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1. Introduction

Fractional calculus has great importance in math-
ematical analysis, also in consideration of its nu-
merous applications in modeling and in applica-
tions. Recently there have been several significant
contributions to the theory of fractional opera-
tors [1].

From last decades various types of integral in-
equalities have attracted the attention of many
mathematicians [2–6] and also fractional integral
inequalities have been found many interesting ap-
plications in the fields of engineering and physics.

Very recently in 2019, Ekinci and Ozdemir [2]
have studied Hermite-Hadamard type inequalities
involving intermediate values of | f ′ | by using
Riemann-Liouville fractional operator and Butt
et al. [3] established some new integral inequalities
involving Caputo fractional derivatives for expo-
nential s-convex functions. In this sequence Kizil

and Ardiç [4] have introduced inequalities for
strongly convex functions via Atangana-Baleanu
integral operators. Later in 2022, Kalsoom et.al.
[5] proposed few new inequalities of Ostrowski
type by means of newly derived identity and con-
sidered some special cases. Our present work is
fully motivated by the mentioned work.

Saigo fractional integral operator is one of the
important operators of fractional calculus theory
due to involving the Gauss hypergeometric func-
tion 2F1(.). This operator has already found vari-
ous applications in solving problems in the theory
of special functions, integral transforms and the-
ory of inequalities.

Before setting out the main findings of our article,
it is useful to briefly review the contributions on
which it is based.

We say that, fixed v ∈ R a real valued function
g(x) defined for x > 0 belongs to the function
space Cv, if there exists a real number q > v such
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that g(x) = xqΦ(x), where Φ(x) ∈ C(0, 1). More-
over, for m ∈ Ra we say that g(x) belongs to the
function space Cm

v , if gm ∈ Cv.

For a > 0, Riemann-Liouville fractional integral
operator of a function g such that g ∈ Cv(, v ≥
−1) defined as follows [7]:

Ra
0,y{g(y)

}
=

1

Γ(a)

∫ y

0
(y − t)a−1g(t)dt, (1)

here, y > 0.

For a > 0, Erdélyi-Kober fractional integral op-
erator of a function g such that g ∈ Cv(v ≥ −1)
defined as follows [8]:

Ka,b
0,y{g(y)} =

y−a−b

Γ(a)

∫ y

0
tb(y − t)a−1g(t)dt, (2)

here, b ∈ R.
For a > 0, Saigo fractional integral operator of a
function g, such that g ∈ Cv(v ≥ −1) defined as
follows [9]:

Ia,a
′,b

0,y {g(y)} =
y−a−a′

Γ(a)
×∫ y

0
(y − t)a−1

2F1

(
a+ a′,−b, a, 1− t

y

)
g(t)dt,

(3)

here, a′, b ∈ R, and 2F1(r1, r2, r3; z) is classical
Gauss hypergeometric function defined in [10].

2F1(r1; r2; r3; z) =

∞∑
n=0

(r1)n(r2)n
(r3)n

zn

n!
, (4)

where (s)k denotes the Pochhammer symbol
(shifted factorial) defined as follows [10,11]:

(s)k :=
Γ (s+ k)

Γ (s)

=

{
1 (k = 0; s ∈ C \ {0})
s (s+ 1) · · · (s+ k − 1) (k ∈ N; s ∈ C) .

(5)

By observing, we note that Saigo fractional in-
tegral operators contains both Reimann-Liouville
fractional integral operators as well as Erdélyi-
Kober fractional integral operators.

Remark 1. (i)Taking a′ = −a in the equations
(3) then, we get Riemann-Liouville fractional in-
tegral operator (1).

Ra
0,y{g(y)} = Ia,−a,b

0,y {g(y)} (6)

Remark 2. (ii)Taking a′ = 0 in the equations
(3) then, we get Erdélyi-Kober fractional integral
operator (2).

Ka,b
0,y{g(y)} = Ia,0,b0,x {g(y} (7)

Fractional integral inequalities are an important
tool to prove the key result, the uniqueness of so-
lutions of fractional partial differential equations
and fractional boundary value problems. Also,
they give information about the boundness of the
solutions of partial differential equations and frac-
tional boundary value problems. These features
have led many researchers in the area of integral
inequalities to analyze some more extensions and
generalizations by involving fractional calculus in-
tegral operators.

Introduce the following functional:

T (k, l,m, n) =

∫ d

c
n(t)dt

∫ d

c
m(t)k(t)l(t)dt

+

∫ d

c
m(t)dt

∫ d

c
n(t)k(t)l(t)dt

−
(∫ d

c
n(t)k(t)dt

)(∫ d

c
m(t)l(t)dt

)
−
(∫ d

c
m(t)k(t)dt

)(∫ d

c
n(t)l(t)dt

)
(8)

here k, l : [c, d] → R are two integrable functions
defined on the interval [c, d] and m(t) and n(t) are
positive integrable functions defined on [c, d].

Consider two functions Φ and Ψ defined on [c, d],
then they are synchronous on [c, d], if they satis-
fies the following inequality:

(Φ(t)− Φ(s))(Ψ(t)−Ψ(s)) ≥ 0, (9)

for arbitrary t, s ∈[c,d], then from [12,13], we ob-
serve that

T (Φ,Ψ,m, n) ≥ 0, (10)

If the inequality defined in (9) is reversed, then
functions Φ and Ψ are called asynchronous on
[c,d] and satisfies the following inequality:

(Φ(t)− Φ(s))(Ψ(t)−Ψ(s)) ≤ 0, (11)

for any t, s ∈[c,d].
From [14], we have the Chebyshev inequality for
the special case when m(t) = Ψ(t), for any t,s ∈
[c, d], .

The functional T (k, l,m, n) defined in (8) has
drawn many researchers’ attentions due to the
wide range of applications in engineering math-
ematics, statistical probability, transform theory,
and probability and numerical quadrature. From
all these applications, the functional T (k, l,m, n)
(8) has also been used to produce many integral
inequalities (see, e.g., [15–22]; for more details re-
garding very recent work, we can refer [23])

In the last few years, many researchers have
more attention to the q-calculus and fractional
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q-differential equations due to many applications
of the q-calculus in physics, statistics and math-
ematics. The q-calculus is also called the quan-
tum calculus can be dated back to 1908, Jack-
son’s work [24] and fractional q-calculus is the
q-analogous of the ordinary fractional calculus.
Recently, q-calculus operators have been applied
in various fields like optimal control problems,
ordinary fractional calculus, solutions of the q-
difference (differential),q-transform analysis and
q-integral equations, and many more such areas.

In 1966, Al-Salam gives the idea of fractional
q-calculus by introducing the q-analogue of
Cauchy’s formula ( [25–27]). Then, in 1969
Agrawal [28] studied some fractional q-integral
operators and q-derivatives and their basic prop-
erties. Then later in 2007, Rajkovic et al. [29] ex-
tended the notion of the left fractional q-integral
operators and fractional q-derivatives by intro-
ducing variable lower limit and proved the semi-
group properties. In the sequence, Isogawa et
al. [30] studied various basic properties of frac-
tional q-derivatives.

For 0 <| q |< 1 the q-shifted factorial is defined
as [31]:

(b; q)k =

{
1 (k = 0)∏k−1

s=0(1− bqs) (k ∈ N) ,
(12)

here, b, q ∈ C and b ̸= q−l(l ∈ N0).

For k ∈ N0, q-shifted factorial with negative sub-
script is defined as follows:

(b; q)k

=
1

(1− bq−1)(1− bq−2)(1− bq−3)...(1− bq−k)
.

(13)

From (12) and (13), we can conclude that:

(b; q)∞ =
∞∏
s=0

(1− bqs), (14)

here, b, q ∈ C
By using the equations (12), (13) and (14), we
observe that:

(b; q)∞ =
(b; q)∞
(bqk; q)∞

, (15)

here, k ∈ N.
Then from above equations, for any complex num-
ber β,

(b; q)β =
(b; q)∞

(bqβ; q)∞
, (16)

here, only the principal value of qβ is valid for the
above equation.

For the power function (c−d)m, we can define its
q-analogy as follows:

(c− d)mq = cm
(
d

c
; q

)
m

(m ∈ N)

= cm

(
d
c ; q

)
∞(

d
c q

m; q
)
∞

(c ̸= 0)

= cm
∞∏
l=0

[
1−

(
d
d

)
ql

1−
(
d
c

)
ql+m

]
.

(17)

From above (17), we conclude that:

(c− d)mq =

{
1 (m = 0)

(c− d)(c− dq) · · · (c− dqm−1) (m ∈ N) .
(18)

In 1910, Jackson was the first researcher who in-
troduced q-derivative and q-integral in systematic
way.

The q-derivative of a function g(x) is defined as
[31]:

Dq{g(x)} =
dq
dqx

{g(x)} =
g(qx)− g(x)

qx− x
. (19)

From above, we observe and notice that

lim
q→1

Dq{g(x)} =
d

dx
{g(x)}, (20)

if, given function g(x) is differentiable.

The q-integral of a function g(x) is defined as [31]:∫ t

0
g(x)dqx = t(1− q)

∞∑
l=0

qlg(tql), (21)

∫ ∞

t
g(x)dqx = t(1− q)

∞∑
l=0

q−lg(tq−l), (22)

∫ ∞

0
g(x)dqx = t(1− q)

∞∑
l=−∞

qlg(ql). (23)

For 0 < q < 1, q-gamma function is given by [31]:

Γq(b) =
(q; q)∞
(qb; q)∞

(1− q)(1−b). (24)

For b > 0, q-analogue of Riemann-Liouville frac-
tional integral operator of a function g(x) defined
as [28]:

Rb
q

{
g(x)

}
=

xb−1

Γq(b)

∫ x

0

(qt
x
; q
)
b−1

g(t)dqt, (25)

where,(b, q)β is given in the equation (16).
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For, a > 0 and b ∈ R and 0 < q < 1, q-analogue
of the Erdélyi-Kober fractional operator is defined
as [28]:

Ka,b
q

{
f(x)

}
=

xb−1

Γq(a)

∫ x

0

(qt
x
; q
)
a−1

tbf(t)dqt.

(26)

For a > 0, a′ and b ∈ R, q-analogue of Saigo’s
fractional integral is defined as [32]:

Ia,a
′,b

q

{
f(x)

}
=

x−a′−1

Γq(a)

∫ x

0

(qt
x
; q
)
a−1

∞∑
k=0

(qa+a′ ; q)k(q
−b; q)k

(q−a; q)k(q, q)k

q(b−a′)k(−1)kq−(
k
2)
( t
x
− 1

)k
q
f(t)dqt .

(27)

2. Certain inequalities involving Saigo
type fractional integral operator

In this section, we introduce some inequalities in-
volving the Saigo type fractional integral operator
and their special cases.

Theorem 1. Assume u and v are two pos-
itive integrable and synchronous mapping on
[0,∞]. Suppose ∃ four positive integrable map-
pings m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(28)

Then the following inequality holds true:

Ia,a
′,b

0,x

{
n1n2u

2
}
(x)× Ia,a

′,b
0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (29)

Proof. By using the relations that are given in
(28), for t ∈ [0, x],∀x > 0, we can easily have:(

m2(t)

n1(t)
− u(t)

v(t)

)
≥ 0 (30)(

u(t)

v(t)
− m1(t)

n2(t)

)
≥ 0 (31)

If we product (30) and (31) side by side , we can
write (

m2(t)

n1(t)
− u(t)

v(t)

)(
u(t)

v(t)
− m1(t)

n2(t)

)
≥ 0

Then we have:

(
m1(t)n1(t) +m2(t)n2(t)

)
u(t)v(t)

≥ n1(t)n2(t)u
2(t) +m1(t)m2(t)v

2(t).
(32)

Consider the following function F (x, t) defined by:

F (x, t) =
x−a−a′(x− t)a−1

Γ(a)

× 2F1

(
a+ a′,−b, a, 1− t

x

)
,

(t ∈ (0, x);x > 0).

(33)

Then multiplying both sides of (32), by F (x, t)
defined by (33) and integrating the resulting in-
equality with respect to t from 0 to x and using
the definition (3), we have:

Ia,a
′,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

0,x

{
(n1n2)u

2
}
(x) + Ia,a

′,b
0,x

{
(m1m2)v

2
}
(x)

(34)

Let us recall the A.M -G.M inequality, i.e (a+b) ≥
2
√
ab, a, b ∈ R+. By applying this classical in-

equality to (34), we obtain:

Ia,a
′,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

≥ 2
√
Ia,a

′,b
0,x

{
(n1n2)u2

}
(x)× Ia,a

′,b
0,x

{
(m1m2)v2

}
(x)

(35)

By making use of some necessary operations, we
deduce that:

Ia,a
′,b

0,x

{
n1n2u

2
}
(x)× Ia,a

′,b
0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (36)

This complete the proof of Theorem 1. □

If we substitute a′ = −a and a′ = 0 in above
results we get following special cases of the in-
equalities respectively.

Corollary 1. For Riemann-Liouville fractional
integral operator the following inequality holds
true:

Ra
0,x

{
n1n2u

2
}
(x)×Ra

0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ra

0,x

{
(m1n1 +m2n2)uv

}
(x)

)2 (37)

Corollary 2. For Erdélyi-Kober fractional inte-
gral operator the following inequality holds true:

Ka,b
0,x

{
n1n2u

2
}
(x)×Ka,b

0,x

{
m1m2v

2
}
(x)

≤ 1

4

(
Ka,b

0,x

{
(m1n1 +m2n2)uv

}
(x)

)2

.
(38)
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Theorem 2. Consider u and v are two pos-
itive integrable and synchronous mapping on
[0,∞]. Assume ∃ four positive integrable mapping
m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(39)

Then the following inequality holds true:

Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
m1m2

}
(x)Ia,a

′,b
0,x

{
v2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

)2

.

(40)

Proof. With similar steps to the proof of the pre-
vious Theorem, if we consider the inequalities are
given in (39), we have(

m2(t)

n1(s)
− u(t)

v(s)

)
≥ 0, (41)(

u(t)

v(s)
− m1(t)

n2(s)

)
≥ 0. (42)

Then we can write above inequality as the follow-
ing form:

(
m1(t)

n2(s)
+

m2(t)

n1(s)

)
u(t)

v(s)
≥ u2(t)

v2(s)
+

m1(t)m2(t)

n1(s)n2(s)
.

(43)

If we multiply both sides of (43), by
n1(s)n2(s)v

2(s), we get

m1(t)u(t)n1(s)v(s) +m2(t)u(t)n2(s)v(s)

≥ n1(s)n2(s)u
2(t) +m1(t)m2(t)v

2(s).
(44)

Then on multiplying both sides of the equation
(44), by F (x, t) defined in (33) and integrating
with respect to t from 0 to x, and using the defi-
nition (3), we have

n1(s)v(s)I
a,a′,b
0,x

{
m1u

}
(x)

+n2(s)v(s)I
a,a′,b
0,x

{
m2u

}
(x)

≥ n1(s)n2(s)I
a,a′,b
0,x

{
u2

}
(x)

+v2(s)Ia,a
′,b

0,x

{
m1m2

}
(x).

(45)

Again multiplying both sides of the equation (45),
by F (x, s) defined in (33), a nd integrating with

respect to s from 0 to x and using the definition
(3), we have

Ia,a
′,b

0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

≥ Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

+Ia,a
′,b

0,x

{
v2
}
(x)Ia,a

′,b
0,x

{
m1m2

}
(x).

(46)

Now, using the AM-GM inequality, we have:

Ia,a
′,b

0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

≥ 2

{
Ia,a

′,b
0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
v2
}
(x)Ia,a

′,b
0,x

{
m1m2

}
(x)

} 1
2

.

(47)

By making use of some necessary operations, we
deduce that:

Ia,a
′,b

0,x

{
n1n2

}
(x)Ia,a

′,b
0,x

{
u2

}
(x)

×Ia,a
′,b

0,x

{
m1m2

}
(x)Ia,a

′,b
0,x

{
v2
}
(x)

≤ 1

4

(
Ia,a

′,b
0,x

{
n1v

}
(x)Ia,a

′,b
0,x

{
m1u

}
(x)

+Ia,a
′,b

0,x

{
n2v

}
(x)Ia,a

′,b
0,x

{
m2u

}
(x)

)2

.

(48)

This proofs the Theorem (2). □

On putting a′ = −a and a′ = 0 in above results
we get following special cases of the inequalities
respectively.

Corollary 3. For Riemann-Liouville fractional
integral operator the following inequality holds
true:

Ra
0,x

{
n1n2

}
(x)Ra

0,x

{
u2

}
(x)

×Ra
0,x

{
m1m2

}
(x)Ra

0,x

{
v2
}
(x)

≤ 1

4

(
Ra

0,x

{
n1v

}
(x)Ra

0,x

{
m1u

}
(x)

+Ra
0,x

{
n2v

}
(x)Ra

0,x

{
m2u

}
(x)

)2

(49)

Corollary 4. For Erdélyi-Kober fractional inte-
gral operator the following inequality holds true:
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Ka,b
0,x

{
n1n2

}
(x)Ka,b

0,x

{
u2

}
(x)

×Ka,b
0,x

{
m1m2

}
(x)Ka,b

0,x

{
v2
}
(x)

≤ 1

4

(
Ka,b

0,x

{
n1v

}
(x)Ka,b

0,x

{
m1u

}
(x)

+Ka,b
0,x

{
n2v

}
(x)Ka,b

0,x

{
m2u

}
(x)

)2

(50)

3. Saigo type fractional q-integral
inequalities

Here, we established some q-integral inequalities
involving q-Saigo type fractional integral operator
which are the q-analogues of the Theorems proved
in the previous section.

Theorem 3. Consider 0 < q < 1, let u and v
are two positive integrable and synchronous map-
ping on [0,∞]. Assume ∃ four positive integrable
mapping m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(51)

Then the following inequality holds true:

Ia,a
′,b

q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

q

{
(n1n2)u

2
}
(x)

+Ia,a
′,b

q

{
(m1m2)v

2
}
(x).

(52)

Proof. To prove our result we need to recall func-
tion with their conditions defined by Choi [33],

H(t, x, u(x); a, a′, b; q) =
x−a′−1

Γq(a)

(qt
x
, q
)
a−1

∞∑
k=0

(qa+a′ , q)k(q
−b, q)k

(q−a, q)k(q, q)k

×q(b−a′)k(−1)kq−(
k
2)
( t
x
− 1

)k
q
u(t) ,

(53)

where x > 0,0 ≤ t ≤ x; a > 0, a′, b ∈ R with
a + a′ > 0 and b < 0, 0 < q < 1, u : [0,∞) →
[0,∞) it is seen that

H(t, x, u(x); a, a′, b; q) ≥ 0. (54)

Then from (44), we have

(
m1(t)n1(t) +m2(t)n2(t)

)
u(t)v(t)

≥ n1(t)n2(t)u
2(t) +m1(t)m2(t)v

2(t).
(55)

Now multiplying both sides of (55) by
H(t, x, 1; a, a′, b; q) given in (53) together with
(54) and taking q-integration with respect to t
from 0 to x with aid of (27), we get our desired
result.

Ia,a
′,b

q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ia,a
′,b

q

{
(n1n2)u

2
}
(x) + Ia,a

′,b
q

{
(m1m2)v

2
}
(x)
(56)

□

If we substitute a′ = −a and a′ = 0 in above
results we get following special cases of the in-
equalities respectively.

Corollary 5. For q-analogue of Riemann-
Liouville fractional integral operator the following
inequality holds true:

Ra
q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ra
q

{
(n1n2)u

2
}
(x) +Ra

q

{
(m1m2)v

2
}
(x)

(57)

Corollary 6. For q-analogue of Erdélyi-Kober
fractional integral operator the following inequal-
ity holds true:

Ka,b
q

{
(m1n1 +m2n2)uv

}
(x)

≥ Ka,b
q

{
(n1n2)u

2
}
(x) +Ka,b

q

{
(m1m2)v

2
}
(x)
(58)

Theorem 4. Let 0 < q < 1, consider u and v
are two positive integrable and synchronous map-
ping on [0,∞]. Assume ∃ four positive integrable
mapping m1,m2, n1 and n2 such that:

0 < m1(t) ≤ u(t) ≤ m2(t),

0 < n1(t) ≤ v(t) ≤ n2(t),

(t ∈ [0, x], x > 0).

(59)

Then the following inequality holds true:

Ia,a
′,b

q

{
n1v

}
(x)Ia,a

′,b
q

{
m1u

}
(x)

+Ia,a
′,b

q

{
n2v

}
(x)Ia,a

′,b
q

{
m2u

}
(x)

≥ Ia,a
′,b

q

{
n1n2

}
(x)Ia,a

′,b
q

{
u2

}
(x)

+Ia,a
′,b

q

{
v2
}
(x)Ia,a

′,b
q

{
m1m2

}
(x).

(60)

Proof. From (44), we have

m1(t)u(t)n1(s)v(s) +m2(t)u(t)n2(s)v(s)

≥ n1(s)n2(s)u
2(t) +m1(t)m2(t)v

2(s).
(61)
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Then on multiplying both sides of the equation
(61), by H(t, x, 1; a, a′, b; q) defined in (53) to-
gether with (54) and taking q-integration with
respect to t from 0 to x with aid of (27)

n1(s)v(s)I
a,a′,b
q

{
m1u

}
(x)

+ n2(s)v(s)I
a,a′,b
q

{
m2u

}
(x)

≥ n1(s)n2(s)I
a,a′,b
q

{
u2

}
(x)

+ v2(s)Ia,a
′,b

q

{
m1m2

}
(x)

(62)

Again multiplying both sides of the equation (62),
by H(t, x, 1; a, a′, b; q) defined in (53) together
with (54) and taking q-integration with respect
to s from 0 to x with aid of (27), we get our de-
sired result.

Ia,a
′,b

q

{
n1v

}
(x)Ia,a

′,b
q

{
m1u

}
(x)

+Ia,a
′,b

q

{
n2v

}
(x)Ia,a

′,b
q

{
m2u

}
(x)

≥ Ia,a
′,b

q

{
n1n2

}
(x)Ia,a

′,b
q

{
u2

}
(x)

+Ia,a
′,b

q

{
v2
}
(x)Ia,a

′,b
q

{
m1m2

}
(x)

(63)

□

By setting a′ = −a and a′ = 0 in above results
we get following special cases of the inequalities
respectively.

Corollary 7. For q-analogue of Riemann-
Liouville fractional integral operator the following
inequality holds true:

Ra
q

{
n1v

}
(x)Ra

q

{
m1u

}
(x)

+Ra
q

{
n2v

}
(x)Ra

q

{
m2u

}
(x)

≥ Ra
q

{
n1n2

}
(x)Ra

q

{
u2

}
(x)

+Ra
q

{
v2
}
(x)Ra

q

{
m1m2

}
(x)

(64)

Corollary 8. For q-analogue of Erdélyi-Kober
fractional integral operator the following inequal-
ity holds true:

Ka,b
q

{
n1v

}
(x)Ka,b

q

{
m1u

}
(x)

+Ka,b
q

{
n2v

}
(x)Ka,b

q

{
m2u

}
(x)

≥ Ka,b
q

{
n1n2

}
(x)Ka,b

q

{
u2

}
(x)

+Ka,b
q

{
v2
}
(x)Ka,b

q

{
m1m2

}
(x)

(65)

4. Concluding remark

We summarize our research work by mentioning
that all the results derived in this paper are novel

and important. Firstly, we have established cer-
tain inequalities involving Saigo type fractional
integral operator and derived some special cases
of it. Then we have derived q-analogues of the in-
equalities involving Saigo type fractional integral
operator that means certain q-integral inequali-
ties. Some special cases of q-integral inequali-
ties are also derived. We also notice that when
q approaches to 1 then the resulting inequalities
presented in Section 3, are become those demon-
strated in Section 2.
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In this work, we introduce a simple method to investigate the asymptotic sta-
bility of discrete dynamical systems, which can be considered as an extension
of the classical Lyapunov’s indirect method. This method is constructed based
on the classical Lyapunov’s indirect method and the idea proposed by Ghaffari
and Lasemi in a recent work. The new method can be applicable even when
equilibia of dynamical systems are non-hyperbolic. Hence, in many cases,
the classical Lyapunov’s indirect method fails but the new one can be used
simply. In addition, by combining the new stability method with the Mick-
ens’ methodology, we formulate some nonstandard finite difference (NSFD)
methods which are able to preserve the asymptotic stability of some classes of
differential equation models even when they have non-hyperbolic equilibrium
points. As an important consequence, some well-known results on stability-
preserving NSFD schemes for autonomous dynamical systems are improved
and extended. Finally, a set of numerical examples are performed to illustrate
and support the theoretical findings.
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1. Introduction

Many important processes and phenomena in
real-world situations can be mathematically mod-
eled by autonomous dynamical systems described
by differential equations associated with the clas-
sical and fractional derivative operators [1–8].
While differential equation models with the clas-
sical derivatives have been formed and studied
for a long time [1, 3, 5, 6, 8], mathematical mod-
els based on fractional differential equations have
been strongly developed in recent years (see, for
example, [9–28]). The stability analysis of dif-
ferential equation models has been a central and
prominent problem with many useful applica-
tions.

In this work, we consider general time-continuous
dynamical systems of the form

dy

dt
= f(y), y(0) = y0 ∈ Rn,

where y : [0, T ] → Rn and f : Rn → Rn are real-
valued functions satisfying appropriate conditions
to guarantee the existence and uniqueness of solu-
tions of the system (see, for instance, [1,3,5,6,8]).

