normalsize all items with positive
and negative parts

d2L(t)

dt2
= Φ1 − Φ2, (38)

Here the positive part of equality is given as

Φ1 =

( ′
x1
x1

)2

x∗1 +

( ′
x2
x2

)2

x∗2 +A1 +B1 +
x∗
1

x1
A2 +

x∗
2

x2
B2,

(39)

and the negative part of equality is given as

Φ2 = A2 +B2 −
x∗1
x1

A1 −
x∗2
x2

B1. (40)

Therefore if

Φ1 − Φ2 > 0 then
d2L(t)

dt2
> 0,

Φ1 − Φ2 = 0 then
d2L(t)

dt2
= 0,

Φ1 − Φ2 < 0 then
d2L(t)

dt2
< 0.

(41)

6. Existence and uniqueness of system
solution

In the last past years, several authors have de-
voted their attention to developing conditions un-
der which nonlinear differential equations admit
unique solutions, in particular for the case of clas-
sical derivatives. Several extensions have been
done within the framework of fractional deriva-
tion with singular and non-singular kernels. We
shall state one of the important on here, which
will be used.

Theorem 2. Let IT = [0, T ] , the function f :
I ×R
(t,y)→

→ R
f(t,y)

is such that, f(t, y) is measurable

for y ∈ R and y → f(t, y) is continuous for each
t ∈ IT . If there exists on M ∈ L2 [IT , R] such that

|f(t, y)|2 ≤ M
(
1 + |y|2

)
, ∀(t, y) ∈ IT ×R (42)

then there exists a continuous u(t) such that

u(t) =

t∫
0

f (τ, u(τ)) dτ. (43)

If in addition, one have

|f(t, y)− f(t, y)| < K |y − y|2 , ∀y, y ∈ R (44)

then the solution is unique.

Indeed the existence can be achieved via se-
quence by constructing the Picard, Tonelli other
sequences [18, 19]. The main task is to show
that under the above condition, the sequence is
equicontinuous uniformly and bounded uniformly.
The Peano-Cauchy theorem helps us to secure the
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existence [20]. The Gronwall inequality helps us
obtain uniqueness within the framework of frac-
tional calculus, there is an extra condition on the
fractional order. It’s required that α > 1

2 since

∣∣∣∣∣∣ 1

Γ (α)

t∫
0

(t− τ)α−1 f (τ, y(τ)) dτ

∣∣∣∣∣∣
2

(45)

≤ 1

Γ2 (α)

t∫
0

(t− τ)2α−2 |f (τ, y(τ))|2 dτ

≤ 1

Γ2 (α)

t∫
0

(t− τ)2α−2 dτ

t∫
0

|f (τ, y(τ))|2 dτ

≤ t2α−1

(2α− 1) Γ2 (α)
∥f (., y (.))∥2L2[0,T ]

Thus α > 1
2 .

The existence and uniqueness of the solution of a
differential equation are the most important parts
of the theory of differential equations. There are
various proofs on this subject. Here we will do our
proof by obtaining the necessary conditions via
Linear growth and Lipschitz for our model [21].

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22, (46)

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

with initial conditions x1(0) = 0 and x2(0) = 0.

Let us find the necessary conditions for the exis-
tence and uniqueness, we must prove that ∀ [0, T1]
and fi(x1, x2) for i = 1, 2 satisfy

1)Linear growth condition

|fi(xi, t)|2 ≤ si(1 + |xi|2) for i = 1, 2. (47)

2)The Lipschitz condition

|fi(xi, t)− fi(xi, t)|2 ≤ si |xi − xi|2 for i = 1, 2.
(48)

Now we define the norm ∥φ∥∞ = sup
t∈Dφ

|φ(t)| . Now

we put the existence and uniqueness of the solu-
tion for [0, T1] . For [0, T1], there exist 2 positive
constant M1 and M2 < ∞ such that

∥x1∥∞ < M1, (49)

∥x2∥∞ < M2.

Let us write the system as below:

{ .
x1 = f1 (x1, x2) ,
.
x2 = f2 (x1, x2) ,

if 0 ≤ t ≤ T1. (50)

For proof, we consider the function

|f1 (x1, x2)|2 =
∣∣−α1x1 + β1x2 − β1εx

3
2 + x22

∣∣2 ,
≤ 4α2

1 |x1|
2 + 4β2

1 |x2|
2

+ 4β2
1ε

2
∣∣x32∣∣2 + 4

∣∣x22∣∣2
≤ 4α2

1 |x1|
2 + 4β2

1 sup
t∈[0,T1]

|x2|2

+ 4β2
1ε

2 sup
t∈[0,T1]

∣∣x32∣∣2 + 4 sup
t∈[0,T1]

∣∣x22∣∣2
≤ 4α2

1 |x1|
2 + 4β2

1 ∥x2∥
2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞

+ 4
∥∥x22∥∥2∞ ,

≤ 4β2
1 ∥x2∥

2
∞+4β2

1ε
2
∥∥x32∥∥2∞

+4
∥∥x22∥∥2∞×(
1 +

4α2
1 |x1|

2

4β2
1 ∥x2∥

2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞ + 4

∥∥x22∥∥2∞
)

≤ s1(1 + |x1(t)|2)
(51)

Here

s1 = 4β2
1 ∥x2∥

2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞ + 4

∥∥x22∥∥2∞ (52)

and under the condition that

α2
1

β2
1 ∥x2∥

2
∞ + β2

1ε
2
∥∥x32∥∥2∞ +

∥∥x22∥∥2∞ < 1, (53)

then we have

|f1 (x1, x2)|2 ≤ s1(1 + |x1(t)|2). (54)

Using the same routine

|f2 (x1, x2)|2 =
∣∣−α2x2 + β2x1 − β2εx

3
1 + x21

∣∣2 ,
≤ 4α2

2 |x2|
2 + 4β2

2 |x1|
2 + 4β2

2ε
2
∣∣x31∣∣2 + 4

∣∣x21∣∣2 ,
≤ 4α2

2 |x2|
2 + 4β2

2 sup
t∈[0,T1]

|x1|2

+ 4β2
2ε

2 sup
t∈[0,T1]

∣∣x31∣∣2 + 4 sup
t∈[0,T1]

∣∣x21∣∣2
≤ 4α2

1 |x2|
2 + 4β2

2 ∥x1∥
2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞

+ 4
∥∥x21∥∥2∞ ,

≤4β2
2 ∥x1∥

2
∞+4β2

1ε
2
∥∥x31∥∥2∞+4

∥∥x21∥∥2∞×(
1 +

4α2
1 |x2|

2

4β2
2 ∥x1∥

2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞ + 4

∥∥x21∥∥2∞
)

≤ s2(1 + |x2(t)|2)
(55)

Here
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s2 = 4β2
2 ∥x1∥

2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞ + 4

∥∥x21∥∥2∞ (56)

and under the condition

α2
1

β2
2 ∥x1∥

2
∞ + β2

1ε
2
∥∥x31∥∥2∞ +

∥∥x21∥∥2∞ < 1 (57)

Therefore the condition of linear growth is verified
if

max


α2
1

β2
1∥x2∥2∞+β2

1ε
2∥x3

2∥
2

∞+∥x2
2∥

2

∞

,

α2
1

β2
2∥x1∥2∞+β2

1ε
2∥x3

1∥
2

∞+∥x2
1∥

2

∞

,

 < 1. (58)

The first part of proof is completed. Now we have
to verify Lipschitz condition for equations. If we
have ∀x1, x1 ∈ R2 and t ∈ [0, T1] , for the function
f1 (x1, x2) ,

|f1 (x1, x2)− f1 (x1, x2)| ≤ α2
1 |x1 − x1| , (59)

≤ s1 |x1 − x1| .

If we have ∀x2, x2 ∈ R2 and t ∈ [0, T1] for the
function f2 (x1, x2) ,

|f2 (x1, x2)− f2 (x1, x2)| ≤ α2
2 |x2 − x2| , (60)

≤ s2 |x2 − x2| .

We verified the Lipschitz condition, which com-
pletes the proof.

Finally, we consider the following fractional order
model as below;

C
t0D

α
t x1(t) = f1 (t, x1(t)) , if t > 0 (61)

C
t0D

α
t x2(t) = f2 (t, x2(t)) ,

x1(t0) = x10, x2(t0) = x20 if t = 0.

We can write the system above as

C
t0D

α
t X(t) = F (t,X(t)) , (62)

X(t0) = X0,

where

X(t) =

{
x1(t),
x2(t)

, X(t0) =

{
x1(t0),
x2(t0)

,

F (t,X(t)) =

{
f1 (t, x1(t)) ,
f2 (t, x2(t))

.

(63)

Now applying the fractional integral on both sides

X(t) =
1

Γ (α)

t∫
0

F (τ,X(τ)) (t− τ)α−1 dτ. (64)

At the previous section we showed that
f1 (t, x1(t)) and f2 (t, x2(t)) satisfy the Lipschitz
condition and are bounded in [a, b] . Using the Pi-
card iteration for above , then we have that

Xn+1(t) =
1

Γ (α)

t∫
t0

F (τ,Xn(τ)) (t− τ)α−1 dτ.

(65)

For the existence theory, we define Banach space
Φ = X ×X where X = C[0, T1] under the follow-
ing norm

∥X∥ = max
t∈[0,T1]

|x1(t), x2(t)| . (66)

So we have

∥Xn+1∥ = max
t∈[0,T1]

∣∣∣∣∣∣ 1

Γ (α)

t∫
t0

F (τ,Xn(τ)) (t− τ)α−1 dτ

∣∣∣∣∣∣
≤ 1

Γ (α)

t∫
t0

s (1 + ∥Xn∥) (t− τ)α−1 dτ

≤ s (1 + ∥Xn∥)
Γ (α)

(t− t0)
α

α
.

(67)

So we have that ∀t ∈ [a, b]

∥Xn+1∥ ≤ s (1 + ∥Xn∥)
Γ (α+ 1)

(b− t0)
α (68)

But ∀n > 0, ∃c ∈ [x0 − c, x0 + c] then

s (1 + ∥Xn∥)
Γ (α+ 1)

(b− t0)
α < c,

b <

(
cΓ (α+ 1)

s (1 + ∥Xn∥)

) 1
α

+ t0.

(69)

Under the above condition Xn(t) for n ≥ 0 is uni-
formly bounded and well-defined. For equiconti-
nuity of X, let us take t1 < t2 < T1, then consider

∥Xn(t1)−Xn(t2)∥
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=
1

Γ (α)
max

∣∣∣∣∣∣∣∣∣
t1∫
t0

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

−
t2∫
t0

F (τ,Xn−1(τ)) (t2 − τ)α−1 dτ

∣∣∣∣∣∣∣∣∣

=
1

Γ (α)
max

∣∣∣∣∣∣∣∣∣∣∣∣∣

t2∫
t0

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

−
t2∫
t0

F (τ,Xn−1(τ)) (t2 − τ)α−1 dτ

+
t1∫
t2

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ (α)

t2∫
t0

∥F (τ,Xn−1(τ))∥
{
(t1 − τ)α−1 − (t2 − τ)α−1

}
dτ

+
1

Γ (α)

t1∫
t2

∥F (τ,Xn−1(τ))∥ (t1 − τ)α−1 dτ

≤ s (1 + ∥Xn∥)
Γ (α)

{
(t1 − t0)

α

α
− (t2 − t0)

α

α
− (t1 − t2)

α

α

}
+

s (1 + ∥Xn∥)
Γ (α)

{
(t1 − t2)

α

α

}
≤ s (1 + ∥Xn∥)

Γ (α+ 1)
{(t1 − t0)

α − (t2 − t0)
α} .

(70)

Noting that the (t− t0)
α is differentiable, by the

Mean Value theorem we can find c ∈ [t1 − t0, t2 −
t0] such that

α (c− t0)
α−1 (t1 − t2) = (t1 − t0)

α − (t2 − t0)
α .

(71)

So we have

∥Xn(t1)−Xn(t2)∥ ≤ s (1 + ∥Xn∥)
Γ (α+ 1)

α (c− t0)
α−1 (t1 − t2)

≤ s (1 + ∥Xn∥)
Γ (α+ 1)

α (c− t0)
α−1 ∥t1 − t2∥

< ε

(72)

then ∀ε > 0, we must find ∃δ > 0 such that

δ <
εΓ (α)

s (1 + ∥Xn∥)α (c− t0)
α−1 . (73)

So under the condition above Xn(t) is uniformly
equicontinuous.

Beside the Caratheodory principle verified above,
one can demonstrate the existence and uniqueness
of the system solutions of the considered system.

We have that

C
0 D

α
t x1(t) = f1 (t, x1(t)) , if t > 0 (74)

C
0 D

α
t x2(t) = f2 (t, x2(t)) .

It is sufficient to show that ∀t ∈ Ib = [0, b] the
associate Jacobian matrix is differentiable contin-
uous. The Jacobian associated to this system is
given as

J (x1, x2) =

[
−α1 β1 − 3εβ1x

2
2 + 2λx2

β2 − 3εβ2x
2
1 + 2λx1 −α2

]
.

(75)

The above is continuous for ∀ (x, y) which com-
pletes the proof.

7. Model with piecewise concept

It indeed above model can be used to replicate
some interpersonal interaction, one will notice
that the current mathematical model show only
one process, for example with the Caputo one can
only describe the relation following the power-law
behavior. Whereas in normal situations, inter-
personal interaction undergoes piecewise behav-
iors, where the relation change as function of time
in the case of ordinary differential equation and
space time in the case of partial differential equa-
tion. In this section, we shall consider the model
with two to three processes, including classical
behaviors, then power law behaviors or power
law and stochastic with piecewise idea [11]. In
these cases, the following mathematical systems
are constructed

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22, if 0 ≤ t ≤ t1

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

C
t1D

α
t x1(t) = −α1x1 + β1x2 − β1εx

3
2 + λx22, if t1 ≤ t ≤ T

C
t1D

α
t x2(t) = −α2x2 + β2x1 − β2εx

3
1 + λx21,

(76)

or

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22, if 0 ≤ t ≤ t1

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

dx1(t) =
(
−α1x1 + β1x2 − β1εx

3
2 + λx22

)
dt+ σ1x1dB1(t),

if t1 ≤ t ≤ T

dx2(t) =
(
−α2x2 + β2x1 − β2εx

3
1 + λx21

)
dt+ σ2x2dB2(t).

(77)

Obviously the above system can not be solved an-
alytically indeed due to non linearity, therefore we
will present some existence and uniqueness con-
ditions for the two systems. Indeed by putting
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dx1(t)

dt
= f1 (t, x1, x2) , if 0 ≤ t ≤ t1

dx2(t)

dt
= f2 (t, x1, x2) , (78)

C
t1D

α
t x1(t) = f1 (t, x1, x2) , if t1 ≤ t ≤ T

C
t1D

α
t x2(t) = f2 (t, x1, x2) .

The following Picard system of sequence can be
defined

x1n+1(t) = x1(0) +

t∫
0

f1 (τ, x1n, x2n) dτ, if 0 ≤ t ≤ t1

x2n+1(t) = x2(0) +

t∫
0

f2 (τ, x1n, x2n) dτ,

x1n+1(t) = x1(t1) +

t∫
t1

(t− τ)α−1

Γ (α)
f1 (τ, x1n, x2n) dτ,

if t1 ≤ t ≤ T

x2n+1(t) = x2(t1) +

t∫
t1

(t− τ)α−1

Γ (α)
f2 (τ, x1n, x2n) dτ,

(79)

and

x1n+1(t) = x1(0) +

t∫
0

f1 (τ, x1n, x2n) dτ, if 0 ≤ t ≤ t1

x2n+1(t) = x2(0) +

t∫
0

f2 (τ, x1n, x2n) dτ,

x1n+1(t) = x1(t1) +

t∫
t1

f1 (τ, x1n, x2n) dτ + σ1

t∫
t1

x1ndB1(t),

if t1 ≤ t ≤ T

x2n+1(t) = x2(t1) +

t∫
t1

f2 (τ, x1n, x2n) dτ + σ2

t∫
t1

x2ndB2(t),

if t1 ≤ t ≤ T.

(80)

The above sequences are Picard sequences that in-
deed satisfying indeed under some conditions uni-
form equicontinuity and bounded, this lead to the
existence of a unique system of solutions. The de-
tailed proof will not be presented here. However,
a numerical scheme will be used to solve numer-
ically the above equation. For the classical case,
we shall adopt Heun’s method

x̃1n+1 = x1n + h [f1 (tn, x1n, x2n)] ,

x̃2n+1 = x2n + h [f2 (tn, x1n, x2n)] ,

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)] ,

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)] ,

(81)

replacing x̃1n+1 and x̃2n+1, we get

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n)

+ f1 (tn+1, x1n + hf1 (tn, x1n, x2n))],

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n)

+ f2 (tn+1, x2n + hf2 (tn, x1n, x2n))].

For the Caputo type, to avoid confusion, we define

x1(tn+1) = x1n+1, (82)

x2(tn+1) = x2n+1,

x1(t0) = x10,

x2(t0) = x20.

x1n+1 = x10 +
1

Γ (α)

n∑
j=0

∫ tj+1

tj

f1 (τ, x1, x2) (tn+1 − τ)α−1 dτ,

x2n+1 = x20 +
1

Γ (α)

n∑
j=0

∫ tj+1

tj

f2 (τ, x1, x2) (tn+1 − τ)α−1 dτ,

x1n+1 = x10 +
1

2Γ (α)

n∑
j=0

∫ tj+1

tj

[f1 (tj , x1j , x2j)

+ f1 (tj+1, x1j+1, x2j+1)] (tn+1 − τ)α−1 dτ,

x2n+1 = x20 +
1

2Γ (α)

n∑
j=0

∫ tj+1

tj

[f2 (tj , x1j , x2j)

+ f2 (tj+1, x1j+1, x2j+1)] (tn+1 − τ)α−1 dτ

(83)

x1n+1 = x10 +
hα

2Γ (α+ 1)

n−1∑
j=0

[f1 (tj , x1j , x2j) + f1 (tj+1, x1j+1, x2j+1)]

{(n− j + 1)α − (n− j)α}

+
hα

2Γ (α+ 1)
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)] ,

x2n+1 = x20 +
hα

2Γ (α+ 1)

n−1∑
j=0

[f2 (tj , x1j , x2j) + f2 (tj+1, x1j+1, x2j+1)]

{(n− j + 1)α − (n− j)α}

+
hα

2Γ (α+ 1)
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)] ,

(84)
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where

x̃1n+1 = x10 +
hα

Γ (α+ 1)

n∑
j=0

f1 (tj , x1j , x2j) {(n− j + 1)α − (n− j)α} ,

x̃2n+1 = x20 +
hα

Γ (α+ 1)

n∑
j=0

f2 (tj , x1j , x2j) {(n− j + 1)α − (n− j)α} .

(85)

Finally for the stochastic part, the following nu-
merical solution can be obtained

x̃1n+1 = x1n + hf1 (tn, x1n, x2n) + σ1x1n [B1n+1 −B1n] ,

x̃2n+1 = x2n + hf2 (tn, x1n, x2n) + σ2x2n [B2n+1 −B2n] ,

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)]

+ σ1x1n [B1n+1 −B1n] ,

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)]

+ σ2x2n [B2n+1 −B2n] .

(86)

8. Numerical simulations

In this section, we will deal with the numerical
simulation of the interpersonal model with the
piecewise differential operators and the numerical
scheme where the Lagrange polynomial interpo-
lation is used [22]. In the numerical scheme, the
first part is classical, the second part is stochas-
tic and the last part is fractional. The numeri-
cal simulations are shown in Fig. 1 for α = 1,
Fig. 2 for α = 0.97, Fig. 3 for α = 0.98, and
Fig. 4 is obtained for chaos for α = 1, Fig. 5
is obtained for chaos for α = 0.97, Fig. 6 is ob-
tained for chaos for α = 0.98. For all figures, den-
sity of randomness are taken as σ1 = 0.09, and
σ2 = 0.09. Also figures including the initial con-
ditions as x1(0) = −0.1 , x2(0) = 0.8. Also, for the
numerical simulations of the system we consider
the values of the parameters as follows:

α1 = 0.1, α2 = 0.01, β1 = 5.7, β2 = −1, ε = 0.01
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Figure 1. Numerical solutions for α = 1.
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Figure 2. Numerical solutions for α = 0.97.
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Figure 3. Numerical solutions for α = 0.98.

Figure 4. Numerical solutions for α = 1.
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Figure 5. Numerical solutions for α = 0.97.

Figure 6. Numerical solutions for α = 0.98.

9. Conclusion

In this work, a nonlinear differential equation was
taken into consideration, and the Caputo, sto-
chastic process, and piecewise differential oper-
ators were used in place of the classical differen-
tial operators. Through this work, we have looked
into the associated equilibrium points’ general ap-
proach to stability. We have derived the condi-
tions under which the system admits a singular,
unique system of solutions using the linear growth
and Lipschitz requirements. To solve this problem
numerically in the Caputo, stochastic, and piece-
wise cases, a numerical approach was adopted.
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1. Introduction

The recent development in the area of fractional
theory plays an important role in mathematics.
It is well understood by physical interpretation
of differential equations that many of the realis-
tic systems are better modeled by fractional or-
der derivatives than integer order. Hence, there
has been a huge growth in the fractional research
field. The progress of this particular theory has
a wide range of application in electro-magnetic,
viscoelasticity, image processing, signal process-
ing, control theory, diffusion, porous media, fluid
flow and other fields. For more noteworthy contri-
butions of fractional field the readers are referred
to the books [1–5] and the research papers [6–14].
Moreover fractional integro-differential equations
are used in various scientific domains such as con-
trol theory, medicine, biology and ecology etc. In

the following research articles the above discussed
concepts are well explained [6, 10,11,15,16].

Inclusion type differential equation establishes a
relation of the type ẋ ∈ F (x) in such a way that
the map F assigns any point x ∈ Rn to a set
F (x) ⊂ Rn. To put in simple terms, the gener-
alization of the differential function ẋ = F (x) is
termed as differential inclusion. In 1995, El-Sayed
and Ibrahim extended the theory of integer or-
der differential inclusion to fractional order [17].
Differential inclusion of fractional order acts as
a key technique in analyzing differential equation
with discontinuous right hand side which basically
arises while modelling dynamical system which in-
volves friction and impact problem. A sectorial
operator is a type of linear operator that maps
functions from one Banach space to another. It
is a type of operator that is widely used in the
study of partial differential equations and their
associated boundary value problems. Sectorial
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193

http://creativecommons.org/licenses/by/4.0/


194 K. Kaliraj, K. Muthuvel / IJOCTA, Vol.13, No.2, pp.193-204 (2023)

operators play an important role in the analy-
sis of differential calculus, especially in the study
of well-posedness and stability of boundary value
problems. They are also used in the theory of
semigroups of operators and in the study of evo-
lution equations. In [18] Kazufumi Ito et. al. an-
alyzed the various secorial properties of Caputo
derivative of order ϱ ∈ (1, 2). In [19] JinRong
Wang et. al. investigated the existence of piece
wise mild solutions of nonlocal impusive fractional
differential inclusions with fractional sectorial op-
erator on Banach spaces. The readers can re-
fer to [12, 20–24] for present qualitative research
topics in differential equations of inclusion type.
In [13,14,25,26] the authors studied the existence
and solvability of mild solution for various frac-
tional order systems with sectorial operator of the
type (P, η, ϱ, γ).

In general, while dealing with complicated differ-
ential systems such as growth modeling, econom-
ics, biology and quantum field theory the random
noise or stochastic perturbation is unavoidable.
Therefore there are numerous ongoing research
in analyzing the existence and uniqueness of sto-
chastic control models using various fixed point
methods. The concept of stochastic fractional
control system has been well developed with the
help of different kinds of fixed point approaches
in [6, 13, 27, 28]. The weaker notion of control
theory is called as approximate controllability.
This type of controllable system ensures that the
system is steered to any random small neighbor-
hood of the final state. Recently, the approx-
imate controllability of control systems defined
by impulsive functional inclusions and neutral
integro-differential systems are well discussed in
the research publications [6, 8, 10,12,29–32].

Very recently the autors in [10] investigated the
following existence results for Caputo fractional
mixed Volterra Fredholm-type integro differential
inclusions of order ϱ ∈ (1, 2) with sectorial oper-
ators. Further in the past few years the applica-
tion of nonlocal condition in fractional differential
equations has emerged as a magnificient area of
investication since it describes the evolution of the
system in an efficient way. Therfore we extend
out theoritical result of the Caputo fractional
stochastic integro-differential inclusions system
to nonlocal conditions with sectorial operators.

CDϱ
ζz(ζ) ∈Az(ζ) +G

(
ζ, z(ζ),

∫ ζ

0
f(ζ, ν, z(ν),∫ T

0
f(ζ, ν, z(ν))dν

)
, ζ ∈ V = [0, T ],

z(0) = z0, z′(0) = z1.

Being motivated by the above works, in this pa-
per we establish the sufficient conditions for the
approximate controllability of Caputo fractional
stochastic integro-differential inclusions with sec-
torial operators of the form

CDϱ
ζz(ζ) ∈ Az(ζ) +G

(
ζ, z(ζ),

∫ T

0
f(ζ, ν, z(ν))dν

)
dW (ζ)

dζ
+ Bx(ζ), ζ ∈ V = [0, T ], (1)

z(0) = z0, z′(0) = z1.

where ϱ ∈ (1, 2), the sectorial operator A is a
mapping from D(A) ⊂ X to X of type (P, η, ϱ, γ)
in Banach space X . W (ζ) be a standard cylin-
drical Wiener process in X defined on a sto-
chastic space

(
Ω,ℑ, {ℑζ}ζ⩾0,P

)
. The nonempty,

closed, convex and bounded multivalued function
G : V × X × X → 2X \ {∅} and f be a mapping
from V × V × X into X , x ∈ L2(V,H), where H
stand for Banach space. In addition, the linear
operator B : H → X is bounded.
The article contains the following parts:
Part 2 : Consists of the preliminaries and defini-
tions.
Part 3 : The controllability results for the chosen
fractional inclusion systems (1) are derived by us-
ing fixed point technique.
Part 4 : The outcome of approximate controlla-
bility results derived for system (1) is extended to
fractional nonlocal system.
Part 5: Appropriate illustrations for the obtained
results have been established.
Part 6: Conclusion and future works of the pre-
sented system are discussed.

2. Preliminaries

Consider the Hilbert spaces X , K and the com-
plete probability space (CPS)

(
Ω,ℑ,P

)
outfitted

with a normal filtration {ℑζ , ζ ∈ V } satisfies the
regular conditions (ℑζ is a increasing right con-
tinuous family such that ℑζ ⊆ ℑ, ℑ0 contains
all P-null set). Let E(.) denotes the expectation
with respect to the measure P. Let {ej}∞j=1 be a
complete orthonormal basis of K. Suppose that
W = (Wζ)ζ⩾0 is a cylindrical K-valued Wiener

process defined on the CPS
(
Ω,ℑ,P

)
with co-

variance operator Q ⩾ 0, such that Trace(Q) =
∞∑
j=1

λj = λ < ∞, and Qej = λjej . Then

W (ζ) =
∞∑
j=1

√
λjWj(ζ), with Wj(ζ), j = 1 to ∞
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are mutually independent one-dimensional stan-
dard Wiener processes. We consider that ℑζ =
T{W (s) : 0 ⩽ s ⩽ ζ} is the sigma algebra
generated by W and ℑζ = ℑ. Let L(K,X ) be
a bounded linear operator space with the usual
operator norm ∥ · ∥. For φ ∈ L(K,X ) we de-

fine ∥φ∥2 = Trace
(
φQφ∗) =

∞∑
j=1

∥
√

λjφej∥2. If

∥φ∥2 < ∞ then φ is called Q−Hilbert-Schmidt
operator and the space of such operators is de-
noted by LQ(K,X ). The completion LQ(K,X ) of
L(K,X ) w.r.t the topology induced by the norm
∥.∥Q where ∥φ∥2Q = (φ,φ) is a Hilbert space with
the above norm topology.

The Banach space L2

(
Ω,ℑT ,X

)
is the collection

of all square-integrable, strongly measurable, ℑζ−
adapted, X− valued random variables. Also take

C
(
V,L2

(
Ω,ℑT ,X

))
=
{
z : V → L2

(
Ω,ℑT ,X

)
|

z is continuous and sup
ζ∈V

E∥z(ζ)∥2 < ∞
}

be a Banach space. Finally, we define the set

C =
{
z ∈ C

(
V,L2(Ω,ℑT ,X )

)
| z is measurable,

ℑζ − adapted X valued functions
}

be a closed subspace of C
(
V,L2(Ω,ℑT ,X )

)
with

norm ∥z∥ = supζ∈V E∥z(ζ)∥2, E determine the
integration w.r.t the probability measure.

Definition 1. [3] The Riemann-Liouville frac-
tional integral of order β having the lower limit 0
for a function g mapping [0,∞) into R+ is defined
as

Iβg(ζ) =
1

Γ(β)

∫ ζ

0

g(ν)

(ζ − ν)1−β
dν, ζ > 0, β ∈ R+.

Definition 2. [3] The Riemann-Liouville frac-
tional derivative of order β employing the lower
limit 0 for a function g is defined as

RLDβg(ζ) =
1

Γ(j − β)

dj

dζj

∫ ζ

0
g(j)(ν)(ζ − ν)j−β−1dν,

ζ > 0, j − 1 <β < j, β ∈ R+, j ∈ N.

Definition 3. [3] Caputo fractional derivative of
order β employing the lower limit 0 for a function
g is defined as

CDβg(ζ) = LDβ

(
g(ζ)−

j−1∑
i=0

g(i)(0)

i!
ζi

)
,

ζ > 0, j − 1 < β < j, β ∈ R+, j ∈ N.

Definition 4. [14] The closed and linear opera-
tor A mapping from D into X is called sectorial
operator of type (P, η, ϱ, γ) provided that there ex-
ist γ belongs to R, η belongs to (0, π2 ) and P > 0
such that the ϱ-resolvent of A exists outside the
sector

γ + Sη = {η + µϱ : µ in C(V,X ), |Arg(−µϱ)| < η}

∥(µϱI −A)−1∥ ≤ P

|µϱ − γ|
, µϱ /∈ γ + Sη.

Further, throughout the paper we assume that A
is a sectorial operator of type (P, η, ϱ, γ), hence
it is easy to establish that A stands for infinitesi-
mal generator of a ϱ-resolvent family {Wϱ(ζ)}ζ≥0

which belongs to Banach space, where

Wϱ(ζ) =
1

2πi

∫
c
eµϱR (µϱ, A) dµ.

Definition 5. [14] Let G : V × Ω →
L(K,X ) be the strongly measurable mapping

such that
∫ T
0 E∥G(ζ)∥pL(K,X )dζ < ∞ then

E∥
∫ ζ
0 G(ν)dW (ν)∥p ⩽ Lg

∫ ζ
0 E∥G(ν)∥pL(K,X )dν,

for all ζ ∈ J and p ⩾ 2, where Lg is a constant.

Definition 6. [14] A function z belongs to
C(V,X ) is called mild solution of (1) provided
that it fulfills the operator equation

z(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

In the above

Kϱ(ζ) =
1

2πi

∫
c
eµϱµϱ−1R(µϱ, A)dµ, Qϱ(ζ)

=
1

2πi

∫
c
eµϱµϱ−2R(µϱ, A)dµ,

Wϱ(ζ) =
1

2πi

∫
c
eµϱR(µϱ, A)dµ,

with c being a suitable path such that µϱ /∈ γ + Sη

for φ belongs to C.

Theorem 1. [14,33] If A is a sectorial operator
then the following hold on ∥Kϱ(ζ)∥ :

(i) Take γ ≥ 0 and 0 < χ < π, then

∥Kϱ(ζ)∥ ≤ M1(η, χ)Pe
[M1(η,χ)(1+γζϱ)]

1
2

[(
1+ sinχ

sin(χ−η)

) 1
ϱ

−1

]
π sin

1+ 1
ϱ η

(1 + ηζϱ) +
Γ(ϱ)P

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sinχ

,

where, ζ > 0,M1 (η, χ) = max

{
sin χ

sin(χ− η)
, 1

}
.
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(ii) Take γ < 0 and 0 < χ < π then for ζ > 0

∥Kϱ(ζ)∥ ≤ 1

1 + |γ|ζϱ(
eP [(sin χ+ 1)

1
ϱ − 1]

π| cos χ|1+
1
ϱ

+
Γ(ϱ)P

π| cosχ| | cos π−χ
ϱ |ϱ

)
.