The stability analysis of the system (1) has played
a prominent role in both theory and practice, es-
pecially in control theory and mathematical epi-
demiology [5, 29]. The continuous version of the
classical Lyapunov’s indirect method can be con-
sidered as the most successful approach to this
problem (see [29] or also [1,3,5,6,8]). This method
studies the asymptotic stability of an equilibrium
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point by analyzing the associated Jacobian matrix
with respect to the left half-plane. More precisely,
an equilibrium point y∗ is locally asymptotically
stable if all the eigenvalues of the Jacobian ma-
trix J(y∗) lie strictly in the left half-plane; and
y∗ is unstable if any of the eigenvalues lie in the
strict right half-plane. Clearly, the Lyapunov’s
indirect theorem is only applicable for hyperbolic
equilibrium points. Here, an equilibrium point y∗

is said to be hyperbolic if none of the eigenvalues
of J(y∗) lies on the imaginary axis; otherwise, y∗

is said to be non-hyperbolic. Hence, the method
fails to determine the asymptotic stability of non-
hyperbolic equilibrium points. This leads to a
big restriction of the application of the method.
For this reason, in a recent work [30], Ghaffari
and Lasemi constructed a new method to exam-
ine the stability of continuous dynamical systems,
which is based on the classical Lyapanov’s indi-
rect method. However, it studies the stability
of an equilibrium point by analyzing the associ-
ated Jacobian matrix at a deleted neighborhood
of the equilibrium point instead of at the equilib-
rium point. As a consequence, the new method
can be applicable for non-hyperbolic equilibrium
points in many cases. Therefore, the weakness of
the classical theorem can be improved.

Similarly to the continuous version, the discrete
version of the Lyapunov’s indirect method can be
considered as a powerful and effective approach
to the stability problem of discrete dynamical sys-
tems (see, for instance, [5, 31]). This method in-
vestigates the stability of an equilibrium point by
considering the position of eigenvalues of the as-
sociated Jacobian matrix with respect to the unit
circle. More specifically, an equilibrium point is
asymptotically stable if all the eigenvalues of the
Jacobian matrix lie strictly inside the unit circle
and is unstable if any of the eigenvalues lie outside
the unit circle. Consequently, the method is only
applicable when none of the eigenvalues of the Ja-
cobian matrix lies on the unit circle. In this case,
equilibrium points are said to be hyperbolic.

Motivated and inspired by the above reason, in
this work we introduce a new and simple method
to analyze the asymptotic stability of discrete
dynamical systems, which can be considered as
an extension of the classical Lyapunov’s indirect
method. This method is constructed based on
the classical Lyapunov’s indirect method and the
idea proposed by Ghaffari and Lasemi in [30]. It
is worth noting that the new method can be ap-
plicable even when equilibia of dynamical systems
are non-hyperbolic. Consequently, in many cases,
the classical Lyapunov’s indirect method fails but

the new theorem can be used simply. In addi-
tion, a relation between the new method and the
classical Lyapunov’s indirect one is also provided.

To illustrate the applicability of the new theo-
rem, we combine it with the Mickens’ methodol-
ogy [32–36] to construct nonstandard finite dif-
ference (NSFD) methods, which have ability to
preserve the asymptotic stability of some differ-
ential equation models even when they possess
non-hyperbolic equilibrium points. We recall that
the concept of NSFD schemes was first introduced
by Mickens in 1980 to overcome drawbacks of
standard finite difference ones [32–36]. Nowa-
days, NSFD schemes have been widely used as
a powerful and efficient class of numerical meth-
ods for solving differential equations arising in
real-world situations. We refer the readers to
[32–39] and [40–54] for good reviews and some
recent notable works related to NSFD schemes,
respectively. Recently, we have successfully de-
veloped the Mickens’ methodology to construct
NSFD schemes for differential equation models
arising in real-world applications [55–60]. In the
construction of NSFD schemes, one of the most
important problem is to formulate NSFD schemes
preserving the asymptotic stability of equilibrium
points of differential equation models (see, for in-
stance, [43,51,55,61–64]). A common approach to
this problem is the use of the continuous and dis-
crete versions of the classical Lyapunov’s indirect
method. Following this approach, the continuous
version is first used to determine the stability of
equilibria, and then, the discrete version is applied
to analyze the stability of NSFD schemes. How-
ever, as mentioned before, the classical Lyapunov’
indirect method fails to conclude the asymptotic
stability of non-hyperbolic equilibrium points. So,
the construction of NSFD schemes for differen-
tial equation models having non-hyperbolic equi-
librium points is still a challenge. This chal-
lenge was mentioned in some well-known works
[43,61,62]. An indispensable condition in the pre-
vious results on stability-preserving NSFD meth-
ods [43,51,55,61–64] is that all equilibrium points
of differential equation models must be hyper-
bolic. This problem leads to a big restriction in
the application of these NSFD methods.

For the above reason, by combining the new sta-
bility theorem with the Mickens’ methodology, we
formulate some NSFD methods which can pre-
serve the asymptotic stability of some classes of
differential equation models even when they have
non-hyperbolic equilibrium points. Consequently,
the applicability of the new method is shown
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and the stability-preserving NSFD schemes for-
mulated in [43, 55, 61, 62] are improved and ex-
tended. Therefore, the new method is reliable and
it has advantages over the classical one. In nu-
merical examples, we will see that in many cases
the classical method is not working but the new
method proves helpful.

The plan of this work is as follows:
In Section 2, some concepts and preliminaries are
provided. The new stability method is introduced
in Section 3. In Section 4, we construct stability-
preserving NSFD schemes for some classes of dif-
ferential equation models having non-hyperbolic
equilibrium points. Numerical examples are per-
formed in Section 5. Some conclusions and re-
marks are presented in the last section.

2. Preliminaries

In this section, we provide some concepts and pre-
liminaries related to stability theory of dynamical
systems and NSFD methods, which will be used
in the next sections.

2.1. Stability of dynamical systems

The following theorem is known as the Lya-
punov’s indirect method for continuous dynam-
ical systems.

Theorem 1. ( [3, Theorem 4.7]) Let y∗ = 0 be
an equilibrium point for the nonlinear system

dy

dt
= f(y), (1)

where f : D → Rn is continuously differentiable
and D is a neighborhood of the origin. Let

A =
∂f

∂y
(y)

∣∣∣∣
y=0

.

Then,

(1) The origin is asymptotically stable if
Reλi < 0 for all eigenvalues of A.

(2) The origin is unstable if Reλi > 0 for one
or more of the eigenvalues of A.

Definition 1. ( [8, Definition 2.3.6]) An equi-
librium point y∗ of the system (1) is said to be
hyperbolic if none of the eigenvalues of df(y∗) lies
on the imaginary axis.

The following extension of Theorem 1 was pro-
posed by Ghaffari and Lasemi in [30].

Theorem 2. Let N be a deleted neighborhood of
origin that contains no equilibrium points of the
system (1). Let y0 be the initial condition inside

N :{i.e, y0 ∈ N}, and A =
∂f

∂y
(y)

∣∣∣∣
y=y0

, then;

(1) The origin is asymptotically stable if for
any y0 in N all eigenvalues of A are in
the open left-half complex plane.

(2) The origin is unstable if for any y0 in N
one or more of the eigenvalues of A are in
the open right-half complex plane.

We now consider a general dynamical system gov-
erned by difference equations of the form

yn+1 = g(yn), y0 = c ∈ Rn, (2)

where G : D → Rn and D ∈ Rn is the domain of
definition of g.

Definition 2. ( [8, Definition 1.3.6]) An equi-
librium point y∗ of the system (2) is said to be
hyperbolic if none of the eigenvalues of dg(y∗) lie
on the unit circle.

Theorem 3. ( [8, Theorem 1.3.7]) Let g ∈
C2(Rn,Rn). Then an equilibrium point y∗ of the
system (2) is asymptotically stable of the eigen-
values of dg(y∗) lie strictly inside the unit circle.
If any of the eigenvalues lie outside the unit circle
the equilibrium point is unstable.

2.2. Nonstandard finite difference
methods

Consider a one-step numerical scheme with a step
size h, that approximates the solution y(tn) of the
system (1) in the form:

Dh(yn) = Fh(f ; yn), (3)

where Dh(yn) ≈ dy/dt, F (f ; yn) ≈ f(y), and
tn = t0 + nh. The following definition is derived
from the Mickens’ methodology.

Definition 3. (See [37, Definition 1], [45, Defini-
tion 3.3], [64, Definition 3]) The one-step finite-
difference scheme (3) for solving System (1) is a
NSFD method if at least one of the following con-
ditions is satisfied:

• Dh(yn) =
yn+1 − yn

ϕ(h)
, where ϕ(h) = h +

O(h2) is a non-negative function
• F (f, yn) = g(yn, yn+1, h), where
g(yn, yn+1, h) is a non-local approxima-
tion of the right-hand side of System (1).

Definition 4. ( [61, Definition 4]) The finite-
difference method is called ”weakly” nonstandard
if the traditional denominator h in the first-order
discrete derivative Dh(yn) is replaced by a non-
negative function ϕ(h) such that ϕ(h) = h +
O(h2).
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The advantage and power of NSFD schemes over
the standard ones are expressed in the following
definitions.

Definition 5. (See [37, Definition 2]) Assume
that the solutions of Eq. (1) satisfy some property
P. The numerical scheme (3) is called (qualita-
tively) stable with respect to property P (or P-
stable), if for every value of h > 0 the set of so-
lutions of (3) satisfies property P.

Definition 6. (See [34]) Consider the differen-
tial equation y′ = f(y). Let a finite difference
scheme for the equation be yn+1 = F (yn, h). Let
the differential equation and/or its solutions have
property P. The discrete model equation is dy-
namically consistent with the differential equation
if it and/or its solutions also have property P.

3. New stability method for discrete
dynamical systems

In this section, we introduce a new method to
study the asymptotic stability of discrete dynam-
ical systems and give a relation between it and
the Lyapunov’s indirect method.

Theorem 4. Assume that y∗ ∈ Rn is an equi-
librium point of the dynamical system (2), that
is, g(y∗) = y∗. Let N∗ be a deleted neighborhood
of the equilibrium y∗ that contains no equilibrium
points of the system. Let y0 be any point belonging

to N and denote A∗ =
∂g

∂y
(y)

∣∣∣
y=y0

. Then,

(1) The equilibrium point y∗ is asymptotically
stable if for any y0 in N∗ all eigenvalues
of A∗ lie strictly inside the unit circle.

(2) The equilibrium y∗ is unstable if for any
y0 in N∗ one or more of the eigenvalues
of A∗ lie outside the unit circle.

Remark 1. The proof of this Theorem is based
on the proof of the classical Lyapunov’s indirect
method (see, for instance, [3, 8, 31]).

Proof. Proof of Part (i). First, it follows from
the mean value theorem that

gi(g(y)) = gi(y) +
∂gi
∂y

(ξi)(g(y)− y)

= gi(y) +
∂gi
∂y

(y0)(g(y)− y)

+

(
∂gi
∂y

(ξi)−
∂gi
∂y

(y0)

)
(g(y)− y),

where ξi is a point in the line segment connecting
g(y) to the y. Hence, we can write

g(g(y)) = g(y) +A∗(g(y)− y) + h(y), (4)

where

A∗ =
∂g

∂y
(y)

∣∣∣
y=y0

,

hi(y) =

(
∂gi
∂y

(ξi)−
∂gi
∂y

(y0)

)
(g(y)− y),

for i = 1, 2, . . . , n and hi(y) is the ith row of h(y).
The function hi(y) satisfies

|hi(y)| ≤
∥∥∥∥∂gi∂y

(ξi)−
∂gi
∂y

(y0)

∥∥∥∥∥∥(g(y)− y)
∥∥.

By continuity of (∂g/∂y), we obtain that

∥h(y)∥
∥g(y)− y∥

→ 0 as ∥y − y0∥ → 0.

Therefore, for any ϵ > 0, there exists δ > 0 such
that

∥h(y)∥ ≤ ϵ∥g(y)− y∥ if ∥y − y0∥ < δ. (5)

We now use the function

V (y) =
(
g(y)− y

)T
R
(
g(y)− y

)
,

as a Lyapunov function candidate for the nonlin-
ear system (2), where R is a symmetric positive
definite matrix. The variation of V relative to (2)
is given by

∆V (y) := V (g(y))− V (y)

=
[
g(g(y))− g(y)

]T
R
[
g(g(y))− g(y)

]
−
[
g(y)− y

]T
R
[
g(y)− y

]
.

From (4), we have that

∆V (y)

=
[
A∗(g(y)− y

)
+ h(y)

]T
R
[
A∗(g(y)− y

)
+ h(y)

]
−
(
g(y)− y

)T
R
(
g(y)− y

)
=

(
g(y)− y

)T (
A∗TRA∗ −R

)(
g(y)− y)

+ 2(h(y))TRA∗(g(y)− y) + (h(y))TRh(y).

Since all eigenvalues of the matrix A∗ lie strictly
inside the unit circle, for every positive definite
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symmetric matrix T , there is a unique symmet-
ric and positive definite matrix R such that (see
Theorem 4.30 in [31] or Lemma B.12 in [8])

A∗TRA∗ −R = −T, (6)

which implies that

(
g(y)− y

)T (
A∗TRA∗ −R

)(
g(y)− y)

=
(
g(y)− y)T (−T )(g(y)− y)

≤ −λmin(T )∥g(y)− y∥2,
where λmin(T ) denotes the minimum eigenvalue
of matrix T . Note that λmin(T ) is real and posi-
tive because T is symmetric and positive definite.
Therefore,

∆V (y) ≤ −λmin(T )∥g(y)− y∥2

+ 2hT (y)RA∗(g(y)− y) + hT (y)Rh(y).

It follows from the estimate (5) that

2(h(y))TRA∗[g(y)− y]

≤ 2∥h(y)∥∥R∥∥A∗∥∥g(y)− y∥
≤ 2ϵ∥A∗∥∥R∥∥g(y)− y∥2,
(h(y))TRh(y) ≤ ∥R∥∥h(y)∥2 ≤ ∥R∥ϵ2∥g(y)− y∥2.
for all ∥y − y0∥ < δ. Thus,

∆V (y)

<
(
− λmin(T ) + 2ϵ∥A∗∥∥R∥+ ϵ2∥R∥

)
∥g(y)− y∥2

for all ∥y−y0∥ < δ. We now choose ϵ small enough
such that λmin(T ) > 2ϵ∥A∗∥∥R∥ + ϵ2∥R∥. Then,
∆V (y) < 0. Therefore, for any y0 ∈ N there al-
ways exists ϵ > 0 such that ∆V (y) < 0. Thus, by
the classical Lyapunov’s direct method, we con-
clude that the equilibrium y∗ is asymptotically
stable. The proof of this part is complete.
Proof of part (ii). Assume that at y0 the ma-
trix A∗ has an eigenvalue which lies outside the
unit circle. By [31, Corollary 4.31], then there
exists a real symmetric matrix R that is not pos-
itive semidefinite for which A∗TRA∗ − R = −T
is negative define. Thus, the Lyapunov function

V (y) =
(
g(y) − y

)T
R
(
g(y) − y

)
is negative at

points arbitrarily close to the origin. Further-
more, we also obtain

∆V (y) = −
(
g(y)− y

)T
T
(
g(y)− y

)
+ 2

(
g(y)− y

)T
(A∗)TRh(y) + V (h(y)).

Similarly to the proof of Part (i), if we choose ϵ
small enough then ∆V (y) ≤ −γ∥g(y) − y∥2 for
some γ > 0. Therefore, by [31, Theorem 4.27],
the equilibrium y∗ is unstable. The proof of this
part is complete. □

Remark 2. From the continuity of polynomial
roots (see [65, Theorem 3.9.1]), it is easy to ver-
ify that if the classical Lyapunov’s indirect method
is applicable, so is Theorem 4. In other words, the
classical Lyapunov’s indirect theorem is a conse-
quence of Theorem 4.

Example 1. Consider the difference equation

yn+1 = yn + ay3n, a ∈ R. (7)

The equation (7) has a unique equilibrium point
y∗ = 0. The Jacobian matrix at y∗ is given by
J(y∗) = 1. So, y∗ is non-hyperbolic and the clas-
sical Lyapunov’s indirect method fails to conclude
the stability of y∗. However, Theorem 4 is appli-
cable. Indeed, let y0 ̸= 0. The Jacobian matrix
at y0 is given by

J(y0) = 1 + 3ay20.

Hence, by Theorem 4, we conclude that:

(1) If a > 0, then y∗ is unstable.
(2) If a < 0, then y∗ is asymptotic stable.

4. Stability-preserving NSFD methods

In this section, we construct NSFD methods
which can preserve the stability of not only hyper-
bolic equilibrium points but also non-hyperbolic
equilibrium ones of the system (1). For this pur-
pose, we introduce the following hypotheses for
the system (1):
(H1) The set of equilibrium points of the system
(1) is finite.
(H2) For each equilibrium point, there is a deleted
neighborhood in which none of the eigenvalues of
the Jacobian matrix lies on the imaginary axis.
The hypothesis (H2) means that Theorem 4 is ap-
plicable for the system (1). Obviously, this condi-
tion is satisfied automatically for hyperbolic equi-
librium points.

Theorem 5. Assume that the hypotheses (H1)
and (H2) are satisfied for the system (1). Then,
the following NSFD scheme

yn+1 − yn
ϕ(h)

=
[
I − ϕ(h)

2

∂f

∂y
(yn)

]−1
f(yn) (8)

is dynamically consistent with respect to the as-
ymptotic stability of the system (1).

Proof. Suppose that y∗ is an equilibrium point of
the system (1) and N is a deleted neighborhood
of y∗. For each y0 ∈ N , let us denote by λi(y0)

and µi(y0) (1 ≤ i ≤ n) are eigenvalues of
∂f

∂y
(y0)

and
∂g

∂y
(y0), respectively, where g is given by

g(yn) = yn + ϕ
[
I − ϕ(h)

2

∂f

∂y
(yn)

]−1
f(yn).
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Then, we have

µi(y0) =
(
1 +

ϕ

2
λi(y0)

)(
1− ϕ

2
λi(y0)

)−1
.

Hence, |µi(y0)| < 1 if and only if∣∣∣1 + ϕ

2
λi(y0)

∣∣∣ < ∣∣∣1− ϕ

2
λi(y0)

∣∣∣,
or equivalently,

2ϕRe(λ(y0)) < 0. (9)

We consider two cases of the stability of y∗.
Case 1. y∗ is an asymptotically stable equi-
librium point of (1). Then, by Theorem 2,
there is a deleted neighborhood N of y∗ in which
Re(λi(y0)) < 0 for all i = 1, 2, . . . , n. Therefore,
the inequality (9) is satisfied for all y0 ∈ N . By
Theorem 4, we conclude that y∗ is an asymptoti-
cally stable equilibrium point of (8).
Case 2. y∗ is an unstable equilibrium point of
(1). Then, there is a deleted neighborhood N of
y∗ such that for all y0 ∈ N , there exists some j
(1 ≤ j ≤ n) for which Re(λj(y0)) > 0. Conse-
quently, the inequality (9) does not hold. There-
fore, by Theorem 4, y∗ is an unstable stable equi-
librium point of (8).

Combining Case 1 and Case 2, we conclude that
the scheme (8) preserves the stability of the sys-
tem (1) for all finite step sizes. The proof is com-
plete. □

Remark 3. • If ϕ(h) is small enough, then

I− ϕ

2

∂f

∂y
(yn) ≈ I. Hence, the existence of

the solution of the scheme (8) is ensured.
To make sure the scheme (8) is defined
for all finite step sizes, we can use the fol-
lowing family of nonstandard denomina-
tor functions

ϕ(h) =
1− e−τh

τ
, τ > 0

since they are bounded from above by τ−1.
Note that the standard denominator func-
tion ϕ(h) = h is not bounded from above
for h > 0.

• In the case it is hard to determine
[
I −

ϕ

2

∂f

∂y
(yn)

]−1
, we can compute the numer-

ical solutions of the scheme (8) as follows.
(1) Set δn = yn+1 − yn.
(2) Solve the following linear system[

I − ϕ

2

∂f

∂y
(yk)

]
δn = ϕf(yn).

(3) Compute yn+1 = yn + δn.

The following theorem is proved similarly to The-
orem 5.

Theorem 6. Assume that the hypotheses (H1)
and (H2) are satisfied for the system (1). Then,
the nonstandard implicit trapezoidal scheme

yn+1 − yn
ϕ(h)

=
1

2
f(yn) +

1

2
f(yn+1) (10)

and the nonstandard implicit midpoint scheme

yn+1 − yn
ϕ(h)

= f

(
yn + yn+1

2

)
(11)

are dynamically consistent with respect to the as-
ymptotic stability of the system (1).

Remark 4. The numerical schemes (8), (10)
and (11) can preserve the asymptotic stability
of the system (1) for all denominator functions
ϕ(h) = h + O(h2). When ϕ(h) = h, these
schemes becomes standard ones. However, in
real-world applications, differential equation mod-
els possess not only the stability but also other
essential mathematical features, for examples, the
positivity. Therefore, nonstandard denominator
functions are needed for dynamics consistency.
Moreover, they can ensure the existence of the so-
lutions of the schemes (10) and (11).

5. Some applications and numerical
experiments

In this section, we conduct numerical simulations
to illustrate and support the theoretical findings.

Example 2. Consider the following scalar differ-
ential equation

ẏ = ay3, a ∈ R. (12)

In this case, the equation has a unique equilib-
rium point y∗ = 0, which is non-hyperbolic. It
was shown in [30] that

(1) if a > 0, y∗ is unstable;
(2) if a < 0, y∗ is asymptotically stable.

Note that the set R+ := {y ∈ R|y ≥ 0} is
a positively invariant set of the equation (12).
Therefore, our objective is to construct an NSFD
scheme, which is dynamically consistent with re-
spect to the positivity and stability of (12). For
convenience, we only consider the case a < 0. The
case a ≥ 0 can be considered in a same way.

Applying the Mickens’ methodology, we obtain
the following NSFD scheme for (12)

yn+1 − yn
ϕ(h)

= ayn+1y
2
n,

or equivalently

yn+1 =
yn

1− ϕay2n
. (13)

The equation (13) implies that yn ≥ 0 for all
n ≥ 1 whenever y0 ≥ 0. So, the positivity of
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(12) is preserved. We now analyze the stability of
(13). The Jacobian matrix associated with (13)
is given by

J(y) =
1 + ϕay2

1− ϕay2
.

Hence, J(0) = 1. In this case, y∗ = 0 is a non-
hyperbolic equilibrium point. So, the classical
Lyapunov’s indirect method fails to conclude the
stability of y∗. However, by Theorem 4 we have
that y∗ is asymptotically stable since

J(y) = 1 +
2ϕay2

1− ϕay2
∈ (−1, 1) for all y ̸= 0.

Consequently, we obtain a positvity and stability
preserving NSFD scheme for the equation (12).

Example 3. Consider the following nonlinear
system

ẋ = −x3 − x+ y,

ẏ = x− 2y3 − y.
(14)

The system (14) has a unique equilibrium point,
that is, E∗ = (0, 0). Moreover,

J(0, 0) =

(
−1 1
1 −1

)
.

Hence, E∗ is a non-hyperbolic equilibrium point.
So, the classical Lyapunov’s indirect method can-
not conclude the stability of E∗. However, by
using a Lyapunov function given by

V (x, y) =
1

2
x2 +

1

2
y2,

we have

V̇ = xẋ+ yẏ = −x4 − 2y4 − (x− y)2.

Hence, E∗ is asymptotically stable. Also, since

ẋ
∣∣
x=0

= y ≥ 0,

ẏ
∣∣
y=0

= x ≥ 0,

we conclude that the set R+
2 is a positively invari-

ant set of (14) (see Theorem B.7 in [66]).

Our object is to construct an NSFD scheme pre-
serving the positivity and stability of the sys-
tem (14). For this purpose, applying the Mick-
ens’ methodology, we propose the following NSFD
scheme for (14)

xn+1 − xn
ϕ(h)

= −xn+1x
2
n − xn+1 + yn,

yn+1 − yn
ϕ(h)

= xn − 2y2n+1yn − yn+1.
(15)

The system of difference equations (15) can be
rewritten in the explicit form

xn+1 =
xn + ϕyn

1 + ϕ+ ϕx2n
,

yn+1 =
yn + ϕxn

1 + ϕ+ 2ϕy2n
,

which implies that the set R2
+ is a positively in-

variant set of (15).

We now investigate the stability of (15). The sys-
tem (15) has a unique equilibrium point, that is
E∗ = (0, 0). The Jacobian matrix associated with
(15) is

J(x, y) =
1 + ϕ− ϕx2 − 2ϕ2xy

(1 + ϕ+ ϕx2)2
ϕ

1 + ϕ+ ϕx2
,

ϕ

1 + ϕ+ 2ϕy2
1 + ϕ− 2ϕy2 − 4ϕ2xy

(1 + ϕ+ 2ϕy2)2

 .

(16)

Hence,

J(0, 0) =


1

1 + ϕ

ϕ

1 + ϕ
ϕ

1 + ϕ

1

1 + ϕ
.

 .

This implies that E∗ = (0, 0) is a non-hyperbolic
equilibrium point. So, it is not suitable to use the
classical Lyapunov’s indirect method for investi-
gating the stability of E∗. For this reason, we
will apply Theorem 4. By some simple algebraic
manipulations, we have

Trace(J(x, y)) < 1,

1 + Trace(J(x, y)) + det(J(x, y)) > 0,

1− Trace(J(x, y)) + det(J(x, y)) > 0,

for all (x, y) in some appropriate deleted neigh-
borhood of the origin. By the Jury condition [1],
all eigenvalues of J(x, y) lie strictly inside the unit
circle. Consequently, the stability of E∗ is proved.

We now compare the NSFD scheme (15) with the
standard Euler and second-order Runge-Kutta
(RK2) schemes. Figures 1 and 2 depict numer-
ical solutions generated by the Euler and RK2
schemes. It is clear that the obtained numerical
solutions are negative. So, the positivity of the
system is violated.

Conversely, from Figures 3-5, we observe that
the numerical solutions obtained by the NSFD
scheme (15) preserves the positivity and stability
of the system for all the chosen step sizes. Also,
the dynamics of the numerical solutions does not
dependent on the chosen step sizes.
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Figure 1. The numerical solutions
obtained by the Euler scheme with
h = 0.5 after 50 iterations in Example
3.
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Figure 2. The numerical solutions
obtained by the RK2 scheme with
h = 0.63 after 50 iterations in Exam-
ple 3.
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Figure 3. The numerical solutions
obtained by the NSFD scheme with
h = 0.5 after 50 iterations in Exam-
ple 3.
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Figure 4. The numerical solutions
obtained by the NSFD scheme with
h = 0.8 after 50 iterations in Exam-
ple 3.
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Figure 5. The numerical solutions
obtained by the NSFD scheme with
h = 1 after 50 iterations in Example
3.

If applying the scheme (8) for the system (14) we
obtain


xn+1 − xn

ϕ

yn+1 − yn
ϕ



=


1 +

ϕ

2
(3x2n + 1) −ϕ

2

−ϕ

2
1 +

ϕ

2
(6y2n + 1)


×

−x3n − xn + yn

xn − 2y3n − yn

 .

(17)

The scheme (17) is defined for all denominator
functions ϕ since

det


1 +

ϕ

2
(3x2n + 1) −ϕ

2

−ϕ

2
1 +

ϕ

2
(6y2n + 1)

 > 0.

Example 4. Consider the nonlinear system

ẋ = −x5 − x+ y,

ẏ = −x− y3 − y.
(18)

It is easy to verify that the system (18) has a
unique equilibrium point E∗ = (0, 0), which is
non-hyperbolic. However, by a Lyapunov func-
tion given by V (x, y) = x2 + y2, we have that E∗

is asymptotically stable. Our objective is to con-
struct an NSFD scheme which is dynamically con-
sistent with respect to the stability of the system
(18). For this purpose, we propose the following
NSFD scheme

xn+1 − xn
ϕ(h)

= −xn+1x
4
n − xn+1 + yn,

yn+1 − yn
ϕ(h)

= −xn − yn+1y
2
n − yn+1.

(19)

The explicit form of the scheme (19) is given by

xn+1 =
xn + ϕyn

1 + ϕ+ ϕx4n
,

yn+1 =
yn − ϕxn

1 + ϕ+ ϕy2n
.

The trivial equilibrium point E∗ = (0, 0) is also
a non-hyperbolic equilibrium point of the scheme
(19). So, the classical Lyapunov’s indirect method
fails to conclude the stability of E∗. However,
by the new theorem 4, we can show that E∗ is
a asymptotically stable equilibrium point of the
NSFD scheme (19). Figures 6-8 sketch numeri-
cal solutions generated by the NSFD scheme (19)
with three different step sizes. In these figures,
each blue curve represents a phase plane corre-
sponding to a specific initial data, the red circle
represents the position of the stable equilibrium
point and the yellow arrows show the evolution
of the model. Clearly, the stability of the system
(18) is confirmed.

We can also obtain a stability-preserving numer-
ical scheme for the system (18) by using the
scheme (8). In this case, the scheme (8) is given
by 

xn+1 − xn
ϕ(h)

yn+1 − yn
ϕ(h)



=


1 +

ϕ

2
(5x4n + 1) −ϕ

2

ϕ

2
1 +

ϕ

2
(3y2n + 1)


×

−x5n − xn + yn

−xn − y3n − yn

 .

(20)
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Note that

det


1 +

ϕ

2
(5x4n + 1) −ϕ

2

ϕ

2
1 +

ϕ

2
(3y2n + 1)

 > 0,

which implies that the scheme (20) is defined for
all denominator function ϕ(h).
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Figure 6. The numerical solutions
generated by the NSFD scheme with
h = 0.01 and t ∈ [0, 100] in Example
4.
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Figure 7. The numerical solutions
generated by the NSFD scheme with
h = 0.1 and t ∈ [0, 100] in Example 4.
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Figure 8. The numerical solutions
generated by the NSFD scheme with
h = 0.5 and t ∈ [0, 100] in Example 4.

Example 5. Consider the following system (
[30])

ẋ = −x3 + y,

ẏ = −4x− y3.
(21)

It was proved in [30] that this system has a unique
equilibrium point E∗ = (0, 0), which is non-
hyperbolic and also asymptotically stable. Nu-
merical solutions generated by the standard Eu-
ler and RK2 schemes are sketched in Figures 9-
11. Clearly, these schemes cannot preserve the
dynamics of the system (21). We now utilize the
NSFD scheme (8) to solve the system (21). In
this case, we have

I − ϕ

2

∂f

∂y
=


1 +

3ϕ

2
x2 −ϕ

2

2ϕ 1 +
3ϕ

2
y2

 ,

which implies that

det
(
I−ϕ

2

∂f

∂y

)
= 1+

3ϕ

2
x2+

3ϕ

2
y2+

9ϕ2

4
x2y2+ϕ2 > 0.

Hence, the scheme (8) is defined for all denom-
inator functions and step sizes. Numerical so-
lutions obtained by the NSFD scheme (8) with
ϕ(h) = 1 − e−h are depicted in Figures 12-14. It
is clear that the dynamics of the system (21) is
preserved.



20 M.T. Hoang, T.K.Q. Ngo, H.H. Truong / IJOCTA, Vol.13, No.1, pp.10-25 (2023)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 9. The numerical solution
generated by the Euler scheme with
h = 0.2 and t ∈ [0, 1000] in Example
5.
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Figure 10. The numerical solution
generated by the Euler scheme with
h = 0.4 and t ∈ [0, 1000] in Example
5.
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Figure 11. The numerical solutions
generated by the RK2 scheme with
h = 0.7 and t ∈ [0, 980] in Example
5.
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Figure 12. The numerical solutions
generated by the NSFD scheme with
h = 1.0 and t ∈ [0, 1000] in Example
5.
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Figure 13. The numerical solutions
generated by the NSFD scheme with
h = 0.5 and t ∈ [0, 1000] in Example
5.
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Figure 14. The numerical solutions
generated by the NSFD scheme with
h = 0.01 and t ∈ [0, 1000] in Example
5.

Example 6 (Stabilization of nonlinear systems
by feedback). Consider the following discrete dy-
namical systems described by the nonlinear differ-
ence equation

yn+1 = yn + ay3n, a > 0. (22)

It was proved in Example 1 that the equilibrium
point y∗ = 0 is unstable. Our objective is to

find a control that stabilizes this system. More
clearly, we need to determine a feedback control
un = h(yn) in such a way that y∗ = 0 of the corre-
sponding closed-loop system is asymptotically sta-
ble. For this purpose, we consider

un = Cy3n, C ∈ R.
Then, the corresponding closed-loop system is
given by

yn+1 = yn + (a+ C)y3n. (23)

The Jacobian matrix of (23) evaluating at y∗ = 0
is

J(0) = 1.

Consequently, the classical Lyapunov stability the-
orem fails to conclude the stability of (23). How-
ever, the new method (Theorem 4) can be used
easily. Indeed, the Jacobian matrix (23) is given
by

J(y) = 1 + 3(a+ C)y2,

which implies that J(y) < 1 if C > −a. On the

other hand, J(y) > −1 whenever y2 <
−2

3(a+ C)
.

Therefore, by using Theorem 4 we deduce that
(23) is locally asymptotically stable if C > −a.
This means that the desired feedback control un is
determined.

Let us consider a more complicated system. Con-
sider the following nonlinear system

xn+1 = xn +
1

3
x3n,

yn+1 = yn +
1

2
x2n +

1

5
y5n.

(24)

This system has a unique equilibrium point E∗ =
(x∗, y∗) = (0, 0). The Jacobian of the system is
given by

J(x, y) =

1 + x2 0

x 1 + y4.


Therefore, the classical Lyapunov stability theo-
rem cannot conclude the stability of E∗. However,
E∗ is unstable by applying Theorem 4.

To stabilize the system (24), we use a feedback
control un = (αx3n, βy

5
n), where α, β ∈ R. Then,

the closed-loop system is given by

xn+1 = xn +
1

3
x3n + αx3n,

yn+1 = yn +
1

2
x2n +

1

5
y5n + βy5n.

(25)

The Jacobian matrix of (25) is

J(x, y) =

1 + (3α+ 1)x2 0

x 1 + (5β + 1)y4.


Hence, the classical Lyapunov stability theorem is
not applicable to determine the stability of (25),



22 M.T. Hoang, T.K.Q. Ngo, H.H. Truong / IJOCTA, Vol.13, No.1, pp.10-25 (2023)

but it follows from Theorem 4 that the closed-loop
system is locally asymptotically stable if

α < −1

3
, β < −1

5
.

Hence, the system (24) is stabilized.

6. Conclusions and remarks

In this work, based on the classical Lyapunov’s
indirect method and the idea proposed by Ghaf-
fari and Lasemi in [30], we have introduce a new
and simple method for investigating the asymp-
totic stability of discrete dynamical systems (The-
orem 4), which can be considered as an exten-
sion of the classical Lyapunov’s indirect method.
It is worth noting that the new method can be
applicable even when equilibia of dynamical sys-
tems are non-hyperbolic. Hence, in many cases,
the classical Lyapunov’s indirect method fails but
the new one can be used simply. Next, using
the new theorem, we have constructed NSFD
methods which are able to preserve the asymp-
totic stability of differential equation models hav-
ing non-hyperbolic equilibrium points (Theorems
5 and 6). As an important consequence, some
well-known results on positivity-preserving NSFD
schemes for autonomous dynamical systems for-
mulated in [43,55,61,62] have been improved and
extended. Finally, a set of numerical examples
are performed to illustrate and support the theo-
retical findings.

In the near future, we will study practice appli-
cations of the new method to problems arising in
control theory, economic and applied sciences. In
addition, extensions of the new stability method
for nonlinear systems associated with fractional-
order operators will be also considered.
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In this paper we address the state estimation problem of a particular class of
irreversible port Hamiltonian systems (IPHS), which are assumed to be par-
tially observed. Our main contribution consists to design an observer such
that the augmented system (plant + observer) is strictly passive. Under some
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1. Introduction

Port Hamiltonian systems (PHS) encompass a
very large class of systems including electrical,
mechanical, and in general multi-energy systems
[1–4]. This formalism has been suggested as a
way for modeling and analysis of free and con-
trolled physical systems, due mainly to its essen-
tial feature of underlying the crucial role played
by the energy function, the interconnection struc-
ture, and the dissipation in the control of the sys-
tem.

Although the PHS frame expresses the first prin-
ciple of thermodynamics (the conservation of the
energy), it is not suited for systems describing
irreversible phenomena, as it is necessary to ex-
press the irreversible entropy creation, i.e. the
second principle of thermodynamics. To solve
this problem, the PHS frame has been revised
and many quasi-PHS formulations have been pre-
sented in [5–7]. In [7], the PHS frame has been
extended to a class of systems called IPHS. These
systems are defined with respect to a skew sym-
metric structure matrix, and have the advantage

of representing the first and the second princi-
ples of thermodynamics as theoretical properties
of the system. (The reader is referred to [7] for
more details on the IPHS construction and prop-
erties).

In most realistic problems, we do not have full
information about the system state. Hence, the
need to estimate the unknown part of the vector
state is of great interest. For PHS many research
papers have been developed to investigate the ob-
server design problem [8–12]. In [10, 11], an ob-
server design method based on passivation of the
error dynamics is presented. By combining the
interconnection and damping assignment method
and the dissipativity theory, two observer design
strategies are proposed in [8]. In [12], a full or-
der observer design method based on contraction
analysis is suggested for a particular class of PHS.
For the class of systems considered in this paper
(IPHS) regarding the control, a globally stabiliz-
ing controller preserving the IPHS structure in
closed loop is proposed in [13] and [14]. In [15],
an energy shaping and damping injection IPHS
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controller is constructed for an IPHS. Concern-
ing the state estimation problem, to our modest
knowledge, there is no observer design method de-
veloped for IPHS.

In this paper, our contribution is to present an
observer design method for a class of IPHS by ex-
tending the approach suggested in [10,11] for PHS
to the IPHS setting. Although our methodology is
following that of [11], it is not obvious or simple to
establish the same results for our class of systems.
Some specific hypotheses are introduced in order
to take into account the conservation of energy
and the positivity of entropy production. It is as-
sumed that the system is partially observed and
that the observations are depending on the mea-
sured state only. That case is the most popular
in practice and does not constitute any restriction
as the availability of all state variables measure-
ments is infrequent. Our observer is globally ex-
ponentially stable, and it is a copy of the original
system in which the vector state components are
directly the estimates of the plant ones.

The main advantage of the present study is that
it is the first approach devoted to the observer de-
sign problem of IPHS. Unlike to [10,11] where the
irreversibility is not considered, in this paper some
specific hypotheses are introduced in order to take
into account the conservation of energy and the
positivity of entropy production. In addition, the
use of the passivity technique renders the observer
more stronger and robust against perturbations.
Although the efficiency of our design method has
been proven, the proposed strategy is restricted
to minimum phase systems.

The rest of the paper is organized as follows. In
section 2, a brief overview of the considered IPHS,
the used observer, and some motivation will be
given. Section 3 will be devoted to the description
of our main result. In section 4, an application of
the proposed approach on the gas piston system
model will be presented. The paper is wrapped
up in section 5 with a summary and an outlook.

2. Irreversible port Hamiltonian
systems

Irreversible Port Hamiltonian Systems (IPHS)
have been introduced in [7] as an extension of port
Hamiltonian systems. In particular, the IPHS for-
mulation is used to express simultaneously the en-
ergy conservation and the irreversible entropy cre-
ation. This article will be limited to the class of
IPHS given by the following definition.

Definition 1. The input affine representation of
IPHS is defined by the dynamic equation and the
output relation:

ẋ = R(x,
∂U

∂x
,
∂S

∂x
)J
∂U

∂x
+ g(x,

∂U

∂x
)u(t), (1)

y = gT (x,
∂U

∂x
)
∂U

∂x
(x)

where:

(1) x(t) ∈ Rn is the state vector.
(2) u(t) ∈ Rm is an input time dependent

function, g(x, ∂U∂x ) ∈ Rn×m.
(3) U(x) ∈ R, S(x) ∈ R represent respectively

the internal energy (the Hamiltonian) and
the entropy functions.

(4) J ∈ Rn × Rn is a constant skew sym-
metric matrix, the structure matrix of the
Poisson bracket {., .}J , where {S,U}J =
∂ST

∂x (x)J ∂U
∂x (x).

(5) R(x, ∂U∂x ,
∂S
∂x ) is the product of a posi-

tive definite function γ and the Poisson
bracket of S and U .

R(x,
∂U

∂x
,
∂S

∂x
) = γ(x,

∂U

∂x
){S,U}J (2)

with γ(x, ∂U∂x ) : R
n × Rn −→ R, γ ≥ 0, a

non linear positive function.

By construction, it is clear that IPHS satisfy the
first principle of thermodynamics (conservation of
energy):

dU

dt
= yTu, (3)

which expresses that system (1) is lossless dissi-
pative with energy supply rate yTu (See e.g. [13]).
Moreover, IPHS obey the second principle of ther-
modynamics (positivity of the internal entropy
production):

dS

dt
= R(x,

∂U

∂x
,
∂S

∂x
)
∂ST

∂x
J
∂U

∂x
(4)

+
∂ST

∂x
g(x,

∂U

∂x
)u(t),

= γ(x,
∂U

∂x
){S,U}2J + (gT (x,

∂U

∂x
)
∂S

∂x
)Tu,

where γ(x, ∂U∂x ){S,U}2J = σ(x, ∂U∂x ) ≥ 0, and

{S,U}2J = {S,U}TJ {S,U}J , (see [13], [16] for more
details).

The energy and entropy functions are usually ex-
tensive variables. They satisfy the additivity [17]

S(X,Y ) = S(X) + S(Y ),

U(X,Y ) = U(X) + U(Y ),
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where X and Y are two states. In addition, they
satisfy the scaling relation [17]

S(λX) = λS(X),

U(λX) = λU(X),

where λ is an arbitrary scaling function.

In most realistic problems, we do not have full
information about the system state. Hence, the
need of estimating the unknown part of the vec-
tor state is of great interest. This motivates our
observer design method in which the state of the
original system will be decomposed into two parts.
One is measured and hence it is selected to be the
output. The other is non measured and it will be
estimated by the observer.

3. Problem formulation

In this note we address the partial state observer
problem of IPHS of the form:

{
ẋ = R(x1,

∂U
∂x1

, ∂S
∂x1

)J(x1)
∂U
∂x + g(x1,

∂U
∂x1

)u(t),

y = x1.
(5)

Where

J =

[
J1(x1) N(x1)

−NT (x1) J2(x1)

]
, g(x1,

∂U
∂x1

) = g1(x1,
∂U
∂x1

)

g2(x1,
∂U
∂x1

)

,
x = (x1, x2) ∈ Rn, x1 ∈ Rp is the measured state,
x2 ∈ Rn−p is the unmeasured state, u ∈ Rm is
the input (where m, n and p are integers such
that 1 ≤ p < n and m ≤ n). It is assumed that
the system (5) is forward complete, that is tra-
jectories are defined for all t ≥ 0. The matrices
J1 ∈ Rp×p, J2 ∈ R(n−p)×(n−p) are skew symmet-
ric, N ∈ Rp×(n−p), g1 ∈ Rp×m and g2 ∈ R(n−p)×m.
U : Rp × Rn−p −→ R is the internal energy of
the system. S : Rp × Rn−p −→ R is the entropy
function. The energy and entropy functions are
assumed to satisfy

U(x) = U1(x1) + U2(x2), (6)

S(x) = S1(x1) + S2(x2), (7)

where U1 : Rp −→ R, and U2 : Rn−p −→ R
are two energy functions. S1 : Rp −→ R, and
S2 : Rn−p −→ R are two entropy functions.

Our aim is to design a full order observer for sys-
tem (5) in the following form:

˙̂x = R(x̂1,
∂U

∂x̂1
,
∂S

∂x̂1
)J(x̂1)

∂U

∂x̂
(x̂) (8)

+ g(x̂1,
∂U

∂x̂1
)u(t) + L(x̂1)v,

where L(x̂1) =

[
L1(x̂1)
L2(x̂1)

]
, x̂ = (x̂1, x̂2), x̂1 ∈ Rp,

x̂2 ∈ Rn−p, v ∈ Rp.

Where v = −k(y, x̂)yd + vd, yd and vd are desired
output and input respectively, and k : Rp×Rn −→
R+∗ is a continuous scalar function.

Following ( [15], page 20), the total energy of
the augmented system composed of (5) and (8)
is U(x, x̂) = U(x) + U(x̂). This result represents
an extension of the composition theory of dirac
structures from the port Hamiltonian case to the
irreversible one. This result states that the energy
of any two port controlled Hamiltonian systems
or more is the sum of the energy function of each
system. See ( [4], page 241) for more details.

The time derivative of the energy of the aug-
mented system may be defined as follows

U̇(x, x̂) = ∂UT

∂x g(x1,
∂U
∂x1

)u+ ∂UT

∂x̂ g(x̂1,
∂U
∂x̂1

)u

− ∂UT

∂x̂ Lkyd +
∂UT

∂x̂ Lvd.

Then under the conditions

[
∂UT

∂x
g(x1,

∂U

∂x1
) +

∂UT

∂x̂
g(x̂1,

∂U

∂x̂1
)]u = 0,

∂UT

∂x̂
L = yTd ,

we get

U̇(x, x̂) = yTd vd − kyTd yd ≤ yTd vd, (9)

and hence the feedback law v = −k(y, x̂)yd + vd
makes the augmented system composed of (5) and
(8) strictly passive, with respect to the manifold
M = {(x, x̂) : x = x̂}, from the new input vd to
the new output yd. In that case, system (8) is
called a passivity based observer for system (5).

Recall a fundamental characterization of passive
systems. A system of the form ẋ = f(x) + g(x)u,
y = h(x), x ∈ Rn satisfies the KYP property if
there exists a nonnegative function U : Rn → R,
with U(0) = 0, such that

(∇U(x))T f(x) ≤ 0,

(∇U(x))T g(x) = hT (x),
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see [18] for more details.

In order to solve the observer design problem, we
shall find gains L1, L2, and some function k such
that the augmented system is strictly passive (for
more details on the passivity definition and its ap-
plications see [10,14,18,19]) with respect to a cer-
tain manifold that will be specified later. In this
manifold, the unmeasurable state can be recon-
structed, and hence global exponential stability
of the system can be obtained by letting vd ≡ 0.
Note that a nonlinear observer is sensitive to mea-
surement disturbances. In [10], it is shown that
the passivity property can be used to modify the
nonlinear injection gain in order to make the ob-
server robust with respect to measurement distur-
bances.

4. Observer design

In the beginning of this section , we state the
conditions which will make the augmented sys-
tem strictly passive from the input vd to the out-
put yd. To this end, we follow the same idea as
in [11] by using the equivalence between the next
two statements established in [18]:

(1) Any affine control system can be rendered
strictly passive by a smooth static state
feedback.

(2) The system has a vector relative degree
{1, . . . , 1} and is globally minimum phase.

We recall the relative degree is equal to the num-
ber of times that one has to differentiate the sys-
tem in order to have the input explicitly appear-
ing. Moreover, a system is said to be globally
minimum phase if its zero dynamics are globally
asymptotically stable. See [18] for more details.

Note that in the study of passive systems, the con-
cepts of relative degree and zero dynamics arise
naturally. In particular, in our setting, we as-
sume that the system has a vector relative degree
{1, . . . , 1} in order to ensure the existence of the
system zero dynamics.

We make in the sequel the two following assump-
tions.

Assumption 1. For any Z = x̂2−x2, there exist
Q = QT > 0, Q ∈ R(n−p)×(n−p) such that:

∂U

∂x̂2
=
∂U

∂x2
+QZ. (10)

Assumption 2. There exists a smooth globally
invertible matrix L1(x1) ∈ Rp×p and a smooth

matrix L2(x1) ∈ R(n−p)×p such that:

BT (x1) +B(x1) > δI(n−p)×(n−p), δ > 0,
(11)

holds for all x1, where:

B(x1) = L2(x1)L
−1
1 (x1)R(x1,

∂U

∂x1
,
∂S

∂x1
)N(x1).

We are now ready to state the passivation result:

Lemma 1. Assume that assumptions (1) and (2)
are satisfied. Then:

(1) The augmented system (x, x̂) has a vec-
tor relative degree {1, . . . , 1} with respect
to the input v and the output yd = x̂1−x1.

(2) The zero dynamics of the augmented sys-
tem (x, x̂) with respect to the output yd
renders the manifold P = {(x1, x2, x̂2) :
x̂2 = x2} positively invariant and globally
exponentially attractive.

Proof. (1) Now, we compute the derivative
of yd as:

ẏd = RN [
∂U

∂x̂2
− ∂U

∂x2
] + L1v.

As v is the considered input and L1 is in-
vertible by assumption for all x1, the re-
sult is achieved.

(2) The zero dynamics of the augmented sys-
tem with respect to the output yd consist
of (5) and the equations:

0 = RN [
∂U

∂x̂2
− ∂U

∂x2
] + L1v, (12)

˙̂x2 = −RNT ∂U

∂x1
+RJ2

∂U

∂x̂2
+ g2u (13)

+ L2(x1)v,

we note that these zero dynamics are de-
fined uniformly for all u ∈ Rm.
Now, consider the manifold P and denote
Z = x̂2 − x2. By using (12), we compute
the derivative of Z along (5) and (13). We
get

Ż = [RJ2 − L2L
−1
1 RN ]QZ. (14)

Then by skew symmetry of RJ2 and the
use of assumption (2), we have the posi-
tive invariance of the manifold P .

Now consider the Lyapunov function

V =
1

2
(
∂U

∂x̂2
− ∂U

∂x2
)TQ−1(

∂U

∂x̂2
− ∂U

∂x2
), (15)

then by assumptions (1) and (2) we obtain

V̇ =
1

2
ŻTQZ +

1

2
ZTQŻ

=
1

2
[ZTQ(−RJ2 −BT +RJ2 −B)QZ]

= −1

2
ZTQ[BT +B]QZ

≤ −δ λ
2
m(Q)

λM (Q)
V.
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where λm(Q) and λM (Q) denotes respec-
tively the smallest and the largest eigen-
value of Q. Thus the system exponen-
tially decays to zero with convergence rate

δ λ2
m(Q)

λM (Q) .

□

Remark 1. In the last lemma we mean by zero
dynamics, the dynamics of the augmented system
composed by the observer and the plant restricted
to the set of initial conditions such that the cor-
responding output yd = x̂1 − x1 is zero (which
implies that x̂1 = x1).

Hence the observer (8), will be defined by

˙̂x = R(x1,
∂U

∂x1
,
∂S

∂x1
)J(x1)

∂U

∂x̂
(x̂) (16)

+ g(x1,
∂U

∂x1
)u(t) + L(x1)v,

where L(x1) =

[
L1(x1)
L2(x1)

]
.

We note that this definition differs from the usual
understanding of zero dynamics, as the input u(t)
still appearing in the equations.

The following assumption will play a crucial role
in our analysis.

Assumption 3. There exists a smooth function
β : Rp −→ Rn−p such that

L2(x1)L
−1
1 (x1) =

∂β

∂x1
(x1) (17)

holds for all x1 ∈ Rp.

Remark 2. (1) Assumption 1 is important
in the development of our approach. It al-
lows us to easily demonstrate the positive
invariance and the exponential stability of
the manifold P. This assumption is very
crucial and will be helpful in the choice of
our example given in section 5. Moreover,
it expresses a relation between states vari-
ables and co-energy variables, and means
that any co-energy variable ∂U

∂x2
( ∂U
∂x̂2

) may
be linearized with respect to the state x2
(x̂2).

(2) Assumption 2 is usually satisfied since L1

and L2 represent degrees of freedom. The
choice of L1 and L2 is done such that the
augmented system has a vector relative de-
gree and is globally minimum phase.

(3) In assumption 3, a matching condition is
defined and has to be solved. This condi-
tion requires that the selected gains L1 and
L2 should be integrable. This assumption
will be used to achieve the attractivity of
the manifold.

Now, we proceed to the design of the feedback
law and consequently to the construction of the
full order observer.

Theorem 1. Assume g1 ≡ 0.

Then, the augmented system (5), (8) expressed in
the coordinates (x1, x2; ξ1, ξ2) where

ξ1 = x̂1 − x1, (18)

ξ2 = x̂2 − x2 − {β(x̂1)− β(x1)} (19)

has global normal form with respect to the input
v and the output yd.

Moreover, the feedback law defined by

v = −(α+ ϕ1 + ϕ22)ξ1 + vd, (20)

where α > 0 and ϕi(ξ1, x̂1, x̂2), i = 1, 2 are
non negative scalar functions, renders the sys-
tem strictly passive with respect to the manifold
P, uniformly for all u ∈ Rm, from the input vd to
the output ξ1 with the storage function being given
by

W (ξ1, ξ2) =
1

2
ξT2 Qξ2 +

1

2
ξT1 Xξ1,

where X ∈ Rp×p, and Q ∈ Rn−p×n−p.