Theorem 2. [14,33] If A is a sectorial operator
then the following hold for ∥Wϱ(ζ)∥ and ∥Qϱ(ζ)∥:

(i) Take γ ≥ 0 and 0 < χ < π then ζ > 0

∥Wϱ(ζ)∥ ≤
P

[(
1 + sinχ

sin (χ−η)

) 1
ϱ

− 1

]
π sin η

× (1 + ηζϱ)
1
ϱ ζϱ−1e[M1(η,χ)(1+γζϱ)]

1
ϱ

+
Pζϱ−1

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sin χ

,

∥Qϱ(ζ)∥ ≤
P

[(
1 + sinχ

sin(χ−η)

) 1
ϱ

− 1

]
M1(η, χ)

π sin η
ϱ+2
ϱ

(1 + ηζϱ)
ϱ−1
ϱ ζϱ−1e[M1(η,χ)(1+γζϱ)]

1
ϱ

+
PϱΓ(ϱ)

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sinχ

,

where M1(η, χ) = max
{
1, sin η

sin(χ−η)

}
.

(ii) Take γ < 0 and 0 < χ < π then

∥Wϱ(ζ)∥ ≤ ζϱ−1

1 + |γ|ζϱ(
eP [(sinχ+ 1)

1
ϱ − 1]

π| cosχ|

+
P

π| cos π−χ
ϱ | | cosχ|

)
.

∥Qϱ(ζ)∥ ≤
(
eP [(sinχ+ 1)

1
ϱ − 1]t

π| cosχ|1+
2
ϱ

+

ϱΓ(ϱ)P

π| cos π−χ
ϱ | | cosχ|

)
1

1 + |γ|ζϱ
, for ζ > 0.

Let (X , d) be a metric space. The following ex-
pressions are used in this article:

• N (X ) = {H ∈ P(X ) : H ̸= ∅},
• Ncl(X ) = {H ∈ N (X ) : H closed},
• Nb(X ) = {H ∈ N (X ) : H bounded},
• Ncp(X ) = {H ∈ N (X ) : H compact},
• Nc(X ) = {H ∈ N (X ) : H convex}.

For the multivalued map K : C → 2C \ {∅} the
following definition holds. Additional informa-
tion on multivalued maps can be found in the
books [34].

Definition 7. [35] If for all z ∈ C, K (z) is
closed(convex) then the map K is closed(convex).
For every bounded set C of C, K (C) =⋃

z∈C K (z) is bounded in C then K is bounded
on bounded sets.

Definition 8. [35] K is known as upper semi
continuous (u.s.c) on C if the following conditions
holds:

(i) For all z0 ∈ C the set K (z0) ̸= ϕ and it
is closed.

(ii) For all open set C ∈ C such that C ⊃
K (z0) then there exist an open neighbor-
hood K (W) ⊆ C.

Definition 9. [35] If K (C) is a relatively com-
pact, for all bounded subset C of C then K is
completely continuous.

Definition 10. [35] If the completely continu-
ous map K has a nonempty values then K is
u.s.c if and only if K has a closed graph i.e.,
zk → z∗, uk → u∗, uk such that K zk signify
u∗ ∈ K z∗. Moreover , if there exists z ∈ Y such
that z ∈ K (z) then K has a fixed point.

An u.s.c function K : X → X is said to be con-
densing if for all bounded subset C ⊆ X having
ι(C ) ̸= 0, where ι stands for the Kuratowski mea-
sure of non compactness, we get

ι(K (C )) < ι(C ).

Definition 11. [35] G mapping from V ×X ×X
into Nb,cl,cp(L(K,X )) is called L1-Caratheodory
provided that

(i) ζ → G(ζ, z, x, y) is measurable for all
z, x, y belongs to X .

(ii) (z, x, y) → G(ζ, z, x, y) is u.s.c for all ζ
belongs to V .

(iii) For all p > 0, there exist jp belongs to
L1(V,R+) such that

E∥G(ζ, z, x, y)∥2 ≤ sup{E∥g∥2 : g ∈ G(ζ, z, x, y)}
≤ jp(ζ), for all ζ ∈ V.

For further information on multivalued functions
refer the books [34]. Detail analysis in multival-
ued maps are presended in this work. The follow-
ing are two suitable operators and their underly-
ing assumptions:

ΓT
0 =

∫ T

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)dν : X → X ,

R(ℏ,ΓT
0 ) = (ℏI + ΓT

0 )
−1 : X → X .
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In the above W∗
ϱ (ζ−ν) and B∗ stands for adjoints

of Wϱ(ζ − ν) and B respectively and Clearly ΓT
0

is the bounded linear operator.

To begin, evaluate the below assumptions:

(H0) In the strong operator topology,
ℏR(ℏ,ΓT

0 ) → 0 as ℏ → 0+.

Consider the accompanying linear inclusions of
fractional system{

CDϱ
ζz(ζ) ∈ Az(ζ) + Bx(ζ), ζ ∈ V = [0, T ],

z(0) = z0, z′(0) = z1,

is approximately controllable on V.

Lemma 1. [16]. Suppose V is a compact
real interval and the collection of all nonempty,
bounded, closed and convex subsets of X is called
Nb,cl,cp(X ). Consider multivalued function G
mapping from V×X into Nb,cl,cp(X ) is measurable
to ζ for all fixed z belongs to X , upper continuous
to z for all ζ belongs to V and for all z belongs to
C,

SG,z =

{
g ∈ L1(V,X ) : g(ζ) ∈ G

(
ζ, z(ζ),∫ T

0
f(ζ, ν, z(ν))dν

)
, ζ ∈ V

}
is nonempty. Assume that M : L1(V,X ) → C is
a linear continuous function, next

M◦ SG : C → Nb,cl,cp(C)
z → (M◦ SG)(z) = M(SG,z)

is a closed graph operator belongs to C → C.

Lemma 2. [36] Suppose H is a subset of X
which is nonempty, bounded, closed and convex,
assume D : H → 2X \ {∅} is u.s.c with closed,
convex values such that D(H) ⊂ H where D(H)
is compact, then D has a fixed point.

3. Approximate controllability

The section explicitly focuses on the articulation
of mild solution for the above mentioned system
(1). We now present the required hypothesis for
proving the main theorem:

(H1) Kϱ(ζ), Qϱ(ζ) and Wϱ(ζ) are compact ϱ-
resolvent families generated by the secto-
rial operator A. For all ζ belongs to V ,

there exist P̂ > 0 such that

sup
0≤ζ≤T

∥Kϱ(ζ)∥ ≤ P̂ ,

sup
0≤ζ≤T

∥Qϱ(ζ)∥ ≤ P̂ ,

sup
0≤ζ≤T

∥Wϱ(ζ)∥ ≤ P̂ .

(H2) The functions g(ζ, s, .), h(ζ, s, .) : X −→
X are continuous for all (ζ, s) ∈
∆ and for all z ∈ X the function
g(., ., z), h(., ., z) : ∆ −→ X are strongly
measurable.

(H3) The multivalued map G : V × X × X →
Nb,cl,cp(L(K,X )) is an L2− caratheordy
function such that for all ζ ∈ V, the func-
tion G(ζ, ., .) : X ×X → Nb,cl,cp(L(K,X ))
is u.s.c and for all (s, z) ∈ ×X ×X the set

SG,z =

{
g ∈ L2(J, L(K,X )) : g(ζ) in G

(
ζ, z(ζ),∫ T

0
f(ζ, ν, z(ν))dν

)
for a.e ζ ∈ V

}
is nonempty.

(H4) There exists a function Lg,p : X → R+

such that.

sup

{
E∥g∥2 : g(ζ) ∈G

(
ζ, z(ζ),

∫ T

0
f(ζ, ν, z(ν))dν

)}
≤ Lg,p(ζ),

for almost every ζ ∈ V .
(H5) The function ν → (ζ − ν)T−1Lg,p(ζ) ∈

L1(V,R+) such that there exist φ > 0 such
that

lim
p→∞

inf

∫ ζ
0 νµ−1Lg,p(ν)dν

p
= φ < +∞.

(H6) If g : C([0, T ],X ) → X is continues then
there exists some constant Mg such that
E∥g(x)∥2 ≤ ∥x∥2.

Now, we can show that the system (1) is control-
lable approximately on the given interval. That is
there exist a mild solution z ∈ C satisfies the re-
quirements of approximate controllability, where

z(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν, g ∈ SG,z,

x(ζ) = B∗W∗
ϱ (ζ − ν)R(ℏ,ΓT

0 )q(z(·)).
In the above

q(z(·)) = zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(ζ − ν)g(ν)dW (ν).

Theorem 3. On considering the hypothesis
(H0)− (H6) are fulfilled then (1) contains at least
one mild solution on V if

4P̂ 2

[
1 +

(P̂PB)
4

ℏ

]
φ < 1
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with PB = ∥B∥.

Proof. The main aim of this theorem is to nd
conditions for solvability of system (1) to be re-
solvable for ℏ > 0. Now we prove that the map-
ping Φ from C into 2C given by

Φ(z) =

{
z ∈ C. m(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν, g ∈ SG,z

}
,

has a fixed point.
Step 1: For all ℏ > 0, Φ(z) is convex for all z
belongs to C. Let m1,m2 ∈ C, then there exists
g1, g2 belongs to SG,z such that ζ belongs to V ,
we obtain

mi(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gi(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gi(τ)dW (τ)

]
(ν)dν, i = 1, 2.

Let κ ∈ [0, 1], then for all ζ belongs to V , now we
have
(κm1 + (1− κ)m2)(ζ) = Kϱ(ζ)z0

+Qϱ(ζ)z1 +

∫ ζ

0
Wϱ(ζ − ν)[κg1(ν) + (1− κ)g2(ν)]dν

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1 −

∫ T

0
Wϱ(T − τ)[κg1(τ)

+ (1− κ)g2(τ)]dW (τ)

]
(ν)dν.

Since SG,z is convex, κm1 + (1− κ)m2 belongs to
SG,z. Hence κm1 + (1− κ)m2 belongs to Φ(z).

Step 2: Assume that

Bp =
{
z ∈ C|∥z∥C ≤ p

}
, for p > 0.

Clearly Bp is convex, closed and bounded subset
of C. For ℏ > 0, our assumption is there exist
p > 0 such that

Φ(Bp) ⊂ Bp.

If not, then for all p > 0, there exist zp belongs
to Bp, but Φ(z

p) /∈ Bp, i.e,

∥Φ(zp)∥C = sup
{
∥mp∥C : mp ∈ Φ(zp)

}
> p,

and

mp(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gp(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]
(ν)dν,

for some gp belongs to SG,zp .
By referring (H3), we get

E∥xp(ζ)∥2 = E

∥∥∥∥B∗W∗
ϱ (T − τ)R(ℏ,ΓT

0 )[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]∥∥∥∥2
≤ E∥B∗∥2E∥W∗

ϱ (T − τ)∥2E∥R(ℏ,ΓT
0 )∥2

× E

∥∥∥∥[zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]∥∥∥∥2
≤ P̂ 2P 2

B
1

ℏ

[
4E∥zT ∥2

+ 4E∥Kϱ(T )z0∥2 + 4E∥Qϱ(T )z1∥2

+ 4Lg

∫ T

0
E∥Wϱ(T − τ)gp(τ)∥2dτ

]
≤

P̂ 2P 2
B

ℏ

[
4E∥zT ∥2 + 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ T

0
∥gp(τ)∥2dτ

]
.

Now for ℏ > 0,

p <E∥(Φzp)(ζ)∥2 ≤ 4E∥Kϱ(ζ)z0∥2

+ 4E∥Qϱ(ζ)z1∥2

+ 4Lg

∫ ζ

0
E∥Wϱ(ζ − ν)gp(ν)∥2dν

+ 4

∫ ζ

0
E∥Wϱ(ζ − ν)Bxp(ν)∥2d

≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
E∥gp(ν)∥2dν

+ 4P̂ 2

∫ ζ

0
E∥Bxp(ν)∥2dν
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≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
Lg,p(ν)dν

+ 4P̂ 2P 2
B

∫ ζ

0

(
P̂ 2P 2

B
ℏ

[
E∥zT ∥2 + P̂ 2E∥z0∥2

+ P̂ 2E∥z1∥2 + P̂ 2Lg

∫ T

0
Lg,p(τ)dτ

])
dν

≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
Lg,p(ν)dν

+ 4
(P̂ 2P 2

B)
2

ℏ

[
4E∥zT ∥2 + 4P̂ 2E∥z0∥2

+ 4P̂ 2E∥z1∥2 + 4P̂ 2Lg

∫ T

0
Lg,p(τ)dτ

]
.

Dividing the above equation by p and as p → ∞
we obtain

4P̂ 2

[
1 + 4

(P̂ 2P 2
B)

2

ℏ

]
φ ≥ 1,

which contradicts to our assumption.
Step 3: We check that {Φ(z) : z ∈ Bp} is
equicontinuous.

For all m belongs to Φ(z) and z belongs to Bp,
there exist g ∈ SG,z such that

m(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1 +

∫ ζ

0
Wϱ(ζ − ν)g(ν)dν

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

Suppose 0 ≤ ζ1 < ζ2 ≤ T . In addition,

E∥m(ζ2)−m(ζ1)∥2 = E∥Kϱ(ζ2)z0 +Qϱ(ζ2)z1

+

∫ ζ2

0
Wϱ(ζ2 − ν)g(ν)dW (ν)

+

∫ ζ2

0
Wϱ(ζ2 − ν)Bx(ν)dν −Kϱ(ζ1)z0 −Qϱ(ζ1)z1

−
∫ ζ1

0
Wϱ(ζ1 − ν)g(ν)dW (ν)

−
∫ ζ1

0
Wϱ(ζ1 − ν)Bx(ν)dν∥2

≤ 6E∥[Kϱ(ζ2)−Kϱ(ζ1)]z0∥2

+ 6E∥[Qϱ(ζ2)−Qϱ(ζ1)]z1∥2

+ 6L2
g

∫ ζ2

ζ1

E∥Wϱ(ζ2 − ν)g(ν)∥2dν

+ L2
g

∫ ζ1

0
E∥[Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)]g(ν)∥2dν

+

∫ ζ2

ζ1

E∥Wϱ(ζ2 − ν)Bx(ν)∥2dν

+

∫ ζ1

0
E∥[Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)]Bx(ν)∥2dν

≤ 6E∥Kϱ(ζ2)−Kϱ(ζ1)∥2E∥z0∥2

+ 6E∥Qϱ(ζ2)−Qϱ(ζ1)∥2E∥z1∥2

+ 6L2
gP̂

2

∫ ζ2

ζ1

Lg,p(ν)dν

+ 6L2
g

∫ ζ1

0
E∥Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)∥2Lg,p(ν)dν

+ 6P̂ 2P 2
B

∫ ζ2

ζ1

E∥x(ν)∥2dν

+ 6P 2
B

∫ ζ1

0
E∥Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)∥2

× E∥x(ν)∥2dν.
In the above aforementioned inequality the right
hand side → 0 as ζ2 → ζ1 by using the continu-
ity of functions ζ → ∥Kϱ(ζ)∥, ζ → ∥Qϱ(ζ)∥ and
ζ → ∥Wϱ(ζ)∥. Therefore, Φ(Bp) is equicontinu-
ous.

Step 4: We show that H(ζ) = {m(ζ) : m ∈
Φ(Bp)} is relatively compact belongs in X . For
ζ = 0, result is trivial, hence H(ζ) = {z0}.
For some fixed ζ belongs to V . Assume that
0 < ϵ < ζ, z belongs to Bp and introduce the
operator mϵ by

mϵ(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ−ϵ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ−ϵ

0
Wϱ(ζ − ν)Bx(ν)dν.

Hence Q(ϵ), ϵ > 0 is a compact operator, then
Hϵ(ζ) = {mϵ(ζ) : mϵ ∈ Φ(Bp)} is relatively com-
pact belongs to X , 0 < ϵ < ζ. Further, for all z
belongs to Bp, we get

E∥m(ζ)−mϵ(ζ)∥2 = E∥
∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν

−
∫ ζ−ϵ

0
Wϱ(ζ − ν)g(ν)dW (ν)

−
∫ ζ−ϵ

0
Wϱ(ζ − ν)Bx(ν)dν∥2,

≤ 2

∫ ζ

ζ−ϵ
L2
gE∥Wϱ(ζ − ν)g(ν)∥2dν

+ 2

∫ ζ

ζ−ϵ
E∥Wϱ(ζ − ν)Bx(ν)∥2dν

≤ 2L2
gP̂

2

∫ ζ

ζ−ϵ
Lg,p(ν)dν
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+ 2P̂ 2P 2
B

∫ ζ

ζ−ϵ
E∥x(ν)∥2dν.

We see that E∥m(ζ) − mϵ(ζ)∥2 → 0 as ϵ → 0+.
Thus there exist relatively compact set and it is
arbitrarily close to H(ζ) = {m(ζ) : m ∈ Φ(Br)}
and the set H(ζ) is relatively compact in X for all
ζ ∈ [0, T ]. At ζ = 0 it is compact, hence H(ζ) is
relatively compact belongs to X for all ζ ∈ [0, T ].

Step 5: Φ has a closed graph.

Consider zn → z∗ and mn → m∗ as n → ∞. We
will prove m∗ ∈ Φ(z∗). Since mn ∈ Φ(zn), such
that gn belongs to SG,zn such that

mn(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gn(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)× gn(τ)dW (τ)

]
(ν)dν.

We need to show there exist g∗ belongs to SG,z∗

such that for all ζ belongs to V ,

m∗(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g∗(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν.

Clearly,

E

∥∥∥∥(mn(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gn(τ)dW (τ)

]
(ν)dν

)
−
(
m∗(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)∥∥∥∥2 → 0,

as n → ∞. Assume that T : L1(V,X ) → C,

(T g)(ζ) =

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[ ∫ T

0
Wϱ(T − τ)g(τ)dW (τ)

]
(ν)dν.

We can conclude that the operator T ◦ SG,z is a
closed graph by using Lemma 1. Then, in view of
T we can see that

(
mn(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
∈ T (SG,zn).

Since gn → g∗, as n tends to zero, it follows that
for all ζ belongs to V , we obtain

(
m∗(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
∈ T (SG,z∗).

As a result, Φ is a closed graph.

Thus Φ is multivalued map which is completely
continuous and hence as a result of the previous
steps and Ascoli-Arzela theorem it is easily see
that Φ is u.s.c. As a result, which has a fixed
point z(ζ) on Bp and by referring to Lemma 2,
which is the mild solution of (1). □
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Definition 12. The fractional integro-differential
inclusions (1) is called approximately control-

lable on [0, T ] provide that R(T, z0) = X , where
R(T, z0) = {zT (z0; z) : z(ζ) in L2(V,X )} is a
mild solution of (1).

The following assumptions are required for prov-
ing the main results.

H7 The function G : V × X × X →
Nb,cl,cp(L(K,X )) is uniformly bounded for
all ζ ∈ V and z ∈ X

Theorem 4. Suppose (H0)− (H7) are fulfilled.
Further there exist I belongs to L1(V, [0,+∞))

such that supz∈X ∥G(ζ, z(ζ),
∫ T
0 f(ζ, ν, z(ν))dν)∥

≤ I (ζ) for a.e. ζ belongs to V . In addition, (1)
is approximately controllable.

Proof. Let zα(.) ∈ Bp be a fixed point of the
operator Φ, by Theorem 3.1 any fixed point of Φ
is a mild solution of 1. This means that there is
zα ∈ Φ(zα), i.e. by the Fubini theorem there is
gα ∈ SG,z∗ such that for all ζ ∈ V.

zα(ζ) = Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
.

Define

P (gα) = zα −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − ν)gα(ν)dW (ν),

for some gα ∈ SG,z∗ .

Noting that I − ΓT
0 R(ℏ,ΓT

0 ) = αR(ℏ,ΓT
0 ),

i.e we get zα(b) = zT − αR(ℏ,ΓT
0 )P (gα).

By assumption (H7),

E∥
∫ T

0
gα(ν)dW (ν)∥2 ≤ L2

g

∫ T

0
E∥gα(ν)∥2dν

≤ L2
glr(ζ)T ≤ L2

glrT.

Subsequently, the sequence {gα} is uniformly
bounded in L2(V,X ). Hence we can find a sub-
sequence of {gα} which is still denoted by {gα}
that converges weakly to g ∈ L2(V,X )
Denoting h = zT − Kϱ(T )z0 − Qϱ(T )z1 −∫ T
0 Wϱ(T − ν)g∗(ν)dW (ν).

We see that

E∥P (gα)− h∥2

= E

∥∥∥∥∫ T

0
Wϱ(T − ν)[g∗(ν)− g(ν)]dW (ν)

∥∥∥∥2
≤ L2

g

∫ T

0
E∥Wϱ(ζ − ν)[gα(ν)− g(ν)]∥2dν

≤ sup
0≤t≤T

ζ∫
0

E∥Wϱ(ζ − ν)[gα(ν)− g(ν)]∥2dν.

Using Ascoli-Arzela theorem, we can see that

the linear operator,
(·)∫
0

(.,−ν)µ−1Wϱ(.−ν)g(ν)dν :

L2(V,X ) → C(V,X ) is compact. Therefore, we
get E∥P (gα)− h∥2 → 0 as α → 0.
Hence,

E∥zα(b)− zT ∥2 = E∥R(α,ΓT
0 )P (gα)∥2

≤ 2E∥R(α,ΓT
0 )(h)∥2 + 2E∥R(α,ΓT

0 )(P (gα)− h)∥2

≤ 2E∥R(α,ΓT
0 )(h)∥2 + ∥(P (gα)− h)∥2 → 0

as α → 0+.

This proves the approximate controllability of sys-
tem (1) □

4. Nonlocal conditions

The idea of nonlocal initial conditions of the dif-
ferential systems were inspired by physical con-
cerns. The result pertaining to approximate con-
trollability is extended to Hilbert space in [37]. In
contrary, to local conditions Byszewski et. al [38]
interrogated the abstract Cauchy with nonlocal
conditions in Banach spaces. For more details on
nonlocal conditions refer [13, 14, 39, 40]. Consider
the fractional systems of order ϱ ∈ (1, 2) with
nonlocal conditions:


CDϱ

ζz(ζ) ∈ Az(ζ) +G(ζ, z(ζ),∫ T
0 f(ζ, ν, z(ν))dν)dW (ν)

dν

+Bx(ζ), ζ ∈ V = [0, T ],

z(0) = z0 + w1(z), z′(0) = z1 + w2(z).

(2)

In the above, w1, w2 is appropriate functions and
it is mapping from V ×X into X which fulfill the
subsequent condition:

(H8) The completely continuous functions
w1, w2 belongs to C(V,X ) and there ex-
ists c, d, e, k > 0 such that

E∥w1(z)∥2 ≤ cE∥z∥2 + d,

E∥w2(z)∥2 ≤ eE∥z∥2 + k, for all z ∈ Y.
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Definition 13. A function z belongs to C is called
a mild solution of (2) provide that

z(ζ) = Kϱ(ζ)[z0 − w1(z)] +Qϱ(ζ)[z1 − w2(z)]

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

Theorem 5. Provide that (H0)-(H8) are fulfilled
and if

P̂ 2

[
1 +

(P̂ 2P 2
B)

2

ℏ

]
φ+ P̂ 2(c+ e)

×
[
1 +

(P̂ 2P 2
B)

2

ℏ

]
φ < 1

where PB = ∥B∥ then (2) has at least one mild so-
lution on [0, T ] and is approximately controllable.

Proof. Since the theoretical proof of the theorem
much similar to that of Theorem 3, we neglect the
proof. □

5. Application

To illustrate our finding we consider the following
fractional integro-differential system



∂ϱ

∂ζr z(ζ, s) ∈
∂2

∂s2
z(ζ, s) + J

(
ζ, z(ζ, s),∫ ζ

0 e(ζ, ν, z(ν, s))dν

)
dW (ν)
dν + w(ζ, s),

z(ζ, 0) = z(ζ, 1) = 0, ζ ∈ V,

z(0, s) = z0(s),

z′(0, s) = z1(s), s ∈ [0, π].

(3)

In the above the order of fractional system ϱ = 3
2 ,

J : [0, 1]×X ×X → 2X \{∅} and the continuous
function e mapping from [0, 1]× [0, 1]×X into X .
Let us consider X = H = L2([0, π]) and let W (ζ)
be a standard cylindrical Wiener process in X
defined on a stochastic space

(
Ω,ℑ, {ℑζ}ζ⩾0,P

)
,

Dϱz = ∂ϱz
∂ζϱ is the Caputo fractional derivative of

order 1 < β < 2.

D(A) ={z ∈ X : z, z′ are absolutely continuous,

z′′ ∈ X , z(0) = z(π) = 0}.
Now there exist a sequence {ej}j⩾1 of eigenvec-
tors of A such that. {ej}j⩾0 is a complete or-

thonormal and ej(y) =
√

2
π sin y. Furthermore A

is dense in X and A is the infinitesimal generator
of a resolvent family {W(ζ), ζ ≥ 0} belongs to
X , according to [14].

Put z(ζ) = z(ζ, ·), ζ belongs to [0, 1] and x(ζ) =
ω(ζ, ·). The linear bounded operator B : H → X

defined by Bx(ζ)(s) = w(ζ, s). Then

e(ζ, ν, z)(s) = f(ζ, ν, z(s)),

and

G(ζ, z, ℘1)(s) = J (ζ, z(s), ℘1(s))

for ζ, ν belongs to [0, 1], z, ℘1 belongs to X and s
belongs to [0, π]. The above mentioned fractional
partial differential system (3) can be consider as
the exact representation of the problem (1) with
the functions our preferred choices. Then it can
be easily viewed that all the requirements of the
Theorem 3 satisfied and hence we can ensure the
approximate controllability of (3) on [0, T ].

6. Conclusion

The findings of this research analyze the outcome
results of approximate controllability of Stochas-
tic fractional integro-differential equation consid-
ered in Banach space. Bohnenblust-Karlin’s fixed
point technique is used as the key factor to es-
tablish the required conditions for our chosen
fractional system (1) to be controllable approxi-
mately. The above mentioned procedure to estab-
lish the approximate controllability is extended to
fractional nonlocal system. In future the present
work can be extended by analysing the controlla-
bility results of stochastic integro fractional differ-
ential inclusion system with impulsive conditions.
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 The power circuit of AC voltage controller capable of operating at a leading, 

lagging, and unity power factor is studied by a lot of researchers in the literature. 

Circuits working with high switching frequency are known as power factor 

correctors (PFCs). The single-phase boost converter has become the most popular 

topology for power factor correction (PFC) in general purpose power supplies. 

Power factor correction circuit provides conventional benefits to electric power 

systems. The benefits are the reduction of power factor penalty and utility bill and 

power loss. Therefore, a boost converter power factor correction scheme is 

presented in this paper. A PI, fuzzy logic PI and fractional order PI (FOPI) 

controllers are used to fix an active shaping of input current of the circuit and to 

improve the power factor. The controller parameters (coefficients) are optimized 

using the Particle Swarm Optimization (PSO) algorithm. Average current mode 

control (ACMC) method is used in the circuit. The converter circuit consists of a 

single-phase bridge rectifier, boost converter, transformer and load. A 

mathematical model of the plant is required to design the PI controller. A model 

for power factor correction circuit is formed in MATLAB/Simulink toolbox and a 

filter is designed to reduce THD value. The proposed model is simulated using a 

combination of PI, fuzzy logic and FOPI controllers. The control scheme is applied 

to 600 Watt PFC boost converter to get 400 Volt DC output voltage and 0.99 power 

factor. The input voltage is 230 VRMS with 50 Hz. The combination of FOPI and 

PI controller has the best solution to control the power factor according to PI and 

fuzzy controllers. 
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1. Introduction  

With the recent advancement in industrial equipments, 

power electronic components have gained popularity 

due to energy crises in the world and power converters 

for renewable energy (solar, wind) have become more 

important. AC-DC converters are played a vital role in 

power supplies such as different level power charging, 

mobile charging and battery charging unit.  

The advantage of semiconductor switches has 

dramatically increased the DC-DC boost converter [1]. 

One of the major applications is power factor 

correction. Using of switched mode power supply 

(SMPS) has increased in some industrial applications 

such as robotics, air/space craft, see vehicles etc. [2].  

If a non-linear load is connected to grid, there will be a 

voltage distortion in side of the grid.  Power factor 

correction (PFC) is required to eliminate the 

distortions. Generally, a high power factor is required 

in power systems connected to grid to reduce the 

harmonics occurring by high switching frequency. If a 

nonlinear load such as rectifier or converter is tied to 

grid, the harmonics with different frequency happen in 

the current waveform. They are multiplies of the input 

frequency. Therefore, the less average power is 

transferred to load. Limits of power factor and input 

current harmonics are determined according to 

international standard IEC 61003-2 and IEE/ANSI519, 

respectively [3].  

PFC correction circuits are widely used in the input part 

of electronic circuits to decrease the rective power 

drawn from the grid [4]. The aim of this study is to 

reduce reactive power consumption and obtain better 

performance in the circuit by improvement of power 

factor. When line current with high power factor is 

http://www.ams.org/msc/msc2010.html
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drawn by SMPS, total harmonic distortion (THD) 

decreases in side of grid and a filter is designed to 

reduce the THD value on grid side. The performance of 

power factor correction is depended on the current and 

voltage controllers. There are different control modes 

such as average current mode control (ACMC), peak 

current mode control and inductor hysteric control.  

Various small signal modelling analysis and pulse 

width modulation (PWM) control techniques has been 

proposed in early 1970’s. The most common method is 

the average technique [5]. The distinctive feature of 

ACMC is a good tracking of average current [2]. 

Many researchers have been directed to apply nonlinear 

circuit techniques to dynamic control   of circuit. The 

average current mode control method is used to sense 

and control the peak voltage across inductor in power 

supplies. This method eliminates the noise, immunity, 

slope compensation and peak to average current errors 

[6]. Cascade control structure is presented for the 

converter with PSO-based FOPI controller as inner 

current and outer voltage controllers for PFC and load 

voltage regulation. The main contribution of this paper 

is to correct the PFC and output voltage using 

Fuzzy+FOPI controllers with together. The paper is 

concerted in the following manner: Section 1 describes 

the introduction, section 2 illustrates the average 

current control method, section 3 illustrates the boost 

converter model, fuzzy logic controller, classic PI 

controller, FOPI controller, selection of voltage 

controller, selection of current controller, measuring of 

power factor and THD values, section 4 describes the 

results and discussions, and section 5 prescribes the 

conclusion. 

2. Average current control method 

In DC-DC Converters, average current control method 

is very popular due to simplicity of implimentation and 

good performance. In this method, the value of current 

is sensed by a shunt resistor Rs [7]. The output voltage 

are subratracted from the reference voltages to gain the 

output voltage and this signal is used for the 

multiplication block.  The inverse of square input value 

of voltage is taken and multiply by the with the input 

voltage to gain the reference curent. Afterwards, the 

current flowing from the inductor is measured using the 

Rs  and it is subtrachted from the reference current. This 

signal is used to control the MOSFET to get the output 

voltage as well as to for the PFC [3].     

3. Boost converter model 

Boost converters are step-up converters. It is one of the 

simplest type of switch-mode converter. Its duty is to 

increase the voltage at the input of circuit at the output 

of circuit. An ideal circuit of boost converter is shown 

in Figure 1. It is utilized in regulation of DC power 

supplies and bidirectional DC power supplies. When 

the switch Q is on state (close), the diode is reverse 

biased. The output resistance is isolated from source 

and the energy is transferred from the source to the 

inductor L. In the steady-state analysis, the capacitor C 

is supposed too large to maintain a constant output 

voltage vo(t) ≅ vo. 

C R
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-
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D
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` +

-
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c
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io
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Figure 1. Ideal DC-DC boost converter circuit topology 

There are two different operation modes of the circuit 

depending on the switch position u. When Kirchhoff's 

Law is applied to the circuit with switch off (u=0) and 

the derived equations for voltage and current are 

written as below. 

 L
in o

di
L v v

dt
= −  (1) 

 o o
C L

dv v
i C i

dt R
= = −  (2) 

When the switch position is on (u=1), Eq. (3) and Eq. 

(4) for the circuit can be written as below 

 L
in

di
L v

dt
=  (3) 

 o odv v
C

dt RC
= −  (4) 

Where Vin , IL and Vo  are the input voltage, inductor 

current and output voltage, respectively.  The output 

voltage is equal to the capacitor voltage because the 

capacitor is connected parallel with load and are 

selected as state variables depending on u for a period, 

the state space equations for boost converter by 

combining the above equations are written as shown in 

Eq. (5) and Eq. (6).  

 in o oL v v vdi
u

dt L L L
= − +  (5) 

 o oL Ldv vi i
u

dt C C RC
= − −  (6) 

3.1   Fuzzy logic controller   

Fuzzy Logic Controller (FLC) has been used in many 

industrial applications such as AC and DC drives, 

PWM inverter and DC-DC converters in past years. 