Proof. We define the functions Fi(ξ1, ξ2, x1, x2) =
Fi, i = 1, 2, 3, as:

F1 = f̂1 − f1 (21)

F2 = f̂2 − f2 (22)

F3 =
∂β

∂x̂1
(x̂1)f̂1 −

∂β

∂x1
(x1)f1; (23)

where fi(x1, x2) = fi, fi(x̂1, x̂2) = f̂i, i = 1, 2,
F1 ∈ Rp, F2 ∈ Rn−p,[

f1(x1, x2)
f2(x1, x2)

]
= R(x1,

∂U

∂x1
,
∂S

∂x1
)J
∂U

∂x
,

and hence using the assumption g1 ≡ 0, the sys-
tem dynamic may be expressed in the coordinate
transformation (ξ1, ξ2) as

ξ̇1 = F1(ξ1, ξ2, x1, x2) + L1(x̂1),

ξ̇2 = (F2 − F3)(ξ1, ξ2, x1, x2).

In addition, we have

Fi = Fi|x2=x2+ξ2 + Fi|ξ1=0,
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where Fi|x2=x2+ξ2 = Fi(ξ1, ξ2, x1, x2 + ξ2),
Fi|ξ1=0 = Fi(0, ξ2, x1, x2). We note that when
ξ1 = 0, then Fi(ξ1, ξ2, x1, x2 + ξ2) = 0. Hence,
the augmented system assumes its global nor-
mal form as we have the existence of continu-
ous matrix functions A1(ξ1, x1, x2) ∈ Rp×p, and
Ai(ξ1, x1, x2) ∈ Rn−p×p, for i = 2, 3 achieving

Fi(ξ1, ξ2, x1, x2 + ξ2) = Ai(ξ1, x1, x2)ξ1. (24)

Now, There exist non-negative continuous scalar
functions ψi(ξ1, x1, x2 + ξ2), i = 1, 2, 3 such that,

∥Ai(ξ1, x1, x2 + ξ2)∥ ≤ ψi(ξ1, x1, x2 + ξ2), (25)

holds for all ξ1, x1, x2+ξ2, where ∥.∥ is the induced
norm of any general matrix.

The next inequalities will be used to demonstrate
that the system is strictly passive with respect to
the input vd and the output yd:

∥ξT2 Q(F2 − F3)(ξ1, ξ2, x1, x2 + ξ2)∥ ≤
ζ{ψ2 + ψ3}(ξ1, x1, x2 + ξ2)

√
δ∥ξ1∥∥ξ2∥ (26)

where ζ = λM (Q)√
δ

, and λM (Q) is the largest eigen-

value of Q.

∥ξT1 XF1(ξ1, ξ2, x1, x2 + ξ2)∥ ≤
λM (X)ψ1(ξ1, x1, x2 + ξ2)∥ξ1∥2, (27)

∥ξT1 XF1(0, ξ2, x1, x2)∥ ≤
ζλM (X)∥R∥∥N∥

√
δ∥ξ1∥∥ξ2∥, (28)

Now consider the feedback law v (20) with
ϕ1 = λM (X)ψ1 and ϕ2 = ζ({ψ2 + ψ3} +
λM (X)∥N∥∥R∥), and the storage function W .
Using the inequalities (26), (27) and (28) we ob-
tain:

Ẇ ≤− α∥ξ1∥2 + ξT1 vd −
3

4
δ∥ξ2∥2−

−{1
2

√
δ∥ξ2∥ − ∥ξ1∥ϕ2}2

Thus, we get the result. □

5. Application

We consider a pure ideal gas contained in a cylin-
der closed by a piston and submitted to grav-
ity. The thermodynamic properties of this system
may be decomposed into the properties of the pis-
ton in the gravitation field and the properties of
the perfect gas. See [16] for more details.

The total energy of the system is:

U(x) = TS − PV +Hmec(z, p), (29)

where x = [S, V, z, p]T is the vector of state vari-
able, S denotes the entropy variable, V is the vol-
ume variable, z is the altitude of the piston and p
its kinetic momentum. Hmec(z, p) =

1
2mp

2+mgz
represents the energy of the piston. The co-energy
variables are defined by the gradient of the total
energy:

∂U
∂S ≜ T
∂U
∂V ≜ −P
∂U
∂z = mg = Fg
∂U
∂p ≜ v

(30)

where T is the temperature, P is the pressure, Fg

is the gravity force and v is the velocity of the
piston. This system may be written in the state
space representation form (5) as follows:

d

dt


S
V
z
p

 = R


0 0 0 1
0 0 0 A T

νv
0 0 0 T

νv
−1 −A T

νv − T
νv 0


︸ ︷︷ ︸

J
T
−P
F
v


︸ ︷︷ ︸

∇xU

where A denotes the area of the piston, and

R = R(x,
∂U

∂x
,
∂U

∂S
),

= γ(x,
∂U

∂x
){S,U}J ,

=
νv

T
,

= R(x1,
∂U

∂x1
,
∂U

∂S
),

and
J = J(x1),

such that x1 = [S, V, p]T and x2 = z.

In order to stay in the context of partial state
observability, we assume x1 to be measured and
x2 is non measured. If we let (x̂1, x̂2) be the
state estimates and define their dynamic as in
(8), the error of the system may be expressed as

(e1, e2, e3, e4) = (Ŝ, V̂ , p̂, ẑ)− (S, V, p, z).
The assumption 1 is satisfied:

∂U

∂x̂2
− ∂U

∂x2
= ρAg(ẑ − z),

where g is the gravity force, ρ is the density.

Now let L1 = I3, where I3 is the identity matrix
of order 3, and L2 = [0, 1, 1]. Then, assumption 2
is clearly satisfied as we have:

BT (x1) +B(x1) = 2A+ 2 > 0.
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The function β of assumption 3 will be defined
as: β(x1) = V + p. To express the system in its
global normal form, we use the following change
of coordinates:

ξ1 = x̂1 − x1,

= [Ŝ − S, V̂ − V, p̂− p]T ,

= [ξ11, ξ12, ξ13]
T ,

ξ2 = x̂2 − x2 − (β(x̂1)− β(x1)),

= ẑ − z − (V̂ − V )− (p̂− p),

where ξ11 = Ŝ −S, ξ12 = V̂ − V , and ξ13 = p̂− p.
We choose the total energy as

W (ξ1, ξ2) =
1

2
ξ211 +

1

2
ξ212 +

1

2
ξ213 +

1

2
ξT2 ξ2.

Now, as all tools are available, we shall design the
feedback law (20). Firstly, the functions f1 and
f2 are given by

f1(x1, x2) =

 ν v2

T
Av

−νv +AP − ρAgz

 , f2 = v.

Then

F1 =

 ν( v̂
2

T̂
− v2

T )

A(v̂ − v)

−ν(v̂ − v) +A(P̂ − P )− ρAg(ẑ − z)

 ,
F2 = v̂ − v,

F3 = (A− ν)(v̂ − v) +A(P̂ − P )− ρAg(ẑ − z).

Using the inequalities (26), (27), and (28) we get

ϕ1 =max(Anr
|T |
|V V̂ |

+ ρAg,Anr
T0

c|V̂ |
+ T0ν

|v̂2|
c|T T̂ |

,

ρAg + (A+ ν +
|V + V̂ |

|T |
)supp(∥∇v∥))

and

ϕ2 =max(Anr
T0

|V V̂ |
+ ρAg,Anr

T0

c|V̂ |
, supp(∥∇v∥)+

+ρAg) + 1 +A+ ν
|v|
|T |

.

Therefore, we get the expression of the feedback
law (20) v as v1

v2
v3

 = −(α+ ϕ1 + ϕ22)ξ1 +

 vd1
vd2
vd3

 ,

where ξ1 = (ξ11, ξ12, ξ13)
T = (Ŝ−S, V̂ −V, p̂−p)T .

The simulations below address respectively the
entropy, volume, the altitude of piston and the
kinetic momentum. The plant curves are in red
and the observer ones are in black.
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Figure 1. Open-Loop trajectories
for the gas piston model and the ob-
server.

The simulation results for the gas piston system
model and the observer are given under the initial
conditions:

S0 V0(l) p0 z0 α
Plant 151.077 5 0 500 0

Observer 281 20 0 600 10

The other parameters are chosen as: g = 10m/S2,
n = 0.1002 mol, ν = 0.05, A = 0.01m2, T0 =
600 K, c = 180 j/Kg/K. r = 8.31 jmol−1K−1 is
the universal gas constant.
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6. Conclusion and Outlook

In this note, we have proposed a passivity based
observer for a special class of irreversible port
Hamiltonian systems. The observer design is done
in two steps: The first one is the passivation of the
system. In this step we check if assumption 1 is
satisfied. Then, the matrices L1 and L2 are cho-
sen in such a way to fulfil assumption 2. Finally,
we compute the function β by using assumption
3.

The basic idea of the second step is to express the
system in its global normal form and compute the
feedback law v by using the procedure described
in Theorem 1. Finally, the result has been applied
to the gas piston system model considered in [7],
and some simulation results of the studied exam-
ple are presented. Since our study involves time
derivatives, future works will tackle the investiga-
tion of the proposed observer design to the study
of fractional differential operators (see [20–28]).
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 This study aims to determine the effects of R&D and marketing expenditures of 

companies that force marketing and finance to act together on stock return, return 

on assets, and return on equity. To this end, the quarterly frequency data of nine 

companies that were continuously traded in the BIST Technology Index between 

March 2009 and December 2020 were examined with panel-data analysis. In line 

with the purpose of the research, analyzes were carried out in three different 

models. First of all, we determined which tests should be performed on the 

models based on the cross-sectional dependence, homogeneity/heterogeneity, 

and panel unit root test results obtained for the established models. The results of 

panel least squares test carried out to determine the effect of R&D and marketing 

expenditures on stock return showed that the effect of R&D expenditures on 

stock return was not statistically significant while marketing expenditures had a 

positive and significant effect on stock return. Analyzes should be continued 

with cointegration tests according to the characteristics of the two models 

established to determine the effect of R&D and marketing expenditures on return 

on assets and return on equity. The results implied a positive and significant 

relationship between R&D expenditures and return on both assets and equity. 

While no statistically significant relationship was found between marketing 

expenditures and return on assets, there was a positive and significant 

relationship between marketing expenditures and return on equity.  
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1. Introduction 

The interface (approach) of marketing and finance 

emerges as an important and functional research area 

that helps to demonstrate the accountability of the 

marketing department and its activities in the 

management processes of companies and to create an 

interdisciplinary bridge for finance and accounting [1]. 

Srinivasan and Hanssens published the primary study 

in marketing and finance in 2009. Since then, this 

research area has become an area of great interest [1]. 

The discipline of Marketing-Finance has a high-level 

relationship with marketing with regard to areas such 

as both asset pricing and corporate finance. This 

research area focuses on the relationships between 

marketing-related issues and metrics, including the 

behavior of financial market participants such as 

economic and financial analysts, investors, and 

creditors. The main purpose of this research discipline 

is to emphasize the significance of marketing 

considering the investors as stakeholders in order to 

highlight that marketing and finance should also be 

taken into account in managerial decisions about firm 

processes [2].  

Marketing departments and their activities are 

generally carried out in a structure where expenditures 

are made in companies and return on these 

expenditures are obtained in the long term. This 

phenomenon makes it compulsory to evaluate 

marketing-related activities in managerial processes 

and to measure them with rational metrics. The high-

budget structure of marketing investments and the 

inability to quantify their return are considered an 

important leadership problem for the senior managers 

of the companies. Therefore, the accountability of 

marketing comes to the fore. The accountability of 

marketing is defined as the measurement and 

optimization of the contribution of marketing 

investments to the performance and value of a firm 

http://www.ams.org/msc/msc2010.html
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[1]. Marketing includes investment, expenditure, and 

managerial decision-making processes for a firm 

within the framework of customer value elements 

called product, price, promotion, and place (i.e., the 

4Ps of marketing). These processes can be defined as 

marketing inputs. As for marketing outputs, the effect 

of marketing performance indicators on firm 

profitability and stock value may be cited [3-4]. It is 

of utmost importance to reveal the relationship 

between these input and output elements of marketing 

in a measurable way in order to provide a quantitative 

perspective to the decision-making mechanisms of the 

managers. 

The current study aims to investigate the effect of the 

expenditures made by companies for marketing and 

therefore R&D/innovation investments on stock return 

and profitability. To this end, our study primarily 

touched on the relationship between marketing and 

R&D expenditures and profitability and stocks 

theoretically. We presented a summary table by 

examining the studies conducted on the relevant 

subject in the literature. Then, the models created to 

determine the effects of marketing and R&D 

expenditures on stock return, return on assets, and 

return on equity were investigated with panel-data 

analysis method. The findings obtained as a result of 

the analysis were reported and interpreted. In addition, 

the results were discussed and evaluated.  

2. Conceptual framework 

Recent advances in digital channels, alongside data 

explosion and the emergence of marketing 

automation, the globalization of markets, and the rise 

of customer experience as a key priority for 

companies have increased the significance of 

understanding how potential marketing outcomes have 

impacted and may impact firm profitability and firm 

value [5]. In marketing, innovation is considered to be 

an important factor that generates firm value, 

primarily in the market and also in the stock market 

[6]. Recently, a significant number of studies has 

focused on the effects of companies' marketing 

practices and marketing-oriented innovative assets and 

actions (search engine marketing practices, R&D 

investments, patents, new product launches, etc.) on 

the financial performance and value of the firm [7-12].  

Operational processes (production, marketing, general 

management, etc.) in businesses are highly dynamic 

with the presence of constant innovations. The 

development and change of the abilities, capabilities, 

and activities in these processes require firm 

management to keep up with these changes. It is an 

important question to be answered by managers 

whether these practices and investments generate any 

return for the firm. When the academic literature is 

examined, various studies are focusing on measuring 

the effect of these operational activities and practices 

on the performance of companies in financial 

proportions [13]. Profitability arises as the most 

important indicator of firm performance in research. 

Therefore, the term "performance" is generally used 

when referring to profitability for companies [14].  

The main purpose of examining the relationship 

between marketing and finance is to investigate the 

degree to which markets function smoothly [15]. 

However, there are two different difficulties in 

determining how successfully this goal can be 

achieved. The first difficulty is related to the capital. 

The difficulty means that investment decisions must 

be motivated by "long-term factors" (rather than 

short-term cash flows, for example, without long-term 

contributions). Therefore, a firm needs investment 

performance measures that have been proven to create 

long-term value with regard to management 

performance. The second difficulty is the evaluations 

to be performed in marketing practices to distinguish 

between "effective marketing" and "ineffective 

marketing". To ensure the effectiveness of marketing 

practices, inputs include decisions about marketing 

actions called "product, price, promotion, and place 

(4P)" while outputs include several potential key 

performance indicators or metrics for marketing. 

Expenditure on these marketing practices may affect 

profitability [3] and stock return [4], thus firm 

performance. As Abramson et al. [3] and Shulze et al. 

[4] pointed out, operational activities and expenditures 

(marketing and innovation expenditures) are of great 

significance for stock return and profitability, both 

conceptually and with regard to firm management 

processes. Analyzing the relationship between these 

variables is crucial both in order to provide an 

important input for the decision-making processes of 

financial investors and to demonstrate its effect on the 

smooth functioning of the stock markets. Klingenberg 

et al. [13] suggest that the data is obtained either from 

the financial reports of publicly traded companies or 

in the form of perceptual data through surveys in order 

to analyze the relationship between a firm's 

operational practices (marketing and innovation) and 

its performance. The researchers claim that there are 

inconsistencies in the results obtained with these data 

(data obtained by making use of financial reports and 

survey data concurrently) [13]. Therefore, marketing 

and R&D expenditures, stock return, and profitability 

are examined through secondary data in the present 

study.  

3. Literature 

The studies conducted in the last 20 years in the 

national and international literature on this research 

area and their findings are summarized in Table 1. 
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Table 1. Summary of the literature on the research area  

-Author(s) 

-Sample 

-Time Period 

Variables Method Findings 

Wakelin [16]  

UK stock exchange 
1945-1983 

Innovation and R&D 

investments 

Least squares 

method 

Separating the firms according to their 

innovation histories, the rate of return 
to R&D is much higher for innovative 

than non-innovative firms. 

Hanel and St-pierre [17]  
Firms in the S&P compustant database 

1972-1991 

R&D expenditures and 
operating profit 

Regression 
analysis 

It has been determined that R&D has a 
direct, positive effect on profitability. 

Öztürk [18] 
BIST firms 

2002-2006 

Market and book value of 
the firm's equity, monopoly 

power and R&D 

investments 

Multiple 
regression analysis 

It has been determined that R&D 
investments have statistically 

significant and positive effects on firm 

value. 

Çifci et al. [19] 
BIST firms 

2000-2008 

Marketing expenses, 
general management 

expenses, total asset size 

and net profit/loss for the 

period 

Panel data analysis According to the findings of the study; 
marketing expenditures, general 

administration expenditures and total 

asset size have positive impacts on the 

performance of the business and it has 

been identified that among them the 

most important variable is the 
marketing expenditure. 

Ehie and Olibe [20]  

US manufacturing and service firms 
1990-2007 

R&D expenditures and 

market value 

Regression 

analysis 

It has been determined that R&D 

investments contribute positively to 
firm performance. 

Parcharidis and Varsakelis [21]  

Athens stock exchange manufacturing 
and computer firms 

1996-2004 

R&D expenditures and 

Tobin's q 

Panel data analysis It has been determined that R&D 

investments have an effect on the 
market value of the firms. 

Topuz and Akşit [22] 
 BIST Food industry 

2000-2013 

Marketing sales and 
distribution expenses, 

return on stock 

Panel regression 
analysis 

It has been determined that marketing 
expenditures have a positive effect on 

stock returns. 

Doğan and Mecek [23]  
BIST Manufacturing Industry 

200-2012 

Marketing expenditures, 
return on assets, return on 

equity and Tobin's Q 

Multiple 
regression and 

correlation 

analysis 

A positive and statistically significant 
relationship was found between 

marketing expenditures and firm value. 

Yücel and Ahmetoğulları [24]  

BIST technology, software and 

informatics sector 
2000-2014 

R&D expenses, change in 

net income and earnings per 

share 

Regression 

analysis 

There is a positive relationship 

between the change in R&D 

expenditures and the change in net 
profit for the same period. In addition, 

it has been determined that the effect 

of R&D expenses on earnings per 
share has a lag of three periods. 

Alper and Aydoğan [25] 

BIST Chemical industry 

2001-2014 

R&D expenditures, return 

on assets, return on equity, 

firm size and financial 
leverage ratio 

Dinamic panel 

data analysis 

Study findings demonstrated that R&D 

expenses affected corporate financial 

performance positively and 
significantly with one year lag. 

Işık et al. [26] 

BIST firms 
2008-2014 

R&D spending, sales and 

profitability 

Panel data analysis The analysis results show that; R&D 

spending have a positive and 
significant effect on profitability and 

sales. 

Öztürk and Dülgeroğlu [27] 
BIST Manufacturing Industry 

2007-2015 

Marketing expenditure, 
general administrative 

expense, and sales 

Panel regression 
analysis 

It has been determined that the sales 
performance is stronger in companies 

whose marketing expenses are higher 

than their administrative expenses. 

Polat and Elmas [28]  

BIST Metal Goods, Machinery and 

Equipment Production industry 
2007-2015 

R&D investments, 

profitability in sales and 

assets, growth and 
logarithm, liabilities/assets 

Panel data analysis The effect of R&D investments on firm 

performance has been determined as 

negative. 

Lee et al. [29]  

Arts and culture firms in the USA 
2003-2013 

Marketing expenditure and 

total revenue 

Regression 

analysis 

It has been determined that marketing 

expenditures have a positive effect on 
total revenue. 

Özer and Gülençer [30] 

Borsa Istanbul cement sector 
2009-2013 

R&D expenditure and 

intensity, marketing 
expenditure and intensity, 

stock value 

Panel regression 

analysis 

It was found that marketing 

expenditures had a positive effect on 
the stock value, and although R&D 

expenditures did not have a significant 

effect on the stock value directly, it 
was concluded that the intensity of 

R&D expenditures positively affected 

the stock value. 
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Table 1. continued 
Serçek et al. [31]  

BIST Tourism Sector 
2012-2015 

Marketing expenses/net 

sales, marketing 
expenses/cost of operations 

and sales, debt ratio, firm 

size, return on asset, return 
on equity and operating 

cash flow 

Panel data analysis A statistically insignificant relationship 

was found between marketing 
expenses and profitability. 

Yıldırım and Sakarya [32] 
BIST technology and informatics 

sector 

2009-2016 

R&D expenditures, return 
on assets and return on 

equity 

Panel data analysis It has been concluded that R&D 
expenditures have a significant and 

positive effect on the return on assets 

and equity. 

Ayaydın et al. [33]  

Borsa Istanbul Technology 

2008-2018 

R&D investments, MV/BV, 

earnings per share and P/E 

Dynamic panel 

data analysis 

The results of the analysis indicated 

that there is a positive relationship 

between R & D investments and 
MV/BV, earnings per share and P/E. 

Aydın and Kaya Aydın [34] 

Airline companies of various countries 
selected by convenience sampling 

method 

2016 

Revenue passenger 

kilometer, liquidity, Skytrax 
ranking and fleet numbers 

Stochastic frontier 

analysis 

According to the analysis, as the 

liquidity of the companies increase, the 
revenue passenger kilometer decreases. 

As the number of Skytrax ranking 

increases, revenue passenger kilometer 
decreases. 

Liu et al. [35] Chinese manufacturing 

firms listed on the Shenzhen and 

Shanghai Stock Exchange 
2012-2016 

R&D investment and 

intensity, Tobin's q 

Tobit regression 

analysis 

It has been observed that R&D 

expenditures have an inverted U-

shaped relationship with firm value, 
and increases in R&D investments 

exceeding a certain point are likely to 
result in lower firm value. 

 

There is a significant number of studies in the 

literature analyzing the effect of marketing 

expenditures and R&D expenditures directly related to 

marketing on firm profitability and stock value. Some 

of these studies are presented in Table 1 with a 

systematic point of view. The studies in Table 1 were 

analyzed based on the author and year of the study, 

information about the samples used in the study, the 

years covered with the analyzed data, variables 

examined in the study, analysis methods, and 

information about the results of the study. Table 1 

shows that: 

• The relationship between marketing expenditures 

and firm profitability has been investigated by 

many authors from 2001 to 2020. 

• When the scope of samples is analyzed, companies 

within the scope of "BIST, British Stock Exchange, 

S&P Database, and Shenzhen and Shanghai Stock 

Exchange" were investigated. In these stock 

exchanges and databases, many different fields and 

industries have been studied such as 

manufacturing industry, computer companies, food 

industry, technology, software and information 

industry, chemical industry, metal goods and 

machinery industry, art and culture companies, 

cement industry, tourism industry, technology 

industry, and airline companies.  

• When the variables included in the analyzes are 

examined, the independent variables such as 

"productivity, R&D expenditures, firm monopoly 

power, marketing expenditures, sales and 

distribution expenditures, general administrative 

expenditures, R&D expenditure intensity, and paid 

passenger mileage" are associated with dependent 

variables including "operating profitability, book 

value, net profit/loss for a given period, market 

value, Tobin's Q value, stock return, return on 

equity, change in net profit, profit per stock, firm 

size, financial leverage ratio, total revenue, and 

operating cash flow". 

• The methods used during the analyzes consist of 

many causal and relational analyzes such as "Least 

Squares Estimation, Regression Analysis, Multiple 

Regression Analysis, Panel-Data Analysis, Cross-

Sectional/Stepwise Regression Analysis, 

Correlation Analysis, Dynamic Panel-Data 

Analysis, Stochastic Analysis of Boundary, and 

Tobit Regression Analysis". 

• The results of the research have revealed some 

positive and significant relationships between 

marketing and R&D expenditures and firm 

profitability and stock return. 

4. Dataset and method 

Within the scope of the present study examining the 

effects of companies' marketing and R&D 

expenditures on stock return and profitability, we 

conducted research on the companies included in the 

BIST Technology Index. While analyzing the time 

period between 2009 and 2020, we determined that 9 

companies were traded in the index continuously 

during the aforementioned period and included these 

companies in the sample. The dataset of the research 

consists of quarterly R&D and marketing 

expenditures, stock returns, return on assets, and 

return on equity of 9 companies in the BIST 

Technology Index during the period between March 

2009 and December 2020. When the studies in the 

literature on the relationship or effect between firm 

performance and marketing and R&D expenditures 

are examined, the studies focusing on the relationship 

between innovative corporate/operational practices 
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and firm performance are in the majority. On the other 

hand, some other studies analyze the R&D and 

marketing expenditures of the companies for the 

activities in the product development and marketing 

processes. The current study examines the impact of 

"marketing and R&D expenditures" on both the 

market and the return on assets (ROA) and return on 

equity (ROE) of companies. Therefore, the present 

study differs from other studies and contributes to the 

literature by comparing the non-operational 

performance indicators (stock value and stock return) 

and operational performance indicators (ROA and 

ROE) of R&D and marketing expenditures. The 

variables included in the study were obtained from the 

financial statements published on the official website 

of Borsa İstanbul's Public Disclosure Platform 

(www.kap.org.tr). They are separated into dependent 

and independent variables and presented in Table 2 

together with their abbreviations in the analysis. 

Table 2. Variables in the model 

 Variable 

name 

Abbrevi-

ation 

Data 

Period 

Dependent 

Variables 

Stock Return SR 2009:03 – 

2020:12 

Return on 

Asset 

ROA 2009:03 – 

2020:12 

Return on 

Equity 

ROE 2009:03 – 

2020:12 

Independent 

Variables 

R&D 

Expenditures 

R&D 2009:03 – 

2020:12 

Marketing 

Expenditures 

ME 2009:03 – 

2020:12 

 

We preferred to use panel-data analysis since both the 

variables belonging to the companies and the time-

series data of these variables were present in the study. 

This is because the panel-data analysis method allows 

the time-series data of the cross-sectional observations 

of each firm in the sample to be combined and 

analyzed.  