Many research articles has  been written by using FLC 

but they did not defined any exact model for converters 

[4,5]. FLC is an application of fuzzy set theory [8]. This 

theory is about uncertainty. It enables one to use non 

precise, ill-defined concepts [9]. FLC has an advanced 

level of efficiency for nonlinear converters [10]. Many 

researchers approved  FLC to become one of intelligent 

controller for their appliances and  successfully 

implemented their tactics [11-14]. FLC does not require 

an accurate mathematical model of a circuit. Therefore, 

it is valid to a process where the circuit model is 
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unknown or ill-defined. Fuzzy control is adaptive in 

nature and nonlinear. It gives smooth performance 

under variations of parameters and load disturbances 

[9]. FLC is completely based on linguistic control 

variables. FLC is like human thinking, so it lowers the 

gap between mathematical calculation of plant and 

human certainty. FLC algorithm consists of three steps. 

The first step is fuzzification, second step is inference 

and third is defuzzification [15]. The schematic 

diagram of FLC is shown in Figure 2. Fuzzy controller 

has two inputs. Comparing the reference value with 

output value at each interval, error (v) and change in 

error (Δv) are calculated. Here the reference voltage is 

r(k) and output voltage is y(K). Error voltage e (k) is 

calculated as shown in Eq. (8). 

 
Figure 2. Block diagram of Fuzzy Logic Controller 

  

 

(a) 

(b) 

 

 
(c) 

Figure 3. Designed membership functions (a) error MFs (b) 

change in error MFs (c) Defuzzification MFs 

( ) ( ) ( )v k r k y k= −                           (7) 

( ) ( ) ( 1)v k e k e k = − −                       (8) 

These are extended at the input of the controller for 

fuzzification. Fuzzy sets utilize linguistic terms and 

membership functions (MF’s). The selected 

memberships are presented in Figure 3. MF’s depend 

upon the impact of the linguist term regarding the 

output value. 

The fuzzy rule editor is shown in Figure 4, in which 

rules are selected according to user visualizing. The 

membership functions are selected by taking account 

the system limits. The overall fuzzy logic designer 

representation is shown in Figure 5. Fuzzy rules contain 

5 error voltage as well as change in error of voltage. 

The selected fuzzy rules are given in Table 1. 

 

 

Figure 4. Fuzzy rules editor 

Table 1. Fuzzy rules 

𝑣 /𝛥𝑣     NB N Z P PB 

NB NB NB NB N Z 
N NB NB N Z P 
Z NB N Z P PB 

P Z Z P PB PB 
PB N P PB PB PB 

 

3.2   Classical PI controller 

Classical PI controller is the simplest controller [16] 

which is frequently used in most of the circuits to 

control the output voltage and to meet the user’s 

demand. These types of controllers are used mostly in 

situations where there are no load changes. The 

accuracy of classical PI controller can be disturbed 

when the load is varied frequently. Performance of 

classical PI controllers used in the inner loop and outer 

loop is also discussed in this section. The transfer 

function of classical PI controller is written as below. 
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Figure 5. Overall fuzzy logic designer representation 

 ( ) I
P

k
G s k

s
= +  (9) 

Where KP and KI are gain coefficients of proportional 

and integral controller [17]. 

3.3   Fractional order PIλ controller 

A generalization form of fractional calculus is classical 

integer order calculus, which consists of integral 

differential operators of fractional orders. Different 

approaches are executed to find optimum values of the 

three parameters of FOPD controller. One of the tuning 

rules of FOPID controller is Ziegler–Nichols method 

[18]. The mathematical expression of fractional 

derivatives defined by Grünwald-Letnikov is [19,20]:  

( ) ( )
1

0

1 ( )

( )

t c

h
k

k

k
c t

h

f t kh

D f t
h

Lim







− 
 
 

=

→

− −

=


         (10) 

This technique is used to calculate the transfer function 

of FOPI. It is described as below [21-26]: 

 ( )c p IG S k k s −= +  (11) 

Here Kp is representing the proportional constant, KI is 

representing the integral constant and λ is representing 

fractional integral constant. 

3.4   Selection of voltage controller 

The simulation of FLC circuit diagram on boost PFC 

using the average current control method is presented 

in Figure 6.  In this paper, FLC is based on Mamdani 

fuzzy system which contains two inputs and one output. 

The circuit includes inner loop controller and outer loop 

controller. Inner controller is also known as current 

controller which controls the input current. Outer loop 

controller also called voltage controller controls the 

output voltage. Output voltage is compared with 

reference voltage. Here error (e) and change in error 

(Δe) are calculated at every interval, after it takes the 

derivative of change in error value. The voltage 

controller generates a signal which is transferred to the 

multiplier block. It multiplies the rectified voltage of 

circuit with the square of peak voltage of source 𝑣in
2 

[3]. Then signal goes towards the current controller 

after subtracting from reference current. After that 

PWM generator block leads this signal to the gate of 

switch IGBT or MOSFET. A shunt resistance (Rs) is 

used in simulations to sense the inductor current in the 

circuit. 

In this paper, different controllers are used to determine 

the best performance of the circuit.  Classical PI, Fuzzy 

and FOPI controllers are utilised to control the voltage 

and current in this study. To find the best controller for 

outer loop, different controllers are used at the outer 

loop while PI controller is only used in the inner loop.  

3.5   Selection of current controller 

The selection of inner loop controller is done by taking 

account the best performance of outer loop. It is 

performed by keeping the FOPI as the outer loop 

controller while the inner loop controller is changed. 

The boost converter PFC circuit diagram is shown in 

Figure 7. In this paper, FOPI controller is found as the 

best controller for the inner loop.  

3.6   Measuring of power factor and THD values 

Power factor is measured at the input side of circuit. To 

perform the Fourier analysis, Fourier block is used in 

the designed circuits with the help of MATLAB-

Simulink, as shown in Figure 6 and Figure 7. Voltage 

distortion occurs when the current drawn by the load 

does not do remain sinusoidal form. Harmonics play a 

critical role for life of electrical and electronics 

systems. THD is the most common measured 

parameters of voltage and current of grid. THD is 

described as the root mean square (RMS) value of 

harmonics divided by the RMS value of fundamental 

and multiply by 100.  

 
(2) ( )

(1)

% 100
rms rms n

I

rms

I I
THD

I

+ +
=   (12) 

Where Irms(n) is the RMS value of the nth harmonic 

current and Irms(1)  is the RMS value of the fundamental 

component.  If the THD value of current is below 5%, 

it is considered within acceptable limits according to 

international standards.  If it is more than 10%, it causes 

problem for the equipment’s and loads [27]. According 

to standards, the power factor should be between 0.90-

0.99 or near to unity. So, both designed controllers 

show that the power factor is almost near to unity as 

shown in Figure 8. The designed filter capacitance 

value is 31.8 mF and resistance value is 1.5 Ω. The 

THD value of circuit is decreased to 4.72% as shown in 

Figure 10 when passive filter is used in the input side 

of rectifier. 
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Figure 6. Simulation diagram for the selection of outer loop controller using FLC 

 

 

Figure 7. Simulation diagram for selection of inner loop controller 

 

 
Figure 8. Power factor measuring 

 

 
Figure 9. THD value of designed controller without filter 

 

 

 

 

 

 

 

 
Figure 10. THD value of designed controller with filter 

When the passive filter is not utilized in the input side 

of circuit, THD value is 29.28%. The current contains 

harmonics, and its waveform is distorted as shown in 

Figure 11. 
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Figure 11. Input voltage and current without filter 

 
As shown in Figure 10, THD value decreases from 

29.28% to 4.72% when the passive filter is used in the 

output side of grid. The current drawn by the load 

contains lower harmonics and its waveform is closer to 

the sinusoidal waveform with distortion as given in 

Figure 10 when the passive filter is settled in the input 

side of circuit.   

 
Figure 12. Input voltage and current with filter 

 
4.  Results and discussions 

In this paper, the power factor correction is performed 

using the boost converter. The power factor is measured 

for each step by selecting the inner loop and outer loop 

controller. The simulations are done by using the DELL 

core I3 laptop. Nominal load is used as 266 Ω and a 

disturbance load is added to the circuit as 100 Ω.  It can 

be seen in Figure 10 that the input current is not 

sinusoidal and have a THD like 29.28%. When the 

passive filter R-C is added to the circuit, the current 

waveform came into sinusoidal waveform and THD 

value becomes 4.72%. When the passive filter is added 

into a circuit, the harmonics come in a range of 

intentional standards. The output voltages for the 

selection of outer loop and inner loop controllers are 

shown in Figure 13 and Figure 14, respectively. It is 

seen from Figure 13, when FOPI controller is utilized 

in the outer loop while keeping PI controller in the inner 

loop, the system has a good response compared to 

reference voltage.   When disturbance or variable load 

is added to the circuit for an interval of time, it does not 

maintain its accuracy and performance.  As shown in 

Figure 13, FOPI controller is faster response than the 

other controllers. It also maintains its accuracy and 

performance according to the others.  

 

Figure 13. Output voltage for the selection of voltage 

controller 

To select the inner loop controller (current controller), 

the best performance of voltage controller is obtained 

by FOPI controller. Therefore, FOPI controller for the 

outer loop is not changed when different controllers 

such as Fuzzy, PI, Fuzzy+PI structure are used in the 

inner loop to determine the best controller for the 

system. The output results of these controllers are 

shown in Figure 14. It can be seen that Fuzzy, PI and 

Fuzzy+PI achieve a good response at settling time. 

When the variable load is added into the system, FOPI 

controller is faster than the others in view of 

performance of current controller.  The performance of 

current controllers is almost same when load change 

occurs in the system. 

In the circuit, power factor correction and output 

voltage control are implemented at the same time. THD 

value is very high according to the international 

standard as the power factor value approaches to unity. 

To decrease THD value, passive filter R-C is used in 

the input side of circuit. Thus, unity power factor is 

adjusted 0,99 and THD value has been brought  to 

international standard. 

 

 
Figure 14. Output voltage for the selection of current 

controller 

The selected parameters of designed circuit are shown 

in Table 2 and the optimized parameter using the PSO 

are shown in Table 3. For the optimization Integral 

Time Absolute Error (ITAE) function is used for 



Fractional fuzzy PI controller using particle swarm optimization to improve power factor…       211 

optimization of controller parameters [21]. 

Figure 15. Output voltage for the FOPI+PI controller 

The THD value of the designed circuit with filter is 

shown in Figure 16. It is clearly shown in the Figure 9 

that without the filter, THD value was 29.28% while 

using the filter THD value is decreased to 4.27% as 

shown in Figure 16. This is acceptable according to 

IEE/ANSI519. 

  

 
Figure 16. THD value of designed controller with filter 

The designed parameters of discussed boost converter 

are calculated according to using Eqs. (13)-(16). 

The value of the inductor is calculated using the Eq. 

(13).  

 
2(1 )

2

D D R
L

f

− 
=


 (13) 

In practical application, the inductor value is selected 

25% greater than this calculated for better performance. 

Here the R is the resistance/output load, f is the 

switching frequency, L is the inductor value calculated 

by Eq.(13) and the D is the duty cycle. The D is 

calculated according to Eq.(14)  

 1 in

o

v
D

v
= −  (14) 

Here the vin is the input voltage and vo is representing 

the output voltage. The value of  output capacitor is 

calculated using the Eq.(15). 

 

 𝐶𝑜𝑢𝑡 ≥
𝐷

𝑅(
△𝑣𝑜
𝑣𝑜

)×𝑓
   (15) 

 

Here D is the duty cycle, f is the frequency and (
△𝑣𝑜

𝑣𝑜
) 

is representing the ripple factor of the output voltage 

which is taking 1% of the output voltage. The capacitor 

Cg value is selected maximum to remove the ripple of 

the input voltage. 

 
2

rms ripple

g

rms ripple

I I
C

v v f


=

 
 (16) 

Here the Irms, Vrms is the RMS value of current and 

voltage representing respectively. Iripple and Vripple 

representing the ripple current and ripple voltage and 

their values are taken 5% and 1% respectively [17]. 

 

Table 2. The parameter values of designed circuit 

Parameters values 

L    4.34 mH 

Cout   600 µF 

RLoad   266 Ω 

Vin   230 VRMS 

Supply frequency   50 Hz 

Rs   0.02 Ω 

Cg 100 mF 

Vref 400 V 

Switching frequency 1000 HZ 

 

Table 3. Optimized parameter values of the designed 

controllers 

Parameters Values 

FOPI KP=1.5981 

KI=1.5981 

λ=1 

Classic PI controller KP=4.1437 

KI=0.1 

 

5. Conclusions 

In this paper, fuzzy, PI and FOPI controllers and 

different variations of these controllers are applied to in 

the inner and outer loops to increase the power factor 

value and regulate the output voltage. The best 

performance of voltage and current controllers are 

assessed for the PFC using boost converter. When the 

FOPI contoller in the inner loop and PI controller in 

outer loop are used, the obtained results have faster and 

more smoothly responses. The results are compared 

with PI and fuzzy PI (FPI) controller. They show the 

FOFPI has less fluctuations, overshoot and settling time 

compared to FPI. The presented system can be used to 

provide electrical power to electronic devices in critical 

applications such as military, space craft, and sea 

vehicles. 
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Healthcare enables the maintenance of health through some physical and men-
tal care for the prevention, diagnosis and treatment of disease. Diagnosis of
anemia, one of the most common health problems of the age, is also very am-
bitious. Whereas, pathological individuals could be predicted through various
biomedical variables using some appropriate methods. In order to estimate
these individuals just by taking into account biological data, particle swarm
optimization (PSO) and support vector machine (SVM) clustering techniques
have been merged (PSO-SVM). In this respect, the dataset provided has been
divided into five clusters based on anemia types consisting of 539 subjects in
total, and the anemia values of each subject have been recorded according
to corresponding biomedical variables taken as independent parameters. The
findings of the PSO-SVM method have been compared to the results of the
SVM algorithm. The hybrid PSO-SVM method has proven to be quite effec-
tive, particularly in terms of the high predictability of clustered disease types.
it is possible to lead the successful creation of appropriate treatment programs
for diagnosed patients without overlooking or wasting time during treatment.
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1. Introduction

In the past decade computer models have be-
come very popular in the field of biomedicine
due to exponentially increasing computer power.
So, an efficient healthcare system using computer
models can contribute to an important part of
a country’s economic development, and industri-
alization. Healthcare has traditionally been rec-
ognized as an important determinant in improv-
ing the overall physical and mental health and
well-being of people around the world. Anemia
is clinically defined as a below hemoglobin value
from the appropriate reference range for an indi-
vidual and it possibly leads to crucial blood dis-
eases. Anemia types are determined depending on
symptoms ranged from short episodes to chronic
conditions [1–5].

Few have analyzed types of anemia, although it
has received much attention recently because of
epidemiological studies suggesting that anemia
may be associated with worse outcomes in var-
ious diseases [5–9].

In the literature, there have been several meth-
ods [8–16] to analyze anemia types. Besides to
their notable advantages, many common proper-
ties, such as being costly, difficulty in usage, time-
consuming and having constraints in daily usage,
lead to their drawbacks. In this case, optimiza-
tion modeling should be taken into consideration
alongside those methods.

It is obviously discovered that by taking into ac-
count the mechanics of computer hardware, it can
be created novel hybrid approaches that are much
more effective for certain calculations as outlined

*Corresponding Author
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in the literature [17–24], even though these con-
cepts may appear to be unrelated to physical lim-
itations.

A more efficient algorithm can complete any com-
putation much faster than any inefficient algo-
rithm, even without changing the computer hard-
ware. Therefore, advancements in algorithms can
be used to make computers faster, such as pre-
computing parts of a problem or other solutions
to improve computing efficiency.

Therefore, there are particular techniques for op-
timization, including particle swarm optimization
(PSO) which is becoming increasingly popular
as an effective method for many data processing
tasks. In this work, the hybrid algorithm of PSO
with another important optimization algorithm,
support vector machine (SVM), has been created
to predict types of anemia. To the best of the
authors’ knowledge, this is the first time a com-
bination of PSO and SVM has been used to fore-
cast anemia types using biological data, despite
the fact that certain conventional methods are
utilized for evaluating anemia types in the liter-
ature [7–15]. The PSO-SVM algorithm has been
suggested for reliable data treatment and further
analysis for interpretation due to its high level of
flexibility and lack of requirement for specialized
knowledge in statistics [25–27].

The PSO-SVM is a comprehensive optimization
clustering technique as a consequence, enabling
the estimation of different patterns using the data
that is currently available in an area. By forecast-
ing the clusters that are most likely to include in-
dividuals who have that form of anemia, it is able
to predict anemia types. Investigating patholog-
ical individuals from a population was the goal
of this study, and using advanced computers to
implement the PSO-SVM technique has been at-
tractive [10], [28].

2. Materials and methods

2.1. Biomedical data collection and study
design

The dataset has been prepared from observations
of anemia disease. The dataset that consists of
the anemia measurements contains 5 classes and
539 subjects provided from the literature [9], [11],
[12] whose main concerns are creating mathemat-
ical models that can predict the type of anemia
based on various blood variables by only spe-
cific algorithms while in the current study, a hy-
brid algorithm has been developed using patho-
logical individuals from a population and their
corresponding blood variables. The data has
been collected from individuals between aged 6

to 56 years. Each sample includes information
from blood variables; Red Blood Cells (RBC),
a portable protein Hemoglobin (HB) inside the
RBC containing iron atoms which carry oxygen
from the lungs to the body’s tissues and return
carbon dioxide from the tissues back to the lungs,
Hematocrit (HCT) which shows the percentage
of RBC in the blood, Mean Corpuscular Volume
(MCV) which measures average size of the red
cells in a sample and [8]. In addition to these,
some biophysical variables, sex and age, have also
been considered since natural HB in the body
varies from male (1) to female (2) and natural
HB in the body varies according to age.

The best four variables have been selected from
the prediction of anemia through the PSO and
machine learning, and are mentioned in Table 1
and Figures 1. The relationship between different
parameter values of the subjects is illustrated in
Figure 2.
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Figure 1. The parameter values of
every subject.

Figure 2. Relationship between pa-
rameter values of the subjects.

The goal of this research is to detect anemia in a
population through the utilization of PSO-SVM
algorithm and analysis of blood parameters. Since
the hybrid algorithm is based on clustering princi-
ple, the five clusters have been generated by blood
variables as detailed in Table 1 and Figure 3. This
study has classified anemia types into five sepa-
rate clusters based on common characteristics and
danger levels. The attributes of anemia dataset
can be seen in Table 2. The proposed approach
has been implemented on the collected data to
identification a healthy or infected person out of
involved 539 subjects.

Figure 3. Dataset collected.

2.2. Particle swarm optimization

Kennedy and Eberhart developed an evolution-
ary and population-based optimization technique
referred to as the particle swarm optimization
(PSO) [29] by drawing inspiration from the col-
lective behavior of birds and fish. So, these ani-
mals played an important role in the development
of an algorithm by escaping dangerous situations
and finding food. The PSO is much faster and
more effective than other optimization techniques
because it requires fewer parameters and is less
likely to be stuck in local minimum points as a
possible solution.

The PSO seeks to improve a solution to a prob-
lem by having each particle trace its coordinates
in terms of the best solutions that have already
been made. The particle keeps track of its own
best, known as pbest, and the best solution in the
near surroundings, known as lbest. If the particle
considers the entire population for its topological
neighbors, then the best value becomes the global
best, or gbest. At every step, the particles’ veloc-
ities are adjusted according to the pbest and lbest
locations.

In the PSO, software agents known as particles
move through the related space to find improved
results. At each step, the randomly selected par-
ticles adjust their velocities using data from their
local areas, their own neighborhoods and from
randomness in order to search for better spots
in the solution space. The position of a parti-
cle is an indication of a potential solution to the
problem. At the conclusion of each cycle, all par-
ticles attempt to find more desirable locations in
the search space by altering their speed. For each
iteration, the position and velocity vectors have
been determined as follows:

V new
p = wV old

p + c1rand1(Pbest−Xold
p )

+ c2rand2(gbest−Xold
p )

(1)

Xnew
p = Xold

p + V new
p (2)

where w represents corresponding weights, c1, c2
are acceleration coefficients (cognitive parameter,
social parameter), rand1, rand2 are uniformly dis-
trubed random numbers between 0 and 1, V old

p

gives velocity of individual p at the iteration, Xold
p

determines position of individual p at the current
iteration, Pbest and gbest indicate the best local
value of each particle and the best value of swarm,
respectively [30], [31].
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Table 1. Clusters and subject numbers.

Cluster no. MCV HCT RBC HB Number of Subjects Anemia Type
1 ≥ 100 - - - 10 Deficiency B12
2 < 100 ≥ 48 - - 230 Thalassemia
3 <100 < 48 ≤ 4.5 - 23 Sickle Cell
4 < 100 < 48 > 4.5 < 11 128 Iron deficiency
5 <100 < 48 > 4.5 ≥ 11 148 Normal

Table 2. Attributes of anemia dataset.

Attribute Attribute value Attribute category
Age 6-56 0-13 Child, >13 Adult

Gender 1,2 1 = Male, 2 = Female
HB 1.46-18.2 < 11 Severe, 11-15 Moderate
RBC 0.96-11.9 < 4.5 Low, 4.5-6.5 Normal, > 6.5 High
MCV 38.6-117 < 80 Microcytic, 80-100 Normocytic, ≥ 100 Macrocytic
HCT 7.7-51.7 < 35 Low, 35-48 Normal, ≥ 48 High

3. Support vector machine

Vladimir Vapnik began examining Support Vec-
tor Machines (SVMs) in the late 1970s, but in the
late 1990s, the field began to gain extreme recog-
nition [32]. The SVMs are supervised learning
algorithms operated by statistical learning theory
to identify patterns and perform suitable regres-
sion.

Statistical learning theory can accurately iden-
tify the components needed for successful learn-
ing of certain basic algorithms. However, due to
the complexity of more intricate models and al-
gorithms used in real-world applications, it is dif-
ficult to analyze them theoretically.

The SVMs can be thought of as a combination of
learning theory and practicality, which is simple
enough to be understood mathematically. This
is due to the fact that an SVM can be regarded
as a linear model in a high-dimensional space and
the SVMs are able to go beyond the limitations of
linear learning machines by incorporating a kernel
function, allowing for the discovery of a nonlinear
decision function [33].

4. The PSO-SVM algorithm

The process of feature selection can be regarded as
a challenge of global combinatorial optimization
in machine learning, wherein the amount of fea-
tures is reduced and also unimportant, noisy and
redundant information is eliminated to achieve a
satisfactory classification accuracy. The signifi-
cance of this method is immense in the fields of
pattern recognition, medical data analysis, ma-
chine learning, and data mining. In order to
increase processing rate, accuracy, and reduce
incomprehensibility, a reliable feature selection

method that takes into account the number of
features studied for sample classification is nec-
essary.

In this study, a binary version of the PSO algo-
rithm has been used and the placement of each
particle is indicated through a binary string that
symbolizes the feature choice situation. The po-
sition and velocity of each particle is revised in
accordance with the following equations:

V new
pd = wV old

pd + c1rand1(Pbestpd −Xold
pd )

+ c2rand2(gbestd −Xold
pd )

(3)

S(V new
pd ) =

1

1 + e−V new
pd

(4)

if(rand < S(V new
pd ))then Xnew

pd = 1;

else Xnew
pd = 0

(5)

where V new
pd and V old

pd are the particle velocities,

Xold
pd shows the current position, and Xnew

pd rep-
resents the updated position for the related solu-
tion. The values Pbestpd and gbestd are defined
as local and global best fitness value. The rand1
and rand2 are randomly generated numbers be-
tween 0 to 1, whereas c1 and c2 are acceleration
factors, usually chosen as c1 = c2 = 2. Veloci-
ties for each dimension have been tried to reach a
maximum velocity Vmax. If the combined veloci-
ties of a given dimension add up to more than the
predetermined value of Vmax, the velocity of that
dimension will be restricted to Vmax, which is a
value set by the user.

After renewal, the new feature is calculated as in
Eq. 4, where V new

pd represents the velocity. If cal-

culated value S(V new
pd ) is greater than a randomly
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generated number that is between (0, 1), then its
position value Fn, n = 1, 2, . . . ,m is represented
as 1 by meaning that this feature is chosen to
be a required feature for the upcoming renewal.
Otherwise, the value is represented as 0.

A one-layer SVM model has only the capability
of distinguishing between two types of anemia, as
it is a binary classifier. Because of this limita-
tion, in this study, a four-layer SVM classifier, as
illustrated in Figure 4, has been used to predict
anemia, which includes four disease states and one
normal state.

Figure 4. Four-layer SVM classifier.

The anemia dataset has been randomly split into
two groups: 80% for training samples and 20% for
testing samples. Before the application, the PSO
algorithm has been used to determine the best
combination of parameters (c, δ)for each SVM
based on the training samples. The testing sam-
ples have verified the effectiveness of the multi-
layer SVM classifier.

An illustration of the setup of the PSO-SVM
model for predicting anemia is presented in Figure
5.

Figure 5. Flowchart of the predic-
tion of anemia.

The results of the anemia prediction from the test-
ing samples are presented in Table 3. Comparing

the two models, the PSO-SVM exhibits a higher
overall accuracy than the SVM.

5. Results and discussion

The developed PSO-SVM algorithm has intended
to predict anemia outcomes based on the testing
samples presented in Table 3 and Figure 6. It has
greater overall accuracy than the SVM algorithm,
and has been attempted to locate the blood vari-
ables of the clustered data for each type of anemia.
The algorithm assesses whether the data for each
anemia type is categorized precisely.

Figure 6. Comparison of the PSO-
SVM and SVM algorithms by general
accuracy (%).

It can be a wise move to observe the distribu-
tion of data both practically and computation-
ally. The comparison between the computed re-
sults and the actual values has been displayed in
Figures 7, 8. It is evident that the calculated
results of all clusters are in agreement with the
actual results.

As seen in Table 3 and Figure 6, the produced
results of the PSO-SVM algorithm are generally
good outperform with the results of the SVM al-
gorithm. For example, the accuracy of the PSO-
SVM and the SVM algorithms are 80% and 70%
and success set 8 and 7 people for cluster 1, re-
spectively. Similarly, in the same order, the al-
gorithm’s accuracy of the cluster 2 are 98.26%
and 96.52% and success set 226 and 222 people.
The two algorithms generated results of 21 and
20 individuals for Cluster 3, which is 3 lower than
the actual number of 23, and so the accuracies
are 91.3% and 86.95%, respectively. The success
set of the algorithms in the cluster 4 are 123 and
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Table 3. Comparison of the PSO-SVM and SVM algorithms by general accuracy (%)

Cluster Algorithms Test Set Success Set Fail Set Accuracy (%)
C1 SVM 10 7 3 70

PSO-SVM 8 2 80
C2 SVM 230 222 8 96.52

PSO-SVM 226 4 98.26
C3 SVM 23 20 3 86.95

PSO-SVM 21 2 91.3
C4 SVM 128 120 8 93.75

PSO-SVM 123 5 96.09
C5 SVM 148 140 8 94.59

PSO-SVM 144 4 97.29

120 people and the accuracies 96.09% and 93.75%.
Also, for the cluster 5 the success set are 144 and
140 and the accuracies 97.29%, 94.59%, respec-
tively.

0 2 4 6 8 10 12 14 16 18 20

HB

0

2

4

6

8

10

12

R
B

C

(a)

0 2 4 6 8 10 12 14 16 18 20

HB

30

40

50

60

70

80

90

100

110

120

M
C

V

(b)

0 2 4 6 8 10 12 14 16 18 20

HB

5

10

15

20

25

30

35

40

45

50

55

H
C

T

(c)

0 2 4 6 8 10 12

RBC

30

40

50

60

70

80

90

100

110

120

M
C

V

(d)

0 2 4 6 8 10 12

RBC

5

10

15

20

25

30

35

40

45

50

55

H
C

T

(e)

30 40 50 60 70 80 90 100 110 120

MCV

5

10

15

20

25

30

35

40

45

50

55

H
C

T

(f)

Figure 7. Five clusters (a) HB and
RBC parameter, (b) HB and MCV
parameter, (c) HB and HCT param-
eter, (d) RBC and MCV parameter,
(e) RBC and HCT parameter, (f)
MCV and HCT parameter of every
subject without classification.

The five groups with different parameters with-
out classification can be seen in Figure 7. On the
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other hand, the five groups with different param-
eters after classification can be seen in Figure 8.

The results of Figure 8 demonstrated that the
algorithm used in the research was designed to
determine the correct number of subjects in the
clusters, as well as the anemia types in those clus-
ters. By utilizing the PSO-SVM algorithm, the
accuracy of the data clustering and the effects
of biomedical information on the anemia types
have been examined. In literature, various ver-
sions of the PSO-SVM algorithm have been de-
veloped for different issues in multiple scientific
fields. In comparison to the literature, the PSO
and SVM clustering algorithms have been ob-
served to be extremely successful for their own
concerns [29–31, 34–43]. This study successfully
created a combined version of the algorithm, as
well as its computer code.

In this study, the PSO and SVM algorithms and
their combination have been used for the first time
to detect anemia types. One of the most signifi-
cant contributions of this study is its application
of the algorithm to anemia data for the first time.
It has been examined whether it would be success-
ful in this area, like in other areas of science. The
combination of the SVM and the PSO resulted in
very effective outcomes in the investigation of the
anemia types. This application in this field can
assist clinicians in predicting the anemia types.
The goal of the clustering was to distinguish the
anemia types into normal or pathological classes
accurately. The number of clusters for the algo-
rithm was given by the user. Subjects were split
into 5 clusters based on their blood variables. The
performance of the hybrid algorithm was deter-
mined by using the blood variables to predict the
anemia types. This demonstrates that the pro-
posed algorithm has been seen to be more effective
when there is a well-structured algorithm with a
sufficient amount of data.
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Figure 8. Five clusters (a) HB and
RBC parameter, (b) HB and MCV
parameter, (c) HB and HCT param-
eter, (d) RBC and MCV parameter,
(e) RBC and HCT parameter, (f)
MCV and HCT parameter of every
subject with PSO-SVM.

6. Conclusions

This research has evaluated the feasibility of the
PSO-SVM algorithm to predict anemia using
biomedical variables. This was the first attempt
to use this newly combined approach to predict
anemia. The results generated by the PSO-SVM
algorithm have been compared to the actual val-
ues and have been found to be highly effective in
enhancing anemia predictions through biomedical
factors. The findings suggest that this method
could be clinically valuable for creating suitable
treatment programs for patients. More clusters
could be used for further research, as the current
data structure is limited in terms of medical anal-
ysis point of view.
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1. Introduction

Differential equations are essential for a mathe-
matical description of Nature. Many of the gen-
eral laws of Nature–in physics, chemistry, biol-
ogy, economics, and engineering find their most
natural expression in the language of differential
equation. Differential equation (DE) allows us
to study all kinds of evolutionary processes with
the properties of finite-dimensionality and differ-
entiability. Derivative of arbitrary order arises
from many physical processes, such as a charge
transport in amorphous semiconductors, electro-
chemistry and material science, where they are
described by differential equations of arbitrary or-
der, see [1–4]. Recently, many researchers have
exposed attention in the field of fractional dif-
ferential equations theory, which will be used to
describe phenomena of real-world problems. For

more details; we refer the reader to the papers
[5–18]. On the other hand, hybrid differential
equations have gained extensive attention from
many scholars; see for example [19–21]. Hybrid
differential equations and coupled hybrid systems
involving fractional derivatives have also been in-
vestigated by scientific researchers; see for in-
stance [22–28] and the references cited therein.
In recent years, sequential fractional hybrid dif-
ferential equations have been studied by several
researchers [29–34]. On the other hand, the sta-
bility of solutions of differential equations is im-
portant in physical problems because if slight de-
viations from the mathematical model caused by
unavoidable errors in measurement do not have a
correspondingly slight effect on the solution, the
mathematical equations describing the problem
will not accurately predict the future outcome.
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224

http://creativecommons.org/licenses/by/4.0/


Existence and stability analysis to the sequential coupled hybrid system of fractional differential . . . 225

For example, one of the difficulties in predicting
population growth is the fact that it is governed
by the equation w(t) = ceat, which is an unsta-
ble solution of the equation w′(t) = aw(t). Even
if there are no unfavourable factors, very few in-
accuracies in the initial population count (c) or
breeding rate (a) will result in fairly significant er-
rors in prediction. One of the interesting subjects
in this area, is the investigation of the existence
and stability of solutions, because the study of the
existence of solution of the fractional differential
equation(FDE) became important due to the lack
of a general formula for solving nonlinear FDEs,
see [29, 30, 32, 33]. Recently, Some scholars have
discussed the existence, uniqueness, and different
types of Ulam stability of solutions of fractional
sequential hybrid differential equations [29,32,33]
and the references cited therein. The classical
form of hybrid differential equation [35] is given
by the following differential equation


d

dt

[
w (t)

ψ (t, w (t))

]
= φ (t, w (t)) , 0 ≤ t ≤ T,

w (t0) = w0, w0 ∈ R,

where ψ ∈ C ([0, T ]× R,R− {0}) and φ ∈
C ([0, T ]× R → R). Many scientific researchers
have studied different fractional types of the
above hybrid differential equation. For example
in [36], the authors have discussed the fractional
hybrid differential equations involving Riemann-
Liouville differential operators


RLD

[
w (t)

ψ (t, w (t))

]
= φ (t, w (t)) , 0 ≤ t ≤ T,

w (0) = 0,

where 0 << 1, ψ ∈ C ([0, T ]× R,R− {0}) and
φ ∈ C ([0, T ]× R,R).
In [37], the authors studied the existence and
uniqueness of solutions of coupled hybrid frac-
tional differential equations described by



CD

[
w (t)

ψ1 (t, w (t) , z (t))

]
= φ (t, w (t) , z (t)) ,

CD

[
z (t)

ψ2 (t, w (t) , z (t))

]
= ϕ (t, w (t) , z (t)) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

where t ∈ [0, 1] , 1 <≤ 2, 1 <≤ 2, ψj ∈
C ([0, 1]× R,R− {0}) , j = 1, 2 and φ, ϕ ∈

C ([0, 1]× R,R). The existence and unique-
ness results were obtained by applying Leray-
Schauder’s alternative criterion and Banach’s
contraction mapping principle.