The research models of the current study, conducted to 

determine the effect of R&D and marketing 

expenditures on stock return, return on assets, and 

return on equity, were formed as follows: 

 

𝑆𝑅 = 
0

+ 
1

(ME) + 
2

(R&D) + ε       (model 1) 

 

𝑅𝑂𝐴 = 
0

+ 
1

(ME) + 
2

(R&D) + ε    (model 2) 

 

𝑅𝑂𝐸 = 
0

+ 
1

(ME) + 
2

(R&D) + ε    (model 3) 

5. Results  

EViews 12, Stata 15, and Gauss programs were used 

in the present study, and three models established for 

the purpose of the research were analyzed 

sequentially. In the first stage of panel-data analysis, 

cross-sectional dependence tests should be performed. 

This is because some authors state that the results 

obtained in the analyzes carried out without 

considering the cross-sectional dependence will be 

biased and inconsistent [36]. In addition, it is possible 

to determine which unit root tests are suitable to apply 

to the variables based on the results of the cross-

sectional dependence test. 

5.1. Analysis results of Model 1 

𝑺𝑹 = 
𝟎

+ 
𝟏

(𝐌𝐄) + 
𝟐

(𝐑&𝐃) + 𝛆 

The dependent variable of Model 1 is stock return, and 

its independent variables consist of marketing 

expenditures and R&D expenditures. The results of 

cross-sectional dependence test of these variables are 

presented in Table 3. 

Table 3. Cross-sectional dependence test results of Model 1 

 SR ME R&D 

Test Stat. p Stat p Stat P 

B-P 

LM 
62.47  

 

0.00 739.85 0.00 78.76 0.00 

P LM   3.11 0.00 82.94 0.00 5.04 0.00 

Bias-cs 

LM 

  3.02 0.00 82.85 0.00 4.94 0.00 

P CD   3.47 0.00 21.05 0.0 0.48 0.62 

Abbreviations: B-P LM: Breusch-Pagan LM,  
P LM: Pesaran scaled LM, B-cs LM: Bias-corrected scaled LM,  
P CD: Pesaran CD 

H0:No Cross Section Dependency, p. %5 
 

The cross-sectional dependence tests given in Table 3 

have various characteristics depending on the use 

scenario. For instance, it is assumed that the test 

developed by Breusch and Pagan [38] (Breusch-Pagan 

test) will be used when the time dimension (T) is 

larger than the cross-sectional dimension (N) [39]. 

Since the time dimension (T=12 years*4 periods) of 

the present study was larger than the cross-sectional 

dimension (N=9 companies), the Breusch-Pagan LM 

cross-sectional dependence test results were evaluated. 

As a result, H0 is not supported since the result of test 

statistics for all variables is p<0.05. Therefore, there is 

a cross-sectional dependence in the series. For this 

reason, it is appropriate to conduct second generation 

unit root tests in the further phases of the analysis. The 

results of the second generation unit root tests Bai and 

Ng's PANIC and Pesaran's CIPS are presented in 

Table 4. 

Table 4. Unit root test results of Model 1 

 SR ME R&D 

Test Stat P Stat P Stat P 

B-NG 1.47 0.00 1.15 0.00 1.99 0.00 

P 

CIPS 

- 

5.08 

  < 

0.01 

-3.78   < 

0.01 

- 

2.79 

  < 

0.01 
Abbreviations: B-NG: Bai and NG – PANIC, P CIPS: Pesaran 

CIPS H0:No Unit Root, p. %5 

 

Table 4 demonstrates that Bai and Ng's unit root test 

results were p<0.05 for all variables. Therefore, the 

variables did not contain a unit root. In other words, 
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the series was stationary at level I(0). Since p<0.01 

was obtained for all variables in the Pesaran's CIPS 

unit root test results, H0 was not supported, and it was 

confirmed that the series was stationary at level. For 

this reason, the Panel Least Squares Method (LSM) 

should be used in the further phases of the analysis. In 

order to utilize the Panel LSM, it is necessary to 

determine the fixed, random or pooled effects the 

model includes. The analysis should be performed 

once the suitable effect is selected. The results of the 

tests performed to examine the influences of these 

effects both on time and horizontal dimension are 

given in Table 5. 

Table 5. Panel OLS effect test results 

  Statistics P 

Cross 

Section 

Random Effect 

(Hausman) 

0.1503 

 

0.9276 

 

Fixed Effect (Chow F) 1.4873 

 

0.1597 

 

Pooled Effect (LM 

Breusch Pagan) 

0.4458 0.5043 

Period Random Effect 

(Hausman) 

1.8882 

 

0.3890 

 

Fixed Effect (Chow F) 0.8665 

 

0.7182 

 

Pooled Effect (LM 

Breusch Pagan) 

0.5271 0.4678 

 

Based on the results in Table 5, all significance values 

were determined to be p>0.05. Therefore, all H0 

hypotheses are supported. The hypotheses of the 

Hausman test are "H0: Random effect, H1: Fixed 

effect" [40], the hypotheses of the Chow F-test are 

"H0: Pooled effect, H1: Fixed effect", and the 

hypotheses of the LM test are "H0: Pooled effect, H1: 

Random effect". While the Hausman test carried out 

for both cross-section and period indicates that the 

model includes random effects, Chow F-test and LM 

Breusch-Pagan test results demonstrate that the model 

contains pooled effects. Since the majority of the tests 

showed that the pooled effect was suitable for the 

model, the least squares method was used under the 

pooled effects for both cross-section and period. The 

panel LSM results are given in Table 6. 

Table 6. Panel OLS results 

Variables Coefficients Std. 

Error 

t-

statistics 

P 

R&D -3.61E-07 1.61E-06 -0.2250 0.8220 

ME 15.3489 1.69E-06 -0.3011 0.0035 

C 30.8184 11.8743 2.5953 0.0098 

 

The results in Table 6 enabled us to determine that 

marketing expenditures had a positive (15.3489) and 

significant (p<0.05) effect on stock return. On the 

other hand, R&D expenditures had no statistically 

significant effect on stock return. Based on these 

findings, the model coefficients extracted in line with 

the purpose of the study are as follows:  

𝑆𝑅 = 30.8184 + 15.3489(ME) + ε 

5.2. Analysis results of Model 2 

𝑹𝑶𝑨 = 
𝟎

+ 
𝟏

(𝐌𝐄) + 
𝟐

(𝐑&𝐃 ) + 𝛆 

Since the cross-sectional dependence tests of the 

independent variables of Model 2 were performed 

during the analyzes of Model 1 and the cross-sectional 

dependence was established, only the cross-sectional 

dependence tests of the dependent variable, return on 

assets (ROA), were performed for Model 2. The 

relevant test results are presented in Table 7. 

Table 7. Cross-sectional dependence test results of Model 2 

 ROA 

Test Statistics P 

Breusch-Pagan 

LM 
213.5667 

 

0.0000 

Pesaran scaled LM   20.9264 0.0000 

Bias-corrected 

scaled LM 

  20.8306 0.0000 

Pesaran CD   3.4724 0.5581 

 

Since the Breusch-Pagan LM test statistic was p<0.05 

for the variable ROA, there was a cross-sectional 

dependence in the series. In addition, the results of the 

cross-sectional dependence test for the remains of 

Model 2 are given in Table 8. 

Table 8. Cross-sectional dependence test results of Model 2 

Test Statistics P 

Breusch-Pagan LM 162.6277 
 

0.0000 

Pesaran scaled LM   14.9232 0.0000 

Pesaran CD   0.0629 0.9498 

 

The results in Table 8 prove that the presence of cross-

sectional dependence in Model 2 was established. 

Therefore, analyzes should be continued with second 

generation unit root tests. As the independent 

variables of all models are the same and the unit root 

test was carried out for the independent variables in 

Model 1, unit root test was performed only for the 

dependent variable of Model 2 at this stage. The 

results of unit root test performed for ROA are shown 

in Table 9. 

Table 9. Unit root test results of Model 2 

 ROA First Difference ROA 

Test Statistics p Statistics p 

Bai and 

NG – 

PANIC 

1.3947 0.1631 0.1526 0.0000 

Pesaran 

CIPS 

-2.6594 >0.10 -4.8151 <0.01 

 

The unit root test results indicated that the variable 

ROA had unit root at level and the tests were repeated 

with the first difference of the series. Accordingly, the 

variable ROA was I(1). The independent variables of 

the model are I(0) while the dependent variable is I(1). 

Therefore, the variables have stationarity at different 

levels. At this stage, it is suitable to perform 

homogeneity/heterogeneity tests. The results of the 
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Hsiao panel homogeneity test are presented in Table 

10. 

Table 10. Panel homogeneity test results of Model 2 

Hypotheses F Statistics p 

H1 5.4483 1.32E-10 

H2 1.3298 0.0266 

H3 9.5272 3.81E-12 
Specification Tests of Hsiao (1986) 

H1 = Null Hypothesis : panel is homogeneous vs Alternative Hypothesis : H2 

H2 = Null Hypothesis : H3 vs Alternative Hypothesis : panel is heterogeneous 

H3 = Null Hypothesis : panel is homogeneous vs Alternative Hypothesis : 

panel is partially homogeneous 

 

Table 10 demonstrates that all hypotheses have a 

value of p<0.05 at a significance level of 5%. 

Therefore, the H0 hypotheses are not supported. As a 

result, we determined that not all slope coefficients in 

Model 2 have equal cross-sectional coefficients. 

Therefore, the coefficients in the model have a 

heterogeneous structure. The findings obtained up to 

this stage of the analysis for Model 2 indicate the 

presence of cross-sectional dependence, heterogeneity, 

and stationarity of the variables at different levels. 

Based on all these results, second generation 

cointegration tests should be carried out in the further 

phases of the analysis. Table 11 presents the 

Westerlund ECM cointegration test results for Model 

2. 

Table 11. Cointegration test results of Model 2 

 Statistics noCD p value Bootstrap  P 

value 

g-tau 0.330 0.001 0.031 

g-alpha 0.788 0.007 0.038 

p-tau -1.222 0.003 0.042 

p-alpha -1.403 0.002 0.044 

 

The bootstrap results of Westerlund ECM g-Tau and 

g-Alpha tests should be evaluated with regard to 

heterogeneity and cross-sectional dependence [37]. 

Since the results had a value of p<0.05 at a 

significance level of 5%, the series were cointegrated. 

Cointegration coefficients should be determined at the 

last stage of the analysis for the cointegrated variables. 

Panel AR Distributed Lag Models (Mean Group) 

Common Correlated Effects (Panel ARDL MG-CCE) 

is the panel cointegration estimator that should be 

applied based on the previously specified 

characteristics of the model such as cross-sectional 

dependence, heterogeneity, I(1) for the dependent 

variable, and I(0) for the independent variables. Panel 

ARDL MG-CCE test results are presented in Table 

12. 

The results in Table 12 show that no statistically 

significant relationship was found between marketing 

expenditures and return on assets. On the other hand, 

R&D expenditures have a positive (1.6907) and 

significant (p<0.05) relationship with return on assets. 

Based on the findings, the model 2 coefficients 

equation extracted in line with the purpose of the 

study is as follows: 

𝑅𝑂𝐴 = 4.4047 + 1.6907(R&D) + ε 

 

Table 12. Panel ARDL MG-CCE test results of Model 2 

ROA Coefficients Std. 

Error 

Z P 

R&D 1.6907 5.6987 2.9633 0.0032 

ME 5.8813 5.9908 0.9814 0.3269 

C 4.4047 0.4159 10.5899 0.0000 

R2 

Adj. R2 

F-Stat  

0.979 

0.967 

336.45 

(0.000) 

   

 

5.3. Analysis results of Model 3 

𝑹𝑶𝑬 = 
𝟎

+ 
𝟏

(𝐌𝐄) + 
𝟐

(𝐑&𝐃 ) + 𝛆 

The cross-sectional dependence test results of the 

dependent variable, return on equity (ROE), of Model 

3 established for the purpose of the study are shown in 

Table 13. 

Table 13. Cross-sectional dependence test results of Model 3 

 ROE 

Test Statistics P 

Breusch-Pagan LM 169.7672 
 

0.0000 

Pesaran scaled LM   15.7646 0.0000 

Bias-corrected scaled LM   15.6688 0.0000 

Pesaran CD   -0.7353 0.4621 

 

Since the Breusch-Pagan LM test statistic was p<0.05 

for the variable ROE, there was a cross-sectional 

dependence in the series. However, cross-sectional 

dependence for the remains of Model 3 was 

established based on the Breusch-Pagan LM test 

results (statistics: 183.8536 and p: 0.000). Therefore, 

the analyzes should be continued with second 

generation unit root tests that must be carried out for 

cross-sectional dependence. The unit root test results 

for ROE are presented in Table 14.  

Table 14. Unit root test results of Model 3 

 ROE First Difference ROE 

Test Statistics p Statistics P 

Bai and 

NG – 

PANIC 

1.4867 0.6643 5.4442 0.0000 

Pesaran 

CIPS 

-6.6594 >0.10 -2.4196 <0.05 

 

The unit root test results in Table 14 demonstrated that 

the variable ROE was not stationary at level and the 

tests were repeated with the first difference of the 

variable. As a result, we determined that the variable 

ROE was I(1). Following this stage, the analyzes were 

continued with homogeneity/heterogeneity tests. The 

Hsiao test results are given in Table 15. 
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Table 15. Panel homogeneity test results of Model 3 

Hypotheses F Statistics P 

H1 7.4469 2.12E-15 

H2 4.6172 2.05E-05 

H3 9.6172 2.87E-12 
Specification Tests of Hsiao (1986) 

H1 = Null Hypothesis : panel is homogeneous vs Alternative Hypothesis : H2 

H2 = Null Hypothesis : H3 vs Alternative Hypothesis : panel is heterogeneous 

H3 = Null Hypothesis : panel is homogeneous vs Alternative Hypothesis : 

panel is partially homogeneous 

 

Since all hypotheses had a value of p<0.05 at a 

significance level of 5% in Table 15, the coefficients 

in the model had a heterogeneous structure. As all the 

characteristics in Model 2 are also valid for Model 3, 

all tests in Model 2 were repeated for Model 3 after 

this stage. Therefore, the first test performed in the 

continuation of the analysis is the second generation 

cointegration test. Table 16 demonstrates the 

cointegration test results for Model 3. 

Table 16. Cointegration test results of Model 3 

 Statistics Bootstrap p value 

g-tau 0.622 0.003 

g-alpha 0.510 0.014 

 

The results of the Westerlund ECM test, one of the 

second generation cointegration tests carried out with 

regard to heterogeneity and cross-sectional 

dependence, had a value of p<0.05 at a significance 

level of 5%. Therefore, the series were cointegrated. 

Cointegration coefficients should be determined at the 

last stage of the analysis for the cointegrated variables. 

Panel AR Distributed Lag Models (Mean Group) 

Common Correlated Effects (Panel ARDL MG-CCE) 

test is the panel cointegration estimator that should be 

applied due to the characteristics of the model such as 

cross-sectional dependence, heterogeneity, and 

stationarity of the variables at different levels. Panel 

ARDL MG-CCE test results are presented in Table 

17. 

Table 17. Panel ARDL MG-CCE test results of Model 3 

ROE Coefficients Std. 

Error 

Z P 

R&D 8.7508 1.2007 0.7314 0.0049 

ME 2.8407 1.2607 2.2540 0.0247 

C 13.1640 0.8750 15.0443 0.0000 

R2 

Adj. R2 

F-Stat  

0.8987 

0.8769 

411.51 

(0.000) 

 

 

The results in Table 17 point out a statistically 

significant and positive relationship between R&D 

expenditures and return on equity. In addition, the 

relationship between marketing expenditures and 

return on equity was positive and significant. Based 

on the findings, the model 3 coefficients equation 

extracted in line with the purpose of the study is as 

follows: 

𝑅𝑂𝐸 = 13.1640 + 2.8407(ME) + 8.7508(R&D) + ε 

6. Conclusion 

Expenditures and investments made for 

R&D/innovation are crucial indicators for companies 

in particular and countries in general. This is because 

the growth, development, and sustainability of 

countries depend on the R&D investments made by 

the companies and the emergence of products with 

high added value as a result [41]. For this reason, 

companies that have more added value, especially in 

the technology industry, are supported with R&D 

investments. Most studies emphasize that R&D 

activities and expenditures, which are of strategic 

importance for companies to gain competitive 

advantage, grow, and be efficient, are also crucial for 

the markets [42-47]. The reason is that the positive or 

negative perception of the expenditures by the markets 

and investors may affect the stock prices in publicly 

traded companies. In addition, these expenditures may 

contribute to firm profitability, as well as have a 

destructive effect on profitability if they become 

excessive. On the other hand, the effect of marketing 

expenditures on firm performance, profitability, and 

stock value is one of the most frequently studied 

research areas in the literature. The common idea is 

that the effectiveness of marketing activities is more 

important than their amount [48]. However, most of 

the effective activities are proportional to the amount 

of expenditure. 

The present study examines the effects of R&D and 

marketing expenditures on stock return and 

profitability and includes research with panel data 

analysis for companies in the BIST Technology 

Industry. The quarterly frequency data of R&D 

expenditures, marketing expenditures, stock return, 

return on assets, and return on equity were included in 

the analyzes in three different models in line with the 

purpose of the study. Model 1 focuses on "the effect of 

R&D and marketing expenditures on stock return". 

Cross-sectional dependency test, the first test to be 

carried out in panel data analysis for the model, was 

performed and second generation unit root tests were 

completed to determine the cross-sectional 

dependence in the series. Since all the variables were 

stationary at level, the analysis was continued with 

panel least squares test. After ensuring that the 

suitable effect for the model is pooled effect, the 

coefficients obtained as a result of the findings from 

the panel least squares method were included in the 

model:  

𝑆𝑅 = 30.8184 + 15.3489(ME) +  ε 

As a result, the effect of R&D expenditures on stock 

return (p>0.05) was not statistically significant; 

however, we determined that marketing expenditures 

had a positive and significant effect on stock return. 

Cross-sectional dependency tests were performed for 

Model 2 that was created to determine the "effect of 

R&D and marketing expenditures on ROA". After the 

cross-sectional dependence was established, the 

analyzes were continued with second-generation unit 
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root tests. Since ROA, the dependent variable of 

Model 2, is I(1) and the independent variables are I(0), 

we decided to continue the analyzes with cointegration 

tests. In order to determine which cointegration tests 

are suitable, it is necessary to confirm whether the 

slope coefficients in the model are homogeneous or 

heterogeneous in the first place. To this end, the Hsiao 

test was performed and the coefficients had a 

heterogeneous structure. Due to the aforementioned 

characteristics of Model 2, it has been appropriate to 

continue the analyzes with the Panel AR Distributed 

Lag Models (Mean Group) Common Correlated 

Effects (Panel ARDL MG-CCE) test. As a result, no 

statistically significant relationship was found 

between marketing expenditures and ROA. On the 

other hand, R&D expenditures have a positive 

(1.6907) and significant (p<0.05) relationship with 

ROA. Based on the obtained findings, the Model 2 

coefficients equation was formed as follows:  

𝑅𝑂𝐴 = 4.4047 + 1.6907(R&D E) + ε 

As for Model 3, the presence of cross-sectional 

dependence was established, the dependent variable, 

ROE, was I(1), the independent variables were I(0), 

and the homogeneity/heterogeneity test demonstrated 

that the model coefficients had a heterogeneous 

structure. Due to the aforementioned characteristics of 

Model 3, this model was further analyzed with the 

Panel ARDL MG-CCE test. As a result, a statistically 

significant and positive relationship was found 

between both R&D and marketing expenditures and 

ROE. Therefore, the Model 3 coefficients equation 

was formed as follows: 

𝑅𝑂𝐸 = 13.1640 + 2.8407(ME) + 8.7508(R&D )
+ ε 

When our findings and the literature are compared, 

R&D expenditures had a positive effect on 

profitability, as suggested by [17], [24-26], [32] as 

well. These studies support the result of the current 

study. On the other hand, the finding obtained by [28] 

contradicts the result of the current study. The finding 

indicating that marketing expenditures have a positive 

effect on stock return is in line with the result obtained 

by [22]. The positive effect of marketing expenditures 

on firm performance was also found by [19], [23], 

which supports our results. On the other hand, [31] 

found a statistically insignificant relationship between 

marketing expenditures and profitability, which 

contradicts our results. 

Companies' R&D and marketing expenditures have an 

impact on both the markets and the level of 

profitability. R&D and marketing investments are of 

utmost importance for maintaining sustainability for 

companies that can keep up with the requirements of 

the period and cope with intense competition. For this 

reason, companies should plan their expenditures and 

allocate appropriate amounts of R&D and marketing 

budgets, and governments should support these 

activities. 
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 In this article, we demonstrated the study of the time-fractional nonlinear Sharma-

Tasso-Olever (STO) equation with different initial conditions. The novel 

technique, which is the mixture of the q-homotopy analysis method and the new 

integral transform known as Elzaki transform called, q-homotopy analysis Elzaki 

transform method (q-HAETM) implemented to find the adequate approximated 

solution of the considered problems. The wave solutions of the STO equation play 

a vital role in the nonlinear wave model for coastal and harbor designs. The 

demonstration of the considered scheme is done by carrying out some examples 

of time-fractional STO equations with different initial approximations. q-HAETM 

offers us to modulate the range of convergence of the series solution using ℏ, called 

the auxiliary parameter or convergence control parameter. By performing 

appropriate numerical simulations, the effectiveness and reliability of the 

considered technique are validated. The implementation of the new integral 

transform called the Elzaki transform along with the reliable analytical technique 

called the q-homotopy analysis method to examine the time-fractional nonlinear 

STO equation displays the novelty of the presented work. The obtained findings 

show that the proposed method is very gratifying and examines the complex 

nonlinear challenges that arise in science and innovation. 
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1. Introduction 

Fractional calculus (FC) is an incipient tool in the field 

of mathematics with strong execution in the diverse 

areas of science and engineering. FC is defined as the 

generalization of the classical calculus where we study 

the integral and differential operators of fractional 

order, even can be lengthened to a complex set. In the 

past few decades, many mathematical minds have 

strengthened this concept and designed various 

fractional differential and integral operators [1, 2]. The 

progressive functioning of the demonstration of the 

classical derivatives is done using the nonlocality of the 

fractional operators. Fractional operators are 

undeniably used to define sophisticated memory and a 

range of objects that may be studied using normal 

mathematical methods such as classical differential 

calculus. Latterly, fractional operators with nonlocality 

have been demonstrated and foreseen in the absence of 

a singular kernel. However, we are still at the initial 

stage of implementing the concept of FC in various 

areas of research. Nowadays, FC is a very promising 

tool due to its larger applications in the dynamics of 

complex nonlinear phenomena. 

The idea of fractional calculus has its origin in the 

correspondence between L’hospital and Leibniz. 

Additionally, it was shown that FC is much more 

suitable to handle most complex real-world issues than 

classical calculus. Fractional calculus's richness in 

applied research has grown over time. Several studies 

have now proved its potential to deal with a variety of 

issues., particularly in the fields of science domains like 

robotics [3], viscoelasticity [4], image processing [5], 

http://www.ams.org/msc/msc2010.html
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biological population models [6], and several more [7-

27]. Compare to the integer-order differential 

equations, fractional counterparts are much more 

reserved to get adequate exact solutions for highly 

nonlinear problems. For this purpose, many numerical 

and analytical techniques are developed to solve this 

category of problems. 

Along with the development of the classical theory in 

physics, the concept of fractional calculus and its 

operators has dragged much attention due to its 

importance in applied physics such as plasma physics, 

chemical kinematics, fluid mechanics,  optical fibres, 

probability, statistics, etc. Although it has a long 

history, in recent decades, scientists have been attracted 

to fractional differential equations (FDE) due to its 

extensive applications in wide areas of science and 

engineering upon which few systems which are 

inherently nonlinear in nature are much studied by 

physicists, mathematicians, engineers, meteorologists, 

etc. 

Nonlinear fractional differential equations (NLFDEs) 

which describe the change in the variables over time 

was difficult to solve and unpredictable and are most 

commonly approximated by linear equations. The basic 

common approach to solve NLFDEs is either to change 

the variables so that, the solution for the equation will 

become simpler like the linear equation or transform 

the problem that can result in a linear equation. 

Sometimes, the problem will be converted into one or 

more ordinary differential equation(s) which may or 

may not be solvable further. For example, weather 

forecasting is one of the non-linear behaviour systems 

in which, some parameters are complete of random 

behaviour, where simple changes in one part of the 

system produce complex results throughout the system. 

Resulting in difficulty with accurate long-term weather 

forecasts even with current advanced technology. 

Therefore, the investigation of the exact solutions for 

NLFDEs plays an important role in the study of a 

nonlinear system of equations such as Navier–Stokes 

equations of fluid dynamics, Nonlinear optics, 

Nonlinear Schrödinger equation, Boltzmann equation, 

General relativity, Van der Pol oscillator, etc. 

The inquisition of soliton results of complex nonlinear 

evolution equations has great significance in the 

examination of the nonlinear field. These solutions are 

very informative towards the essential nonlinear 

science aspects. In this article, we are investigating the 

nonlinear time-fractional STO equation [28] given as 

follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1, 
(1) 

where 𝑎 is the random real constant, 𝑢 is the dependent 

variable, 𝑡 and 𝑥 are the temporal and spatial variables 

respectively. The STO equation is similar to the KdV 

equation which can describe evolutionary physics 

phenomena and interaction with nonlinear waves, like 

continuum mechanics, fluid dynamics, solitons and 

turbulence, aerodynamics, etc. The STO equation 

incorporates the double nonlinear term and linear 

dispersive term. The solution of the STO equation has 

been acquired by numerous methods. The Backlund 

transformation and Hirota’s direct method have been 

implemented to get the fusion and fission of the solitary 

wave solutions. It’s been revealed that the fission of 

solutions is obtained for 𝑎 < 0 and when 𝑎 > 0 waves 

depict only the fusion of solutions [29]. The potential 

symmetries and the generalized symmetries of the STO 

equation are studied in [30, 31]. Furthermore, to 

examine the soliton solutions of nonlinear PDEs are 

analyzed by numerous effective methods so far, like 

Hirota’s method [32], Scattering transformation [33], 

the First integral method [34, 35], Kudryashov method 

[36], Extended homoclinic test function method [37,  

38], Functional variable method [39], Ansatz method 

and simplest equation approach [40-42], and others. 