Motivated by above-mentioned works, in this pa-
per, we discuss the existence, uniqueness and
Ulam-Hyers-Rassias stability of solution for se-
quential coupled fractional hybrid system of the
following form



RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
=

k∑
i=1

φi (t, w (t) , z (t)) ,

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
=

k∑
i=1

ϕi (t, w (t) , z (t)) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

(1)

where 0 ≤ t ≤ 1, 0 <,< 1,+ > 1, 0 <,< 1,+ >
1, RLD,∈ {, } and CD,∈ {, } are the Riemann-
Liouville and Caputo fractional derivatives re-
spectively, ψj : [0, 1] × R2 → R − {0} , j = 1, 2
and φi, ϕi : [0, 1]×R2 → R, 1 ≤ i ≤ k, are contin-
uous functions.

We impose the following hypotheses throughout
the paper:

(H1) For each i = 1, 2, ..., k, the functions
φi, ϕi : [0, 1] × R2 → R are contin-
uous and there exist constants πi >
0, ϑi > 0 such that for all t ∈ [0, 1]
and (w1, z1) , (w2, z2) ∈ R2 → R are con-
tinuous and there exist constants πi >
0, ϑi > 0 such that for all t ∈ [0, 1] and
(w1, z1) , (w2, z2) ∈ R2,

|φi(t, w1, z1)− φi(t, w2, z2)|
≤ πi(|w1 − z1|+ |w2 − z2|),

and

|ϕi(t, w1, z1)− ϕi(t, w2, z2)|
≤ ϑi(|w1 − z1|+ |w2 − z2|)

for i = 1, 2, · · · , k,
(H2) For all j = 1, 2, the functions ψj : [0, 1]×

R2 → R − {0} are continuous and there
exist constants Πj > 0 such that

ψ1 (t, w, z) ≤ Π1 and ψ2 (t, w, z) ≤ Π2,

for each t ∈ [0, 1] and (w, z) ∈ R2.
(H3) For each i = 1, 2, ..., k, the functions

φi, ϕi : [0, 1]×R2 → R are continuous and
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there exist constants γi, ωi, γ
′
i, ω

′
i ≥ 0 and

λi > 0, λ
′
i > 0 such that for all t ∈ J and

w, z ∈ R, we have

φi (t, w, z) ≤ λi + γi |w|+ ωi |z| ,
and

ϕi (t, w, z) ≤ λ
′
i + γ

′
i |w|+ ω

′
i |z| .

The rest of the paper is organized in the follow-
ing fashion. In Section 2, we introduce some ba-
sic definitions and lemmas which are useful in our
main results. In Section 3, we establish a criteria
for the existence and uniqueness of solutions to
the boundary value problem (1) by applying the
Leray-Schauder’s alternative fixed point theorem
and the Banach’s contraction mapping principle
in a Banach space. In section 4, we study Ulam-
Hyers-Rassias stability of solutions to the problem
(1). Finally, as an application, we demonstrate
our results with example.

2. Preliminaries

In this section, we introduce some basic defini-
tions and lemmas which are useful for our later
discussions.

Definition 1. [38] The Riemann-Liouville frac-
tional integral of order > 0 for a function f :
(0,∞) → R is defined as

If (t) =
1

Γ()

∫ t

0
(t− s)−1f(s)ds,

provided that the right side is pointwise defined on
(0,∞).

Definition 2. [38] The Riemann-Liouville frac-
tional derivative of order > 0 for a continuous
function f : (0,∞) → R is defined as

Df (t) =
1

Γ(m−)

(
d

dt

)m ∫ t

0

f(s)

(t− s)−m−1
ds,

where m = [] + 1, provided that the right side is
pointwise defined on (0,∞).

Definition 3. [38] For a function f given on
the interval [0,∞), The Caputo derivative of frac-
tional order γ for the function f continuous on
[0,∞) is defined as

CDf (t) =
1

Γ(m−)

∫ t

0
(t− s)m−−1f (m)(s)ds,

m = [] + 1.

Lemma 1. [12] Let , > 0 and h ∈ L1([0, 1]).
Then IIh(t) = I+h(t) and RLDIh(t) = h (t) .

Lemma 2. [12] Let >> 0 and h ∈ L1([0, 1]).
Then RLDIh(t) = I−h(t).

Lemma 3. [12] Let > 0. Then for w ∈ C (0, 1)∩
L1 (0, 1) and RLDw ∈ C (0, 1) ∩ L1 (0, 1) , we have

IRLDw (t) = w (t) + c1t
−1 + c2t

−2 + · · ·+ cnt
−n,

where ci ∈ R, i = 1, 2, ..., n, n = [] + 1.

Lemma 4. [12] Let > 0. Then

I
[
CDw (t)

]
= w (t)+c0+c1t,+c2t

2+...+cn−1t
n−1,

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, n− 1 << n.

Lemma 5. For g, h ∈ C ([0, 1] ,R) and ψj ∈
C(
(
[0, 1]× R2,R− {0}

)
, j = 1, 2, the boundary

value problem



RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
= g(t),

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
= h (t) ,

w (0) = w (1) = 0, z (0) = z (1) = 0,

(2)

where 0 ≤ t ≤ 1, 0 <,< 1, + > 1, 0 <,< 1,
+ > 1, has a unique solution

w (t) = ψ1(t, w (t) , z(t))

[ ∫ t

0

(t− s)+−1

Γ(+)
g(s)ds

− t+−1

∫ 1

0

(1− s)+−1

Γ(+)
g(s)ds

]
,

(3)
and

z (t) = ψ2(t, w(t), z(t))

[ ∫ t

0

(t− s)+−1

Γ (+)
g (s) ds

− t+−1

∫ 1

0

(1− s)+−1

Γ (+)
g (s) ds

]
.

(4)

Proof. Using Lemma 3, we can write

w (t)

ψ1 (t, w (t) , z (t))
= Ig (t) + a1t

−1,

z (t)

ψ2 (t, w (t) , z (t))
= Ih (t) + b1t

−1,

where a1, b1 ∈ R. Now by Lemma 4, we have
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w (t) = ψ1(t, w(t), z(t))

[
I+g (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

(5)

z (t) = ψ2(t, w (t) , z (t))

[
I+h (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

(6)

where a2, b2 ∈ R. Using boundary conditions
w (0) = w (1) = z (0) = z (1) = 0, we obtain
a2 = b2 = 0,

a1 = −Γ (+)

Γ ()

∫ 1

0
(1− s)+−1 g (s) ds,

and

b1 = −Γ (+)

Γ ()

∫ 1

0
(1− s)+−1 h (s) ds.

Substituting the values of aj , bj , j = 1, 2 in (5)
and (6), we get (3) and (4). □

3. Existence and uniqueness of
solutions to the sequential coupled
hybrid system

We will use the standard fixed point theorems, to
study the fractional hybrid system (1). In this
regard, we define the space

W× Z = {(w, z) : w, z ∈ C([0, 1] ,R)} ,

endowed with the norm ∥(w, z)∥W×Z = ∥w∥+∥z∥ ,
where ∥w∥ = sup {|w (t)| : t ∈ [0, 1]} . It is clear
that

(
W× Z, ∥.∥W×Z

)
is a Banach space. Define an

operator O : W× Z → W× Z by

O (w, z) (t) = (O1 (w, z) (t) , O2 (w, z) (t)) , t ∈ [0, 1] ,

where

O1 (w, z) (t) = ψ1 (t, w (t) , z (t))N1(t), (7)

in which

N1(t) =
k∑

i=1

∫ t

0

(t− s)+−1

Γ (+)
φi (s, w (s) , z (s)) ds

−
k∑

i=1

∫ 1

0

[t (1− s)]+−1

Γ (+)
φi (s, w (s) , z (s)) ds,

and

O2 (w, z) (t) = ψ2 (t, w (t) , z (t))N2(t), (8)

in which

N2(t) =
k∑

i=1

∫ t

0

(t− s)+−1

Γ (+)
ϕi (s, w (s) , z (s)) ds

−
k∑

i=1

∫ 1

0

[t (1− s)]+−1

Γ (+)
ϕi (s, w (s) , z (s)) ds

]
.

Now, we prove the existence of solutions of the
fractional hybrid system (1) by applying Leray-
Schauder nonlinear alternative [39].

Lemma 6. (Leray-Schauder alternative). Let
F : E → E be a completely continuous opera-
tor (i.e.,a map that restricted to any bounded set
in E is compact). Let

(F ) = {u ∈ E : u = λF (u) for some 0 < λ < 1} .

Then either the set (F ) is unbounded, or F has
at least one fixed point.

Theorem 1. Assume that hypotheses (Hj)j=2,3

are satisfied. Furthermore, assume that

k∑
i=1

(
Π1γi

Γ (+ + 1)
+

Π2γ
′
i

Γ (+ + 1)

)
<

1

2
,

and
k∑

i=1

(
Π1ωi

Γ (+ + 1)
+

Π2ω
′
i

Γ (+ + 1)

)
<

1

2
.

Then the system (1) has at least one solution on
[0, 1].

Proof. In the first step, we show that the opera-
tor O : W×Z → W×Z is completely continuous. By
continuity of the functions ψj , φi, ϕi, j = 1, 2, i =
1, 2, ..., k, it follows that the operator O is contin-
uous.

Let Σ ⊂ W × Z be bounded. Then we can find
positive constants Ai, Bi, i = 1, 2, ..., k such that

|φi (t, w (t) , z (t))| ≤ Ai, |φi (t, w (t) , z (t))| ≤ Bi

for all (w, z) ∈ Σ. Then for any (w, z) ∈ Σ we
have

∥O1 (w, z) ∥

≤Π1

[
1

Γ (+)

k∑
i=1

∫ t

0
(t− s)+−1 |φi (s, w (s) , z (s))| ds

+
t+−1

Γ (+)

k∑
i=1

∫ 1

0
(1− s)+−1 |φi (s, w (s) , z (s))| ds

]

≤
k∑

i=1

2Π1Ai

Γ (+ + 1)
,
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which yields

∥O1 (w, z)∥ ≤
k∑

i=1

2Π1Ai

Γ (+ + 1)
< +∞. (9)

Also,

∥O2 (w, z)∥ ≤
k∑

i=1

2Π2Bi

Γ (+ + 1)
< +∞. (10)

Hence, by (9) and (10), we deduce that the oper-
ator O is uniformly bounded.

Next, we show that O is equicontinuous. For all
0 ≤ t2 < t1 ≤ 1, we have∣∣O1 (w, z)(t1)− O1(w, z)(t2)

∣∣
≤

k∑
i=1

Π1Ai

Γ (+ + 1)

( [
(t1 − t2)

+ +
∣∣t+1 − t+2

∣∣]
+
∣∣t+−1
1 − t+−1

2

∣∣ ), (11)

and

|O2 (w, z)(t1)− O2(w, z)(t2)|

≤
k∑

i=1

Π2Bi

Γ (+ + 1)

([
(t1 − t2)

+ +
∣∣t+1 − t+2

∣∣ ]
+ |t+−1

1 − t+−1
2 |

)
. (12)

From (11) and (12), ∥O (w, z) (t1)− O (w, z) (t2)∥W×Z

→ 0 as t2 → t1. Thus, by using the Arzela-
Ascoli theorem one can conclude that the opera-
tor O : W× Z → W× Z is completely continuous.

Finally, it will be verified that the set

Ψ =
{
(w, z) ∈ W× Z, (w, z) = O (w, z) , 0 ≤≤ 1

}
is bounded. Let (w, z) ∈ Ψ. Then, for each
t ∈ [0, 1] , we can write

w (t) = O1 (w, z) (t) and z (t) = O2 (w, z) (t) .

Then, we have

|w (t)| ≤ Π1|N1(t)|,
and

|z (t)| ≤ Π2|N2(t)|.
From (H3), we obtain

|w (t)| ≤ 2Π1

Γ (+ + 1)
(λ0 + λ1 |w (t)|+ λ2 |z (t)|) ,

and

|z (t)| ≤ 2Π2

Γ (+ + 1)
(γ0 + γ1 |w (t)|+ γ2 |z (t)|) .

Hence, we have

∥w∥ ≤
k∑

i=1

2Π1

Γ (+ + 1)
(λi + γi ∥w∥+ ωi ∥z∥) ,

and

∥z∥ ≤
k∑

i=1

2Π2

Γ (+ + 1)

(
λ′i + γ′i ∥w∥+ ω′

i ∥z∥
)
,

which imply that

∥w∥+ ∥z∥

≤
k∑

i=1

2Π1

Γ (+ + 1)
λi +

k∑
i=1

2Π2

Γ (+ + 1)
λ′i

+

(
k∑

i=1

2Π1

Γ (+ + 1)
γi +

k∑
i=1

2Π2

Γ (+ + 1)
γ′i

)
∥w∥

+

(
k∑

i=1

2Π1

Γ (+ + 1)
ωi +

k∑
i=1

2Π2

Γ (+ + 1)
ω′
i

)
∥z∥ .

Consequently,

∥ (w, z) ∥W×Z ≤
1

G

[ k∑
i=1

2Π1

Γ(+ + 1)
λi

+

k∑
i=1

2Π2

Γ (+ + 1)
λ′i

]
,

for all t ∈ [0, 1], where G = min{d1, d2}, in which

d1 = 1−

(
k∑

i=1

2Π1

Γ (+ + 1)
γi +

k∑
i=1

2Π2

Γ (+ + 1)
γ′i

)
,

and

d2 = 1−

(
k∑

i=1

2Π1

Γ (+ + 1)
ωi +

k∑
i=1

2Π2

Γ (+ + 1)
ω′
i

)
.

This shows that the set Ψ is bounded. Hence all
the conditions of Lemma 6 are satisfied and conse-
quently the operator O has at least one fixed point,
which corresponds to a solution of the system (1).
This completes the proof. □

In the next result, we establish the existence of
uniqueness solutions to the fractional hybrid sys-
tem (1) by using Banach’s fixed point theorem.

Theorem 2. Assume that (Hj)j=1,2 hold and that

k∑
i=1

πi
Γ (+ + 1)

<
1

4Π1
, i = 1, 2, · · · , k,

k∑
i=1

ϑi
Γ (+ + 1)

<
1

4Π2
, i = 1, 2, · · · , k.

(13)

Then the problem (1) has a unique solution on
[0, 1].

Proof. Define supt∈[0,1] |φi (t, 0, 0)| = Λi < ∞
and supt∈[0,1] |ϕi (t, 0, 0)| = ∇i < ∞, i = 1, 2, ..., k

such that max{℘1, ℘2} ≤, i = 1, 2, ..., k, where
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℘1 =

k∑
i=1

Π1Λi

Γ(+ + 1)

[
1

4
−

k∑
i=1

Π1πi
Γ(+ + 1)

]−1

,

and

℘2 =

k∑
i=1

Π2∇i

Γ(+ + 1)

[
1

4
−

k∑
i=1

Π2ϑi
Γ(+ + 1)

]−1

.

Firstly, we show that OB ⊂ B, where B ={
(w, z) ∈ W× Z : ∥(w, z)∥W×Z ≤

}
. For all (w, z) ∈

B and t ∈ [0, 1] , we have

|φi (t, w (t) , z (t))|
≤ |φi (t, w (t) , z (t))− φi (t, 0, 0)|+ |φi (t, 0, 0)|
≤ πi (|w (t)|+ |z (t)|) + Λi ≤ πi (∥w∥+ ∥z∥) + Λi

≤ πi ∥(w, z)∥+ Λi ≤ πi + Λi, i = 1, 2, ..., k.

Similarly, we have

|ϕi (t, w (t) , z (t))|
≤ |ϕi (t, w (t) , z (t))− ϕi (t, 0, 0)|+ |ϕi (t, 0, 0)|
≤ ϑi (|w (t)|+ |z (t)|) +∇i ≤ ϑi (∥w∥+ ∥z∥) +∇i

≤ ϑi ∥(w, z)∥+∇i ≤ ϑi +∇i, i = 1, 2, ..., k,

Using (3), we can write

|O1 (w, z) (t)| ≤Π1 sup
t∈[0,1]

{
N1(t)

}
≤
∑k

i=1 2Π1πi
Γ (+ + 1)

+

∑k
i=1 2Π1∇i

Γ (+ + 1)
,

which implies that

∥O1(w, z)∥

≤
k∑

i=1

Π1πi
Γ (+ + 1)

+
k∑

i=1

Π1Λi

Γ (+ + 1)

≤
4
.

Also, by (3), we have

∥O2 (w, z) ∥

≤
k∑

i=1

Π2ϑi
Γ (+ + 1)

+
k∑

i=1

Π2∇i

Γ (+ + 1)

≤
4
.

From the definition of ∥ · ∥W×Z, we have

∥O (w, z) ∥W×Z

≤
k∑

i=1

(
Π1πi

Γ (+ + 1)
+

Π1ϑi
Γ (+ + 1)

)

+
k∑

i=1

(
Π2Λi

Γ (+ + 1)
+

Π2∇i

Γ (+ + 1)

)
≤

2
,

which implies that OB ⊂ B. Next, for
(w1, z1) , (w2, z2) ∈ B and for each t ∈ [0, 1], we
have

∣∣O1(w1, z1)(t)− O1(w2, z2)(t)
∣∣

≤ Π1 sup
t∈[0,1]

{ k∑
i=1

∫ t

0

(t− s)+−1

Γ (+)
Υ(s)ds

+ t+−1
k∑

i=1

∫ 1

0

(1− s)+−1

Γ (+)
Υ2(s)ds

}
.

where

Υ2(s) = |φi (s, w1 (s) , z1 (s))− φi (s, w2 (s) , z2 (s))| ,
Υ2(s) = |φi (s, w1 (s) , z1 (s))− φi (s, w2 (s) , z2 (s))| .

From (H1), we can write

∥O1 (w1, z1)− O1 (w2, z2) ∥

≤
k∑

i=1

2Π1πi
Γ (+ + 1)

∥(w1 − w2, z1 − z2)∥W×Z .

Similarly, we obtain

∥O2 (w1, z1)− O2 (w2, z2) ∥

≤
k∑

i=1

2Π2ϑi
Γ (+ + 1)

∥(w1 − w2, z1 − z2)∥W×Z .

Consequently, we obtain

∥O (w1, z1)− O (w2, z2) ∥W×Z

= ∥O1 (w1, z1)− O1 (w2, z2)∥
+ ∥O2 (w1, z1)− O2 (w2, z2)∥

≤
[ k∑

i=1

(
2Π1πi

Γ (+ + 1)
+

2Π2ϑi
Γ (+ + 1)

)]
×
∥∥(w1 − w2, z1 − z2)

∥∥
W×Z

.

Thanks to (13), we conclude that O is a contrac-
tion mapping. Hence, by the Banach fixed point
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theorem, there exists a unique fixed point which
is a solution of system (1). This completes the
proof. □

4. Stability in Ulam-Hyers-Rassias
sense

In the following section, we consider the Ulam’s
type stability of the fractional hybrid system (1).
For t ∈ [0, 1] , we give the following inequalities:



∣∣∣∣RLD [CD [ w1 (t)

ψ1 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

φi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d1,∣∣∣∣RLD [CD [ z1 (t)

ψ2 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

ϕi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d2,

(14)

and

∣∣∣∣RLD [CD [ w1 (t)

ψ1 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

φi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d1u (t) ,∣∣∣∣RLD [CD [ z1 (t)

ψ2 (t, w1 (t) , z1 (t))

]]
−

k∑
i=1

ϕi (t, w1 (t) , z1 (t))

∣∣∣∣ ≤ d2u (t) ,

(15)

where dj , j = 1, 2 are positive reals numbers and
u : [0, 1] → R+, is continuous function.

Definition 4. [40] System (1) is Ulam-Hyers
stable if there exists a real number ρφi,ϕi

=
(ρφi , ρϕi

) > 0, i = 1, 2, ..., k such that for each
d = max (d1, d2) > 0 and for each solution
(w1, z1) ∈ W × Z of the inequality (14) there ex-
ists a solution (w, z) ∈ W × Z of the system (1)
with

|(w1 (t)− w (t) , z1 (t)− z (t))| ≤ ρφi,ϕi
d,

for t ∈ [0, 1] , i = 1, 2, ·, k.

Definition 5. [40] System (1) is Ulam-Hyers-
Rassias stable with respect to u ∈ C ([0, 1] ,R) if
there exists a real number ςφi,ϕi,u = (ςφi,u, ςϕi,u) >
0 such that for each d = max (d1, d2) > 0 and for
each solution (w1, z1) ∈ W × Z of the inequality
(15) there exists a solution (w, z) ∈ W × Z of the
system (1) with

|(w1 (t)− w (t) , z1 (t)− z (t))| ≤ ςφi,ϕi,udu (t) ,

for t ∈ [0, 1] , i = 1, 2, ·, k.

Theorem 3. Assume that (Hj)j=1,2 hold. If

k∑
i=1

πi
Γ (+ + 1)

<
1

Π1
,

k∑
i=1

ϑi
Γ (+ + 1)

<
1

Π2
,

(16)

then the problem (1) is Ulam-Hyers stable.

Proof. Let (w1, z1) ∈ W × Z be a solution of the
inequality (14) and let (w, z) ∈ W×Z be the unique
solution of the system

RLD

[
CD

[
w (t)

ψ1 (t, w (t) , z (t))

]]
=

k∑
i=1

φi (t, w (t) , z (t)) ,

RLD

[
CD

[
z (t)

ψ2 (t, w (t) , z (t))

]]
=

k∑
i=1

ϕi (t, w (t) , z (t)) ,

w (0) = w1 (0) , w (1) = w1 (1) ,

z (0) = z1 (0) , z (1) = z1 (1) .

By Lemma 5, we have

w (t) = ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

and

z (t) = ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

such that

gwi (t) = φi (t, w (t) , z (t)) , i = 1, 2, · · · , k,
hzi (t) = ϕi (t, w (t) , z (t)) , i = 1, 2, · · · , k.

Integrating (14), we obtain∣∣∣∣w1 (t)− ψ1(t, w(t), z(t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣
≤ d1t

+

Γ (+ + 1)
≤ d1

Γ (+ + 1)
,
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and ∣∣∣∣z1 (t)− ψ2(t, w(t), z(t))

[ k∑
i=1

I+hzi (t)

+
b3Γ ()

Γ (+)
t+−1 + b4

]∣∣∣∣
≤ d2t

+

Γ (+ + 1)
≤ d2

Γ (+ + 1)
.

From (Hj)j=1,2, we have

|w1 (t)− w (t) |

≤
∣∣∣∣w1 (t)− ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣
+ |ψ1 (t, w (t) , z (t))|

k∑
i=1

I+ |gw1
i (t)− gwi (t)|

≤ d1
Γ (+ + 1)

+
k∑

i=1

Π1I
+ |gw1

i (t)− gwi (t)| ,

this implies that

|w1 (t)− w (t) |

≤ d1
Γ (+ + 1)

+
k∑

i=1

Π1πi
Γ (+ + 1)

[
|w1 (t)− w (t)|

+ |z1 (t)− z (t)|
]
.

Similarly, we get

|z1 (t)− z (t) |

≤ d2
Γ (+ + 1)

+
k∑

i=1

Π2ϑi
Γ (+ + 1)

[
|w1 (t)− w (t)|

+ |z1 (t)− z (t)|
]
.

Thus,

|(w1(t), z1(t))− (w (t) , z (t)) |

≤

1

Γ (+ + 1)
+

1

Γ (+ + 1)

min {x1, x2}
d := ρφi,ϕi

d,

where

x1 =
1

Π1
−

k∑
i=1

πi
Γ (+ + 1)

,

x2 =
1

Π2
−

k∑
i=1

ϑi
Γ (+ + 1)

.

Hence the system (1) is Ulam-Hyers stable. □

Theorem 4. Assume that (Hj)j=1,2 and (16)

hold. Suppose there exist υ1u > 0, υ2u > 0 such
that

I+u (t) ≤ υ1uu(t), I
+u (t) ≤ υ2uu(t), t ∈ [0, 1] ,

(17)

where u ∈ C([0, 1] ,R+) is nondecreasing. Then
the system (1) is Ulam-Hyers-Rassias stable.

Proof. Let (w1, z1) ∈ W×Z is a solution of the in-
equality (15) and let us assume that (w, z) ∈ W×Z

is a solution of system (1). Thus, we have

w (t) =ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a1Γ ()

Γ (+)
t+−1 + a2

]
,

z (t) =ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b1Γ ()

Γ (+)
t+−1 + b2

]
,

From inequality (15), we have

∣∣∣∣w1 (t) − ψ1 (t, w (t) , z (t))

[ k∑
i=1

I+gwi (t)

+
a3Γ ()

Γ (+)
t+−1 + a4

]∣∣∣∣ ≤ d1I
+u(t),

and ∣∣∣∣z1 (t) − ψ2 (t, w (t) , z (t))

[ k∑
i=1

I+hzi (t)

+
b3Γ ()

Γ (+)
t+−1 + b4

]∣∣∣∣ ≤ d2I
+u(t).

Now, using (Hj)j=1,2 and (17), we get

|w1 (t)− w (t) |

≤ d1υ1uu(t) +
k∑

i=1

Π1πi
Γ (+ + 1)

(|w1 (t)− w (t)|

+ |z1 (t)− z (t)|),
and

|z1 (t)− z (t) |

≤ d2υ2uu(t) +
k∑

i=1

Π2ϑi
Γ (+ + 1)

(|w1 (t)− w (t)|

+ |z1 (t)− z (t)|).
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Consequently,

|(w1(t), z1(t))− (w (t) , z (t)) | ≤ υ1u + υ2u
min {k1,k2}

du(t)

:= ςφi,ϕi,udu(t),

where

k1 = 1−
k∑

i=1

Π1πi
Γ (+ + 1)

,

and

k2 = 1−
k∑

i=1

Π2ϑi
Γ (+ + 1)

.

Hence the system (1) is stable in Ulam-Hyers-
Rassias sense. □

5. Application

To illustrate our main results, we treat the follow-
ing example.

Example 1. Consider the following fractional
hybrid system:



RLD
4
5

[
CD

2
3

[
w (t)

sinw(t)+1
15 + 1 + 1

13e
−t2 cos z (t)

]]

=
cos (2πw (t))

60π
+

|z (t)|
30 (1 + |z (t)|)

+ arctan
(
t2 + 2t+ 1

)
+

|w (t)|
32 (et + 3

√
π) (1 + |w (t)|)

+
sin2 z (t)

16 (5t2 + 2 (1 + 3
√
π))

+
ln (1 + t)

3
,

RLD
5
6

CD 3
4

 z (t)

3
7 t cosw (t) +

1

7 + z (t)




=
cos (w (t) + z (t))

19 (ln (1 + t) + 2
√
π)

+

(
1 + 2e1+t

)
2

+
|w (t)|

3 (πt+ 3)2 (1 + |w (t)|)
+

tan−1 z (t)

27
+ sinh

(
1 + 13et

)
,

w(0) = w(1) = 0, z(0) = z(1) = 0,

(18)
and the following inequalities

RLD
4
5

[
CD

2
3

[
w (t)

ψ1 (t, w (t) , z (t))

]]
−

2∑
i=1

φi (t, w (t) , z (t)) ≤ d1,

RLD
5
6

[
CD

3
4

[
z (t)

ψ2 (t, w (t) , z (t))

]]
−

2∑
i=1

ϕi (t, w (t) , z (t)) ≤ d2,

and 

RLD
4
5

[
CD

2
3

[
w (t)

ψ1 (t, w (t) , z (t))

]]
−

2∑
i=1

φi (t, w (t) , z (t)) ≤ d1u (t) ,

RLD
5
6

[
CD

3
4

[
z (t)

ψ2 (t, w (t) , z (t))

]]
−

2∑
i=1

ϕi (t, w (t) , z (t)) ≤ d2u (t) ,

where

φ1 (t, w, z) =
cos (2πw)

60π
+

|z|
30 (1 + |z|)

+ arctan
(
t2 + 2t+ 1

)
,

φ2 (t, w, z) =
|w|

32 (et + 3
√
π) (1 + |w|)

+
ln (1 + t)

3

+
sin2 z

16 (5t2 + 2 (1 + 3
√
π))

,

ϕ1 (t, w, z) =
cos (w + z)

19 (ln (1 + t) + 2
√
π)

+

(
1 + 2e1+t

)
2

,

ϕ2 (t, w, z) =
|w|

3 (πt+ 3)2 (1 + |w|)
+

tan−1 z

27

+ sinh
(
1 + 13et

)
,

and

ψ1 (t, w, z) =
1

5
(sinw + 1) + 1 +

1

13
e−t2 cos z,

ψ2 (t, w, z) =
2

7
t cosw +

1

7 + z
.

For (wi, zi) ∈ R2, i = 1, 2 and t ∈ [0, 1] , we have

|φ1 (t, w1, z1)− φ1 (t, w2, z2) |

≤ 1

30
(|w1 − w2|+ |z1 − z2|) ,

|φ2 (t, w1, z1)− φ2 (t, w2, z2) |

≤ 1

32 (1 + 3
√
π)

(|w1 − w2|+ |z1 − z2|) ,

|ϕ2 (t, w1, z1)− ϕ2 (t, w2, z2) |

≤ 1

38
√
π
(|w1 − w2|+ |z1 − z2|) ,

|ϕ1 (t, w1, z1)− ϕ2 (t, w2, z2) |

≤ 1

27
(|w1 − w2|+ |z1 − z2|) ,

and

|ψ1 (t, w, z)| ≤
27

65
, |ψ2 (t, w, z)| ≤

3

7
.

So, we take π1 = 1
30 , π2 = 1

32 , ϑ1 =
1

32(1+3
√
π)
, ϑ2 = 1

38
√
π
, Π1 = 27

65 and Π2 = 3
7 .
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Hence, we obtain

2∑
i=1

πi
Γ (+ + 1)

= 4.972 2×10−2 <
1

4Π1
= 0.103 85,

and
2∑

i=1

ϑi
Γ (+ + 1)

= 1.401 9×10−2 <
1

4Π2
= 0.107 14.

By Theorem 1, we conclude that the system (18)
has a unique solution. And from Theorem 3 we
deduce that (18) is Ulam-Hyers stable with

|(w2 (t) , z2 (t))− (w1 (t) , z1 (t))| ≤ 0.365 68d,

for t ∈ [0, 1] , d > 0. Let u (t) = t
√
5

2 , then

I
4
5
+ 2

3u1 (t) = I
4
5
+ 2

3 t
√

5
2 ≤

Γ
(√

5+2
2

)
Γ
(√

5
2
+ 37

15

) t√5
2 = υ1uu (t),

and

I
5
6
+ 3

4u2 (t) = I
5
6
+ 3

4 t
√

5
2 ≤

Γ
(√

5+2
2

)
Γ
(√

5
2
+ 31

12

) t√5
2 = υ2uu (t).