Various researchers across the globe have given many 

methods and approaches to solve the nonlinear 

differential equations among which, Sharma–Tasso–

Olver equation which is popularly known as the STO 

equation has not been much investigated. With this 

motivation, this work highlights the new generalized 

novel approach for the nonlinear time-fractional 

Sharma-Tasso-Olever equation using the Elzaki 

transform. 

To solve linear and nonlinear problems, a semi-

analytical tool, known as the homotopy analysis 

method (HAM) is a very efficient scheme 

recommended and demonstrated by Liao [43-45]. 

Further, for solving nonlinear problems, the q-

homotopy analysis method (q-HAM) as a furnished 

concept of HAM was introduced by El-Tavil and 

Hussain [46, 47]. Latterly, the combination of the semi-

analytical schemes with the Laplace transform is hired 

to scrutinize nonlinear equations such as Abel integral 

equation [48], nonlinear fractional shock wave 

equation [49], nonlinear boundary value problem on the 

semi-infinite domain [50], two-dimensional Burger’s 

equation [51], class of nonlinear differential equations 

[52], nonlinear fractional Zakharov-Kuznetsov 

equation [53], fractional Klein-Gordon-Schrödinger 

equations [54], fractional coupled Burger’s equations 

[55],  and so on. 

The study of the nonlinear STO equation using various 

numerical and analytical techniques is covered in a 

large body of literature. The innovative aspect of the 

current study is the investigation of the nonlinear time-

fractional Sharma-Tasso-Olever equation utilizing a 

powerful analytical tool known as the q-homotopy 

analysis Elzaki transform method. The primary goal of 

this work is to use the new integral transform known as 

the Elzaki transform to investigate the fractional 

behaviour of the problem under consideration. The 

presented work has not been performed before using 

the considered algorithm. 

In the present work, we investigate the reliability and 

effectiveness of the q-homotopy analysis Elzaki 

transform method (q-HAETM) [56] for solving the 



48                                          N. S. Malagi et al. / IJOCTA, Vol.13, No.1, pp.46-58 (2023) 

time-fractional nonlinear STO equation. The 

considered technique is the amalgamation of the Elzaki 

transform (ET) scheme and the q-homotopy analysis 

method (q-HAM). The Elzaki transform is the new 

integral transform obtained by the classical Fourier 

integral, which was presented by Tarig Elzaki [57] to 

alleviate the procedure of addressing the solutions for 

ordinary and partial differential equations. The 

combination of an Elzaki transform with the 

decomposition algorithm is applied to solve the 

numerous nonlinear partial differential equations [58], 

ADM Elzaki and VIM Elzaki [59], homotopy 

perturbation Elzaki transform method [60], the 

nonlinear regularized long-wave models are studied 

with the help of Elzaki transform in [61], and so on. The 

benefits of the q-HAETM include not requiring 

discretization, linearization, perturbations, or any rigid 

assumptions, significantly reducing the complexity of 

complex computations, promising a wide convergence 

region, offering a non-local effect, and not requiring 

complex polynomials, integrations, or physical 

parameter calculations. To limit the convergence zone 

and frequent convergence of the obtained solution to a 

minimum tolerable region, the studied approach is also 

natured by auxiliary and homotopy parameters. It 

produces more digestible outcomes for the identical 

grid point and series solution sequence. Additionally, 

the technology under consideration preserves greater 

accuracy despite requiring less time, making it 

incredibly efficient and trustworthy. The feasibility and 

optimism of the considered strategy are demonstrated 

by its capacity to provide highly precise precision, a 

large convergence range, and a straightforward solution 

technique. 

The rest of the work is organized as follows: Section 2 

covers prefaces of the fractional integral in Reimann-

Liouville sense, ET, and Caputo fractional derivative. 

The fundamental notion of the investigated 

methodology is explained in Section 3, and the results 

for the time-fractional STO equation are discussed in 

Section 4. Plots are used to explain the responsiveness 

and pattern of the acquired fractional-order findings. 

The numerical simulations of the results obtained using 

q-HAETM are cited in comparison with ADM, HPM, 

and OHAM. The final section contains comments on 

the findings obtained. 

 

2. Preliminaries 

Here we present some basic notions of Fractional 

operators and the Elzaki transform: 

Definition 1. The fractional Riemann-Liouville 

integral of a function 𝑓(𝑡) ∈ 𝐶𝜇(𝜇 ≥ −1), is presented 

[1] by 

𝐽𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝜗)𝛼−1𝑓(𝜗)𝑑𝜗
𝑡

0
, 

𝐽0𝑓(𝑡) = 𝑓(𝑡). 

(2) 

(3) 

 

 

Definition 2. The derivative with fractional order 𝛼 

of 𝑓 ∈ 𝐶−1
𝑛  in the Caputo sense [1] is: 

𝐷𝑡
𝛼𝑓(𝑡)

=

{
 
 

 
 𝑑

𝑛𝑓(𝑡)

𝑑𝑡𝑛
,                                                         𝛼 = 𝑛 ∈ ℕ,                     

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜗)𝑛−𝛼−1𝑓(𝑛)(𝜗)𝑑𝜗,   𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ ℕ.
𝑡

0

 
  (4) 

 

Definition 3. The Elzaki transform (ET) of a function 

𝑓(𝑡) is demarcated as follows [57]: 

𝐸{𝑓(𝑡)} = 𝑓(𝑠) = 𝑠 ∫ 𝑒−
𝑡

𝑠
∞

0
𝑓(𝑡)𝑑𝑡.  

The ET of some basic functions are given below [57] 

𝐸{𝑡𝑛} = 𝑛! 𝑠𝑛+2 , where 𝑛 = 0,1,2,3, … 

𝐸{𝑒𝑎𝑡} =
𝑠2

1−𝑎𝑠
 , 

𝐸{sin(𝑎𝑡)} =
𝑎𝑠3

1+𝑎2𝑠2
 , 

𝐸{cos(𝑎𝑡)} =
𝑎𝑠2

1+𝑎2𝑠2
 , 

𝐸{sinh(𝑎𝑡)} =
𝑎𝑠3

1−𝑎2𝑠2
 , 

𝐸{cosh(𝑎𝑡)} =
𝑎𝑠2

1−𝑎2𝑠2
 . 

 

 

Definition 4. The ET of a derivative in Eq. (4) is 

presented as [60] 

𝐸[𝐷𝑡
𝛼𝑓(𝑡)] =

�̃�(𝑠)

𝑠𝛼
−∑ 𝑠2−𝛼+𝑟𝑛−1

𝑟=0 𝑓(𝑟)(0), 

(𝑛 − 1 < 𝛼 ≤ 𝑛), 
(5) 

where 𝑓(𝑠) denote the ET of the function 𝑓(𝑡). 
 

3. The basic concept of the q-homotopy analysis 

Elzaki transform method (q-HAETM) 

Consider the following nonlinear fractional PDE 

involving linear (𝑁) and nonlinear (𝑅) operators to 

illustrate the basic principle of the considered method: 

𝐷𝑡
𝛼  𝒰(𝑥, 𝑡) + 𝑅 𝒰(𝑥, 𝑡) + 𝑁 𝒰(𝑥, 𝑡) =

𝑓(𝑥, 𝑡),    0 < 𝛼 ≤ 1, 
(6) 

where 𝐷𝑡
𝛼𝒰(𝑥, 𝑡)is the Liouville-Caputo fractional 

derivative of  𝒰(𝑥, 𝑡), 𝑓(𝑥, 𝑡) is the source term. 

Currently, hiring the ET on Eq. (6) leads to 
1

𝑠𝛼
𝐸[𝒰(𝑥, 𝑡)] − ∑ 𝑠2−𝛼+𝑘𝒰(𝑘)(𝑥, 0)𝑛−1

𝑘=0 +

𝐸[𝑅𝒰(𝑥, 𝑡)] + 𝐸[𝑁𝒰(𝑥, 𝑡)] = 𝐸[𝑓(𝑥, 𝑡)], 
(7) 

By reducing Eq. (7), we get 

𝐸[𝒰(𝑥, 𝑡)] − 𝑠𝛼 ∑ 𝑠2−𝛼+𝑘𝒰𝑘(𝑥, 0)𝑛−1
𝑘=0 +

𝑠𝛼{𝐸[𝑅𝒰(𝑥, 𝑡)] + 𝐸[𝑁𝒰(𝑥, 𝑡)] −

𝐸[𝑓(𝑥, 𝑡)]} = 0. 

(8) 
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The nonlinear operator N is defined under the 

homotopy analysis approach as follows 

𝑁[𝜑(𝑥, 𝑡; 𝑞)]

= 𝐸[𝜑(𝑥, 𝑡; 𝑞)]

− 𝑠𝛼∑𝑠𝛼−𝑘−1𝜑(𝑘)(𝑥, 𝑡; 𝑞)(0+)

𝑛−1

𝑘=0

 

    + 𝑠𝛼{𝐸[𝑅𝜑(𝑥, 𝑡; 𝑞)] + 𝐸[𝑁𝜑(𝑥, 𝑡; 𝑞)] −

         𝐸[𝑓(𝑥, 𝑡)]}, 

(9) 

where 𝐸 is the Elzaki transform and 𝜑(𝑥, 𝑡; 𝑞) is a real 

function of 𝑥, 𝑡, and 𝑞(embedding parameter) ∈

[0,
1

𝓃
] (𝑛 ≥ 1). 

The homotopy is defined as: 

(1 − 𝑛𝑞)𝐸[𝜑(𝑥, 𝑡; 𝑞) − 𝒰0(𝑥, 𝑡)] =

ℏ𝑞𝐻(𝑥, 𝑡)𝑁[𝜑(𝑥, 𝑡; 𝑞)], 
(10) 

where  𝒰0(𝑥, 𝑡) is an initial guess of 𝒰(𝑥, 𝑡),ℏ ≠ 0 is 

an auxiliary parameter. For 𝑞 = 0 and 𝑞 = 1/𝑛, 

respectively we have: 

𝜑(𝑥, 𝑡; 0) = 𝒰0(𝑥, 𝑡),  

𝜑 (𝑥, 𝑡;
1

𝑛
) = 𝒰(𝑥, 𝑡). 

(11) 

As a result, by changing q from 0 to 
1

𝑛
, the solution 

𝜑(𝑥, 𝑡; 𝑞) converges from 𝒰0(𝑥, 𝑡) to 𝒰(𝑥, 𝑡). The 

function 𝜑(𝑥, 𝑡; 𝑞) can then be enlarged with the 

utilization of the Taylor theorem across 𝑞. 

𝜑(𝑥, 𝑡; 𝑞) = 𝒰0(𝑥, 𝑡) + ∑ 𝒰𝑚(𝑥, 𝑡)𝑞
𝑚∞

𝑚=1 , (12) 

with 

𝒰𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥,𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0. (13) 

The series (12) joins at 𝑞 =
1

𝑛
, resulting in the 

fundamental nonlinear equation, and it's one of the 

solutions of the type, by selecting the𝑛 and ℏ (auxiliary 

parameter) the initial guess 𝒰0(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) 
properly. 

𝒰(𝑥, 𝑡) = 𝒰0(𝑥, 𝑡) + ∑ 𝒰𝑚(𝑥, 𝑡)(
1

𝓃
)
𝑚∞

𝑚=1 . (14) 

Then divide by 𝑚! by differentiating Eq. (10) 𝑚 times 

with respect to 𝑞. Finally, we derive the deformation 

equation of order 𝑚 as follows for q=0. 

𝐸[𝒰𝑚(𝑥, 𝑡) − 𝐾𝑚𝒰𝑚−1(𝑥, 𝑡)] = 

ℏ𝐻(𝑥, 𝑡)ℜ𝑚(�⃗� 𝑚−1). 

(15) 

and the vectors considered in the form as 

�⃗� 𝑚 = {𝒰0(𝑥, 𝑡), 𝒰1(𝑥, 𝑡), … ,𝒰𝑚(𝑥, 𝑡)}. (16) 

 

Eq. (15) is the recursive equation that may be 

represented by the effect of the inverse Elzaki 

transform 

𝒰𝑚(𝑥, 𝑡) = 𝐾𝑚𝒰𝑚−1(𝑥, 𝑡) +

ℏ𝐸−1[𝐻(𝑥, 𝑡)ℜ𝑚(�⃗� 𝑚−1)], 
(17) 

where 

ℜ𝑚(�⃗� 𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝜑(𝑥,𝑡;𝑞)]

𝜕𝑞𝑚−1
|𝑞=0. (18) 

and 

𝐾𝑚 =  {
0,   𝑚 ≤ 1,
𝑛,   𝑚 > 1.

 (19) 

Finally, we find the component-wise q-HAETM series 

solution using Eq. (17). 

 

4. Solution for nonlinear Sharma-Tasso-Olever 

equation of fractional order 

The investigation of the following examples witnesses 

the efficacy and resolution of the contemplated scheme. 

4.1. Example 1 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0. 
(20) 

with the starting solution 

𝑢(𝑥, 0) =
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
. (21) 

Introduce ET on Eq. (20) along with the starting 

solution in (21), which leads to 

𝐸[𝑢(𝑥, 𝑡)] − 𝑠2 {
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
} +

𝑠𝛼𝐸{3𝑎𝑢𝑥
2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥} = 0. 

(22) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] −

𝑠2 {
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
} + 𝑠𝛼𝐸 {3𝑎

𝜕𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑2(𝑥, 𝑡; 𝑞)
𝜕𝜑(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑(𝑥, 𝑡; 𝑞)
𝜕2𝜑(𝑥,𝑡;𝑞)

𝜕𝑥2
+ 𝑎

𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(23) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)] =

ℏℜ𝑚[�⃗� 𝑚−1], 
(24) 

where 
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(a) 

 

 

(b) 

 

 
(c) 

Figure 1. 3D plots of (a) q-HAETM solution (b) Exact 

solution (c) Absolute error= |𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑝𝑝.| at 𝛼 = 1, 𝑛 =

1, 𝑎 = 1, 𝑘 = 1,𝑤 = 0.5, and ℏ = −1. 

 

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] − (1 −

𝐾𝑚

𝑛
) 𝑠2 {

2𝑘(tanh(𝑘𝑥)+𝑤)

w tanh(𝑘𝑥)+1
} +

𝑠𝛼𝐸 {3𝑎 ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥
+𝑚−1

𝑖=0

3𝑎 ∑ ∑ 𝑢𝑖𝑢𝑖−𝑗
𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0

𝑚−1
𝑖=0 +

(25) 

3𝑎 ∑ 𝑢𝑖
𝑚−1
𝑖=0

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
+ 𝑎

𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

Apply inverse ET on Eq. (24), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡) +

ℏ𝐸−1{ℜ𝑚[�⃗� 𝑚−1]}, 
(26) 

From Eq. (26), we arrive at: 

𝑢0(𝑥, 𝑡) =
2𝑘(tanh(𝑘𝑥)+𝑤)

𝑤 tanh(𝑘𝑥)+1
, 

𝑢1(𝑥, 𝑡) =
8𝑎𝑘4(𝑤2−1)ℏ𝑡𝛼

𝛤 (𝛼+1)(𝑤 sinh (𝑘𝑥)+cosh (𝑘𝑥))2
, 

𝑢2(𝑥, 𝑡) =
8𝑎𝑘4(𝑤2−1)ℏ(𝑛+ℏ)𝑡𝛼

𝛤(𝛼+1)(w sinh(𝑘𝑥)+cosh(𝑘𝑥))2
  

             +
8𝑎2𝑘7(𝑤2−1)ℏ2𝑡2𝛼sech6(𝑘𝑥)(4(𝑤3+𝑤) cosh(4𝑘𝑥))

𝛤(𝛼+1)𝛤(2𝛼+1)(w tanh(𝑘𝑥)+1)6
  

              −
8𝑎2𝑘7(𝑤2−1)ℏ2𝑡2𝛼sech6(𝑘𝑥)16𝑤(𝑤2−1) cosh(2𝑘𝑥)

𝛤(𝛼+1)𝛤(2𝛼+1)(𝑤 tanh(𝑘𝑥)+1)6
 

−
2sinh (2𝑘𝑥)((𝑤4+6𝑤2+1)cosh (2𝑘𝑥)−4𝑤4+4)

𝛤 (𝛼+1)𝛤 (2𝛼+1)(𝑤 tanh (𝑘𝑥)+1)6
, 

⋮ 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (20) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (27) 

By taking 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the attained 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝓃
)
𝑚

𝑁
𝑚=1 , will end up with the 

exact solution 𝑢(𝑥, 𝑡) =
2𝑘(tanh (𝑘(𝑥−4𝑎𝑘2𝑡))+𝑤)

𝑤 tanh (𝑘(𝑥−4𝑎𝑘2𝑡))+1
 which 

is of the Sharma-Tasso-Olever equation as 𝑁 → ∞. 

 

 

Figure 2. 𝑢(𝑥, 𝑡) versus 𝑡 for contemplated, Ex. 1. when 

ℏ = −1, 𝑥 = 5, 𝑎 = 1, 𝑘 = 0.1,𝑤 = 0.5, and 𝑛 = 1 for 

distinct 𝛼. 

Table 1. Absolute errors of ADM, HPM, OHAM [63], and 

the q-HAETM for Ex. 1 at 𝜶 = 𝟏, 𝒏 = 𝟏, 𝒌 = 𝟏, 𝒂 = 𝟏, ℏ =
−𝟏,𝒘 = 𝟎. 𝟓 and 𝒕 = 𝟎. 𝟎𝟏. 

    x ADM HPM OHAM q-HAETM 

2 5.3799× 10−3 5.3799 × 10−3 4.6088 × 10−3 3.8991 × 10−3 

3 2.4002× 10−3 2.4002 × 10−3 6.4466 × 10−4 5.3356 × 10−4 

4 9.4208× 10−4 9.4208 × 10−4 8.7636 × 10−5 7.2319 × 10−5 

5 3.5464× 10−4 3.5464 × 10−4 1.1867 × 10−5 9.7893 × 10−6 

6 1.3156× 10−4 1.3156 × 10−4 1.6062 × 10−6 1.3248 × 10−6 

7 4.8547× 10−5 4.8547 × 10−5 2.1737 × 10−7 1.7930 × 10−7 

8 1.7879× 10−5 1.7879 × 10−5 2.9419 × 10−8 2.4266 × 10−8 

9 6.5802× 10−6 6.5802 × 10−6 3.9814× 10−9 3.2840 × 10−9 

10 2.4211× 10−6 2.4211 × 10−6 5.3883 × 10−10 4.4445 × 10−10 
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             (i) 

 

 

           (ii) 

Figure 3. ℏ-curve for the acquired solution 𝑦(𝑥, 𝑡) versus ℏ 

for considered Ex. 1 when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when 

𝑎 = 1, 𝑘 = 0.1,𝑤 = 0.5, 𝑡 = 0.001, 𝑥 = 5 for distinct 𝛼. 

 

Table 2. Absolute errors of ADM, HPM, OHAM [63], and 

the q-HAETM for Ex. 1 at 𝜶 = 𝟏, 𝒏 = 𝟏, 𝒌 = 𝟏, 𝒂 = 𝟏, ℏ =
−𝟏,𝒘 = 𝟎. 𝟓 and 𝒕 = 𝟎. 𝟎𝟎𝟏. 

    x ADM HPM OHAM q-HAETM 

2 7.2096 × 10−4 7.2096 × 10−4 4.6795 × 10−4 3.8602 × 10−4 

3 5.3361 × 10−4 5.3361 × 10−4 6.5443 × 10−5 5.2797 × 10−5 

4 2.3942 × 10−4 2.3942 × 10−4 8.8962 × 10−6 7.1556 × 10−6 

5 9.4126 × 10−5 9.4126 × 10−5 1.2046 × 10−6 9.6860 × 10−7 

6 3.5453 × 10−5 3.5453 × 10−5 1.6305 × 10−7 1.3109 × 10−7 

7 1.3154 × 10−5 1.3154 × 10−5 2.2066 × 10−8 1.7741 × 10−8 

8 4.8545 × 10−6 4.8545 × 10−6 2.9864 × 10−9 2.4010 × 10−9 

9 1.7879 × 10−6 1.7879 × 10−6 4.0416 × 10−10 3.2494 × 10−10 

10 6.5802 × 10−7 6.5802 × 10−7 5.4698 × 10−11 4.3975 × 10−11 

 

4.2. Example 2 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 3𝑎𝑢𝑥

2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥 = 0, 
(28) 

with initial conditions 

𝑢(𝑥, 0) = −√2√B0 tan (
√B0𝑥

√2
). (29) 

Introduce ET on Eq. (28) along with the starting 

solution in (29), which leads to 

𝐸[𝑢(𝑥, 𝑡)] + 𝑠2 {√2√𝐵0 tan (
√B0𝑥

√2
)} +

𝑠𝛼𝐸{3𝑎𝑢𝑥
2 + 3𝑎𝑢2𝑢𝑥 + 3𝑎𝑢𝑢𝑥𝑥 +

𝑎𝑢𝑥𝑥𝑥} = 0}. 

(30) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] +

𝑠2 {√2√B0 tan (
√B0𝑥

√2
)} +

𝑠𝛼𝐸 {3𝑎
𝜕𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥
+ 3𝑎𝜑2(𝑥, 𝑡; 𝑞)

𝜕𝜑(𝑥,𝑡;𝑞)

𝜕𝑥
+

3𝑎𝜑(𝑥, 𝑡; 𝑞)
𝜕2𝜑(𝑥,𝑡;𝑞)

𝜕𝑥2
+ 𝑎

𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(31) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)]

= ℏℜ𝑚[�⃗� 𝑚−1], 
(32) 

where 

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] + (1 −

                         
𝐾𝑚

𝑛
) 𝑠2 {√2√B0 tan (

√B0𝑥

√2
)} +

                          𝑠𝛼𝐸 {3𝑎 ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥
+𝑚−1

𝑖=0

                           3𝑎 ∑ ∑ 𝑢𝑖𝑢𝑖−𝑗
𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0

𝑚−1
𝑖=0 +

                           3𝑎 ∑ 𝑢𝑖
𝑚−1
𝑖=0

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
+

                           𝑎
𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

(33) 

Apply inverse ET on Eq. (32), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢(𝑥, 𝑡) + ℏ𝐸
−1{ℜ𝑚[�⃗� 𝑚−1]}. (34) 

From Eq. (34), we arrive at: 

𝑢0(𝑥, 𝑡) = −√2√B0 tan (
√B0𝑥

√2
), 

𝑢1(𝑥, 𝑡) = −
2𝑎B0

2ℏ𝑡𝛼sec2(
√B0𝑥

√2
)

𝛤 (𝛼+1)
, 

𝑢2(𝑥, 𝑡) = −
2𝑎B0

2ℏ(𝑛+ℏ)𝑡𝛼sec2(
√B0𝑥

√2
)

𝛤(𝛼+1)
  

−
𝑎2B0

7 2⁄ ℏ2𝑡2𝛼sec6(
√B0𝑥

√2
)(√2𝛤(𝛼+1)(8 sin(√2√B0𝑥)+sin(2√2𝑥)))

2𝛤(2𝛼+1)
  

+
𝑎2B0

7 2⁄ ℏ2𝑡2𝛼sec6(
√B0𝑥

√2
)√2𝛤(𝛼+1)24𝑎B0

3 2⁄ ℏ𝑡𝛼

2 𝛤(2𝛼+1)
, 

⋮ 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (28) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (35) 

If we set 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the secure 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑁
𝑚=1 , converges to exact 

solution 𝑢(𝑥, 𝑡) = −√2B0 tan (
1

2
√2𝐵0 (𝑥 −

𝜆𝑡𝛼

𝛤(𝛼+1)
)) 

of the integer-order Sharma-Tasso-Olever equation as 

𝑁 → ∞. 

 



52                                          N. S. Malagi et al. / IJOCTA, Vol.13, No.1, pp.46-58 (2023) 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Surfaces of (a) q-HAETM solution (b) Exact 

solution (c) Absolute error= |𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑝𝑝.| at ℏ =

−1,𝐵0 = 1, 𝜆 = 2, 𝑎 = 1, 𝑛 = 1, and 𝛼 = 1. 

 

 
Figure 5. 𝑢(𝑥, 𝑡) versus 𝑡 for Ex. 2 at ℏ = −1, 𝑥 = 5, B0 =

1, 𝜆 = 2, 𝑎 = 1, and 𝑛 = 1 for distinct 𝛼. 

 

 
           (i) 

 

 
           (ii) 

Figure 6. A plot of approximate solution 𝑢(𝑥, 𝑡) with 

respect to ℏ for Ex. 2 when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when 

𝑥 = 5, B0 = 1, 𝜆 = 2, 𝑎 = 1, and 𝑡 = 0.001 for distinct 𝛼. 

 

Table 3. Numerical simulations for Ex. 2 at 𝑛 = 1, 𝛼 =
1, ℏ = −1, B0 = 1, 𝑎 = 1, 𝜆 = 2 for various values of 𝑥 and 

at 𝑡 = 0.001, 𝑡 = 0.01. 
𝑡 𝑥 𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 

 

0.001 

 

0.1 3.0758 × 10−7 1.5406 × 10−5 7.9499 × 10−4 

0.2 6.3401 × 10−7 3.1368 × 10−5 1.5953 × 10−3 

0.3 1.0070 × 10−6 4.9479 × 10−5 2.4768 × 10−3 

0.4 1.4581 × 10−6 7.1155 × 10−5 3.4833 × 10−3 

0.5 2.0307 × 10−6 9.8300 × 10−5 4.6578 × 10−3 

0.01 

0.1 3.4407 × 10−5 6.1324 × 10−4 1.0980 × 10−2 

0.2 6.8106 × 10−5 1.1773 × 10−3 2.1147 × 10−2 

0.3 1.0657 × 10−4 1.8089 × 10−3 3.1485 × 10−2 

0.4 1.5292 × 10−4 2.5468 × 10−3 4.1785 × 10−2 

0.5 2.1137 × 10−4 3.4366 × 10−3 5.1021 × 10−2 

 

4.3. Example 3 

The Sharma-Tasso-Olever equation 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑎𝑢3𝑥 +

3

2
𝑎𝑢2𝑥𝑥 + 𝑎𝑢𝑥𝑥𝑥 = 0, (36) 

with initial conditions 

𝑢(𝑥, 0) = √
1

𝑎
tanh (√

1

𝑎
𝑥). (37) 

Introduce ET on Eq. (36) along with the starting 

solution in (37), which leads to 
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𝐸[𝑢(𝑥, 𝑡)] − 𝑠2 {√
1

𝑎
tanh (√

1

𝑎
𝑥)} +

                     𝑠𝛼𝐸 {𝑎𝑢3𝑥 +
3

2
𝑎𝑢2𝑥𝑥 +

                     𝑎𝑢𝑥𝑥𝑥} = 0}. 