Thus, the condition (17) of Theorem 4 is satis-

fied with u (t) = t
√
5

2 and υ1u = 0.289 01, υ2u =
0.252 74. Hence from Theorem 4, the system (18)
is Ulam-Hyers-Rassias stable with

|(w1 (t) , z1 (t))− (w (t) , z (t))| ≤ 0.948 04dt
√

5
2 ,

for t ∈ [0, 1] , d > 0.

Remark 1. One can easily figure out that prob-
lem (18) is not commented by any of the relevant
existing results in the literature.

Acknowledgments

M. Houas is thankful to Khemis Miliana Univer-
sity, J. Alzabut is thankful to Prince Sultan Uni-
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1. Introduction

The concept of fractional calculus has attracted
increasing attention from many researchers, and
it was introduced in the 19th century by Riemann,
Liouville, and Letnikov. Their objective was to
extend classic differentiation and integration us-
ing non-integer orders, they have been used in
mechanics since the 1930s and later in electro-
chemistry in the 1960s (see [1]). In addition, the
integer derivative of a function φ at a point x0 re-
mains a local property. However, the fractional-
order differentiation of a function φ at x0 depends
on all values of φ, including those that are not in
the neighborhood of x0.

The regional controllability is a crucial and mod-
ern topic in advancing control theory and engi-
neering. It is a qualitative property of controlled
systems and has an exceptional property in con-
trol theory. The last notion is the basis of a
mathematical description of a dynamical system,
which is also related to the realization theory of
quadratic optimality in linear time-invariant con-
trolled systems.

The problem of regional controllability involves
determining whether it is possible to find a con-
trol that can bring the state of a system from its
initial state to the desired state exclusively within
a subregion ω at a finite moment. The concept
of regional controllability for distributed systems
was introduced in the 1990s by Professors El Jai
and Zerrik (see [2–4]), in which it was possible
to study the idea only on a subregion ω of the
domain Ω.

This topic has admitted many applications and
has led to crucial results such as the possibility
of reaching a state of the system only on an in-
ternal subregion ω of Ω or on a subregion of the
boundary ∂Ω of Ω (see [5], [6]). Also, the prob-
lem of driving a system to a state between two
known functions is well detailed in [7]. Further-
more, in [8], they have investigated and developed
the problem of the regional controllability of the
gradient state. This problem involves directing
the state gradient of the considered system to-
wards a specified function that is only defined in
the domain subset ω ⊂ Ω. Furthermore, authors

*Corresponding Author
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have examined a problem of regional gradient con-
trollability, which is emphasized by concentrating
on a control that would realize a given final gradi-
ent on ω with minimum energy (see [9]). Finally,
in [10], the authors have proved the fractional con-
trollability of linear hyperbolic systems by using
an extension of HUM.

As the optimal linear filter and estimator,
the Kalman Filter design for linear infinite-
dimensional systems has been widely employed
for state estimation and prediction in the realm
of lumped parameter systems (see [11]). Besides
that, fractional derivatives have been applied to
the modelling of combustion processes, offering
unique insights into the dynamics and features
of these systems. They allow us to characterize
processes that involve under- or superdiffusion,
where the diffusion rate does not follow the classi-
cal diffusion equations. Our problematic is about
studying the regional controllability of the frac-
tional state of the considered system. In particu-
lar, if ω = Ω and α = 0, we obtain global enlarged
controllability over the evolution domain. On the
other hand, we achieve enlarged regional control-
lability of the system’s state gradient with α = 1
in all parts of ω within Ω. Hence, we show that the
obtained control allows us to generalize the latter
cases using the concept of the fractional derivative
of order α ∈ [0, 1]. In order to solve this problem,
we employ the approaches of subdifferential and
Lagrangian to determine the optimal control that
steers the fractional derivative of an output of the
considered system between two known functions
on subregion ω in the interior of Ω as shown in
the following figure: (e.g. see Figure 1).

Figure 1. The goal of this research.

The structure of this research is as follows. Sec-
tion 2 is devoted to recalling some definitions and
the statement of the considered problem. In Sec-
tion 3, we use two procedures, one based on sub-
differential tools and the other on the Lagrangian

approach, which allows us to determine the ex-
plicit formula of optimal control. Finally, the the-
oretical results achieved are illustrated through
numerical simulations by applying an algorithm
to the one-dimensional diffusion equation.

2. Problem statement

Let Ω be an open bounded subset of Rn with
a boundary ∂Ω. For T > 0 we denote Q =
Ω× ]0, T [ .
Let’s consider the linear system with internal con-
trol described by:

∂z

∂t
(x, t) = Az(x, t) +Bu(t) Q

z(η, t) = 0 ∂Ω× ]0, T [

z(x, 0) = z0(x) Ω
(1)

where A generates a C0-semigroup S(t), t ≥ 0
in H1

0 (Ω) and B ∈ L(Rp, H1
0 (Ω)), u ∈ U =

L2(0, T ;Rp) and z0 ∈ H1
0 (Ω).

• The problem (1) admits a unique solution zu(.)
such that zu(T ) ∈ H1

0 (Ω) and given by the varia-
tion of constants formula (see [12], page 106)

zu(t) = S(t)z0 +

∫ t

0
S(t− r)Bu(r)dr.

• The operator of controllability LT is defined by:

LT : U → H1
0 (Ω)

u 7→
∫ T

0
S(T − t)Bu(t)dt

and its adjoint L∗
T z = B∗S∗(T − .)z.

• Let RLDα
x : H1

0 (Ω) → L2(Ω) the frac-
tional Riemann-Liouville operator of order α and
(RLDα

x)
∗ its adjoint (see [13]).

• Consider ω as a subregion of Ω. Let χω :
L2(Ω) → L2(ω) be the restriction operator to ω.
The adjoint operator of χω is denoted by χ∗

ω and
is given by

(χ∗
ωz) (x) =

{
z(x), x ∈ ω,

0, otherwise.

Definition 1. (see [1] and [14]) Let ℜ(α) > 0
and ψ : [a, b) → R be continuous and integrable.
For x > a, we call

Iαaψ(x) =
1

Γ(α)

∫ x

a
(x− t)α−1ψ(t)dt. (2)

the Riemann-Liouville fractional integral of ψ of
order α

Definition 2. (see [1] and [14]) Let α such that
0 ≤ α < 1.
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The fractional derivative of Riemann-Liouville of
order α of a function ψ is given by:

RLDα
xψ(x) =

d

dx
I1−α
a ψ(x)

=
1

Γ(1− α)

d

dx

∫ x

a
(x− t)−αψ(t)dt.

(3)

• Let f, g ∈ L2(ω) with f(.) ≤ g(.) a.e in ω. In
all the following we set:

[f(.), g(.)] =

{
χRL
ω Dα

xz ∈ L2(ω) /

f(.) ≤ χRL
ω Dα

xz ≤ g(.) a.e. on ω

}
Definition 3. (General definition of old one [8])
System (1) is said to be [f(.), g(.)]-controllable on
ω, if there exists u ∈ U such that

f(.) ≤ χRL
ω Dα

xzu(T ) ≤ g(.) a.e on ω.

Definition 4. (General definition of old one [8])
We say that the actuator (D, h) is [f(.), g(.)]-
strategic on ω, if the excited system is [f(.), g(.)]-
controllable on ω.

3. Minimization problem

In this section, we exploit two methods to find a
control with minimum energy that allows driving
the system (1) from z0 to the fractional output
between f(.) and g(.) on ω. Later, let’s consider
the following minimization problem: min

1

2
∥u∥2

u ∈ Uad

(4)

where the set of admissible controls is given by

Uad =

{
u ∈ U /

f(.) ≤ RLDα
xzu(T ) ≤ g(.) a.e. on ω

}
.

Proposition 1. Problem (4) has a unique solu-
tion if the system (1) is [f(.), g(.)]-controllable on
ω.

Proof. By hypothesis, system (1) is [f(.), g(.)]-
controllable on ω, then Uad ̸= ∅. Moreover,

u → 1

2
∥u∥2 is strictly convex and lower semi-

continuous in U. As result, it suffices to verify
that Uad is a closed convex set of U.
We can deduce the convexity of Uad from the lin-
earity of the map u→ χRL

ω Dα
xzu(T ).

Now, we show that Uad is closed. Let (un)n in
Uad such that un → u strongly in U. Since that
χRL
ω Dα

xLT is continuous, then χRL
ω Dα

xLTun →
χRL
ω Dα

xLTu strongly in L2(ω), we know that
χRL
ω Dα

xzun ∈ [f(.), g(.)] which is closed, then
χRL
ω Dα

xzu ∈ [f(.), g(.)]. We deduce that u ∈ Uad.

Consequently, Uad is closed.
Therefore, problem (4) admits a unique solu-
tion. □

We will provide two methods to characterize the
optimal control solution of (4) in the later subsec-
tions.

3.1. First method: Subdifferential method

In this subsection, we provide an expression that
characterizes the solution to the problem (4) us-
ing the subdifferential approach.
Problem (4) is equivalent to solve the following
problem without fractional constraints:

min

(
1

2
∥u∥2 + ΨUad

(u)

)
u ∈ U

(5)

where, for a nonempty subset F of U, we have

ΨF (u) =

{
0 if u ∈ F

+∞ otherwise,
(6)

the indicator function of F .

• Let

Σ(U) =
{
σ : U → ]−∞, +∞] , convex proper
and lower semi− continuous on U

}
.

• Let σ ∈ Σ(U), dom(σ) = {u ∈ U / σ(u) < ∞}
and σ∗ is the polar function of σ defined by:

σ∗(v∗) = sup
u∈dom(σ)

{⟨v∗, u⟩ − σ(u)} ∀v∗ ∈ U.

Definition 5. (see [15]) The set of subgradients
of σ at u0 ∈ U is called the subdifferential of σ at
u0. We denote it as follows:

∂σ(u0) =

{
v∗ ∈ U /
σ(u) ≥ σ(u0) + ⟨v∗, u− u0⟩ ∀ u ∈ U

}
.

The following result characterizes the solution to
the problem (5):

Proposition 2. Assume that system (1) is
[f(.), g(.)]-controllable on ω, then u⋆ is the so-
lution of Equation (5) if and only if

u⋆ ∈ Uad and Ψ∗
Uad

(−u⋆) = −∥u⋆∥2. (7)

Proof. By the properties of the subdifferential,
we deduce that u⋆ is a solution of (5) if and only
if 0 ∈ ∂(σ +ΨUad

)(u⋆).

Therefore, σ(u) =
1

2
∥u∥2 ∈ Σ(U), and Uad is

closed, convex not empty, then ΨUad
∈ Σ(U). In

addition, system (1) is [f(.), g(.)]-controllable on
ω and dom(σ) ∩ dom(ΨUad

) ̸= ∅. However, σ is
continuous, where

∂ (σ +ΨUad
) (u⋆) = ∂σ(u⋆) + ∂ΨUad

(u⋆).
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Consequently, u⋆ is the solution of Equation (5)
if and only if 0 ∈ ∂σ(u⋆) + ∂ΨUad

(u⋆).

On the other hand, we know that σ is Freshet-
differentiable, then ∂σ(u⋆) = {∇σ(u⋆)} = {u⋆}.
We conclude that u⋆ is the solution of (5) if and
only if −u⋆ ∈ ∂ΨUad

(u⋆), one has

ΨUad
(u) ≥ ΨUad

(u⋆) + ⟨u⋆, u− (−u⋆)⟩
⇔ 0 ≥ ΨUad

(u⋆) + ⟨u⋆, u− (−u⋆)⟩ −ΨUad
(u)

0 = ΨUad
(u⋆) + ∥u⋆∥2 + sup

u∈Uad

{⟨u⋆, u⟩

−ΨUad
(u)}.

Then, u⋆ ∈ Uad and ΨUad
(u⋆) + Ψ∗

Uad
(−u⋆) =

−∥u⋆∥2.We know that u⋆ ∈ Uad, so ΨUad
(u⋆) = 0.

Finally, we obtain that u⋆ ∈ Uad and Ψ∗
Uad

(−u⋆) =
−∥u⋆∥2. □

We put α(.) = f(.) − χRL
ω Dα

xS(T )z0 and β(.) =
g(.)− χRL

ω Dα
xS(T )z0, then

Uad =
{
u ∈ U / χRL

ω Dα
xLTu ∈ [α(.), β(.)]

}
.

As a result, we get the following:

Proposition 3. u⋆ is the solution of Equation
(5) if and only if

min

{ 〈
(χRL

ω Dα
xLT )

†α(.), u⋆
〉
,〈

(χRL
ω Dα

xLT )
†β(.), u⋆

〉 }
= ∥u⋆∥2,

(8)

where the pseudo-inverse operator of χRL
ω Dα

xLT is
given by (see [16]):

(χRL
ω Dα

xLT )
†

= (χRL
ω Dα

xLT )
∗ ((χRL

ω Dα
xLT )(χ

RL
ω Dα

xLT )
∗)−1

.

Proof. We have

Uad = (χRL
ω Dα

xLT )
† ([α(.), β(.)]) .

Applying the proposition 2, we get u⋆ which is
the solution of (5) if and only if u⋆ ∈ Uad and
Ψ∗

Uad
(−u⋆) = −∥u⋆∥2.

In addition, for all u⋆ ∈ U, we have

Ψ∗
Uad

(−u⋆) = sup
v∈U

{⟨−u⋆, v⟩ −ΨUad
(v)} ,

= sup
v∈Uad

⟨−u⋆, v⟩ = − inf
v∈Uad

⟨u⋆, v⟩,

= − inf
v∈(χRL

ω Dα
xLT )†([α(.), β(.)])

⟨u⋆, v⟩

= − inf
z∈[α(.), β(.)]

〈
u⋆, (χRL

ω Dα
xLT )

†z
〉

= − inf
λ∈[0,1]

〈(
(χRL

ω Dα
xLT )

†
)∗
u⋆, λα(.) + (1− λ)β(.)

〉
.

The mapping

L : [0, 1] → R

L(λ) =
〈(

(χRL
ω Dα

xLT )
†)∗ u⋆, λα(.) + (1− λ)β(.)

〉
,

is convex and continuous, using the Krein-Milman

Theorem (see [17], page 362), we obtain

Ψ∗
Uad

(−u⋆) =

− inf
λ∈{0,1}

〈(
(χRL

ω Dα
xLT )

†
)∗
u⋆, λα(.) + (1− λ)β(.)

〉
,

from (7), we conclude that

Ψ∗
Uad

(−u⋆) =

=−min

{ 〈
u⋆, (χRL

ω Dα
xLT )

†α(.)
〉
,〈

u⋆, (χRL
ω Dα

xLT )
†β(.)

〉 }
= −∥u⋆∥2.

□

3.2. Second method: Lagrangian
multiplier method

Problem (4) is equivalent to solve the coming
problem:  min

1

2
∥u∥2

(u, y) ∈ V
(9)

where

V =

{
(u, y) ∈ U× [f(.), g(.)] /

χRL
ω Dα

xzu(T )− y = 0

}
.

We define the assistant variable y ∈ [f(.), g(.)] re-
lated to u by equation χRL

ω Dα
xzu(T )− y = 0. We

transform problem (9) into a saddle point prob-
lem using the Lagrange multiplier.

Definition 6. (see [8]) We call the Lagrangian
associated with problem (9) the function L defined
by: ∀ (u, y, µ) ∈ U× [f(.), g(.)]× L2(ω),

L(u, y, µ) =
1

2
∥u∥2 + ⟨µ, χRL

ω Dα
xzu(T )−y⟩L2(ω).

Definition 7. (see [8]) We say that (u⋆, y⋆, µ⋆)
is a saddle point of L if

max
µ∈L2(ω)

L(u⋆, y⋆, µ) = L(u⋆, y⋆, µ⋆)

= min
u∈U, y∈[f(.), g(.)]

L(u, y, µ⋆).

Suppose that system (1) is excited by a zone ac-
tuator (D, h). Then, we consider the problem (4)
and can characterize its solution by the following
result:

Proposition 4. If the actuator (D, h) is
[f(.), g(.)]-strategic on ω, then the solution of (4)
is characterized by

u⋆ = −(χRL
ω Dα

xLT )
∗µ⋆ (10)

whither µ⋆ verifies{
Gα,ωµ

⋆ + y⋆ = 0

y⋆ = P[f(.), g(.)](rµ
⋆ + y⋆)

(11)
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where P[f(.), g(.)] : L2(Ω) → [f(.), g(.)] des-
ignates the projection operator, Gα,ω =(
χRL
ω Dα

xLT

) (
χRL
ω Dα

xLT

)∗
and r > 0.

Proof. Suppose that the actuator (D, h) is
[f(.), g(.)]-strategic on ω, then Uad ̸= ∅ and (4)
has a unique solution.

It’s clear that U × [f(.), g(.)] is nonempty and
closed convex. Moreover, we know that the func-
tion µ → L(u, y, µ) is differentiable, concave,
and upper semi-continuous. Likewise the func-
tion (u, y) → L(u, y, µ) is differentiable, convex
and lower semi-continuous.

We deduce that there exists µ0 ∈ L2(ω) and
(u0, y0) ∈ U× [f(.), g(.)] such that

lim
∥(u, y)∥→+∞

L(u, y, µ0) = +∞, (12)

and
lim

∥µ∥→+∞
L(u0, y0, µ) = −∞. (13)

As a result, L possesses a saddle point.
In the following, assume that (u⋆, y⋆, µ⋆) is a
saddle point of L and prove that u⋆ is a solution
of (4).
Now, for all (u, y, µ) ∈ U× [f(.), g(.)]× L2(ω),
we have

L(u⋆, y⋆, µ) ≤ L(u⋆, y⋆, µ⋆) ≤ L(u, y, µ⋆).
The inequality one gives

⟨µ, χRL
ω Dα

xzu⋆(T )− y⋆⟩ ≤ ⟨µ⋆, χRL
ω Dα

xzu⋆(T )− y⋆⟩,
∀ µ ∈ L2(ω),

means that χRL
ω Dα

xzu⋆(T ) = y⋆. Consequently,
χRL
ω Dα

xzu⋆(T ) ∈ [f(.), g(.)].
Using the second inequality, we obtain

1

2
∥u⋆∥2 + ⟨µ⋆, χRL

ω Dα
xzu⋆(T )− y⋆⟩

≤ 1

2
∥u∥2 + ⟨µ⋆, χRL

ω Dα
xzu(T )− y⟩,

∀(u, y) ∈ U× [f(.), g(.)] .

Since χRL
ω Dα

xzu⋆(T ) = y⋆, we will have

1

2
∥u⋆∥2 ≤ 1

2
∥u∥2 + ⟨µ⋆, χRL

ω Dα
xzu(T )− y⟩,

∀ (u, y) ∈ U× [f(.), g(.)] .

For χRL
ω Dα

xzu(T ) = y, we get
1

2
∥u⋆∥2 ≤ 1

2
∥u∥2.

Therefore, u⋆ is of minimum energy.
On the other hand, if (u⋆, y⋆, µ⋆) is a saddle point
of L, then the following assumptions are satisfied:

⟨u⋆, u−u⋆⟩+⟨µ⋆, χRL
ω Dα

xLT (u−u⋆)⟩ = 0, ∀u ∈ U
(14)

−⟨µ⋆, y − y⋆⟩ ≥ 0, ∀y ∈ [f(.), g(.)] (15)

⟨µ− µ⋆, χRL
ω Dα

xzu⋆(T )− y⋆⟩ = 0, ∀µ ∈ L2(ω).
(16)

From the equation (14) gives (10).
Then, using (16), we get χRL

ω Dα
xLT (u

⋆) = y⋆.
Hence, with (10,) we deduce (11).
Applying inequality (15), we get

⟨(rµ⋆ + y⋆)− y⋆, y− y⋆⟩ ≤ 0, ∀y ∈ [f(.), g(.)]

and r > 0, that is equivalent to

y⋆ = P[f(.), g(.)](rµ
⋆ + y⋆).

□

Corollary 1. If system (1) is [f(.), g(.)]-
controllable on ω, then (y⋆, µ⋆) is a unique so-
lution of system (11), where r > 0 is suitably
chosen.

Proof. Assume that system (1) is [f(.), g(.)]-
controllable, implies that (χRL

ω Dα
xLT )

∗ and Gα,ω

are one to one. In addition, if (u⋆, y⋆, µ⋆) is a
saddle point of L, we deduce then system (11) is
equivalent to{

µ⋆ = −G−1
α,ωy

⋆

y⋆ = P[f(.), g(.)](−rG−1
α,ωy

⋆ + y⋆).
(17)

Therefore, y⋆ is a fixed point of

Nr : [f(.), g(.)] → [f(.), g(.)]
x 7→ P[f(.), g(.)](−rG−1

α,ωx+ x),

since that the operator G−1
α,ω is coercive, which

means

∃ k ≥ 0 such that ⟨G−1
α,ωx, x⟩ ≥ k∥x∥2.

Hence,

∥Nr(x)−Nr(y)∥2

= ∥P[f(.), g(.)](−rG−1
α,ωx+ x)

− P[f(.), g(.)](−rG−1
α,ωy + y)∥2

= ∥(−rG−1
α,ωx+ x)− (−rG−1

α,ωy + y)∥2

= ∥(−rG−1
α,ω(x− y)) + (x− y)∥2

= |
〈
−rG−1

α,ω(x− y), −rG−1
α,ω(x− y)

〉
− 2r

〈
G−1

α,ω(x− y), x− y
〉
+ ⟨x− y, x− y⟩ |

≤ (1 + r2∥G−1
α,ω∥2 − 2rk)∥x− y∥2,

∀x, y ∈ [f(.), g(.)] .

If we chose r <
2k

∥G−1
α,ω∥2

, we conclude that Nr is

a contraction, which implies that y⋆ and µ⋆ are
unique. □

4. Applications and simulations

In this section, we solve the equations (10) and
(11) numerically and propose an Uzawa-type al-
gorithm to evaluate the effectiveness of the La-
grangian method (see [18], page 3).
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4.1. Algorithm

step 1: Initial data: Ω, zone of action D, subre-
gion ω, precision threshold ε is sufficiently small
and a fractional order α.
step 2: Initiate two functions (y0, µ1) ∈
[f(.), g(.)]× L2(ω).
step 3: (yn−1, µn) is known, we determine un
and yn by the equations

un(t) = −
∞∑
k=1

eλk(T−t)

(∫
D
φk(x)dx

)
×(∫

Ω
χRL
ω Dα

xφk(x)µn(x)dx

)
,

(18)

yn(x) =

f(x) if rµn(x) + yn−1(x) ≤ f(x)

rµn(x) + yn−1(x)

if f(x) ≤ rµn(x) + yn−1(x) ≤ g(x)

g(x) if rµn(x) + yn−1(x) ≥ g(x).

(19)

step 4: While ∥yn − yn−1∥L2(ω) > ε,

µn+1(x) = µn(x)

+
∞∑
k=1

(∫
D
φk(x)dx

)
χRL
ω Dα

xφk(x)×∫ T

0
eλk(T−t)un(t)dt− yn(x),

(20)

and return to step 3.
Where (φn)n∈N is a complete basis of eigenfunc-
tions of A in H1(Ω) associated with the eigenval-
ues λn.

4.2. Simulations

This part aims to test the effectiveness of the
Lagrangian approach through numerical simula-
tions.
Example 1:
Let Ω = ]0, 1[ and consider the ensuing system:

∂z

∂t
(t, x) =

∂4z

∂x4
(t, x) + XDu(t), Ω× ]0, T [ ,

z(0, x) = 0, x ∈ Ω,

z(t, 0) = z(t, 1) = 0, t ∈ ]0, T [ ,

∂2z

∂x2
(t, 0) =

∂2z

∂x2
(t, 1) = 0, t ∈ ]0, T [ ,

(21)
taking T = 2 and the actuator is located at D.

Let f(x) =
1

2
x2(1 − x) and g(x) = 4x2(1 − x3).

The operator Az =
∂4z

∂x4
admits a complete set of

eigenfunctions

φn(x) =
√
2 sin(nπx)

and the associated eigenvalues λn = −n4π4. Ap-
plying the above Algorithm, the simulations give
the following results.

4.3. First case: ω =]0.3, 0.9[

▷ Zone of action D =]0.4, 0.8[.
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Figure 2. Control Function.

Figure 3. Final state between [f(.), g(.)]

Figure 2 displays the evolution of the control
function over [0, T = 2]. Figure 3 shows that
the fractional final state with different values of
α is between f(.) and g(.) on ω. Therefore, the
[f(.), g(.)]-controllability on ω is obtained with
transfer cost ∥u⋆1

5

∥2 = 0.258, ∥u⋆1
2

∥2 = 0.164 and

∥u⋆4
5

∥2 = 0.0912.

Example 2:
Let Ω = ]0, 1[ and consider the following system:

∂z

∂t
(t, x) =

∂2z

∂x2
(t, x) + XDu(t), Ω× ]0, T [ ,

z(0, x) = 0, x ∈ Ω,

z(t, 0) = z(t, 1) = 0, t ∈ ]0, T [ ,
(22)

taking T = 2 and the actuator is located at D.

Let f(x) =
1

2
x2(1 − x2) and g(x) = 4x(1 − x).
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The operator Az =
∂2z

∂x2
admits a complete set of

eigenfunctions

φn(x) =
√
2 sin(nπx)

and the associated eigenvalues λn = −n2π2. The
simulations provide the following outcomes after
applying the aforesaid Algorithm.

4.4. Second case: ω =]0.25, 0.6[

▷ Zone of action D =]0.1, 0.4[
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Figure 4. Control function

Figure 5. Final state between [f(.), g(.)]

Figure 4 displays the evolution of the control
function over [0, T = 2]. Figure 5 shows that
the fractional final state for various values of α
is between f(.) and g(.) on ω. Therefore, the
[f(.), g(.)]-controllability on ω is obtained with
transfer cost ∥u⋆0∥2 = 0.0054, ∥u⋆1

2

∥2 = 0.0183 and

∥u⋆3
4

∥2 = 0.0038.

Remark 1.

1) The simulation results show the effective-
ness of the proposed control approach in
achieving the desired goal of maintain-
ing the fractional state between two given
functions over the subregion. Overall,
Figures 2 and 4 provide a clear visual rep-
resentation of the simulation results of the
proposed control approach. The different

plots in Figures 3 and 5 depict the behav-
ior of the system’s fractional state with
varying values of the fractional order and
constraint.

2) The relationship study between the mono-
tonicity of the cost function and the order
of the fractional derivative α is not obvi-
ous. However, the question still remains
open.

5. Conclusion

We studied the concept of regional controllability,
which realizes a situation in which the fractional
output of the system lies on between two known
functions in a subregion of the evolution domain.
Hence, we used two methods to characterize the
optimal control. Additionally, we explored the
numerical simulations to check the implementa-
tion of the theoretical part with different values
of α and subregion ω.
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Academic achievement is very important, as it enables students to be well-
equipped for professional and social life and shapes their future. In the case of
a possible academic failure, students generally face many cognitive, social, psy-
chological, and behavioral problems. This problem experienced by the students
has been addressed with the mathematical model in this study. This math-
ematical model will be handled with the help of the fractional operator, and
the existence, uniqueness, and positivity of the solutions to the model equation
system will be examined. In addition, local and global stability analyses of the
equilibrium points of the model are planned. Numerical simulations are per-
formed with different values of fractional orders and densities of randomness.
This study is very important in terms of its original and multidisciplinary ap-
proach to a subject in the field of social sciences.

Keywords:
Academic achievement
Fractional differential equation
Crossover behaviour
Numerical simulation

AMS Classification 2010:
26A33; 34A34; 35B44; 65M06

1. Introduction

Academic achievement is an almost compulsory
process that occurs as a result of social progress.
Because the professions that emerge as a result of
the division of labor require very broad and com-
prehensive knowledge, as well as technical exper-
tise and new perspectives, It has become a ne-
cessity for individuals who want to have a job
and a profession to enroll in long and compre-
hensive education programs and succeed in teach-
ing processes in order to acquire knowledge and
skills related to that profession. The concept of
success is expressed as reaching the desired re-
sult, reaching the intended goal, and achieving
the desired [1]. Academic achievement, on the
other hand, is defined as the skills or the expres-
sion of learned knowledge that are developed in
the lessons taught at school and determined by
grades appreciated by teachers, test scores, or

both [2]. In addition to the grades deemed ap-
propriate by the teachers, the recently developed
standard achievement tests are also preferred as a
criterion for measuring academic achievement [3].
Some criteria are taken into account when deter-
mining whether a student is academically accom-
plished. Some of these criteria are the general
goals and desired behaviors determined for the
education level of the student, the overall suc-
cess of the student’s class or group, all the topics
that need to be learned, norms of achievement
developed at the country or local level, opinions
of teachers and relevant experts, the student’s
own level of ability, the student’s level of suc-
cess at entry to the education program, the stu-
dent’s socioeconomic level, and current conditions
and opportunities [4]. Another important aca-
demic achievement criterion is grade point av-
erage (GPA). According to York, Gibson, and
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Rankin, GPA is one of the best indicators to re-
flect the academic achievement of students [5].
The GPA is a summary of all the effort put forth
by the student in a given time period. GPA is
not based on a single course but can be defined
as the numerical expression of the achievements
obtained from different courses in which various
tasks are given. From this point of view, while
determining the main actors of this research, the
grade point averages of the students were taken
into account. The students were handled in three
different groups: those with achievement above
GPA, those with average achievement, and those
with below average achievement. With the help
of the mathematical model developed within the
scope of this research, it is aimed to determine the
main factors that play a role in determining the
academic achievement levels of students, to what
extent they are effective, and to determine their
relations with each other, to determine the level of
academic failure in schools, and to obtain impor-
tant findings about how to prevent failure. The
tendency of students toward academic achieve-
ment is not only related to the individual charac-
teristics of students but also to the fact that many
factors such as family and social-cultural environ-
ment play a role. Studies have shown that stu-
dents who achieve academically owe their success
primarily to themselves, while family and school
are shown as auxiliary factors [6]. In this con-
text, it can be said that all three factors are im-
portant in studies aimed at increasing academic
achievement. In the meta-analysis study con-
ducted by Sarer, self-efficacy perception, student
motivation, and self-esteem came to the fore as
factors related to academic achievement with stu-
dents [7]. Self-efficacy refers to an individual’s
personal judgment of his or her ability to perform
in any field [8]. An individual’s self-efficacy belief
affects whether he or she can successfully perform
a given job [9]. In this context, it can be said that
a positive self-efficacy belief motivates the indi-
vidual to be successful, encourages the unknown
and difficult tasks to be overcome, and encour-
ages them to make an effort [10]. Studies have
shown that there is a highly significant relation-
ship between students’ self-efficacy and academic
achievement [11], they revealed that self-efficacy
and motivation are important predictors of aca-
demic achievement [12]. As students succeed in
the academic field, their self-efficacy will increase,
and they will be more motivated for academic
achievement [13]. Another individual characteris-
tic that affects the academic achievement of stu-
dents is motivation. Academic achievement moti-
vation can be defined as doing an action skillfully,

accomplishing it perfectly, overcoming obstacles,
doing better than others, resisting failure, and
striving to accomplish a task [14]. In this context,
it can be said that high motivation for academic
achievement will lead to high academic achieve-
ment. The social cognitive approach emphasizes
that motivation can change with the influence of
the social environment. From this point of view,
success motivation is not a fixed feature for the
student; it can be said that it varies in relation to
class, school, social environment, family, and the
context of the subject. The last factor related to
academic achievement is self-esteem. Rosenberg
conceptualized self-esteem as a positive or neg-
ative attitude towards the self, which is derived
from the sum of self-evaluation across different
domains [15]. When the literature is examined,
it is understood that there is a positive relation-
ship between self-esteem and academic achieve-
ment [16]. In this context, it can be said that
positive self-esteem will increase students’ aca-
demic achievement. Another important factor af-
fecting the academic achievement of students is
family. In his meta-analysis study, Sarer deter-
mined the family-related factors affecting the aca-
demic achievement of students as parents’ atti-
tudes and behaviors, participation in education,
the educational status of parents, and the so-
cioeconomic level of the family [7]. The child is
born into a family environment. It should not
be overlooked that this environment has a signif-
icant impact on the child’s social adaptation and
personality development, as well as on academic
achievement [17]. The family is the first institu-
tion where the child starts school. The child forms
his/her perspective on education for the first time
here [18]. If a home is a place where the child’s
basic needs are met and he lives in peace and se-
curity, this positive atmosphere will contribute to
the child’s self-confidence in school [19]. In addi-
tion to a healthy and orderly family environment,
the parents’ interest in and inclinations toward
the academic field will positively affect the child’s
interest in academic activities and his or her de-
sire to achieve success. The education level of
the parents is another factor that shapes the aca-
demic achievement of the child. It is known that
as the education level of the parents increases,
the attitudes of the parents change positively [20],
which enables parents to act more consciously
about their children’s educational lives. In ad-
dition, the socioeconomic level of the family is
shown as one of the most important factors af-
fecting the child’s ability, interests, and attitude
toward education, and thus his success and har-
mony at school [21]. Studies have shown that as
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the socioeconomic status of the family increases,
students’ success [22] and their motivation may
increase [23]. The last important factor that
affects the academic achievement of students is
school. In his meta-analysis study, Sarer found
some school-related factors that are determinants
of academic achievement: school culture, teacher
behavior, and the leadership of the school princi-
pal [7]. Students spend most of their daily lives
at school. For this reason, it is inevitable that the
structure of the school and the attitudes of teach-
ers will have significant effects on students’ behav-
ior and academic achievement [17]. The existence
of a positive school climate not only facilitates
students’ academic achievement and learning but
also contributes to their healthy social and emo-
tional development [24]. The dominant culture
in a school has an impact on the behavior of ev-
eryone working in that school and on students. A
collaborative or positive school culture causes stu-
dents to be more committed to the school’s goals,
and as a result, academic achievement rises. Oth-
erwise, academic achievement is expected to be
low [25]. On the other hand, it was found that
the supportive behaviors of the teachers increased
the success of the students. It is known that chil-
dren who perceive the school environment as safe
and supportive have higher school success [26]. In
addition to the observations and inspections he
makes, the decisions he makes, and the high ex-
pectations he creates for teaching, the school prin-
cipal can significantly affect the academic achieve-
ment of the students with his leadership behav-
iors, such as providing the necessary resources
for quality education, evaluating and developing
teachers, and leading the formation of a learning-
centered school climate [27]. It can be seen that
all these variables, which are effective on the aca-
demic achievement of the students, interact with
each other and determine which group the stu-
dent will be in in terms of academic achievement.
Because of the interaction between the variables,
academic achievement in this study was handled
with the mathematical model developed through
the metapopulation model. Mathematical models
can be helpful in explaining a system, examining
the effects of different components, and predict-
ing behavior. Mathematical models can be used
in the social sciences (economics, psychology, so-
ciology, political science, etc.) as well as the nat-
ural sciences (physics, biology, earth science, me-
teorology, etc.) and engineering disciplines (com-
puter science, artificial intelligence, etc.) [28–33].
In the literature review, it was understood that a
comprehensive mathematical model for academic
achievement, which is an extremely important

concept for social sciences and students, has not
yet been developed and that the limited num-
ber of studies [34] are still at the initial level.
Based on this deficiency in the literature, our
study aimed to develop a realistic mathematical
model for academic achievement. The idea seems
efficient if we model problems with crossover be-
haviors. Because of this, in this paper, we aim to
modify a metapopulation model with the concept
of stochastic situations.