(38) 

The nonlinear operator 𝑁 is defined as 

𝑁[𝜑(𝑥, 𝑡; 𝑞)] = 𝐸[𝜑(𝑥, 𝑡; 𝑞)] −

           𝑠2 {√
1

𝑎
tanh (√

1

𝑎
𝑥)} +

𝑠𝛼𝐸 {𝑎
𝜕𝜑3(𝑥,𝑡;𝑞)

𝜕𝑥
+             

3

2
𝑎
𝜕2𝜑2(𝑥,𝑡;𝑞)

𝜕𝑥2
+

𝑎
𝜕3𝜑(𝑥,𝑡;𝑞)

𝜕𝑥3
}. 

(39) 

The mth order deformation equation is 

𝐸[𝑢𝑚(𝑥, 𝑡) − 𝐾𝑚𝑢𝑚−1(𝑥, 𝑡)] =

ℏℜ𝑚[�⃗� 𝑚−1]. 
(40) 

where  

ℜ𝑚[�⃗� 𝑚−1] = 𝐸[𝑢(𝑥, 𝑡)] + (1 −

                        
𝐾𝑚

𝑛
) 𝑠2 {√

1

𝑎
tanh (√

1

𝑎
𝑥)} +

                𝑠𝛼𝐸 {𝑎 ∑ ∑
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖−𝑗

𝜕𝑥

𝜕𝑢𝑚−𝑖−1

𝜕𝑥

𝑖
𝑗=0 +𝑚−1

𝑖=0

                         
3

2
𝑎 ∑

𝜕2𝑢𝑖

𝜕𝑥2

𝜕2𝑢𝑚−𝑖−1

𝜕𝑥2
𝑚−1
𝑖=0 +

                         𝑎
𝜕3𝑢𝑚−1

𝜕𝑥3
}. 

(41) 

Apply inverse ET on Eq. (40), we obtain 

𝑢𝑚(𝑥, 𝑡) = 𝐾𝑚𝑢(𝑥, 𝑡) + ℏ𝐸
−1{ℜ𝑚[�⃗� 𝑚−1]}. (42) 

From Eq. (42), we arrive at: 

𝑢0(𝑥, 𝑡) = √
1

𝑎
tanh (√

1

𝑎
𝑥), 

𝑢2(𝑥, 𝑡) =

ℏ𝑡𝛼(𝑎 cosh(4√
1

𝑎
𝑥)−2(𝑎−3) cosh(2√

1

𝑎
𝑥)−3𝑎−4)sech6(√

1

𝑎
𝑥)

2𝑎2𝛤 (𝛼+1)
, 

𝑢1(𝑥, 𝑡) =
ℏ(𝑛+ℏ)𝑡𝛼(𝑎cosh (4√

1

𝑎
𝑥)−2(𝑎−3)cosh (2√

1

𝑎
𝑥)−3𝑎−4)sech6(√

1

𝑎
𝑥)

2𝑎2𝛤 (𝛼+1)
−

1

4𝛤(𝛼+1)𝛤(2𝛼+1)
(𝛤(𝛼 + 1) cosh5 (√

1

𝑎
𝑥)(−52𝑎2 cosh(6√

1

𝑎
𝑥) +

𝑎2 cosh(8√
1

𝑎
𝑥) + 4(149𝑎2 + 149𝑎 − 588) cosh(2√

1

𝑎
𝑥) +

4(7𝑎2 − 223𝑎 + 72) cosh(4√
1

𝑎
𝑥) + 515𝑎2 +

60𝑎 cosh(6√
1

𝑎
𝑥) + 1548𝑎 +

2160))((
1

𝑎
)
7 2⁄

ℏ2𝑡2𝛼sech15 (√
1

𝑎
𝑥)) −

4(
1

𝑎
)
5
ℏ3𝑡3𝛼 sinh(√

1

𝑎
𝑥)tanh(√

1

𝑎
𝑥)sech15(√

1

𝑎
𝑥)

4𝛤(𝛼+1)2 𝛤(3𝛼+1)
 

((12−8𝑎) cosh(2√
1

𝑎
𝑥)+acosh(4√

1

𝑎
𝑥)−9(𝑎+2))

2

4𝛤(𝛼+1)2 𝛤(3𝛼+1)
, 

⋮ 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 7. (a) 3D plot for q-HAETM solution (b) surface of 

exact solution (c) approximated solution surface at ℏ =
−1.858, 𝑎 = 4, 𝑛 = 1 and 𝛼 = 1. 

Finally, after getting further iterative terms, the 

essential series solution of Eq. (36) is presented by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

∞
𝑚=1 . (43) 
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If we set 𝑛 = 1, 𝛼 = 1, and ℏ = −1 then the secure 

solution ∑ 𝑢𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚

𝑁
𝑚=1 , converges to exact 

solution 𝑢(𝑥, 𝑡) = √
1

𝑎
tanh (√

1

𝑎
(𝑥 − 𝑡)) of the 

integer-order Sharma-Tasso-Olever equation as 𝑁 →
∞. 

 

 

Figure 8. 𝑢(𝑥, 𝑡) versus 𝑡 for the contemplated Ex. 3 at ℏ =
−1.858, 𝑥 = 5, 𝑎 = 4, and 𝑛 = 1 for distinct of 𝛼. 

 

 

               (i) 

 

 

           (ii) 

Figure. 9. ℏ-curve for acquired solution 𝑢(𝑥, 𝑡) for Ex. 3 

when (i) 𝑛 = 1 and (ii) 𝑛 = 2 when  𝑥 = 5, 𝑎 = 4, and 𝑡 =
0.001 for distinct 𝛼. 

 

Table 4. Numerical simulations for Ex. 3 at 𝑛 = 1, 𝛼 =
1, ℏ = −1, B0 = 1, 𝑎 = 1, 𝜆 = 2 for various values of 𝑥 and 

at 𝑡 = 0.001, 𝑡 = 0.002. 

𝑡 𝑥 𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 

 

0.001 

 

5 2.8246 × 10−7 4.1132 × 10−5 4.9465 × 10−4 

4 4.2905 × 10−7 9.2494 × 10−5 8.1866 × 10−4 

3 8.7092 × 10−6 1.3618 × 10−4 7.2756 × 10−4 

2 5.7987 × 10−5 3.6881 × 10−5 8.8362 × 10−3 

1 1.9745 × 10−4 4.3659 × 10−4 2.9978 × 10−2 

0.002 

5 8.1686 × 10−7 7.4104 × 10−5 8.4707 × 10−4 

4 6.5000 × 10−7 1.5605 × 10−4 1.2792 × 10−3 

3 1.9479 × 10−5 1.5950 × 10−4 2.2392 × 10−3 

2 1.2665 × 10−4 3.8463 × 10−4 1.8766 × 10−2 

1 3.6421 × 10−4 1.5111 × 10−3 6.0264 × 10−2 

 

5. Numerical results and discussion 

The numerical research for non-integer order STO 

equations using the q-HAETM is implemented in the 

current part. In terms of absolute error, Figure 1 depicts 

the resemblance of the solution obtained using the 

discussed method to the precise solution for Eq. (20). 

We can see that the obtained solution and the exact 

solution are the best matches with each other. The 

recommended technique's conclusion for Eq. (20) is 

plotted against time in figure 2. The solution increases 

with an increase in time for considering various 

fractional orders. The performance of 𝑛 with ℏ in an 

accomplished outcome of the provided method is 

shown in figure 3. The optimal region for the 

convergence of the obtained series solution in terms of 

the auxiliary parameter ℏ can be depicted in figure 3.  

Table 1 and Table 2 cite the accurateness of the 

considered method in comparison with various 

methods namely, ADM, HPM, and OHAM through 

absolute errors at 𝑡 = 0.001 and 𝑡 = 0.01 respectively. 

The link between the results obtained by the proposed 

method in terms of absolute error and the precise 

answer for Ex. 2 is depicted in figure 4. We can 

compare both obtained solution and the exact solution 

to check the accuracy of the projected algorithm. The 

deed of the safe results of Ex. 2 with the change in time 

𝑡 is depicted in figure 5. As we can see, the solution 

increases with an increase in time 𝑡. The effectiveness 

of 𝑛 in the produced solution by the proposed algorithm 

is shown in figure 6. Also, the solution is affected by 

various fractional orders with the time 𝑡. However, we 

attained a better accuracy rate with the consideration of 

fractional order differential operators too. This shows 

that the presented scheme is highly suitable to deal with 

nonlinear fractional differential equations. The 

approximated error results acquired for various values 

of 𝛼 with the help of the considered scheme are cited in 

Table 3. Figure 7 depicts the relationship between the 

results acquired by the q-HAETM concerning absolute 

error and the exact solution for Ex. 3. Figure 8 is 

decorated with the variation of attained solution with 

time 𝑡. According to the considered initial 

approximation, the solution gradually decreases with 

an increase in time 𝑡. The performance of the 

embedding parameter (ℏ) for distinct values of 𝑛 in the 
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secured solution by the proposed strategy is shown in 

figure 9. Table 4 cites the accuracy of the obtained 

solutions in terms of absolute error. 

 

6. Conclusion 

In this paper, we have demonstrated how to solve the 

nonlinear time-fractional STO equation using the 

effective q-HAM with the Elzaki transform. We have 

examined three examples with distinct starting 

solutions to prove the significance as well as the 

effectiveness of the considered scheme. Moreover, we 

can compare the obtained results with the exact 

solutions to witness the same. The rate of convergence 

of the obtained series solution to the exact solution is 

accelerated with the help of optimal values of 

convergence control parameter ℏ. Presented numerical 

simulations guarantee results with higher accuracy.   

The numerical simulations are executed by using the 

considered technique in comparison with the other 

schemes like ADM, HPM, and OHAM in terms of 

approximated errors. The secure outputs indicate that a 

considered methodology was used to generate a 

standardized analytical solution. In this study, the 

detailed analysis of the fractional behaviour of the 

nonlinear STO equation and its solution is achieved by 

considering different initial approximations. The 

process of finding the solution for the considered 

problem using the Elzaki transform was effortless. The 

proposed approach is effective in delivering a simple 

solution, a critical convergence zone, and a non-local 

influence. Finally, we claim that our proposed 

technique is incredibly dependable and can be applied 

to large study classifications relating to fractional-order 

nonlinear scientific methods, which aid us in better 

understanding the nonlinear compound phenomena in 

linked domains of innovation and science. 
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1. Introduction

The scope of this article revolves around the un-
derneath system:

Dη
τ z(τ) = Az(τ) +Bu(τ) + g(τ, z(τ), u(τ)), (1)

τ ∈ (0, a], 0 < η ≤ 1

I1−η
τ z(τ)|τ=0 = z0 ∈ Z,

where Dη
τ indicates the Riemann-Liouville ηth or-

der derivative. A : D(A) ⊆ Z → Z generates
a C0 - semigroup T (τ)(τ ≥ 0) on Z. z(τ) and
u(τ) takes value in Banach spaces Z and U re-
spectively. The linear map B is defined from
Lq([0, a];U) to Lq([0, a];Z), q > 1

η . g is a function

from [0, a]× Z × U → Z.
The study of fractional calculus has long been ad-
mired from past three decades. The first work,
exclusively committed to the study of fractional
calculus, is the book by Oldham and Spanier [1],
1974. Fractional derivatives serves as an exem-
plary mechanism for the interpretation of hered-
itable properties and memory of profuse scientific,
physical and engineering phenomena. On account
of finer accuracy and precision over integer-order

models, fractional derivatives accelerates its ap-
plications in diffusion process, biological math-
ematical models, aerodynamics, viscoelasticity,
electrical engineering, signal and image process-
ing, control theory, heat equation, electricity me-
chanics, electrodynamics of complex medium, etc.
(see [2–10]).
In domain of fractional calculus, Riemann-
Liouville and Caputo type derivatives have main-
tained to be the centre of attention for numer-
ous analysts. Riemann-Liouville derivative shows
supremacy over Caputo in the sense that it allows
the function involved to bear discontinuity at ori-
gin. Also, in turn, doesn’t allow the use of tradi-
tional initial conditions, the initial conditions in-
volved in Riemann-Liouville case are integral ini-
tial conditions. Heymans and Podlubny [11] were
the ones accredited for the manifestation of phys-
ical significance to the initial conditions used in
regard of Riemann-Liouville fractional order vis-
coelastic systems.
Controllability is the qualitative property of steer-
ing any dynamical system from initial arbitrary
position to any desired final position utilizing
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appropriate control functions within stipulated
time. Control theory, being a multidisciplinary
branch stemmed from mathematics to engineer-
ing, has wide-ranging implementation in robot-
ics, aeronautical and automobile engineering, im-
age processing, biomathematical modelling and
appreciably more. Control theory, in spaces of in-
finite and finite dimensions, have thoroughly been
discussed in [12] and [13] respectively. The con-
ception of controllability was first initiated and
established by Kalman [14] in 1963, and since
then it is the matter of prime importance for
the researchers worldwide. In due course, pro-
fuse types of controllability were examined by the
researchers in the past. Approximate controlla-
bility of semilinear fractional systems involving
Caputo derivative was established by Sakthivel
in [9] by supposing C0− semigroup T (t) to be
compact and the nonlinear function involved to be
uniformly bounded and continuous, Devies in [15]
established exact and null controllability for lin-
ear systems, Mahmudov in [16] designed partial
approximate controllability for Caputo type frca-
tional order systems, Klamka in [17] mannered
constrained controllability. Wen & Zhou [18] dis-
cussed complete and approximate controllability
of semilinear system for Caputo derivative with
control in the nonlinear part. The results of ex-
istence and controllability for various differential
systems of integral and fractional order involving
Riemann-Liouville and Caputo derivatives have
closely been demonstrated in many artefacts (re-
fer [3, 6, 9, 17,19–31] and references therein). The
article [32] discusses about the numerical treat-
ment of fractional heat equation. S. N. Bora [33]
recently established the approximate controllabil-
ity for semilinear Hilfer fractional evolution equa-
tions by relaxing the compactness of the semi-
group generated. Vijayakumar, Nisar & Shukla
[34–40] established important results of control-
lability and approximate controllability of frac-
tional evolution systems involving other new frac-
tional derivatives like Atangana-Baleanu deriva-
tive and Hilfer derivative.
This artefact explores the study for Riemann-
Liouville differential systems involving control
function in the nonlinear part and is drafted as:
Section 2 gives the briefing for basic results and
definitions. Results for the existence of solutions
are apparent in Section 3. Section 4 accords
with the sufficient assumptions and controllabil-
ity conditions. Section 5 presents an application
validating the proposed methodology. Section 6
concludes the article by summarizing the present
findings along with discussing the futuristic scope.

2. Preliminaries

This segment revisits several fundamental con-
cepts and definitions which are beneficial for the
smooth study of the paper. The considered Ba-
nach space is

C1−η([0, a];Z) = {z : τ1−ηz(τ) ∈ C([0, a];Z)}
equipped with the norm

∥z∥C1−η = sup
τ∈[0,a]

{τ1−η∥z(τ)∥Z},

where C([0, a];Z) indicates the set of all contin-
uous functions defined from [0, a] to Z. For C0 -
semigroup T (τ), let M = sup

τ∈[0,a)
∥T (τ)∥ <∞.

Definition 1. [4] The Riemann-Liouville ηth–
order fractional integral is written in terms of the
following integral

Iητ z(τ) =
1

Γ (η)

∫ τ

0
(τ − r)η−1z(r)dr, η > 0,

where Γ denotes the gamma function.

Definition 2. [4] The fractional ηth–order
Riemann-Liouville derivative is defined by the fol-
lowing expression

Dη
τ z(τ) =

1

Γ (n− η)

(
d

dτ

)n ∫ τ

0
(τ−r)n−η−1z(r)dr,

where 0 ≤ n− 1 < η < n.

Definition 3. [4] A function of the complex vari-
able w defined by

Eη(w) =
∞∑
i=0

wi

Γ(ηi+ 1)

is known as the Mittag-Leffler function in one pa-
rameter.

Definition 4. [41] A mild solution of the system
(1) is a function z ∈ C1−η([0, a];Z) satisfying the
underneath integral equation:

z(τ) = τη−1Tη(τ)z0

+

∫ τ

0
(τ − r)η−1Tη(τ − r)Bu(r)dr

+

∫ τ

0
(τ − r)η−1Tη(τ − r)g(r, z(r), u(r))dr.

(2)

where

Tη(τ) = η

∫ ∞

0
Θξη(Θ)T (τηΘ)dΘ,

ξη(Θ) =
1

η
Θ

−1−
1

ηϖη(Θ
− 1

η ),

ϖη(Θ) =
1

π

∞∑
n=1

Θ−nη−1(−1)n−1Γ(1 + nη)

n!
sin(nπη)
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with Θ ∈ (0,∞) and domain of the probability
density function ξη(Θ) is (0,∞), i.e.,
ξη(Θ) ≥ 0 and

∫∞
0 ξη(Θ)dΘ = 1.

Definition 5. Let z(τ, u) be a mild solution of
the system(1) at time τ corresponding to a control
u(.) ∈ U . The set Ka(g) = {z(a, u) ∈ Z;u(.) ∈
U} is known as the reachable set for final time
a. If Ka(g) becomes dense in Z, the system (1) is
approximately controllable on [0,a].

Lemma 1. [31] The operator Tη(τ) possesses the
underneath properties:

(i) For every fixed τ ≥ 0, operator Tη(τ) is
linear and bounded, which means, for any
z ∈ Z,

∥Tη(τ)z∥ ≤ M

Γ(η)
∥z∥.

(ii) Operator Tη(τ)(τ ≥ 0) is strongly contin-
uous.

3. Existence of mild solution

This segment establishes the existence and
uniqueness of mild solution for the system (1) uti-
lizing the Banach fixed point approach along with
the generalised Gronwall’s inequality. The results
are based on the below mentioned hypotheses:

(H1) A function ψ(·) exists in Lq([0, a];R+),
q > 1

η , and a constant b > 0, such that

∥g(τ, z, u)∥ ≤ ψ(τ)+bτ1−η∥z∥Z+∥u∥U for
a.e. τ ∈ [0, a] and all z ∈ Z.

(H2) A constant k > 0 exists in a way satisfy-
ing
∥g(τ, z, u)−g(τ, y, v)∥ ≤ k

[
∥z−y∥Z+∥u−

v∥U
]

∀ z, y ∈ Z and ∀ u, v ∈ U.

Theorem 1. The nonlinear system (1) admits
a unique mild solution in C1−η([0, a];Z) for each
control u(.) ∈ Lq([0, a];U), provided the hypothe-
ses H(1)-H(2) hold true.

Proof. Consider the operator G as

(Gz)(τ) = τη−1Tη(τ)z0

+

∫ τ

0
(τ − r)η−1Tη(t− r)

[
Bu(r)

+f(r, z(r), u(r))
]
dr. (3)

It is unchallenging to confirm that G maps
C1−η([0, a];Z) into itself under the hypotheses
H(1)−H(2).

It is now required to prove Gm is a contraction
operator on C1−η([0, a];Z) for some m ∈ N.
For any z, y ∈ C1−η([0, a];Z) and τ ∈ [0, a], it is

τ1−η∥(Gz)(τ)− (Gy)(τ)∥C1−η

≤ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)

[
g(r, z(r), u(r))

− g(r, y(r), u(r))
]
∥dr

≤ τ1−ηM

Γ(η)

∫ τ

0
(τ − r)η−1∥g(r, z(r), u(r))

− g(r, y(r), u(r))∥Zdr

≤ τ1−ηMk
Γ(η)

∫ τ

0
(τ − r)η−1rη−1r1−η∥z(r)− y(r)∥Zdr

≤ τ1−ηMk
Γ(η)

∥z − y∥C1−η

∫ τ

0
rη−1(τ − r)η−1dr

≤ Γ(η)Mkτη

Γ(2η)
∥z − y∥C1−η .

(4)

Further, by applying induction on m and using
(3), (4), it leads to

τ1−η∥(Gmz)(τ)− (Gmy)(τ)∥

≤ Γ(η)(kMaη)m

Γ[(m+ 1)η]
∥z − y∥C1−η

Therefore, Gm is shown as a contraction operator
on C1−η([0, a];Z) with the inequality obtained as

∥Gmz−Gmy∥C1−η

≤ Γ(η)(kMaη)m

Γ(m+ 1)η
∥z − y∥C1−η (5)

where (kMaη)m

Γ(m+1)η becomes the mth term of the two

parameter Mittag-Leffler series Eη,η(Mkaη) =∑∞
i=0

(Mkaη)i

Γ(iη + η)
. The series converges uniformly

on [0, a], thus for sufficiently large m,

Γ(η)(kMaη)m

Γ(m+ 1)η
< 1.

It is evident through generalisation of Banach
fixed point theorem and (5) that G possess a
unique fixed point z(·) on C1−η([0, a];Z) which
serves as the requisite solution of system (1). □

4. Controllability results

Defining the underneath operators:
The Nemytskil operator

Ωg : C1−η([0, a];Z) → Lq([0, a];Z)

is defined as
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Ωg(z)(τ) = g(τ, z(τ), u(τ)),

z(·) ∈ C1−η([0, a];Z).

and the bounded linear operator

F : Lq([0, a];Z) → Z

as

Ff =

∫ a

0
(a− r)η−1Tη(a− r)f(r)dr,

f(·) ∈ Lq([0, a];Z).

The hypotheses mentioned below are made to
prove the approximate controllability for the con-
sidered system (1):

(H3) A constant k′
> 0 exists in a way satisfy-

ing
∥g(τ, z, u)− g(τ, y, v)∥ ≤ k′[

τ1−η∥z − y∥Z
+∥u− v∥U

]
∀ z, y ∈ Z, u, v ∈ U and

τ ∈ [0, a].

(H4) The operator B is bounded below, i.e.,
a constant ℓ > 0 exists satisfying
∥u∥ ≤ ℓ∥Bu∥ ∀u ∈ U .

(H5) For any ϵ > 0 and ϑ(·) ∈ Lq([0, a], Z),
∃ a u(·) ∈ Lq([0, a];U) satisfying
∥Fϑ− FBu∥Z < ϵ,
∥Bu(·)∥Lq([0,a];Z]) < ℵ∥ϑ(·)∥Lq([0,a];Z),
where ℵ is a constant independent of
ϑ(·) ∈ Lq([0, a];Z),

Mℵk′

Γ(η)

(aq − a

qη − 1

) q−1
q

× (1 + k
′
ℓ)Eη(Mk

′
a) + ℵk′

ℓ < 1.

(6)

Lemma 2. Assuming the hypotheses (H1), (H3)
and (H4) hold true for the considered function
g, then every mild solution of the control sys-
tem (1) meets the inequalities stated below for any
u, v ∈ Lq([0, a];U):

∥z(·; 0, z0, u)∥C1−η ≤ kEη(Mab),

∥z(·)− y(·)∥C1−η ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq ,

where

k =
M

Γ(η)

[
∥z0∥+

( q − 1

qη − 1

) q−1
q

(∥Bu∥Lq

+ ∥ψ∥Lq + ∥u∥Lq)a
1− 1

q

]
,

ϱ =
M

Γ(η)

( q − 1

qη − 1

) q−1
q

(1 + k
′
ℓ)a

1− 1
q .

Proof. Let z be a mild solution of system (1)
in accord with control u(·) ∈ Lq([0, a];U) on
C1−η([0, a];Z), then

z(τ) =τη−1Tη(τ)z0+∫ τ

0
(τ − r)η−1Tη(τ − r)Bu(r)dr

+

∫ τ

0
(τ − r)η−1Tη(τ − r)g(r, z(r), u(r))dr

For τ ∈ [0, a],

τ1−η∥z(τ)∥ ≤ ∥Tη(τ)z0∥

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)Bu(r)∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)g(r, z(r), u(r))∥dr

≤ M

Γ(η)

[
∥z0∥+ τ1−η

∫ τ

0
(τ − r)η−1∥Bu(r)∥Zdr

+ τ1−η

∫ τ

0
(τ − r)η−1[ψ(r) + br1−η∥z(r)∥Z

+ ∥u(r)∥U ]dr

]

≤ M

Γ(η)

[
∥z0∥+

(aq − a

qη − 1

) q−1
q
(∥Bu∥Lq + ∥ψ∥Lq

+ ∥u∥Lq) + ba1−η

∫ τ

0
(τ − r)η−1r1−η∥z(r)∥Zdr

]
.

(7)

Thus,

τ1−η∥z(τ)∥ ≤ k+
Mba1−η

Γ(η)

×
∫ τ

0
(τ − r)η−1[r1−η∥z(r)∥]dr.

Using generalised Gronwall’s inequality ( [42]), it
concludes to

τ1−η∥z(τ)∥ ≤ kEη(Mab).

Therefore,

∥z∥C1−η = sup
τ∈[0,a]

τ1−η∥z(τ)∥Z ≤ kEη(Mab)

Now,
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τ1−η∥z(τ)− y(τ)∥

≤ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)[Bu(r)−Bv(r)]∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)[g(r, z(r), u(r))

− g(r, y(r), v(r))]∥dr

≤ M

Γ(η)

[
τ1−η

∫ τ

0
(τ − r)η−1∥Bu(r)−Bv(r)∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1

(
k

′
[r1−η∥z(r)− y(r)∥Z

+ ∥u(r)− v(r)∥U ]
)
dr

]

≤ M

Γ(η)

[(
q − 1

qη − 1

) q−1
q

(1 + k
′
ℓ)∥Bu(r)−Bv(r)∥a1−

1
q

+ k
′
a1−η

∫ τ

0
(τ − r)η−1r1−η∥z(r)− y(r)∥dr

]
.