2. Preliminaries

In this section, we give some important definitions
of non-integer fractional derivatives and their use-
ful properties [35–37].

Definition 1. The Gamma function Γ(x) is de-
fined by the integral expression given as

Γ (x) =

∞∫
0

e−ttx−1dt, (1)

which converges in the right half of the complex
plane Re (x) > 0.

Definition 2. Riemann-Liouville definition of
fractional order differ-integral:

aD
υ
t f (t) = 1

Γ(n−υ)
dn

dtn

t∫
a
(t− τ)n−υ−1 f (τ) dτ,

(2)

where
n− 1 < υ ⩽ n, n ∈ N (3)

and υ ∈ R (R is the set of real numbers) is a frac-
tional order of the differ-integral of the function
f (t).

Definition 3. Caputo’s definition of fractional
order differ-integral:

C
a D

υ
t f (t) =

1

Γ (υ − n)

t∫
a

fn (τ)

(t− τ)υ+1−ndτ, (4)

where n− 1 < υ ⩽ n, n ∈ N, υ ∈ R is a fractional
order of the differ-integral of the function f (t).

Definition 4. Let f be continuous not neces-
sary differentiable in [t1, T ]. Thus, the piecewise
Riemann-Liouville derivative is presented as

PRL
0 Dυ

t f(t)=

 f
′
(t), if 0 ≤ t ≤ t1

RL
t1 Dυ

t f(t), if t1 ≤ t ≤ T
, (5)

where PRL
0 Dυ

t presents classical derivative on 0 ≤
t ≤ t1 and Riemann-Liouville fractional deriva-
tive on t1 ≤ t ≤ T.
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Definition 5. Let f be continuous and υ > 0
then a piecewise integral of f is given as

PPLJυ
t f(t) =

{ t1∫
0

f(τ)dτ, if 0 ≤ t ≤ t1

1
Γ(υ)

t∫
t1

(t− τ)υ−1f(τ)dτ, if t1 ≤ t ≤ T

(6)

where PPLJυ
t f(t) presents classical integral on

0 ≤ t ≤ t1 and the integral with power-law ker-
nel on t1 ≤ t ≤ T.

3. Model derivation

In this paper, we considered and studied an aca-
demic achievement model with given standard in-
cidence with takes the following form [34]:

dP

dt
= µ− βPK − µP + αI,

dK

dt
= βPK − µK − δ (1− γ)K, (7)

dI

dt
= δ (1− γ)K − (µ+ α) I,

where P, K, I denotes the numbers of students
with above average achievement (aac) at any time
t, students with average achievement (ac), stu-
dents with below-average achievement (bac) and
N = P +K + I is the number of total population
of individuals.

P (t0) = P0, K (t0) = K0 and I (t0) = I0. (8)

The parameter β denotes the rate of students ex-
posed to negative teacher attitudes; µ denotes
rate of students with academic motivation; γ is
rate of students with high self-efficacy, δ denotes
the rate of students with low self-esteem and α
denotes the rate of students with positive family
attitudes. The parameters involved in the system
(7) are all positive constans.

Fractional calculus, which means fractional
derivatives and fractional integrals is of increas-
ing interest among researchers. It is known that
fractional operators describe the system behavior
more accurately and efficiently than integer-order
derivatives. Because of the great advantage of
memory properties, let us modify the above sys-
tem by replacing the integer-order time derivative
by the Caputo fractional derivative below:

C
0 D

α
t P (t) = µ− βPK − µP + αI,

C
0 D

α
t K (t) = βPK − µK − δ (1− γ)K, (9)

C
0 D

α
t I (t) = δ (1− γ)K − (µ+ α) I,

with the initial conditions

P (t0) = P0,K (t0) = K0 and I (t0) = I0. (10)

3.1. Positiveness and boundness of
solutions

In this section, to show the positivity of the solu-
tions of system for ∀t ⩾ 0, we define the norm

∥f∥∞ = sup
t∈[0,T ]

|f (t)| . (11)

Let us write the system and start with the second
equation

dP (t)

dt
= µ− βP (t)K (t)− µP (t) + αI (t) , ∀t ⩾ 0,

≥ − (βK (t) + µ)P (t) , ∀t ⩾ 0,

≥ −

(
β sup
t∈[0,T ]

|K (t)|+ µ

)
P (t) ,∀t ⩾ 0,

(12)

≥ − (β ∥K∥∞ + µ)P (t) ,∀t ⩾ 0.

Then this provides that

P (t) ≥ P0e
−(β∥K∥∞+µ)t,∀t ⩾ 0. (13)

Secondly for the function I (t), we obtain

dI (t)

dt
= δ (1− γ)K (t)− (µ+ α) I (t) , ∀t ⩾ 0,

(14)

≥ − (µ+ α) I (t) ,∀t ⩾ 0.

So this provides that

I(t) ≥ I0e
−(µ+α)t,∀t ⩾ 0. (15)

Finally we assume that P (t)K (t) are nonnega-
tive then for the function K (t), we obtain

dK (t)

dt
= βP (t)K (t)− µK (t)− δ (1− γ)K (t) , ∀t ⩾ 0,

≥ − (µ+ δ (1− γ))K (t) , ∀t ⩾ 0.

This provides that

K(t) ≥ K0e
−(µ+δ(1−γ))t,∀t ⩾ 0. (16)

Now let us check for the following total population
size is given by
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N ′(t) = P ′ (t) +K ′ (t) + I ′ (t)

= µ− βP (t)K (t)− µP (t) + αI (t)

+ βP (t)K (t)− µK (t)− δ (1− γ)K (t)
(17)

+ δ (1− γ)K (t)− (µ+ α) I (t)

= µ− µ (P (t) +K(t) + I(t))

= µ− µN(t)

Integrating over [0, t] then we get,

N (t) = 1− e−µt +N (0) e−µt, (18)

lim
t→∞

N(t) = 1.

So the model has the following feasible region

Γ =
{
P (t),K(t), I(t) ∈ R3

+ : N(t) ≤ 1
}
. (19)

3.2. Equilibrium points of system

In this subsection, we find equilibrium points by
solving the equations obtained by equating time
derivatives in the system to zero.

P ′ (t) = µ− βP (t)K (t)− µP (t) + αI (t) = 0,

K ′ (t) = βP (t)K (t)− µK (t)− δ (1− γ)K (t) = 0,

I ′ (t) = δ (1− γ)K (t)− (µ+ α) I (t) = 0.

Then we write

µ− βP ∗K∗ − µP ∗ + αI∗ = 0,

βP ∗K∗ − µK∗ − δ (1− γ)K∗ = 0, (20)

δ (1− γ)K∗ − (µ+ α) I∗ = 0.

From the last equality, we get

δ (1− γ)K∗ = (µ+ α) I∗, (21)

K∗ =
(µ+ α)

δ (1− γ)
I∗

and from the second equality we get

βP ∗K∗ = µK∗ + δ (1− γ)K∗, (22)

P ∗ =
µ+ δ (1− γ)

β
.

If we put them in the first equation we will get
following

µ− (βK∗ + µ)P ∗ + αI∗ = 0,

µ−
(
β
(µ+ α)

δ (1− γ)
I∗ + µ

)(
µ+ δ (1− γ)

β

)
+ αI∗ = 0,

µ−
{
(µ+ α) I∗

(
µ

δ (1− γ)
+ 1

)
+

µ2 + δµ (1− γ)

β

}
+ αI∗ = 0,

from the last equality

I∗ =
µ− µ2+δµ(1−γ)

β

(µ+ α)
(

µ
δ(1−γ) + 1

)
− α

. (23)

So we have success equilibrium point E∗ =
(P ∗,K∗, I∗) given as:

E∗ =

(
µ+δ(1−γ)

β , (µ+α)
δ(1−γ)I

∗,
µ−µ2+δµ(1−γ)

β

(µ+α)
(

µ
δ(1−γ)

+1
)
−α

)
,

(24)

and success free equilibrium point E0 =(
P 0,K0, I0

)
= (1, 0, 0) given as

µ− βP ∗K∗ − µP ∗ + αI∗ = 0,

βP ∗K∗ − µK∗ − δ (1− γ)K∗ = 0, (25)

δ (1− γ)K∗ − (µ+ α) I∗ = 0,

K∗ = 0 and I∗ = 0,

µ− µP ∗ = 0,

µ = µP ∗, (26)

P ∗ = 1.

3.3. Reproductive number for model

Here we will discuss the reproductive number of
the academic achievement model by considering
the next generation matrix method. Remember-
ing the system;

dP (t)

dt
= µ− βP (t)K (t)− µP (t) + αI (t) ,

dK (t)

dt
= βP (t)K (t)− µK (t)− δ (1− γ)K (t) ,

dI (t)

dt
= δ (1− γ)K (t)− (µ+ α) I (t) ,

(27)

and divide the system into two parts.

We call f with the nonlinear part of system and
V is called with linear part of system as below: P ′

K ′

I ′

 = f − V. (28)

So we have the following matrices

f =

 −βP (t)K (t)
βP (t)K (t)

0

 , V =

 −µ+ µP (t)− αI (t)
µK (t) + δ (1− γ)K (t)

−δ (1− γ)K (t) + (µ+ α) I (t)

 ,

(29)

From the above matrices, we will obtain F and V
which are partial derivatives of f and V .
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F =

 −βK −βP 0
βK βP 0
0 0 0

 , V =

 µ 0 −α
0 µ+ δ (1− γ) 0
0 −δ (1− γ) µ+ α


(30)

and

V −1 =


1
µ

αδ(1−γ)
µ3+µ2α+µ2δ(1−γ)+µαδ(1−γ)

α
µ2+µα

0 1
µ+δ(1−γ) 0

0 δ(1−γ)
µ2+µα+µδ(1−γ)+αδ(1−γ)

1
µ+α

 ,

(31)

F (E0) =

 0 −β 0
0 β 0
0 0 0

 , (32)

FV −1(E0) =

 0 −β
µ+δ(1−γ) 0

0 β
µ+δ(1−γ) 0

0 0 0

 , (33)

R0 = max {λi}i=1,2,3 (34)

where λi are obtained from∣∣FV −1 − λI
∣∣ = 0. (35)

So we have the following reproductive number
which is important for us while deciding the anal-
ysis

R0 =
β

µ+ δ (1− γ)
. (36)

3.4. Strength number

The concept of strength number (A0) has been
suggested and will be used in this section [38].
The component FA is obtained with deriving the
nonlinear part of the model classes. In our model
there are two nonlinear classes given by

dP (t)

dt
= µ− βP (t)K (t)− µP (t) + αI (t) ,

(37)

dK (t)

dt
= βP (t)K (t)− µK (t)− δ (1− γ)K (t) .

Again here we use nonlinear parts for dP (t)
dt and

dK(t)
dt classes

dP (t)

dt
= −βP (t)K (t) , (38)

dK (t)

dt
= βP (t)K (t) .

Then

∂

∂P
= −βK (t) , (39)

∂

∂K
= −βP (t) ,

and

∂2

∂P 2
= 0, (40)

∂2

∂K2
= 0.

In this case, we can have the following

FA =

[
0
0

]
. (41)

Then

det(FAV
−1 − λI) = 0, (42)

leads to
A0 = 0. (43)

A0 = 0 means there is no strength. Also, there
are more conclusions when strength is zero. Stu-
dents will get motivation for having good marks
and expecting a good future, therefore, the num-
ber of incompetent students.

4. Stability analysis of equilibrium
points

In this section, a detailed analysis of equilibrium
points is presented. To do this we search for local
and global stability.

4.1. Local stability analysis

There exist two equilibrium points of the model
that are found by solving the equations obtained
by equating time derivatives in the system to
zero.Then we have E0 = (1, 0, 0) and E∗ =
(P ∗,K∗, I∗).

Theorem 1. The academic achievement free
equilibrium point E0 of system is locally asym-
totically stable if and only if R0 < 1.

Proof. Let us consider the right sides of equa-
tions by solving functions Fi : 1 ≤ i ≤ 3.

F1(t, P (t)) = µ− βP (t)K (t)− µP (t) + αI (t) ,

F2(t,K (t)) = βP (t)K (t)− µK (t)− δ (1− γ)K (t) ,

F3(t, I (t)) = δ (1− γ)K (t)− (µ+ α) I (t) .

(44)

The Jacobian matrix of the system is given by
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J =

 ∂F1
∂P

∂F1
∂K

∂F1
∂I

∂F2
∂P

∂F2
∂K

∂F2
∂I

∂F2
∂P

∂F3
∂K

∂F3
∂I

 (45)

=

 −βK − µ −βP α
βK βP − µ− δ (1− γ) 0
0 δ (1− γ) − (µ+ α)


at E0 = (1, 0, 0) ,

J =

 −µ −β α
βK β − µ− δ (1− γ) 0
0 δ (1− γ) − (µ+ α)

 .

(46)

If we solve the associated characteristic equation
we will get the following eigenvalues;

The academic achievement free equilibrium point
is asymptotically stable if all of the eigenvalues
λ1,λ2,λ3 of J

(
E0
)
satisfy the condition

|arg λi| >
υπ

2
, i = 1, 2, 3. (47)

These eigenvalues can be determined by solving
the characteristic equation det

(
J
(
E0
)
− λI

)
= 0

which leads to the following equation;

det
(
J
(
E0
)
− λI

)
=

∣∣∣∣∣∣
−µ− λ −β α
βK β − µ− δ (1− γ)− λ 0
0 δ (1− γ) − (µ+ α)− λ

∣∣∣∣∣∣ ,
(48)

= (−µ− λ) (β − µ− δ (1− γ)− λ) (− (µ+ α)− λ)

λ1 = µ, λ2 = β−µ−δ (1− γ) and λ3 = − (µ+ α) .
(49)

Here λ1, λ3 are negative. For λ2 following must
be satisfied;

λ2 = β − µ− δ (1− γ) < 0, (50)

β < µ+ δ (1− γ) ,

R0 =
β

µ+ δ (1− γ)
< 1.

So the proof is completed. □

Theorem 2. The academic achievement equilib-
rium point E∗ = (P ∗,K∗, I∗) of system is locally
asymptotic stable if and only if R0 > 1.

Proof. The Jacobian matrix J (P ∗,K∗, I∗) for
the system given in (7) is.

J =

 −βK∗ − µ −βP∗ α
βK∗ βP∗ − µ − δ (1 − γ) 0
0 δ (1 − γ) − (µ + α)

 . (51)

We now discuss the asymptotics stability of the
E∗ = (P ∗,K∗, I∗) equilibrium the system given

before:

P ∗ =
µ+ δ (1− γ)

β
, (52)

K∗ =
(µ+ α)

δ (1− γ)
I∗,

I∗ =
µ− µ2+δµ(1−γ)

β

(µ+ α)
(

µ
δ(1−γ) + 1

)
− α

.

The characteristic equation of the system is ob-
tained via the determination of

L (λ) = det (J − λI) = 0. (53)

The characteristic roots are obtained by solving
the following equation

L (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0. (54)

where

a1 = βK∗ + µ− βP ∗ + µδ (1− γ) ,

a2 = (µ+ α) (βK∗ + µ− βP ∗ + µδ (1− γ))

+ βK∗µδ (1− γ)− µβP ∗ + µ2δ (1− γ) ,

a3 = (µ+ α)
(
βK∗µδ (1− γ)− µβP ∗ + µ2δ (1− γ)

)
− αβK∗δ (1− γ) .

For a1, a2, a3 > 0 and a1a2 − a3 > 0, so by
Routh-Hurwitz Criterion, all characteristics roots
have negative real parts [39]. Therefore academic
achievement equilibrium point is asymptotic sta-
ble. □

4.2. Global stability of equilibrium point

In this section, we present the global stability of
(PKI) model named by the academic achieve-
ment model. Let us consider the model again;

P ′ (t) = µ− βP (t)K (t)− µP (t) + αI (t) = 0,

K ′ (t) = βP (t)K (t)− µK (t)− δ (1− γ)K (t) = 0,

I ′ (t) = δ (1− γ)K (t)− (µ+ α) I (t) = 0.

(55)

Theorem 3. If R0 ≥ 1, the point C∗ (P ∗,K∗, I∗)
is global asymptotically stable.

Proof. Here we show the proof of the theorem by
using the Lyapunov function. We start with defin-
ing the Lyapunov function associated the system
as below:

L (C∗ (P ∗,K∗, I∗)) =

(
P − P ∗ + P ∗ log

P ∗

P

)
+

(
K −K∗ +K∗ log

K∗

K

)
+

(
I − I∗ + I∗ log

I∗

I

)
.
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By the derivative of the Lyapunov function with
respect to t, we get

L′ (t) =

(
P − P ∗

P

)
P ′ +

(
K −K∗

K

)
K ′ +

(
I − I∗

I

)
I ′,

=

(
1− P ∗

P

)
(µ− βPK − µP + αI)

+

(
1− K∗

K

)
(βPK − µK − δ (1− γ)K)

+

(
1− I∗

I

)
(δ (1− γ)K − (µ+ α) I)

= 0.

(56)

Then we write;

L′ (t) = µ− βPK − µP + αI − P ∗

P
µ+ βP ∗K + µP ∗ − P ∗

P
αI

+ βPK − µK − δ (1− γ)K − βPK∗ + µK∗ + δ (1− γ)K∗

+ δ (1− γ)K − (µ+ α) I − I∗

I
δ (1− γ)K + (µ+ α) I∗.

Let us write above also two part (positive and
negative terms) below;

L′ (t) = ϕ1 − ϕ2, (57)

where

ϕ1 = µ+ αI + βP ∗K + µP ∗,

+ βPK + µK∗ + δ (1− γ)K∗, (58)

+ δ (1− γ)K + (µ+ α) I∗,

and

ϕ2 = βPK + µP +
P ∗

P
µ+

P ∗

P
αI,

+ µK + δ (1− γ)K + βPK∗, (59)

+ (µ+ α) I +
I∗

I
δ (1− γ)K.

Therefore if

ϕ1 − ϕ2 > 0 then L′ (t) > 0,

ϕ1 − ϕ2 = 0 then L′ (t) = 0, (60)

ϕ1 − ϕ2 < 0 then L′ (t) < 0.

□

5. Existence and uniqueness

In this section, we present a detailed analysis of
the existence and uniqueness of the system of
equations. To achieve this, the following theorem
is to be verified [38].

Theorem 4. Assume that there exists positive
constants κi, κi such that

(i) ∀i ∈ {1, 2, 3} ,∣∣Fi (xi, t)− Fi

(
x′i, t

)∣∣2 ≤ κi
∣∣xi − x′i

∣∣2 . (61)

(ii) ∀ (x, t) ∈ R3 × [0, T ] ,

|Fi (xi, t)|2 ≤ κi

(
1 + |xi|2

)
. (62)

We now recall our model,

dP (t)

dt
= µ− βP (t)K (t)− µP (t) + αI (t) = F1(t, P ),

dK (t)

dt
= βP (t)K (t)− µK (t)− δ (1− γ)K (t) = F2(t,K),

dI (t)

dt
= δ (1− γ)K (t)− (µ+ α) I (t) = F3(t, I).

We start with the function F1(t, P (t)). Then we
will show that

|F1 (P, t)− F1 (P1, t)|2 ≤ κ1 |P − P1|2 . (63)

Then, we write

|F1 (P, t)− F1 (P1, t)|2 = |µ− βPK − µP + αI

− µ+ βP1K + µP1 − αI|2,

= |P (−βK − µ)− P1 (−βK − µ)|2 ,

= |−βK − µ|2 |P − P1|2 ,

≤
{
2β2 |K|2 + 2µ2

}
|P − P1|2 ,

≤

{
2β2 sup

t∈[0,T ]
|K (t)|2 + 2µ2

}
|P − P1|2 ,

≤
{
2β2 ∥K∥2∞ + 2µ2

}
|P − P1|2 ,

≤ κ1 |P − P1|2

where κ1 =
{
2β2 ∥K∥2∞ + 2µ2

}
.

Now we continue the function F2(t, P (t)). Then
we get

|F2 (K, t)− F2 (K1, t)|2 =
∣∣∣∣ βPK − µK − δ (1− γ)K
−βPK1 + µK1 + δ (1− γ)K1

∣∣∣∣2 ,
≤
{
2β2 |P |2 + 2 (µ+ δ (1− γ))2

}
× |(K −K1)|2 ,

≤

{
2β2 sup

t∈[0,T ]
|P (t)|2 + 2 (µ+ δ (1− γ))2

}
× |(K −K1)|2 ,

≤
{
2β2 ∥P∥2∞ + 2 (µ+ δ (1− γ))2

}
× |(K −K1)|2 ,

≤ κ2 |(K −K1)|2

where

κ2 =
{
2β2 ∥P∥2∞ + 2 (µ+ δ (1− γ))2

}
. (64)

Similary we get,
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|F3 (I, t)− F3 (I1, t)|2

= |δ (1− γ)K − (µ+ α) I − δ (1− γ)K + (µ+ α) I1|2 ,

= |− (µ+ α) I + (µ+ α) I1|2 ,

= |− (µ+ α)|2 |(I − I1)|2 ,

≤ 2
(
µ2 + α2

)
|(I − I1)|2 ,

≤ κ3 |(I − I1)|2

where

κ3 = 2
(
µ2 + α2

)
. (65)

We verified the first condition for all functions.
We now verify the second condition for our model.

|F1 (P, t)|2 = |µ− βPK − µP + αI|2 ,

≤ 2µ2 + 2 (βK + µ)2 |P |2 + 2α2 |I|2 ,

≤ 2µ2 + 4
(
β2 |K|2 + µ2

)
|P |2 + 2α2 |I|2 ,

≤ 2µ2 + 4

(
β2 sup

t∈[0,T ]
|K (t)|2 + µ2

)
|P |2

+ 2α2 sup
t∈[0,T ]

|I (t)|2 ,

≤
(
2µ2 + 2α2 ∥I∥2∞

)1 +
2
(
β2 ∥K∥2∞ + µ2

)
µ2 + α2 ∥I∥2∞

|P |2
 ,

≤ κ1

(
1 + |P |2

)
under the condition

2
(
β2 ∥K∥2∞ + µ2

)
µ2 + α2 ∥I∥2∞

< 1, (66)

and
|F2 (K, t)|2 = |βPK − µK − δ (1− γ)K|2 ,

≤ 3
(
β2 |P |2 + µ2 + δ2 (1− γ)2

)(
1 + |K|2

)
,

≤ 3

(
β2 sup

t∈[0,T ]
|P (t)|2 + µ2 + δ2 (1− γ)2

)(
1 + |K|2

)
,

≤ 3
{
β2 ∥P∥2∞ + µ2 + δ2 (1− γ)2

}(
1 + |K|2

)
,

≤ κ2

(
1 + |K|2

)
.

Finally, we get

|F3 (I, t)|2 = |δ (1− γ)K − (µ+ α) I|2 ,

≤ 2δ2 (1− γ)2 |K|2 + 2 (µ+ α)2 |I|2 ,

≤ 2δ2 (1− γ)2 sup
t∈[0,T ]

|K (t)|2 + 2 (µ+ α)2 |I|2 ,

≤ 2δ2 (1− γ)2 ∥K∥2∞

(
1 +

(µ+ α)2

δ2 (1− γ)2 ∥K∥2∞
|I|2
)
,

≤ κ3

(
1 + |I|2

)
under the condition

(µ+ α)2

δ2 (1− γ)2 ∥K∥2∞
< 1. (67)

Therefore, if the condition on linear growth holds
such that

max


2(β2∥K∥2∞+µ2)
µ2+α2∥I∥2∞

(µ+α)2

δ2(1−γ)2∥K∥2∞

 < 1, (68)

the system of equations has a unique system of
solutions. Therefore, if the condition on linear
growth holds, the system has a unique solution.

6. Stochastic version of model

Stochastic modeling shows many interesting out-
comes that account for certain levels of random-
ness. Also, stochastic models give different results
for a set of values. Recently, many mathemati-
cians have developed several stochastic mathe-
matical models with the aim to show results more
variability. So in this section, we convert the de-
terministic academic achievement model to the
following system:

dP (t) = [µ− βP (t)K (t)− µP (t) + αI (t)] dt+ σ1P (t)dB1(t),

dK(t) = [βP (t)K (t)− µK (t)− δ (1− γ)K (t)] dt+ σ2K(t)dB2(t),

dI(t) = [δ (1− γ)K (t)− (µ+ α) I (t)] dt+ σ3I(t)dB3(t),

P (0) = P0, K(0) = K0, and I(0) = I0.

We can present a numerical solution of the model
by converting the stochastic model into an inte-
gral system below with different kernels, such as
power, exponential and Mittag-Leffler.

6.1. Numerical Simulation for the
stochastic-deterministic model of
academic achievement

In this section, we give a numerical simulation
of the system of fractional stochastic differential
equations. The notion of piecewise that was re-
cently suggested is perhaps the future of model-
ing processes with crossover in patterns. So we
have made use of the model with the piecewise
differential operators and the numerical scheme
where the Lagrange polynomial interpolation is
used [40]. While modeling with the piecewise
idea, the first part is classical, the second part
is fractional, and the last part is stochastic [36].
The numerical simulation is performed for differ-
ent values of fractional orders. So the stochastic-
deterministic model is given as


dP (t)
dt = µ− βP (t)K (t)− µP (t) + αI (t) ,

dK(t)
dt = βP (t)K (t)− µK (t)− δ (1− γ)K (t) ,

dI(t)
dt = δ (1− γ)K (t)− (µ+ α) I (t) ,

if 0 ≤ t ≤ W1

(69)
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C
w1
Dυ

t P (t) = µ− βP (t)K (t)− µP (t) + αI (t) ,
C
w1
Dυ

t K(t) = βP (t)K (t)− µK (t)− δ (1− γ)K (t) ,
C
w1
Dυ

t I(t) = δ (1− γ)K (t)− (µ+ α) I (t) ,

(70)
if W1 ≤ t ≤ W2

0 < υ ≤ 1. dP (t) = [µ− βP (t)K (t)− µP (t) + αI (t)] dt+ σ1P (t)dB1(t),
dK(t) = [βP (t)K (t)− µK (t)− δ (1− γ)K (t)] dt+ σ2K(t)dB2(t),
dI(t) = [δ (1− γ)K (t)− (µ+ α) I (t)] dt+ σ3I(t)dB3(t),

(71)

if W2 ≤ t ≤ W. For simplicity, we consider right
side of the system as


.
P = F1 (P,K, I) ,
.
E = F2 (P,K, I) ,
.
I = F3 (P,K, I) .

(72)

Using the numerical scheme presented in this pa-
per with piecewise derivative, the numerical solu-
tion of the stochastic-deterministic model is given
as follows:

Pn1
i = Pi(0) +

n1
k1=0

{
3∆t

2
F1(tk1 , P (tk1))

− F1(tk1−1, P (tk1−1))
∆t

2

}
, 0 ≤ t ≤ W1

Pn2
i = Pi(W1) +

(∆t)υ

Γ(υ + 2)

n2

k2=n1

F1(tk2 , P (tk2))×[
(n2 − k2 + 1)υ (n2 − k2 + 2 + υ)
−(n2 − k2)

υ (n2 − k2 + 2 + 2υ)

]
W1 ≤ t ≤ W2

− (∆t)υ

Γ(υ + 2)

n2

k2=n1

F1(tk2−1, P (tk2−1))×[
(n2 − k2 + 1)υ+1

−(n2 − k2)
υ(n2 − k2 + 1 + υ)

]
,

Pn3
i = Pi(W2) +

n3
k3=n2

{
3∆t
2 F1(tk3 , P (tk3))

−F1(tk3−1, P (tk3−1))
∆t
2

}
W2 ≤ t ≤ W

+n3
k3=n2

{σ
2
(P (tk3+1) + P (tk3)) (B (tk3+1)−B (tk3))

}
,

(73)

Kn1
i = Ki(0) +

n1
k1=0

{
3∆t

2
F2(tk1 ,K(tk1))

− F2(tk1−1,K(tk1−1))
∆t

2

}
, 0 ≤ t ≤ W1

Kn2
i = Ki(W1) +

(∆t)υ

Γ(υ + 2)

n2

k2=n1

F2(tk2 ,K(tk2))×[
(n2 − k2 + 1)υ (n2 − k2 + 2 + υ)
−(n2 − k2)

υ (n2 − k2 + 2 + 2υ)

]
, W1 ≤ t ≤ W2

− (∆t)υ

Γ(υ + 2)

n2

k2=n1

F2(tk2−1,K(tk2−1))×[
(n2 − k2 + 1)υ+1

−(n2 − k2)
υ(n2 − k2 + 1 + υ)

]
Kn3

i = Ki(W2) +
n3
k3=n2

{
3∆t
2 F2(tk3 ,K(tk3))

−F2(tk3−1,K(tk3−1))
∆t
2

}
W2 ≤ t ≤ W.

+n3
k3=n2

{σ
2
(K (tk3+1) +K (tk3)) (B (tk3+1)−B (tk3))

}
(74)

In1
i = Ii(0) +

n1
k1=0

{
3∆t

2
F3(tk1 , I(tk1))− F3(tk1−1, I(tk1−1))

∆t

2

}
,

0 ≤ t ≤ W1,

In2
i = Ii(W1) +

(∆t)υ

Γ(υ + 2)

n2

k2=n1

∪3 (tk2 , I(tk2))×[
(n2 − k2 + 1)υ (n2 − k2 + 2 + υ)
−(n2 − k2)

υ (n2 − k2 + 2 + 2υ)

]
, W1 ≤ t ≤ W2

− (∆t)υ

Γ(υ + 2)

n2

k2=n1

F3(tk2−1, I(tk2−1))×[
(n2 − k2 + 1)υ+1

−(n2 − k2)
υ(n2 − k2 + 1 + υ)

]
,

In3
i = Ii(W2) +

n3
k3=n2

{
3∆t
2 F3(tk3 , I(tk3))

−F3(tk3−1, I(tk3−1))
∆t
2

}
W2 ≤ t ≤ W.

+n3
k3=n2

{σ
2
(I (tk3+1) + I (tk3)) (B (tk3+1)−B (tk3))

}
.

(75)

6.2. Numerical simulations

In this section, we show the numerical simulations
for the considered stochastic model with piecewise
derivative. Also, for the numerical simulations of
the system, we consider the values of the param-
eters as follows:

β = 0.001, µ = 0.002,

γ = 0.021, δ = 0.029, α = 0.047.
(76)

In the model, the densities of randomness values
for Figure 1-6 are given as

σ1 = 0.19, σ2 = 0.3, σ3 = 0.4.

Figure 1-3 is given with fractional order υ = 1 and
Figure 4-6 is given with fractional order υ = 0.6.
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Figure 1. Numerical simulations of
the system with initial conditions are
given as P (1) = 10, K(1) = 0, I(1) =
10.

In Figure 1, It is also assumed that there are no
students (ac) with average academic achievement
in the school. When the simulation in Figure 1,
drawn with this assumption, is examined, it is
seen that when the number of students (aac) with
academic achievement above the school’s grade
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point average increases, the number of students
(bac) with academic achievement below the av-
erage decreases. In this context, it has been
understood that there is an inverse proportion
between the number of students (aac) who are
above the school’s academic grade point average
and the number of students (bac) who are be-
low it. According to Figure 1, it can be said
that there is an interaction between the number
of students divided into groups according to their
academic grade averages, there are transitions be-
tween the groups in the process, and the resulting
process develops in the direction expected by the
researchers.
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Figure 2. Numerical simulations of
the system with initial conditions are
given as P (1) = 10, K(1) = 10,
I(1) = 0.

In Figure 2, it is assumed that there are no stu-
dents (bac) with below average academic achieve-
ment in the school. When the simulation in
Figure 2, which is drawn with this assumption,
is examined, it is seen that the number of stu-
dents (ac) with average academic achievement
decreased along with the increase in the num-
ber of students (aac) with achievement above the
school’s academic grade average. In this con-
text, it has been understood that there is an in-
verse proportion between the number of students
(aac) who are above the school’s academic grade
point average and the number of students (ac)
who have an average level of academic achieve-
ment. According to Figure 2, it can be said that
there is an interaction between the number of stu-
dents divided into groups according to their aca-
demic grade averages, there are transitions be-
tween the groups in the process, and the resulting
process develops in the direction expected by the
researchers.
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Figure 3. Numerical simulations of
the system with initial conditions are
given as P (1) = 10, K(1) = 0, I(1) =
10.

In Figure 3, It is also assumed that there are
no students (ac) with average academic achieve-
ment in the school. When the simulation in
Figure 3, drawn with this assumption, is exam-
ined, it is seen that when the number of stu-
dents (bac) with achievement below the school’s
academic grade average increases, the number of
students (aac) with academic achievement above
the average decreases. In this context, it has
been understood that there is an inverse propor-
tion between the number of students (bac) who
are below the school’s academic grade point av-
erage and the number of students (aac) who are
above it. According to Figure 3, it can be said
that there is an interaction between the number
of students divided into groups according to their
academic grade averages, there are transitions be-
tween the groups in the process, and the resulting
process develops in the direction expected by the
researchers.
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Figure 4. Numerical simulations of
the system with initial conditions are
given as P (1) = 0, K(1) = 10, I(1) =
10.
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In Figure 4, it is assumed that there are no stu-
dents (aac) with above average academic achieve-
ment in the school. When the simulation in Fig-
ure 4, drawn with this assumption, is examined,
it is seen that when the number of students (ac)
with average academic achievement increases, the
number of students (bac) with below average aca-
demic achievement decreases. In this context,
it has been understood that there is an inverse
proportion between the number of students (ac)
with average academic achievement and the num-
ber of students (bac) who are below the academic
grade point average. According to Figure 4, it
can be said that there is an interaction between
the number of students divided into groups ac-
cording to their academic grade averages, there
are transitions between the groups in the process,
and the resulting process develops in the direction
expected by the researchers.
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Figure 5. Numerical simulations of
the system with initial conditions are
given as P (1) = 10, K(1) = 10,
I(1) = 0.

In Figure 5, it is assumed that there are no stu-
dents (bac with below average academic achieve-
ment in the school. When the simulation in Fig-
ure 5, drawn with this assumption, is examined,
it is seen that when the number of students (ac)
with average academic achievement increases, the
number of students (aac) with achievement above
the academic grade point average decreases. In
this context, it has been understood that there is
an inverse proportion between the number of stu-
dents (ac) who have an average academic achieve-
ment level at school and the number of students
(aac) who are above their academic grade point
average. According to Figure 5, it can be said
that there is an interaction between the number
of students divided into groups according to their
academic grade averages, there are transitions be-
tween the groups in the process, and the resulting

process develops in the direction expected by the
researchers.
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Figure 6. Numerical simulations of
the system with initial conditions are
given as P (1) = 10, K(1) = 10,
I(1) = 10.

In Figure 6, It is assumed that the number of stu-
dents in the groups separated according to their
academic grade averages are equal to each other
within the school. When the simulation in Fig-
ure 6, drawn with this assumption is examined,
it is seen that there is an interaction between the
number of students divided into groups according
to their academic grade averages, there are transi-
tions between the groups in the process, and over
time, the students (ac) pile up into the group with
average academic achievement

7. Discussion, conclusion and
recommendations

Academic achievement is very important, as it en-
ables students to be well-equipped for professional
and social life and shapes their future. In the
event of any academic failure, students generally
face many emotional, cognitive, and behavioral
problems. In this study, it was tried to calculate
the academic achievement levels of the students
throughout the school with the help of the math-
ematical model developed through the metapop-
ulation model in order to find solutions to the
possible problems that students may experience
due to their academic failures. In the model de-
veloped for this purpose, academic achievement
was determined by taking the GPA into account.
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The students were considered three different ac-
tor groups: above-average, average, and below-
average students. Individual characteristics, fam-
ily, and school variables were taken into consider-
ation as factors affecting these actors. By follow-
ing this path, it was possible to calculate the aca-
demic achievement levels of the schools, in partic-
ular for the students. The developed mathemat-
ical model will make significant contributions to
the determination of the effect levels of the vari-
ables that can support and harm students’ aca-
demic achievement. After the relevant variables
are processed, schools with low academic achieve-
ment will be able to learn from the variables
which variables they need to carry out preven-
tive and protective studies. Preventive and pro-
tective studies can be planned for the academic
achievement level of the students. In these study
plans, studies can be added on individual rea-
sons (self-efficacy, self-esteem, motivation, etc.),
family-related reasons (attitudes and behaviors of
parents, their participation in education, educa-
tion level of parents, socioeconomic level of the
family, etc.), and school-related reasons (school
culture, teacher behavior, school principal’s lead-
ership, etc.) included in the mathematical model
developed. Although all of these variables inter-
act with each other, they are also determinants
of the probability of students being included in
the academic failure risk group. In this context,
it can be said that in order to minimize the prob-
lem of academic failure in schools, all these vari-
ables should be considered together and improved
within the framework of a common understanding
(the school and parents are in communication).

For example, both the structural characteristics of
the family and the attitude of the family towards
the lessons have an important place in affecting
the student’s motivation towards any subject or
course. Therefore, the family should constantly
support their child and try to keep her/his moti-
vation high in order to be successful at school [41].
In order for parents with low educational levels,
professional status, and family income levels to
acquire academic predispositions; seminars, con-
ferences, etc. informative meetings. A strong
school culture causes students to be more at-
tached to their goals and school, and as a result,
academic achievement increases. School princi-
pals should be aware that they are directly influ-
ential in the creation of a strong organizational
culture and the development of student success,
and they should transform their institutions into
learning organizations by demonstrating effective
leadership behaviors. Teachers can help create a
positive attitude towards lessons by taking into

account the interests and needs of students, or-
ganizing various learning activities, exemplifying
the application areas of the lessons in current
and professional life, and emphasizing the role
of lessons in the development of critical think-
ing and reasoning skills [7]. In addition, school
counselors should organize awareness-raising sem-
inars and plan individual and group counseling
services in order to increase students’ self-efficacy,
self-esteem and motivation levels.

In this study, using a multidisciplinary method,
academic achievement, which is a very important
issue for the field of social sciences (psychology
and educational sciences), is handled through a
mathematical model. The fact that a subject
in the field of social sciences is handled with
a mathematical model apart from the comput-
erized statistical programs (SPSS, Amos, Lisrel,
Nvivo, etc.), which are frequently used in the lit-
erature, makes this study very unique in terms
of method. Starting with a similar approach,
the number of multidisciplinary studies can be
increased by developing mathematical models
about other concepts and phenomena (peer bul-
lying, school burnout, etc.) that are important
for the field of social sciences. In addition, when
the literature is examined, it is striking that there
are almost no studies that develop mathematical
models in students. Low academic achievements
will negatively affect students’ chances to become
successful, happy, and socially integrated individ-
uals in their future lives. In addition, consider-
ing the potential importance of students for the
society they live in, it is clear that new studies
should be planned to overcome this deficiency.
Of course, as with any study, this one also has
some limitations. In this study, students who
were above average, average, and below average
(according to GPA) were taken as the actors of
academic achievement. Individual, family, and
school-related variables that affect these actors
are emphasized. In the models to be developed
later, new characters can be added among the
actors of academic achievement by reducing the
GPA score intervals. In addition, the variables
affecting the actors include learning speed, intel-
ligence, gender, interest, personality traits, readi-
ness, etc. The mathematical model can be en-
riched by addition. It should not be forgotten!
Every study that will be carried out related to
academic achievement will add a different value
to the literature and prepare the basis for the for-
mation of new ideas.
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[4] Özgüven, İ. E. (2014). Psychological tests
[Psikolojik testler] (12th ed.). Ankara: Nobel
Akademik Yayıncılık.

[5] York, T. T., Gibson, C., & Rankin, S. (2015).
Defining and measuring academic success. Practi-
cal Assessment, Research, and Evaluation, 20(1),
1-20.
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(2010). The attitudes of the students in secondary
education to physical education lesson and the in-
vestigation of their success motivations: Konya

anatolian high school sample. The Journal of Sel-
cuk University Social Sciences Institute, (24), 1-
10.

[15] Rosenberg, M. (1965). Society and the adoles-
cent self-image. New Jersey: Princeton University
Press.

[16] Sharma, P., & Sharma, M. (2021). Relationship
between self-esteem and academic achievement of
secondary school students. Elementary Education
Online, 20(1), 3208-3212.

[17] Deveci, T. (2021). The effects of family structure
on the individual’s motivation for academic suc-
cess, academic permission and the level of happi-
ness: Erzincan center and Tercan district example
(Unpublished master’s thesis). Sivas Cumhuriyet
University, Graduate School of Social Sciences,
Sivas.
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[27] Şişman, M. (2018). Teaching leadership [Öğretim
liderliği] (6th ed.). Ankara: Pegem Akademi
Yayıncılık.

[28] Wikipedia (2022). Mathematical
model. Access address (01.08.2022):
https://en.wikipedia.org/wiki/Mathematical model



258 P. Yaprakdal Uzun, K. Uzun, I. Koca / IJOCTA, Vol.13, No.2, pp.244-258 (2023)

[29] Sheergojri, A. R., Iqbal, P., Agarwal, P., &
Ozdemir, N. (2022). Uncertainty-based Gompertz
growth model for tumor population and its nu-
merical analysis. An International Journal of Op-
timization and Control: Theories & Applications
(IJOCTA), 12(2), 137-150.

[30] Benson, D. A., Wheatcraft, S. W., & Meer-
schaert, M. M. (2000). Application of a fractional
advection-dispersion equation. Water Resources
Research, 36(6), 1403-1412.
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singular differential systems. We established some new sufficient conditions
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1. Introduction

Singular systems are widely connected to various
applications such as power systems, electrical net-
works, and robotics. However, it has some ex-
ceptional features like regular and impulse free
that do not exist in normal state-space systems.
These exceptional characteristics may cause some
challenges upon studying the singular systems.
Further, because of the singularity matrix E, it
is not easy to formulate easy-to-check conditions
for analysis and synthesis problems. Due to the
above justifications, the study of singular sys-
tems has been scrutinized more attention over
the past decades [1]. The past two decades have
spotted an important development on the the-
ory of singular differential systems (SDSs), and
many basic and most significant concepts have

been favorably examined including stability anal-
ysis, stabilization, guaranteed cost control, filter-
ing, observer design, sliding mode control and so
on [2, 3]. The main target is to show the lat-
est developments in the analysis and synthesis of
SDSs. Since the system is chronicled by algebraic
and differential equations, the SDSs may disclose
instability behavior and thus poor performance
may be raised on the basis of presence of time
delay. Hence the investigation of stability char-
acter of SDSs becomes compulsory. By apply-
ing various methods and ideas, several authors
have studied the SDS. In [4], the author stud-
ied the delay-dependent stability criteria by using
Writinger-based inequality. The delay-dependent
robust stability norms for two classes of SDSs with
norm-bounded uncertainties are discussed in [5].
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In [6] the exponential stability problems of singu-
lar impulsive switched systems was investigated.
Impulsive stabilization problem for a class of lin-
ear singular systems with time-delays can be seen
in [7]. The problem of exponential stability anal-
ysis for a class of singular systems with inter-
val time-varying discrete and distributed delays is
discussed in [8]. The stability problem of singu-
lar systems with time-varying delay by first trans-
forming it into a neutral system with time-varying
delay and constructing an appropriate Lyapunov-
Krasovskii functional, is studied in [9]. In [10]
the control problem of switched singular systems
was investigated aiming to compress their incon-
sistent state jumps when switch occurs between
two different singular subsystems. In [11] we can
see a definition of a transform that reformulates
the system with delays into a singular linear sys-
tem of differential equations whose coefficients are
non-square constant matrices where the number
of their columns is greater than the number of
their rows. Further, in engineering applications,
the complexity increases mean accuracy will not
be described by linear singular systems. To over-
come this type of problem, we need generalized
nonlinear singular systems to solve the problem.
Very few authors have studied the nonlinear sin-
gular system models [6,12–15] and the references
therein. Moreover, The problem of sliding mode
control with torpidity of a class of uncertain non-
linear SDSs had been discussed in [16]. Many
other valuable results are obtained for stability
and stabilization for SDSs, see [7, 17–26] and the
references therein.

Stability is a condition in which a slight distur-
bance in a system does not generate too disrupt-
ing effect on that system. The dynamics of SDS
are by a mixture of differential- algebraic equa-
tions, so the study of E-exponential stability (E-
ES) was first introduced by [12]. In [3,6], the au-
thors analyzed the connection between the expo-
nential stability (ES) and the E-ES for linear and
non-linear singular impulsive differential systems
and they claimed that the E-ES is nearly equal to
its ES. Hence it is essential to speak about the
exponential stability of random impulsive non-
linear SDSs. On the other hand, impulsive sys-
tems stand up when dynamics generate discon-
tinuous trajectories. Discontinuities arise when
movements of states occur over a small inter-
lude that simulates a point-mass measure. There
are several works contributed to study the im-
pulses at fixed point (see the monograph [27, 28]
and [29–35]). The significant concepts of impul-
sive control have been disputed with a wide field
of uses in analysis and control of complex systems

in [36]. Some stability criteria for impulsive differ-
ential systems had been discussed in [37]. Global
ES for impulsive system with infinite distributed
delay based on flexible impulse frequency are dis-
cussed in [38]. In [39], impulse control is used to
study nonlinear systems with partial unmeasur-
able states. Very few research have been carried
for random impulsive systems. When the reac-
tions of the impulse drawn at random time points,
the results follow as a stochastic process. Random
impulses are different from fixed-time impulse ef-
fects. Recently in [40], the authors studied the
exponential stability based on fixed and random
time effect of the impulses while they proved the
robust mean square stability for random impul-
sive control systems in [41]. Then, by consider-
ing the impulse moments at random time points
in [42], the authors proved the stability results
for differential systems. Moreover and to the best
of authors’ knowledge, we like to point out that
there is no paper about the investigation of the
ES on the random impulsive SDSs. For further
information the reader can refer to [43–48].

Inspired by the above discussion, in this paper,
we generalized the E-ES result for pth moment
and also proved the equivalence to ES for a non-
linear singular system. Further, we address new
sufficient conditions to develop the exponential
stability criteria (E-ES and ES) for random impul-
sive nonlinear SDSs. The waiting time between
two consecutive impulses is considered to follow
an exponential distribution when the effects of
the impulses taken at random time points. By
employing the effect of impulses and Lyapunov-
function approach, we achieve the desired perfor-
mance. The rest of this paper follows through
some definitions and lemmas in Section 2. In
Section 3, we prove the E-ES and ES results for
random impulsive SDSs by using the Lyapunov-
function approach. In Section 4, three numerical
examples are discussed, the last of which involves
the usage of matrices with complex entries and
finally in Section 5 a conclusion is given.

Notations: Let ℜ indicate the set of all real
numbers, ℜ+ the set of all positive real numbers
and Z+ the set of all positive integers. Let ℜn

be the Euclidean space provided with norm ∥·∥,
and (Ω,F ,P) be a probability space. We use
PC ([t0, T ] ,ℜn), to indicate the set of all piece-
wise right continual real-valued random variables
φ : [t0, T ] → ℜn, with the norm is described by
E∥φ∥p = sup

θ∈[t0,T ]
E∥φ(θ)∥p. Furthermore, AT rep-

resents the transpose of A where the maximum
and minimum eigenvalues of the matrix indicated
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by λmax(·), and λmin(·). Then E[·], indicates the
expectation operator with respect to the given
probability P.

2. Model description and essential
preliminaries

Let {χ′
m}∞m=0 be the non-decreasing sequence of

random variables and {τ ′
m}∞m=1 is a sequence

of an independent exponentially distributed ran-
dom variable with parameter γ defined on sample
space Ω. Note that χ

′
0 = t0, where t0 ≥ 0 is a

fixed point and χ
′
m = χ

′
m−1+τ

′
m for m = 1, 2, · · · ,

where τ
′
m define the delay (waiting) time between

two consecutive impulses where
∞∑

m=1
τ

′
m = ∞ with

probability 1.
Consider, the random impulsive non-linear SDSs:


E ẋ(t) = Ax(t) + f(x(t), t), χ

′
m < t < χ

′
m+1,

x(χ
′+
m ) = Cm(τ

′
m)x(χ

′−
m ),m ∈ Z+

xt0 = x0,

(1)

where t ≥ t0, x(t) ∈ ℜn, A ∈ ℜn×n is system

matrix, Cm(τ
′
m) is the jump altitude and the ma-

trix E ∈ ℜn×n is singular with rank E = k ≤ n.
f(x(t), t) : ℜn×ℜ+ → ℜn×n are piecewise contin-
ual vector-valued functions assuring the existence
and uniqueness of solutions for systems (1) with
f(0, t) ≡ 0 and satisfies the Lipschitz condition
for all (x, t), (x∗, t) ∈ ℜn ×ℜ+

∥f(x(t), t)− f(x∗(t), t)∥ ≤ ∥F (x(t)− x∗(t))∥, (2)

where F is a constant matrix with an appropriate
dimension. Consequently, from (2), we have

∥f(x(t), t)∥ ≤ ∥Fx(t)∥. (3)

Remark 1. Let {χm}∞m=0 be non-decreasing se-
quence of points, where χm are values of the cor-
related random variables χ

′
m,∀ m = 1, 2, · · · , and

{τm}∞m=1 be a sequence of points, where τm are ar-

bitrary values of the random variable τ
′
m,∀ m =

1, 2, · · · . For satisfaction, we define χ0 = t0 and
χm = χm−1+τm, ∀ m = 1, 2, · · · , where τm repre-
sents the value of the delay (waiting) time. Then
system (1) becomes
E ẋ(t) = Ax(t) + f(x(t), t), t ̸= χm, t ≥ t0,

x(χ+
m) = Cm(τm)x(χ−

m),m ∈ Z+

xt0 = x0.

(4)

The solutions of the system (4) are controlled not
only by the initial condition but also by the mo-
ments of impulses χm, m = 1, 2, · · · . That is,
the result depends on the selected arbitrary values

τm of the random variable τ
′
m, ∀ m = 1, 2, · · · . We

will assume x(χm) = lim
t→χm−0

x(t).

Moreover, the set of all solutions of system (4),
is known as a sample path solution of system (1).
Thus, the sample path solution produces a stochas-
tic process. We can assure that it is a solution of
the system (1).

Lemma 1. [41, 42], When there will be exactly
m impulses until the time t, t ≥ t0, and the wait-
ing time between two consecutive impulses follow
an exponential distribution with parameter γ, then
the probability

P(I
[χ′

m,χ
′
m+1)

(t)) =
γm(t− t0)

m

m!
e−γ(t−t0),

where the events

I
[χ′

m,χ
′
m+1)

(t) = {ω ∈ Ω : χ
′
m(ω) < t < χ

′
m+1(ω)},

m = 1, 2, · · · .

Remark 2. [41, 42], Let x(t) be the solution of
the random impulsive differential equations then
the expected value of x(t) satisfies

E[∥x(t)∥p] =
∞∑

m=0

E[∥x(t)∥p|I
[χ′

m,χ
′
m+1)

(t)]

P(I
[χ

′
m,χ

′
m+1)

(t)),

where χ
′
m is the impulse moments.

Definition 1. [6], The pair (E , A) is called reg-
ular if det(sE −A) is not identical zero. The pair
(E , A) is called impulse free if deg(det(sE −A)) =
rank(E).

Definition 2. [6,12], System (1) is said to have
a Lyapunov-like property if there exists a matrix
P such that ETP = P TE ≥ 0 and [Ax(t) +
f(x(t), t)]TPx+ xTP [Ax(t) + f(x(t), t)] < 0.

Remark 3. [6,12] For a nonlinear system, it is
sufficient that the solution exists and is unique on
[0,∞), if there exists a matrix P satisfying defi-
nition 2.

From [6, 36], we have that the pair (E , A) is reg-
ular and impulse free, then we have that there
exists matrices G1 ∈ ℜr×n,G2 ∈ ℜ(n−r)×n,Q1 ∈
ℜn×r,Q2 ∈ ℜn×(n−r), such that G = col(G1,G2)
and Q = row(Q1,Q2) ∈ ℜn×n are two non-
singular matrices and the following standard de-
composition holds

GEQ = diag{Ir, 0},GAQ = diag{A1, In−r}

where r = Rank(E), A1 ∈ ℜr×r. Non-singularity
of G implies that G2 is full-row and then G2(G2)

T

is positive definite. Without loss of generality, we
always assume that ∥G2∥ ≤ 1.
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Lemma 2. [6], Let V ∈ ℜn×n be a positive-
definite matrix, then

λmin(V)xTx ≤ xTVx ≤ λmax(V)xTx, ∀ x ∈ ℜn.

Lemma 3. [49] For any constant ϵ > 0, and
vectors x, y ∈ ℜn, then we have

xT y + yTx ≤ ϵ−1xTx+ ϵyT y, holds.

Definition 3. System (1) is said to be pth mo-
ment E-ES, if there exist two positive numbers
λ > 0,M > 0 such that, the solution x of sys-
tem (1) satisfies

E ∥Ex(t)∥p ≤ ME[∥Ex0∥p]e−λ(t−t0), t ≥ t0.

Definition 4. System (1) is said to be pth mo-
ment ES, if there exist two positive numbers λ >
0,M > 0 such that, the solution x of the system
(1), satisfies

E ∥x(t)∥p ≤ ME[∥Ex0∥p]e−λ(t−t0), t ≥ t0.

If p = 2, then it is mean square exponential stable.

3. Main results

Theorem 1. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) satisfies a Lyapunov-like
property and there exists an invertible matrix P ,
and positive constants κ > 0, ωm > 0, such that
E[ωm] ≤ κ, ζ < 0 be a negative real number,
ϵ > 0, exponential distribution parameter γ and
the following conditions hold,

(ATP + P TA) + λmax(
1
ϵF

TF + ϵP TP )I

< ζETP,

Γ = (Cm(τm)TETPCm(τm)− ωmETP ) (5)

≤ 0

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment E-ES.

Proof. Let x be the sample path solution of sys-
tems (4). For convenience we take V (x(t)) =
V (t, x(t)), and consider the Lyapunov function

V (x(t)) = xT (t)ETPx(t). (6)

Taking the derivative of V (x(t)) along the so-
lution of system (4) at the continuous interval
[χm−1, χm),m ∈ Z+, then we have

V̇ (x(t))

= ẋT (t)ETPx(t) + xT (t)P TE ẋ(t), (7)

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t).

From condition (5), we have

V̇ (x(t))

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t),

= xT (t)(ATP + P TA)x(t) + 2fT (x(t), t)Px(t),

≤ xT (t)(ATP + P TA)x(t)

+xT (t)(
1

ϵ
F TF + ϵP TP )Ix(t)

≤ xT (t)ζETPx(t)

≤ ζV (x(t)).

Hence we have,

V̇ (x(t))− ζV (x(t)) ≤ 0, (8)

or

V̇ (x(t)) ≤ ζV (x(t)), t ∈ [χm−1, χm),m ∈ Z+. (9)

Note that for any m ∈ Z+, at instant t = χm, we
have

V (χm
+)− ωmV (χm

−)

= xT (χm
+)ETPx(χm

+)− ωmxT (χm
−)ETPx(χm

−)

= [Cm(τm)x(χm
−)]TETP [Cm(τm)x(χm

−)]

−ωm[x(χm
−)]TETP [x(χm

−)] (10)

= [xT (χm)Cm(τm)T ]ETP [Cm(τm)x(χm)]

−ωm[xT (χm)]ETP [x(χm)]

= xT (χm)(Cm(τm)TETPCm(τm)− ωmETP )x(χm)

= xT (χm)Γx(χm)

≤ 0.

Therefore, from (4) and by using simple induc-
tion, from (9) and (10), we have

V (x(t)) ≤ V (x0(t))
m∏
i=1

ωie
ζ(t−t0),∀m ∈ Z+. (11)

By the Lyapunov-like property, there exists a
positive definite symmetric matrix L such that
ETP = ETLE . Then, we have

λmin(L) ∥Ex(t)∥p

≤ V (x(t))

≤ V (x0(t))

m∏
i=1

ωie
ζ(t−t0). (12)

Hence, we obtain

∥Ex(t)∥p ≤ λmax(L)

λmin(L)
∥Ex(t0)∥p

m∏
i=1

ωie
ζ(t−t0),

≤ λmax(L)

λmin(L)
∥Ex0∥p

m∏
i=1

ωie
ζ(t−t0),

where t ∈ [χm−1, χm),m ∈ Z+. This equation
generates a stochastic process and it is defined by

∥Ex(t)∥p ≤ M∥Ex0∥p
m∏
i=1

ωie
ζ(t−t0), χ

′
m−1 < t < χ

′
m,
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where M = λmax(L)
λmin(L)

. Taking expectation, by us-

ing Lemma 1, and remark 2, we get

E [∥Ex(t)∥p]

=

∞∑
m=0

E[∥Ex(t)∥p|I
[χ′

m,χ
′
m+1)

(t)]

P(I
[χ

′
m−1,χ

′
m)
(t)),

≤ ME[∥Ex0∥p]
∞∑

m=0

m∏
i=1

E [ωi] e
ζ(t−t0)

P(I
[χ

′
m−1,χ

′
m)
(t))

= ME[∥Ex0∥p]
∞∑

m=0

m∏
i=1

E [ωi] e
ζ(t−t0)

γm(t− t0)
m

m!
e−γ(t−t0),

= ME[∥Ex0∥p]eζ(t−t0)
∞∑

m=0

[γκ]m(t− t0)
m

m!

e−γ(t−t0),

Hence,

E [∥Ex(t)∥p] ≤ ME[∥Ex0∥p]e[ζ+γ(κ−1)](t−t0), (13)

where ζ + γ(κ − 1) is the convergent rate. This
implies that the trivial solution of (1) is E-
exponentially stable. □

Corollary 1. For system (1), its pth moment
E-exponentially stability is equivalent to its pth

moment exponential stability and its satisfies
1− 2p−1E∥FQ2∥p > 0.

Proof. The pair (E , A) is regular and impulse
free, we introduce the coordinate transformation

x(t) = Q col(x1, x2). (14)

It follows that system (1) is equivalent to

ẋ1 = A1x1 + G1f(x(t), t), (15)

χ
′
m < t < χ

′
m+1, t ≥ t0,

0 = x2 + G2f(x(t), t), (16)

χ
′
m < t < χ

′
m+1, t ≥ t0

x(χ
′+
m ) = Cmx(χ

′−
m ),m ∈ Z+ (17)

xt0 = x0,

where x1 ∈ ℜr, x2 ∈ ℜn−r and
G = col(G1,G2),G1 ∈ ℜr×n,G2 ∈ ℜ(n−r)×n,
Q = row(Q1,Q2) ∈ ℜn×n,Q1 ∈ ℜn×r,

Q2 ∈ ℜn×(n−r). Hence,

GEx(t) = GEQ col(x1, x2)

= diag(Ir, 0)col(x1, x2)

= col(x1, 0) (18)

From (13) and (18), we have

E∥x1∥p = E∥GEx∥p

≤ ∥G∥pE∥Ex∥p

≤ ∥G∥pME[∥Ex0∥p]e[ζ+γ(κ−1)](t−t0).
(19)

Here we understood that the solution of the sys-
tem (1) is pth moment globally exponentially sta-
ble.

Now, It is necessary to prove that that x2 is also
exponentially stable. It follows from equation (3)
and (17) that

∥x2∥ ≤ ∥G2∥∥f(x(t), t)∥ ≤ ∥f(x(t), t)∥
≤ ∥Fx(t)∥ = ∥FQ1 x1 + FQ2 x2∥
≤ ∥FQ1 x1∥+ ∥FQ2 x2∥
≤ ∥FQ1∥∥x1∥+ ∥FQ2∥∥x2∥.

Thus, taking expectation and the pth moment on
both sides, we get

(1− 2p−1E∥FQ2∥)E∥x2∥p ≤ 2p−1E∥FQ1∥E∥x1∥p,
where Q is non singular matrix can be suitably
taken to satisfy 1−2p−1E∥FQ2∥p > 0. Therefore
from (19),

E∥x2∥p ≤ 2p−1E∥FQ1∥p

1− 2p−1E∥FQ2∥p
E∥x1∥p

≤ 2p−1E∥FQ1∥p

1− 2p−1E∥FQ2∥p
∥G∥pME[∥Ex0∥p]

e[ζ+γ(κ−1)](t−t0).

From (19) and the above equation, we conclude
that the trivial solution of (1) is pth moment ex-
ponentially stable. The proof is completed. □

When f(x(t), t) = 0, then the system (1) becomes
a linear SDSs with random impulses. In this case,
the following corollary can be easily obtained.

Corollary 2. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) with f(x(t), t) = 0 satis-
fies a Lyapunov-like property and there exists an
invertible matrix P , and there exists positive con-
stant κ > 0, ωm > 0, such that E[ωm] ≤ κ, ζ < 0,
exponential distribution parameter γ and the fol-
lowing conditions hold,

(ATP + P TA) < ζETP, (20)

Γ = (Cm(τm)TETPCm(τm)− ωmETP ) ≤ 0

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment E-ES.

The proof is similar to the proof of Theorem 1
and hence it is omitted.

When E = In, then the system (1) becomes a non-
linear state-space system with random impulses.



264 A. Vinodkumar et al. / IJOCTA, Vol.13, No.2, pp.259-268 (2023)

In this case, the following corollary can be easily
obtained.

Corollary 3. Let τ
′
= max

m∈Z+

{
χ

′
m − χ

′
m−1

}
< ∞.

Assume that system (1) with E = In satisfies a
Lyapunov-like property and there exists a positive
definite matrix P , and there exists positive con-
stant κ > 0, ωm > 0, such that E[ωm] ≤ κ, ζ < 0,
ϵ > 0, exponential distribution parameter γ and
the following conditions hold,

(ATP + P TA) + λmax(
1

ϵ
F TF + ϵP TP )I < ζP,

Γ = (Cm(τm)TPCm(τm)− ωmP ) ≤ 0 (21)

ζ + γ(κ− 1) < 0.

Then, the trivial solution of system (1) is pth mo-
ment ES.

The proof is similar to the proof of Theorem 1
and hence it is omitted.

Remark 4. From the condition (5) and ETP =
P TE ≥ 0, different matrices P can be chosen
based on the matrices E, A and F .

Remark 5. We carried out the following four
conditions from the convergent rate ζ + γ(κ− 1),
in Theorem 1,

(i) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the impulsive strength
κ ∈ ( 0, 1) and the arrival rate of impulses
do not necessarily satisfy any condition.

(ii) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the system does not
have an arrival rate of impulses when the
impulsive strength κ = 1 .

(iii) If ζ < 0 in the inequality V̇ (x(t)) ≤
ζV (x(t)), then the singular system (1) is
stable. In this case, the arrival rate of im-
pulses must be satisfied with this condition
γ < −ζ

κ−1 , where the impulsive strength
κ > 1.

4. Applications

In this section, numerical examples are discussed
to support the proposed results. We illustrate the
results by graphs to support the results.

Example 1. Consider system (1) where

E =

1 0 0
0 1 0
0 0 0

 , A =

−0.3 0.1 0.1
−1 −3 1
−0.6 −1.5 −2.5

 ,

x0 =

−0.1
0.1
0.2

 , f(x(t), t) =


1

10
√
3
tanhx1(t)

1
10

√
3
tanhx2(t)

1
10

√
3
tanhx3(t) ,

 ,

Cm(τm) =

0.5 0 0
0 0.5 0
0 0 0.5

 .

It is easy to verify that ETP = P TE ≥ 0 with
P = I3 and f(x(t), t) satisfies the Lipschitz con-
dition with F = 1

10
√
3
I.

Here, ζ = −3, ϵ = 0.05 with impulse arrival rate

γ = 25, κ = 0.5 and τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
=

0.026, then the conditions (5) in Theorem 1 are
satisfied. Hence system (1) is E-ES. Figure 1 il-
lustrates the graphical behaviour of the solution.
When there are no impulses, then the above sys-
tem is unstable.

Figure 1. E- Exponential stability.

Example 2. Consider system (1) where

E =

[
4 0
2 0

]
, A =

[
−2 1
1 −2

]
,

Cm(τm) =

[
−0.7 0
0 −0.5

]
, x0 =

[
−0.1
0.1

]
,

f(x(t), t) =

[
sinx1( t)

4
√
3

sinx2( t)

4
√
3

]
.

It is easy to verify that ETP = P TE ≥ 0 with

P =

[
1 −0.5
0 1

]
and f(x(t), t) satisfies the Lips-

chitz conditions with F = 1
4
√
3
I.
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Choose p = 2, G =

[
0.2 0.1
−0.4 0.8

]
,

Q =

[
1 0
0.8 −0.5

]
, such that GEQ =

[
1 0
0 0

]
, and

GAQ =

[
−0.3 0
0 1

]
.

Hence, it is easy to verify that ∥G2∥ ≤ 1 and
1− E∥FQ2∥2 > 0.

Figure 2. Exponential stability.

Then the singular system (1) becomes

ẋ1(t) = −0.3x1(t) + 0.0404
sinx1( t)

4
√
3

−0.0072
sinx2( t)

4
√
3

,

χ
′
m < t < χ

′
m+1, t ≥ t0,

and

0 = x2(t) + 0.0346
sinx1( t)

4
√
3

− 0.0577
sinx2( t)

4
√
3

,

χ
′
m < t < χ

′
m+1, t ≥ t0,

x(χ+
m) = Cm(τm)x(χ−

m),m ∈ Z+.

Choose ζ = −2, γ= 4, and ϵ = 0.05 such
that (ATP + P TA) + λmax(

1
ϵF

TF + ϵP TP ) −
ζETP < 0. Further, take κ = 1.5 and τ

′
=

max
m∈Z+

{
ξ
′
m − ξ

′
m−1

}
= 0.026, then conditions (5)

in Theorem 1 are satisfied. Hence system (1) is
mean square ES. Figure 2 demonstrates the graph-
ical behaviour of the solution. When there are no
impulses, then the above system is unstable.

Example 3. Consider system (1) where

E =

1 + i 0 0
0 1 + i 0
0 0 0

 , x0 =

−0.5 + 0.1i
−0.4 + 0.2i

0.2 + i

 ,

A =

 −0.5 + i 0.2− 0.3i 0.1 + 0.3i
0.2 + 0.5i −1− 0.5i −0.1− i
−1.2 + i −0.4− 0.3i −0.2− 0.5i

 ,

f(x(t), t) =

1
2 (|x1(t) + 1| − |x1(t)− 1|)
1
2 (|x2(t) + 1| − |x2(t)− 1|)
1
2 (|x3(t) + 1| − |x3(t)− 1|)

 ,

Cm(τm) =

0.25 + 0.1i 0 0
0 0.25 + 0.1i 0
0 0 0.25 + 0.1i

 .

It is easy to verify that ETP = P TE ≥ 0 with
P = I3 and f(x(t), t) satisfies the Lipschitz con-
dition with F = 1

2I.

Here, ζ = −5, ϵ = 0.01 with impulse arrival rate

γ = 10, κ = 0.7 and τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
=

0.005, then the conditions (5) in Theorem 1 are
satisfied. Hence system (1) is E-ES.

Remark 6. In the above example, we have proved
that the results hold true even when the matrices
involved have complex entries. However, the func-
tion f involved is still a real valued function.

5. Conclusion

In this paper, we consider the exponential stabil-
ity of random impulsive nonlinear singular differ-
ential system. It is worth mentioning that the
system under consideration involves random im-
pulses which may cause some technical difficul-
ties comparing with systems with fixed impulses.
Less restrictive conditions are established for the
E-ES and ES of the system. To support the the-
oretical findings, we give two numerical examples
along with their graphical representations. We il-
lustrate that the obtained results are consistent
with the main theorem. We have additionally
proved the truth of the results in case of matri-
ces involving complex entries as well, while the
function involved still remains real-valued. Prov-
ing the results true for complex valued functions
could be considered to be a future problem. More-
over, as done in [11], we can consider analyzing a
system with delay by reformulating it into a sin-
gular linear system of differential equations, as a
future work. We believe that the results of this
paper are of great significant for relevant commu-
nity and can be used for instance to investigate
switched singular time delay systems.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) de-
scribes the behavior of wave packets in weakly
nonlinear media. It is an adaptable model
to many disciplines in applied sciences such as
dynamical systems, materials science, nonlin-
ear optics, fluid dynamics, astrophysics, parti-
cle physics, and nonlinear transmission networks.
NLSE represents the evolution of optical waves in
a nonlinear fiber, various biological systems, and
the price of options in economics [1].

In the present paper, we consider a specific case
of the following Schrödinger equation

ε
∂u

∂τ
+R2(ς, τ, u)

∂2u

∂ς2
+

R1(ς, τ, u)
∂u

∂ς
+R0(ς, τ, u)u = 0, (1)

where ε = const., u(ς, τ) is the wave’s com-
plex amplitute. The coefficients Rj(ς, τ, u) for
j = 0, 1, 2 describe the variation of the medium.

If the functions Rj depend on u(ς, τ), it shows
that the medium has the nonlinear properties [2].
Linear and nonlinear Schrödinger equations are
obtained from equation (1) with respect to the
characteristics of the coefficients Rj(ς, τ, u) for
j = 0, 1, 2 and ε = i.

Optimal control problems (OCPs) arise in many
branches of science. They have numerous applica-
tions in optics, medical imaging, geophysics, sys-
tem identification, communication theory, astron-
omy, medicine [3–11].

As it is known, in the OCPs, there is an objec-
tive functional, a controlled system, and a set
of admissible controls. The objective function-
als can be diversely chosen with regard to our
purpose such as final, boundary or Lions-type
functional [12]. In the studies [13–22], the objec-
tive functional is considered as a final functional
and the controlled system is generally stated by
the Schrödinger equation. In [23–27], the OCPs
with Lions functional has been studied and the
controlled system is stated by linear or nonlin-
ear Schrödinger equations. Also, in [28–30], the
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OCPs for systems whose state is expressed by
the Schrödinger equation with the boundary func-
tional has been studied.

In this paper, we consider an OCP with Lions
functional for NLSE derived from (1). It is proved
that the OCP has a unique solution and the ob-
jective functional is Frechet differentiable. Also,
by proving the continuity of the gradient of the
objective functional, a necessary optimality con-
dition is obtained.

Differently from the previous studies, in this pa-
per, we analyze the solution of the OCP for NLSE
derived from (1) for R2 = R2(ς, τ), R1 = R1(ς, τ),
R0(ς, τ, u) = R0(ς, τ, u) with different coefficients
which are in the larger space than previous works.

2. The statement of optimal control
problem

The OCP is the problem of finding the minimum
of the objective functional

Jα(p) = ||u1 − u2||2L2(Ω) + α||p− w||2L2(I)
(2)

subject to

i
∂u1
∂τ

+ a0
∂2u1
∂ς2

+ ia1(ς)
∂u1
∂ς

−

a2(ς)u1 + p(ς)u1 + ia3|u1|2u1 = f1, (3)

u1(ς, 0) = ϑ1(ς), ς ∈ I,
u1(0, τ) = u1(l, τ) = 0, τ ∈ (0, T )

}
(4)

and

i
∂u2
∂τ

+ a0
∂2u2
∂ς2

+ ia1(ς)
∂u2
∂ς

−

a2(ς)u2 + p(ς)u2 + ia3|u2|2u2 = f2, (5)

u2(ς, 0) = ϑ2(ς), ς ∈ I,
∂u2
∂ς (0, τ) =

∂u2
∂ς (l, τ) = 0, τ ∈ (0, T )

}
(6)

on admissible controls set

P ≡ {p ∈ L2(I) : |p(ς)| ≤ b0 for almost all ς ∈ I} ,

where ς ∈ I = (0, l) , τ ∈ Q = [0, T ], i =
√
−1.

Let Ω = I×(0, T ), Ωτ = I×(0, τ), Ω̃τ = I×(τ, T )
and a0, a3, b0 > 0 are given real numbers, a1(ς),
a2(ς), ϑ1, ϑ2, f1, f2 are functions which satisfy
the conditions, respectively

|a1(ς)| ≤ µ1,
∣∣∣da1(ς)dς

∣∣∣ ≤ µ2 for almost all ς ∈ I,

a1(0) = a1(l) = 0, µ1, µ2 = const. > 0,

}
(7)

0 < µ3 ≤ a2(ς) ≤ µ4 for almost all ς ∈ I,

µ3, µ4 = const. > 0,
(8)

ϑ1 ∈ W̊ 2
2 (I), ϑ2 ∈ W 2

2 (I),
∂ϑ2(0)

∂ς = ∂ϑ2(l)
∂ς = 0,

fr ∈ W 0,1
2 (Ω) for r = 1, 2,

}
(9)

where Wm
s (I),Wm,n

s (Ω), W̊m
s (I) for m ≥ 0, s ≥ 1

are Sobolev spaces. These Sobolev spaces are in
detail explained in [31]. Also, α ≥ 0 is a Tikhonov
regularization parameter [32] and w ∈ L2(I) is a
given element.

Since the solutions of (3)-(4) and (5)-(6) evidently
depend on p, we denote ur = ur(ς, τ) ≡ ur(ς, τ ; p)
for r = 1, 2.We are interested in solutions of prob-
lems (3)-(4) and (5)-(6) in the following sense:

Definition 1. A function u1 ∈ U1 ≡
C0(Q, W̊ 2

2 (I)) ∩C1(Q,L2(I)) is said to be a solu-
tion of problem (3)-(4), if it holds (3) for almost
all ς ∈ I and any τ ∈ Q, (4) for almost all ς ∈ I
and for almost all τ ∈ (0, T ), respectively.

Definition 2. A function u2 ∈ U2 ≡
C0(Q,W 2

2 (I)) ∩C1(Q,L2(I)) is said to be a solu-
tion of problem (5)-(6), if it holds (5) for almost
all ς ∈ I and any τ ∈ Q, (6) for almost all ς ∈ I
and for almost all τ ∈ (0, T ), respectively.

In the definitions above, for any nonnegative in-
teger k, Ck(Q,B) is the Banach space of all
B−valued, k times continuously differentiable
functions on Q with the norm

||u||Ck(Q,B) =
k∑

m=0

max
0≤t≤T

||d
mu(t)

dtm
||B

for u ∈ Ck(Q,B).

By the methodology in [33], we can readily prove
the theorem below:

Theorem 1. Assume that a1, a2, ϑr, fr for
r = 1, 2 satisfy the conditions (7), (8) and (9),
respectively. Then, problems (3)-(4) and (5)-(6)
for each p ∈ P have unique solutions u1 ∈ U1,
u2 ∈ U2, respectively, and the functions u1, u2 sat-
isfy the estimates

||u1(., τ)||2W̊ 2
2 (I)

+

∥∥∥∥∂u1∂τ

∥∥∥∥2
L2(I)

≤ (10)

c1

(
||ϑ1||2W̊ 2

2 (I)
+ ||f1||2W 0,1

2 (Ω)
+ ||ϑ1||6W̊ 1

2 (I)

)
,
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||u2(., τ)||2W 2
2 (I)

+

∥∥∥∥∂u2∂τ

∥∥∥∥2
L2(I)

≤ (11)

c2

(
||ϑ2||2W 2

2 (I)
+ ||f2||2W 0,1

2 (Ω)
+ ||ϑ2||6W 1

2 (I)

)
,

for any τ ∈ Q, where the constants c1, c2 > 0 are
independent from ϑ1, f1, ϑ2, f2 and τ.

For simplicity, let’s rewrite problems (3)-(4) and
(5)-(6) in the form

i
∂ur
∂τ

+ a0
∂2ur
∂ς2

+ ia1(ς)
∂ur
∂ς

−

a2(ς)ur + p(ς)ur + ia3 |ur|2 ur = fr (12)

for r = 1, 2,

ur(ς, 0) = ϑr(ς), ς ∈ I for r = 1, 2, (13)

u1(0, τ) = u1(l, τ) = 0, τ ∈ (0, T ) ,
∂u2(0,τ)

∂ς = ∂u2(l,τ)
∂ς = 0, τ ∈ (0, T ) .

}
(14)

Thus, the OCP is to minimize the objective func-
tional (2) on P under conditions (12)-(14).

3. The solvability of optimal control
problem

In this section, we show that the OCP has a
unique solution on a dense subset of L2(I) and
it has at least one solution on L2(I).

Lemma 1. The functional J0(p) = ||u1−u2||2L2(Ω)

is continuous on P.

Proof. Suppose ur = ur(ς, τ ; p) and urδ =
ur(ς, τ ; p + δp) for r = 1,2 are solutions of prob-
lem (12)-(14) corresponding to p ∈ P , p+δp ∈ P,
respectively, where δp ∈ L∞ (I) is an increment
of any p ∈ P. Then, for r = 1, 2, the functions
δur ≡ ur(ς, τ ; p+ δp)−ur(ς, τ ; p) hold the bound-
ary value problem

i
∂δur
∂τ

+ a0
∂2δur
∂ς2

+ ia1(ς)
∂δur
∂ς

−

a2(ς)δur + (p(ς) + δp(ς))δur +

ia3
[(
|urδ|2 + |ur|2

)
δur
]
+ (15)

ia3urδur (δur) = −δp(ς)ur,

δur(ς, 0) = 0, ς ∈ I, r = 1, 2, (16)

δu1(0, τ) = δu1(l, τ) = 0, τ ∈ (0, T )
∂δu2(0,τ)

∂ς = ∂δu2(l,τ)
∂ς = 0, τ ∈ (0, T ) .

}
(17)

Now we multiply both sides of equation (15) by
δur for r = 1,2, and integrate over Ωτ . If we sub-
tract their complex conjugates from equalities ob-
tained with the help of integration by parts and
use condition (16), we get

∥δur(., τ)∥2L2(I)
+

∫
Ωτ

∂

∂ς

(
a1(ς) |δur|2

)
dςdt+

2a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt+

2a3

∫
Ωτ

Re
(
urδur(δur)

2
)
dςdt = (18)

−2

∫
Ωτ

Im (δpurδur) dςdt+

∫
Ωτ

∂a1(ς)

∂ς
|δur|2 dςdt.

Using conditions (7), (17) and Young’s inequality
in (18),we obtain

∥δur(., τ)∥2L2(I)
+

a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt ≤ (19)

(1 + µ2)

∫
Ωτ

|δur|2 dςdt+
∫
Ωτ

|δp|2 |ur|2 dςdt.

Since a3 > 0 and
∫
Ωτ

|δp|2 |ur|2 dςdt ≤

∥δp∥2L∞(I)

(
T∫
0

∥ur(., t)∥2L2(I)
dt

)
, from (19) by

virtue of estimates (10) and (11) we get

∥δur(., τ)∥2L2(I)
+

a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt ≤ (20)

c3 ∥δp∥2L∞(I) , r = 1, 2

for any τ ∈ Q, where the positive constant c3 does
not depend on δp and τ.

Using formula (2) for α = 0, we obtain

δJ0(p) = J0(p+ δp)− J0(p) =

2

∫
Ω

Re [(u1 − u2) (δu1 − δu2)] dxdt+

∥δu1∥2L2(Ω) + ∥δu2∥2L2(Ω) − (21)

2

∫
Ω

Re (δu1δu2) dxdt

which implies that
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|δJ0(p)| ≤ 2 ∥u1∥L2(Ω) ∥δu1∥L2(Ω) +

2 ∥u1∥L2(Ω) ∥δu2∥L2(Ω) +

2 ∥u2∥L2(Ω) ∥δu1∥L2(Ω) +

2 ∥u2∥L2(Ω) ∥δu2∥L2(Ω) +

2 ∥δu1∥2L2(Ω) + 2 ∥δu2∥2L2(Ω) .

If we use estimates (10), (11), (20) in the inequal-
ity above, we get the inequality

|J0(p+ δp)− J0(p)| ≤

c4

(
∥δp∥L∞(I) + ∥δp∥2L∞(I)

)
for any p ∈ P, where c4 is a positive constant inde-
pendent from δp. Thus, we obtain that |δJ0(p)| →
0 as ∥δp∥L∞(I) → 0 for any p ∈ P, which con-

cludes the proof. □

Theorem 2. Let Theorem 1 be satisfied and w ∈
L2(I). Then, there exists a dense subset V ⊂
L2(I) such that OCP has a unique solution for
any w ∈ V and α > 0.

Proof. From Lemma 1, J0(p) is a lower semicon-
tinuous functional. Also, it is clear that J0(p)
is lower bounded. As known, L2(I) is a uni-
formly convex Banach space. Furthermore, P is a
closed, bounded subset of L2(I). Therefore, based
on Theorem 4 in [34] we can say that the OCP has
a unique solution on a dense subset V ⊂ L2(I).
This completes the proof. □

Theorem 3. Let w ∈ L2(I) be a given function
and α ≥ 0. Also, assume that Theorem 1 is satis-
fied. Then, the OCP has at least one solution.

Proof. The proof of Theorem 3 is carried out as
in [22]. □

4. The gradient of functional and a
necessary optimality condition

In this section, we introduce the adjoint problem
to investigate the differentiability of the objec-
tive functional and get a formula for its gradient.
Finally, a necessary optimality condition for the
OCP is derived.

By using Lagrange multiplier functions, we obtain
the adjoint problem as follows:

i
∂ηr
∂τ

+ a0
∂2ηr
∂ς2

+ i
∂

∂ς
(a1(ς)ηr)−

a2(ς)ηr + p(ς)ηr − 2ia3|ur|2ηr + (22)

ia3u
2
r η̄r = 2(−1)r (u1 − u2) for r = 1, 2,

ηr(ς, T ) = 0 for r = 1, 2, ς ∈ I, (23)

η1(0, τ) = η1(l, τ) = 0, τ ∈ (0, T ) ,
∂η2
∂ς (0, τ) =

∂η2
∂ς (l, τ) = 0, τ ∈ (0, T ) ,

}
(24)

where the functions ur = ur(ς, τ) are solutions
of problem (12)-(14) for any p ∈ P . It can be
seen that the adjoint problem (22)-(24) includes
the two boundary value problems. One of them
is a Dirichlet problem with respect to η1 and the
other is a Neumann problem with respect to η2.
If we use transform t = T −τ to the adjoint prob-
lem, we come to the conclusion that the adjoint
problem is in the form of problem (12)-(14). As
a solution of (22)-(24), we consider two functions
η1(ς, τ) ∈ U1, η2(ς, τ) ∈ U2 satisfying equation
(22) for almost all ς ∈ I and any τ ∈ Q, the
condition (23) for almost all ς ∈ I and the condi-
tions (24) for almost all τ ∈ (0, T ) , respectively.
Hence, we can state the validity of the following
theorem for the solution of the adjoint problem
(22)-(24):

Theorem 4. Let the assumptions of Theorem 1
be fulfilled. Then adjoint problem (22)-(24 ) has
a unique solution η1 ∈ U1, η2 ∈ U2 for any p ∈ P
and the following estimates hold

||η1(., τ)||2W̊ 2
2 (I)

+

∥∥∥∥∂η1∂τ

∥∥∥∥2
L2(I)

≤

c5 ∥u1 − u2∥W 0,1
2 (Ω)

, (25)

||η2(., τ)||2W 2
2 (I)

+

∥∥∥∥∂η2∂τ

∥∥∥∥2
L2(I)

≤

c6 ∥u1 − u2∥W 0,1
2 (Ω)

(26)

for any τ ∈ Q, where the positive constants c5, c6
do not depend on τ.

This theorem can be easily proved by the
Galerkin’s method similarly to the proof of The-
orem 1.

Now, let’s get the enhancement δJα(p) = Jα(p +
δp) − Jα(p) of Jα(p) for any p ∈ P, where δp ∈
L∞ (I) is an increment given to any p ∈ P such
that p+δp ∈ P . If we use formula (2), we achieve

δJα(p) =

∫
Ω

δp(ς)Re(u1η1)dςdτ +

∫
Ω

δp(ς)Re(u2η2)dςdτ + (27)

2α

l∫
0

(p− w) δpdς +R,



The solvability of the optimal control problem for a nonlinear Schrödinger equation 273

where

R =

∫
Ω

δp(ς)Re(δu1η1)dςdτ +

∫
Ω

δp(ς)Re(δu2η2(ς, τ))dςdτ +

∥δu1∥2L2(Ω) + ∥δu2∥2L2(Ω) −

a3

∫
Ω

(|u1δ|2 − |u1|2)Im(δu1η̄1)dςdτ −

a3

∫
Ω

(|u2δ|2 − |u2|2)Im(δu2η̄2)dςdτ −

a3

∫
Ω

|δu1|2Im (u1η̄1) dςdτ −

a3

∫
Ω

|δu2|2Im (u2η̄2) dςdτ + α ∥δp∥2L2(I)

and δur ≡ ur(ς, τ ; p+ δp)− ur(ς, τ ; p) for r = 1, 2
hold problem (15) for any p ∈ P. By Young’s in-
equality for the term R, we get

|R| ≤ 5

2
∥δu1∥2L2(Ω) +

5

2
∥δu2∥2L2(Ω) +

α ∥δp∥2L2(I)
+

T

2

(
max
0≤τ≤T

∥η1(., τ)∥2L∞(I)

)
∥δp∥2L2(I)

+

T

2

(
max
0≤τ≤T

∥η2(., τ)∥2L∞(I)

)
∥δp∥2L2(I)

+

a3

∫
Ω

(
|u1δ|2 + |u1|2

)
|δu1|2 dςdτ +

a3

∫
Ω

(
|u2δ|2 + |u2|2

)
|δu2|2 dςdτ +

a3

T∫
0

∥η1(., τ)∥2L∞(I) ∥δu1(., τ)∥
2
L2(I)

dτ +

a3

T∫
0

∥η2(., τ)∥2L∞(I) ∥δu2(., τ)∥
2
L2(I)

dτ +

1

2
a3

T∫
0

∥u1(., τ)∥2L∞(I) ∥δu1(., τ)∥
2
L2(0,l)

dτ +

1

2
a3

T∫
0

∥u2(., τ)∥2L∞(I) ∥δu2(., τ)∥
2
L2(I)

dτ.

In the inequality above, if we use estimates (10),
(11), (20), (25), (26) and the well known inequal-
ity in [31]

∥u(., τ)∥2L∞(I) ≤

β2

∥∥∥∥∂u(., τ)∂ς

∥∥∥∥
L2(I)

∥u(., τ)∥L2(I)
, (28)

β2 = const. > 0

for any τ ∈ Q, we achive

|R| ≤ c7 ∥δp∥2L2(I)
≤ c8 ∥δp∥2L∞(I)

which shows that R = o
(
||δp||L∞(I)

)
, that is,

lim
||δp||L∞(I)→0

R
|δp||L∞(I)

= 0, where the constants

c7, c8 > 0 are independent from δp and τ. So,
from (27), we can write

δJα(p) =

l∫
0

 T∫
0

Re(u1η1 + u2η2)dτ

 δp(ς)dς +

l∫
0

2α (p− w) δp(ς)dς + o
(
||δp||L∞(I)

)
which implies that

J ′
α(p) =

T∫
0

Re(u1η1+u2η2)dτ+2α (p− w) . (29)

Consequently, the differentiability of Jα(p) in the
meaning of Frechet is shown and the next theorem
is proved:

Theorem 5. Let w ∈ L2(I) be a given function.
Assume that the conditions of Theorem 4 are sat-
isfied. Then, Jα(p) is a differentiable functional
on P and moreover, its gradient is given by for-
mula (29).

Lemma 2. The functional J ′
α(p) is continuous

on P.

Proof. Let’s prove that |J ′
α(p+ δp)− J ′

α(p)| −→
0 as ∥δp∥L∞(I) −→ 0 on the set P. Using formula

(29), we get
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J ′
α(p+ δp)− J ′

α(p) =
T∫
0

Re (u1δδη1 + u2δδη2) dτ + (30)

T∫
0

Re (δu1η1 + δu2η2) dτ + 2αδp(ς),

where the functions δηr = δηr(ς, τ) ≡ ηr(ς, τ ; p+
δp)− ηr(ς, τ ; p) for r = 1, 2 satisfy the problem

i
∂δηr
∂τ

+ a0
∂2δηr
∂ς2

+ i
∂ (a1(ς)δηr)

∂ς
−

a2(ς)δηr + (p(ς) + δp(ς))δηr = −δpηr −
ia3
(
2|urδ|2ηrδ − u2rδηrδ

)
+

ia3
(
2|ur|2ηr − u2rηr

)
+ 2(−1)r (δu1 − δu2) ,

δηr(ς, T ) = 0, ς ∈ I, r = 1, 2,

δη1(0, τ) = δη1(l, τ) = 0, τ ∈ (0, T )

∂δη2
∂ς

(0, τ) =
∂δη2
∂ς

(l, τ) = 0, τ ∈ (0, T ) .

For this problem, as similar to obtain of inequality
(20), we get the estimate

∥δηr(., τ)∥2L2(I)
+

a3

∫
Ω̃τ

|urδ|2|δηr|2dςdτ ≤ c9 ∥δp∥2L∞(I) (31)

for any τ ∈ Q and r = 1, 2. From (30), we get

∣∣J ′
α(p+ δp)− J ′

α(p)
∣∣ ≤

T∫
0

|u1δ| |δη1| dτ +

T∫
0

|u2δ| |δη2| dτ +

T∫
0

|δu1| |η1| dτ +

T∫
0

|δu2| |η2| dτ +

2α |δp(ς)|

which is equivalent to

∥∥J ′
α(p+ δp)− J ′

α(p)
∥∥2
L2(I)

≤

5T ∥u1δ∥2L∞(Ω)

T∫
0

∥δη1∥2L2(I)
dτ +

5T ∥u2δ∥2L∞(Ω)

T∫
0

∥δη2∥2L2(I)
dτ +

5T ∥η1∥2L∞(Ω)

T∫
0

∥δu1∥2L2(I)
dτ +

5T ∥η2∥2L∞(Ω)

T∫
0

∥δu2∥2L2(I)
dτ +

20α2 ∥δp∥2L2(I)
.

In inequality above, using estimates (10), (11),
(20), (25), (26), (31) and inequality (28) we get

∥∥J ′
α(p+ δp)− J ′

α(p)
∥∥2
L2(I)

≤

c10 ∥δp∥2L∞(I) for any p ∈ P

which implies that

∣∣J ′
α(p+ δp)− J ′

α(p)
∣∣ −→ 0 as ∥δp∥L∞(I) −→ 0,

where the constants c9, c10 > 0 are independent
from δp and τ. Thus, the proof is completed. □

Theorem 6. Presume that the Theorem 5 and
Lemma 2 hold and let p∗ = p∗(ς) be a solution of
the OCP. Then, the inequality

l∫
0

 T∫
0

Re(u∗1η
∗
1 + u∗2η

∗
2)dτ

 (p− p∗) dς +

l∫
0

(2α (p∗ − w)) (p− p∗) dς ≤ 0

is valid for any p ∈ P, where the functions u∗r and
η∗r , r = 1, 2 are solutions of (12)-(14) and the
adjoint problem corresponding to p∗ ∈ P, respec-
tively.

Proof. It is clear that the functional Jα(p) is the

sum of the functionals J0(p) and α ∥p− w∥2L2(I)
.

Since α ∥p− w∥2L2(I)
is a continuous functional on

P, from Lemma 1, we deduce that the functional
Jα(p) is continuous on the set P. Also if we take
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into account Lemma 2, we say that Jα(p) is a con-
tinuous differentiable functional on the convex set
P. Thus, by virtue of known theorem in [35], if the
functional Jα(p) has a minimum value at p∗ ∈ P,
then (

J ′
α(p

∗), p− p∗
)
L2(I)

≥ 0 for any p ∈ P

which concludes the proof. □

5. Conclusions

In this study, we examined an optimal control
problem for a system whose state is expressed by
the nonlinear Schrödinger equation. We regard
Lions functional as the objective functional. As
it is seen from the definition of P, the admissi-
ble controls set contains the measurable bounded
functions from L2(I). We have shown the ex-
istence and uniqueness of the solution to the
optimal control problem. By means of an ad-
joint problem, we demonstrated that the objective
functional is differentiable in the sense of Frechet.
Finally, by proving that the objective functional
is a continuously differentiable functional on the
set of admissible controls, we derived a necessary
optimality condition for the optimal control prob-
lem.

As a future direction, we will consider the opti-
mal control problem, in which the set of admissi-
ble controls will be chosen from the wider class of
functions.
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timal control of LTI systems over unreliable com-
munication links. Automatica, 42, 1429 – 1439.

[6] Moussouni, N., & Aliane, M. (2021). Optimal con-
trol of COVID-19. An International Journal of
Optimization and Control: Theories & Applica-
tions, 11 (1), 114-122.

[7] Trelat, E. (2012). Optimal Control and Applica-
tions to Aerospace: Some Results and Challenges.
Journal of Optimization Theory and Applications,
154 (2012), 713–758.

[8] Van-Reeth, E., Ratiney, H., Lapert, M., Glaser,
S. J., & Sugny, D. (2017). Optimal control theory
for applications in Magnetic Resonance Imaging,
Pacific Journal of Mathematics for Industry, 9(9),
1-10.

[9] Hamdache, A., Saadi, S., & Elmouki, I. (2016).
Free terminal time optimal control problem for
the treatment of HIV infection. An International
Journal of Optimization and Control: Theories &
Applications, 6(1), 33-51.

[10] Ulus, A. Y. (2018). On discrete time infinite hori-
zon optimal growth problem. An International
Journal of Optimization and Control: Theory and
Applications, 8(1), 102-116.

[11] Vorontsov, M. A., & Shmalgauzen, V. I. (1985).
The Principles of Adaptive Optics, Izdatel’stvo
Nauka, Moscow (in Russian).

[12] Lions, J.-L. (1971). Optimal Control of Sys-
tems Described by Partial Differential Equations.
Berlin; New York, Springer-Verlag.

[13] Baudouin, L., & Salomon, J. (2008). Construc-
tive solution of a bilinear optimal control problem
for a Schrödinger equation. Systems and Control
Letters, 57(6), 453-464.

[14] Butkovskiy, A. G., & Samoilenko, Yu.I. (1990).
Control of Quantum-Mechanical Processes and
Systems. Mathematics and its Applications (56).
Kluwer Academic Publishers Group, Dordrecht.

[15] Guliyev, H. F., & Gasimov, Y. S. (2014). Op-
timal control method for solving the Cauchy-
Neumann problem for the Poisson equation. Jour-
nal of Mathematical Physics, Analysis, Geometry,
10(4), 412-421.

[16] Hao, D. N. (1986). Optimal control of quantum
systems. Automat Remote Control, 47(2), 162–
168.

[17] Iskenderov, A. D. (2005). Identification problem
for the time dependent Schrödinger type equa-
tion. Proceedings of the Lankaran State Univer-
sity, Natural Sciences Series, 31-53.

[18] Iskenderov, A. D., & Yagubov, G. Y. (2007). Op-
timal control problem with unbounded potential
for multidimensional, nonlinear and nonstationary
Schrödinger equation. Proceedings of the Lankaran
State University, Natural Sciences Series, 3-56.

[19] Iskenderov, A. D., Yagubov, G. Ya., & Musayeva,
M. A. (2012). The Identification of Quantum Me-
chanics Potentials. Çaşıoğlu, Baku.
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