(8)

Thus,

t1−η∥z(τ)− y(τ)∥Z
≤ ϱ∥Bu(r)−Bv(r)∥Z

+
Mk′

a1−η

Γ(η)

∫ τ

0
(τ − r)η−1r1−η∥z(r)− y(r)∥dr.

Again, using generalised Gronwall’s identity [42],
we have

τ1−η∥z(τ)− y(τ)∥Z ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq

Hence,

∥z − y∥C1−η ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq

This accomplishes the proof. □

Theorem 2. The nonlinear control system (1)
becomes approximately controllable, provided the
hypotheses (H1) and (H3) − (H5) hold true and
A generates the differentiable semigroup T (t).

Proof. It is well known that domain of A, D(A)
is dense in Z. Thus, to manifest approximate
controllability of nonlinear control system (1), it

is adequate to claim that D(A) ⊂ Ka(g), i.e.,
for any given ϵ > 0 and λ ∈ D(A), a control
uϵ ∈ Lq([0, a];U) can be found satisfying

∥λ∗ − F(Buϵ)− F(Ωg(zϵ))∥Z ≤ ϵ,

where zϵ(t) is a mild solution of system(1) in ac-
cord with the control uϵ(t) and

λ− aη−1Tη(a)z0 = λ∗ ∈ D(A)

Let ϵ > 0 be given and u1 ∈ Lq([0, a];U). Then
by hypothesis (H5), there exists u2 ∈ Lq([0, a];U)
satisfying

∥λ∗ − F(Ωg(z1))− F(Bu2)∥Z ≤ ϵ

22

where z1(τ) = z(τ, u1). Denote z2(τ) = z(τ, u2),
again by hypothesis (H5), ∃ ω2 ∈ Lq([0, a];U) sat-
isfying

∥F[Ωg(z2)− Ωg(z1)]− F(Bω2)∥Z ≤ ϵ

23

and

∥Bω2∥Lp

≤ ℵ∥Ωg(z2)− Ωg(z1)∥Lp

≤ ℵk′[
τ1−η∥z2 − z1∥+ ∥u2 − u1∥

]
≤ ℵk′

[
ϱEη(Mk

′
a)∥Bu2 −Bu1∥+ ℓ∥Bu2 −Bu1∥

]
≤

[
Mℵk′

Γ(η)

(
q − 1

qη − 1

)1− 1
q

(1 + k
′
ℓ)a

1− 1
qEη(Mk

′
a)

+ ℵk′
ℓ

]
∥Bu2 −Bu1∥Lq .

Now, define

u3(τ) = u2(τ)− ω2(τ), u3(τ) ∈ U,

then

∥λ∗ − FΩg(z2)− FBu3∥Z
≤ ∥λ∗ − FΩg(z1)− FBu2∥Z
+ ∥FBω2 − [FΩg(z2)− FΩg(z1)]∥Z

≤
(

1

22
+

1

23

)
ϵ

By applying inductions, a sequence {un} in
Lq([0, a];U) is obtained such that

∥λ∗ − FΩg(zn)− FBun+1∥Z

<

(
1

22
+

1

23
+ .........+

1

2n+1

)
ϵ,

where zn(τ) = z(τ, un(τ)) and

∥Bun+1 −Bun∥Lq

<

[
Mℵk′

Γ(η)

(
aq − a

qη − 1

)1− 1
q

(1 + k
′
ℓ)Eη(Mk

′
a)

+ ℵk′
ℓ

]
∥Bun −Bun−1∥Lq

By (6), it is evident that the sequence {Bun}n∈N
is a cauchy sequence in Lq([0, a];Z). Thus, for
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any ϵ > 0, a positive integer n0 can be found sat-
isfying

∥FBun0+1 − FBun0∥Z <
ϵ

2
.

Now,

∥λ∗ − FΩg(zn0)− FBun0∥Z
≤ ∥λ∗ − FΩg(zn0)− FBun0+1∥Z
+ ∥FBun0+1 − FBun0∥Z

≤

(
1

22
+

1

23
+ .......+

1

2n0+1

)
ϵ+

ϵ

2
< ϵ.

Hence, the approximate controllability of (1) is
proved. □

5. Example

Examine the below mentioned initial value prob-
lem for τ ∈ (0, 1] and x ∈ [0, π]:

D
2
3
τ z(τ, x) =

∂2

∂x2
z(τ, x) + u(τ)

+ g(τ, z(τ, x), u(τ)), (9)

z(τ, 0) = z(τ, π) = 0,

I
1
3

0+
z(τ, x)|τ=0 = z0(x),

Take Z = U = L2([0, π]) and A : D(A) ⊂ Z → Z
as

Az = z′′

where

D(A) =

{
z ∈ Z | z, ∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ Z and z(0) = 0 = z(π)

}
Then, A can be expressed as

Az =
∞∑

m=1

(−m2)⟨z, αm⟩αm, z ∈ D(A)

where αm(x) =
√

2
πsin mx (m ∈ N) are the eigen

functions corresponding to the eigen values −m2

respectively and {α1, α2, ......} is a basis of Z.
A differentiable semigroup T (τ)(τ > 0) in Z hav-
ing A as its infinitesimal genaerator is expressed
as

T (τ)z =

∞∑
m=1

exp−m2τ ⟨z, αm⟩αm, z ∈ Z

and ∥T (τ)∥ ≤ e−1 < 1 =M.

Let us choose the nonlinear function g as

g(τ, z(τ, x), u(τ)) = 1 + τ2 + βτγ

× [z(τ, x) + sin z(τ, x) + u(τ)],

where β and γ are constants with −1 ≤ β ≤ 1
and γ ≥ 1− η. Now,

∥g(τ, z(τ, x), u(τ))∥
≤ 1 + τ2 + |β|τγ

[∥∥[z(τ, x) + sin z(τ, x)]
∥∥+ ∥u(τ)∥

]
≤ 1 + τ2 + |β|τγ+η−1τ1−η

[
2∥z(τ, x)∥+ ∥u(τ)∥

]
≤ (1 + τ2) + 2|β|τ1−η∥z(τ, x)∥+ ∥u(τ)∥

and
∥g(τ, z(τ, x), u(τ))− g(τ, y(τ, x), v(τ))∥

≤ |β|τγ
[
∥z(τ, x)− y(τ, x) + sin z(τ, x)− sin y(τ, x)∥

+ ∥u(τ)− v(τ)∥
]

≤ |β|τγ+η−1τ1−η

[
∥z(τ, x)− y(τ, x)∥

+
∥∥∥2 cos(z(τ, x) + y(τ, x)

2

)
sin

(
z(τ, x)− y(τ, x)

2

)∥∥∥
+ ∥u(τ)− v(τ)∥

]
≤ |β|τ1−η

[
2∥z(τ, x)− y(τ, x)∥+ ∥u(τ)− v(τ)∥

]
≤ 2|β|

[
∥z(τ, x)− y(τ, x)∥+ ∥u(τ)− v(τ)∥

]
Here, the assumptions (H1) and (H2) are evi-
dently satisfied with ψ(τ) = 1 + τ2 and b = k =
2|β|. Moreover, assumption (H5) is satisfied by
choosing β sufficiently close to zero.
The abstract form of the system (1) is expressed
as:

D
2
3
τ z̃(τ) = Az̃(τ) +Bũ(τ) + g(τ, z̃(τ), ũ(τ)), τ ∈ (0, 1],

I
1
3
τ z̃(τ)|τ=0 = z̃0,

where z̃(τ) = z(τ, ·), ũ(τ) = u(τ, ·) and z̃0 = z0(·).
Approximate controllability of (1) accomplishes
from Theorem 2 as it is seen assumptions H(1)-
H(5) are satisfied.

6. Conclusion

In this paper, thorough analysis for existence
and uniqueness, and approximate controllability
of the fractional nonlinear differential system has
been performed in Banach spaces. The existence
and uniqueness results were established using con-
cepts of fractional calculus, definition [41], gen-
eralised Gronwall’s inequality, semigroup theory
and Banach’s fixed point theorem. The sufficient
condition for approximate controllability was de-
rived with the aid of Lemma 2 and iterative tech-
nique. The present findings of the paper can be
extended to stochastic fractional differential equa-
tions with or without delay in state or in the con-
trol term present in the nonlinear function of the
system. For some idea, see [34,38,39].
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1. Introduction

Ecosystems are made up of live creatures, plants,
and non-living things that coexist and ‘interact’
with one another. Fish are part of the marine
ecosystem since they do not live in isolation. They
have a strong connection to their physical, chem-
ical, and biological environments. They rely on
the environment to supply the necessary condi-
tions for their growth, reproduction, and survival.
They also serve as a food supply for other species
such as seabirds and marine mammals, making
them an essential component of the marine food
chain.

Fishing activity has an impact not just on the fish
populations, but also on the habitat in which the
fish dwell. Fishing has both direct and indirect
effects on the ecosystem. As a result of fishing,
other species are caught and/or discarded, and
fishing gear affects the seabed. Fishing can have

an indirect influence on the ecosystem by harvest-
ing fish from the marine food chain, for example.
The ecosystem approach to fisheries recognises
that fisheries must be managed as part of its
ecosystem and that their environmental impact
should be kept to a minimum. It is well known
that interspecies competition between multi-fish
species is vary much complicated. Competition
between two fish species with the combined har-
vesting have been discussed in [1]. The authors
in [2] have studied the combined harvesting of
two-species predator-prey model with discrete
time delay in fishery system. However, restrict-
ing to harvest fishes above a certain age or size
only can help the fishery and prevent its extinc-
tion. Harvesting of two competing fish species in
the presence of toxicity has been discussed in [3].
The authors studied bionomic equilibrium and
optimal harvesting policy with help of control
theory. The author in [4] have analyzed a coral

*Corresponding Author

68

http://creativecommons.org/licenses/by/4.0/


A predator-prey model for the optimal control of fish harvesting through the imposition of a tax 69

reef ecosystem to explore the effects of changes
in economic, biological, and social parameters
in a multiple-species coral-reef ecosystem with
adaptive harvesters. Recently, the authors in [5]
and [6] have developed a bio-economic model that
combines a model of competition and a model of
prey-predator of multi-fish populations. They
have calculated the fishing effort which maxi-
mizes the income of the fishing fleet. In ecology,
a stochastic differential fishery game for a two
species fish population has been studied in [7].
Recently, several aspects of the optimal harvest
of a stage structured model of a fishery have been
discussed in [8]. The authors also looked at how
changes in costs and harvesting technologies will
affect whether the optimal harvesting strategy is
to target one age group, the other age group, or
both age groups. The authors in [9] have empha-
sized the importance of age-structured modelling
in practical fishery economics. In [10], a prey-
predator type fishery model with solely prey har-
vesting was investigated. Also many papers on
prey-predator model with harvesting have been
studied in [11–22]. In [23] and [24], have explored
deterministic chaos vs stochastic oscillation in
a prey-predator model and global stability of a
three-species food chain model with diffusion,
respectively. Recently, in [25], local and global
stability have been examined in a fractional prey-
predator model in presence of harvesting rate.

Motivated by the above theoretical and experi-
mental literatures, the dynamics of such system
in which implications of tax on harvesting of
predator is studied. It should be noted from the
aforementioned literature review that no attempt
has been made to research prey-predator fish-
ery harvesting with taxation as a control device.
The present paper investigates a dynamic reac-
tion model in the context of a prey-predator type
fishery system in which only the predator species
are harvested. The imposition of a tax serves as
a deterrent to fishermen while also protecting the
predator from over-exploitation. The main goal
of this paper is to determine the proper taxation
strategy that will benefit the community as much
as possible through harvesting while preventing
the extinction of the predator.
The main target in present manuscript is to in-
vestigate the subsequent biological topics:
• How does carrying capacity of both population
influence the prey-predator dynamics.
• Can imposing tax influence to stabilize the fish-
ery system.
• How does constant price per unit biomass of

predator influence the prey-predator dynamics.

In this paper, we present a new deterministic
prey-predator model. It incorporates a feature
that appears for the first time in this situation,
the emergence of a Holling type II response func-
tion that has only been suggested by [26] in pres-
ence of harvesting of predator with taxation as a
control instrument. The use of a Holling type II
functional response is however in contrast to other
models, such as [27], where the predation term
of the model exhibits ratio-dependent type. In
contrast to other current models [26], we account
for an alternative food source for the predator,
which helps in stabilizing the system. In the
present article, predator do not only depend on
prey but also grow logistically. In this plankton-
fish interaction model, two logistic growth rates of
the phytoplankton and zooplankton populations
are incorporated in [28].

In this paper, a prey-predator interaction model
in presence of harvesting is described in fishery
management. The stability of equilibrium point
is analyzed. Conditions for globally asymptoti-
cally stable of coexistence equilibrium have been
studied. We also found the requirements for sys-
tem instability near the coexiestence equilibrium
and Hopf bifurcation. We analyze the optimal tax
policy by using Pontryagin’s maximum principle.
To back up our analytical result, we ran numeri-
cal simulations with a set of parametric variables.
The paper comes to a close with a brief conclu-
sion.

2. The mathematical model

Let x(t) be the concentration of the prey pop-
ulation at time t with carrying capacity K1 and
constant intrinsic growth rate r1. Let y(t) denotes
the predator population at time t with carrying
capacity K2 and constant intrinsic growth rate r2.

Let α1 be the maximal prey’s ingestion rate and
β1 be the maximal conversion rate for the growth
of predator population respectively (β1 ≤ α1).
Let d1, d2 be the mortality rates of the prey and
predator population respectively. To characterise
the grazing phenomenon, we use the Holling type
II functional form with a1 as half saturation con-
stant.

The predator’s catchability coefficient is constant
c1 in this case and E is harvesting effort. In this
paper, we consider E to be a dynamic (i.e. time-
dependent) variable regulated by the equation

E(t) = µ1Q(t), 0 ≤ µ1 ≤ 1, (1)
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dQ

dt
= I(t)− γ1Q(t), Q(0) = Q0, (2)

where I(t) is the gross investment rate at time t.
The amount of capital invested fishery at time t is
Q(t) and constant rate of depreciation of capital
is γ1. A regulatory agency controls exploitation
of the fishery by imposing a tax τ1(> 0) per unit
biomass of the predator. Here τ1(< 0) be the sub-
sidy given to the fisherman. The net economic
revenue to the fisherman is [c1(p1 − τ1)y − C]E,
where p1 is the constant price per unit biomass
of predator species and C is the constant cost
per unit of harvesting effort. Moreover, we as-
sume that the gross rate of investment of capital
is proportional to the net economic revenue to the
fisherman. Therefore we can write

I(t) = µ2 [c1(p1 − τ1)y − C]E(t), 0 ≤ µ2 ≤ 1.
(3)

Equation (3) shows that the maximum investment
rate at any time equals the net economic revenue
(for µ2 = 1) at that time. By virtue of (2) and
(3) yield the result

dE

dt
= {µ1µ2 [c1(p1 − τ1)y − C]− γ1}E. (4)

In this paper, we consider tax as the management
objective when discussing the impact of harvest-
ing in the fishery system and assume p1 − τ1 > 0.
Let m = µ1µ2; as a result, the following system
of equation is given by :

dx

dt
= r1x(1−

x

K1
)− α1xy

a1 + x
− d1x ≡ G1,

dy

dt
= r2y(1−

y

K2
) +

β1xy

a1 + x
− d2y − c1yE ≡ G2,

dE

dt
= {m [c1(p1 − τ1)y − C]− γ1}E ≡ G3,

(5)
where Gi = Gi(x, y, E), i=1,2,3. The system (5)
will be analyzed with the following initial condi-
tions,

x(0) = X1 ≥ 0, y(0) = X2 ≥ 0, E(0) = X3 ≥ 0.
(6)

3. Some preliminary results

3.1. Positive invariance

By setting X = (x, y, E)T ∈ R3 and G(X) =

[G1(X), G2(X), G3(X)]T , with G : R+
3 → R3

and G ∈ C∞(R3), equation (5) becomes

Ẋ = G(X), (7)

together with X(0) ∈ R+
3. It is easy to check

that whenever X(0) ∈ R+
3 with Xi ≥ 0, for

i=1, 2, 3, then Gi(X) |Xi=0≥ 0. Then any
solution of equation (7) with X0 ∈ R+

3, say
X(t) = X(t;X0), is such that X(t) ∈ R+

3 for
all t > 0.

Lemma 1. All the non negative solutions of the
system (5) are ultimately bounded.

Proof. From the first equation of the system (5)

we have dx
dt

≤ r1x
(

1− x
K1

)

, which gives x(t) →
K1 as t → ∞.
Therefore, corresponding to ǫ1 > 0, there exists
tǫ1 > 0 such that x(t) ≤ K + ǫ1 for all t ≥ tǫ1 .
For all t ≥ tǫ1 , from the second equation of (5), we

have dy
dt

≤ y
[

r2(1− y
K2

) + β1(K1+ǫ1)
a1+K1+ǫ1

]

and so, cor-

responding to ǫ2 > 0 there exists tǫ2 > 0 such that

y(t) ≤ K2+
β1(K1+ǫ1)K2

r2(a1+K1+ǫ1)
for all t ≥ max {tǫ1 , tǫ2}.

This gives, lim
t→∞

{x(t) + y(t)} ≤ K1 + K2 +

β1K1K2

r2(a1+K1)
. Using the previous conditions in the

third equation of system (5) we can easily to ver-
ify that E is bounded and less than some positive
constant when t → ∞.
Now we consider, w(t) = x(t) + y(t) + 1

m(ρ1−τ1)
E.

The time derivative of w along the solutions of is
dw
dt

≤ r1x(1 − x
K1

) + r2y(1 − y
K2

) − d1x − d2y −
(mc+γ1)
(ρ1−τ1)m

E,
dw
dt

≤ −D0w + r1x(1 − x
K1

) + r2y(1 − y
K2

) where

Do = Min{d1, d2, (mc+ γ1)},
dw
dt

+D0w ≤ r1K1

4 + r2K2

4 .
Integrating the above inequality and using ini-
tial condition we get, 0 < w(t) ≤ w(0)e−D0t +

( r1K1+r2K2

4 )(1− e−D0t).
As t → ∞, the above inequality simplifies to
0 < w(t) ≤ ( r1K1+r2K2

4 ). Hence, all the solutions
of the system is uniformly bounded.

�

3.2. Equilibria

The system (5) possesses the following equilibria:

(i) The prey-predator equilibrium S0 = (0, 0, 0).
(ii) The predator free equilibrium S1 =

(x1, 0, 0) = (K1(r1−d1)
r1

, 0, 0), which exists if r1 >

d1.
(iii) The prey free equilibrium in absence of har-

vesting effort S2 = (0, y2, 0) = (0, K2(r2−d2)
r2

, 0),
which exists if r2 > d2.
(iv) The prey free equilibrium in presence
of harvesting effort S3(0, y3, E3) with y3 =

γ1+Cm
mc1(p1−τ1)

, E3 = K2mc1(p1−τ1)(r2−d2)−r2(γ1+Cm)
K2mc1(p1−τ1)

,

which exists if p1 > Max{τ1, τ1 + r2(γ1+Cm)
K2mc1(r2−d2)

}.
(v) The harvesting effort free equilibrium

S4(x4, y4, 0) with x4 =
a1(d2−r2+

r2y4
K2

)

β1−(d2−r2+
r2y4
K2

)
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and y4 =
[r1(1−

x4
K1

)−d1][a1+x4]

α1
, which exists if x4 <

r1−d1
K1

and (r2−d2)K2

r2
< y4 <

K2(β1−d2+r2)
r2

.

(vi) The coexistence equilibrium S∗ = (x∗, y∗, E∗)

with y∗ = γ1+Cm
mc1(p1−τ1)

,

E∗ =
r2(1−

y∗

K2
)−

β1x
∗

a1+x∗

c1
− d2

c1
and x∗ satisfies x∗2 +

{K1d1
r1

+ (a1 − K1)}x∗ + K1α(γ1+Cm)
γ1mc1(p1−τ1)

+ a1K1d1
r1

−
a1K1 = 0.
Let x1 and x2 be the roots of above equation. We
only consider that x1, x2 have only one positive

root then x1x2 =
K1α1(γ1+Cm)
γ1mc1(p1−τ1)

+a1K1d1
r1

−a1K1 < 0

=⇒ τ1 <
a1K1(r1−d1)mc1p1−K1α1(γ1+Cm)

aK1(r1−d1)mc1
, and

∆ = {K1d1
r1

+ (a1 − K1)}2 + 4{a1K1 − a1K1d1
r1

−
K1α1(γ1+Cm)
γ1mc1(p1−τ1)

} > 0.

Hence, x∗ exists as a positive root: x∗ = 1
2 [

K1d1
r1

+

(a1 −K1) +
√
∆]. Thus, the coexistence equilib-

rium exists if x∗ > 0, y∗ > 0 and E∗ > 0 i.e.

τ1 < Min{a1K1(r1−d1)mc1p1−K1α1(γ1+Cm)
aK1(r1−d1)mc1

, p1}.

3.3. Stability analysis of the system (5)

In this section, local stability analysis of the sys-
tem around the biologically feasible equilibria is
performed. Let S = (x, y, E) be any arbitrary
equilibrium. Then the Jacobian matrix about S

is given by

V =

[

v11 −
α1x

a1+x
0

a1β1y

(a1+x)2
v22 −c1y

0 mc1(p1 − τ1)E v33

]

,

where v11 = r1(1 − 2x
K1

) − a1α1y
(a1+x)2

− d1, v22 =

r2(1− 2y
K2

)+ β1x
a1+x

−d2− c1E and v33 = m[c1(p1−
τ1)y − C]− γ1.

By calculating the Jacobian matrix for the equi-
librium S0 of the system (5). We see that the
eigenvalues of the variational matrix V0 are λ1 =
r1−d1 > 0, λ2 = r2−d2 > 0, λ3 = −mC−γ1 < 0.
Clearly S0 is always unstable. It is clear that
S0(0, 0, 0) is always unstable.

Lemma 2. If R0 = β1K1(r1−d1)
(d2−r2)[a1r1+K1(r1−d1)]

> 1

then the predator free steady state S1 of the sys-
tem (5) is unstable.

Proof. Now again computing the Jacobian ma-
trix for the equilibrium S1 of the system (5) we
find that the eigenvalues of the Jacobian matrix
V1 are λ11 = −(mC+γ1) < 0, λ12 = −r1+d1 < 0

and λ13 = r2+
β1K1(r1−d1)

a1r1+K1(r1−d1)
−d2. It is clear that

λ13 < 0 if β1K1(r1−d1)
(d2−r2)[a1r1+K1(r1−d1)]

< 1 i.e. R0 < 1

where R0 =
β1K1(r1−d1)

(d2−r2)[a1r1+K1(r1−d1)]
.

So, S1 is asymptotically stable if and only if
R0 < 1. Clearly if R0 > 1 , then predator free

steady state S1 is unstable which indicates the
proof of lemma 1. �

Lemma 3. There exists a feasible prey free steady
state S2 in absence of harvesting effort of predator
of the system (5) which is unstable if

R1 =
a1r2(r1 − d1)

α1K2(r2 − d2)
> 1. (8)

Proof. Now again computing the Jacobian ma-
trix for the equilibrium S2 of the system (5) we
find that the eigenvalues of the Jacobian matrix
V2 are λ

1
11 = −(mC+γ1) < 0, λ

′

12 = −r2+d2 < 0

and λ
′

13 = r1 − d1 − α1K2(r2−d2)
a1r2

. It is clear that

λ
′

13 < 0 if a1r2(r1−d1)
α1K2(r2−d2)

< 1 i.e. R1 < 1 where

R1 =
a1r2(r1−d1)
α1K2(r2−d2)

.

So, S1 is asymptotically stable if and only if
R1 < 1. Clearly, if R1 > 1 , then prey free with-
out harvesting effort steady state S2 is unstable
which indicates the proof of lemma 2. �

Lemma 4. There exists a prey free steady state
S3 of the system (5) which is unstable if

R2 =
a1mc1(r1 − d1)(p1 − τ1)

α1(γ1 + Cm)
> 1. (9)

Proof. Further the eigenvalues of the Jacobian
matrix V3 around the equilibrium S3 of the sys-
tem (5) are θ1, θ2 which are the roots of the
equation θ2 + r2y3

K2
θ +mc21(p1 − τ1)y3E3 = 0 and

θ3 = r1−d1−α1y3
a1

. Clearly, θ1 and θ have negative

real parts for equilibrium point S3(0, y3, E3). So,
prey free equilibrium S3 is asymptotically stable

if θ3 < 0 i.e. a1mc1(r1−d1)(p1−τ1)
α1(γ1+Cm) < 1, i.e. R2 < 1

where R2 = a1mc1(r1−d1)(p1−τ1)
α1(γ1+Cm) . Therefore, S3 is

unstable if condition (9) i.eR2 > 1 is satisfied. �

Lemma 5. The harvesting effort free equilibrium
of the (5) is locally asymptotically stable if Bi > 0
where i=1,2,3 and B1B2 −B3 > 0.

Proof. The Jacobian matrix of system (5)
around the harvesting effort free equilibrium S4 =
(x4, y4, 0) is

V ∗ =





m11 m12 0
m21 m22 m23

0 0 n33



 ,

where m11 = r1− 2r1x4

K1
− a1α1y4

(a1+x4)2
− d1 = − r1x4

K1
+

α1x4y4
(a1+x4)2

, m12 = − α1x4

a1+x4
< 0,m21 = a1β1y4

(a1+x4)2
>

0, m22 = − r2y4
K2

< 0, m23 = −c1y4 < 0, m33 =

m[c1(p1 − τ1)y4 − C]− γ1 > 0.
The characteristic equation is given by

Q3
1 +B1Q

2
1 +B2Q1 +B3 = 0,
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where B1 = −(m11+m22+m33), B2 = m11m22+
m11m33+m22m33−m12m21, B3 = m33m12m21−
m33m11m22.

Case 1: If m11 < 0, which shows that B3 < 0.
Then S4 is unstable.
Case 2: If m11 > 0, Then B1 = −(m11 +
m22 + m33) > 0 if m22 < m11 + m33). Also
B2 = m11m22 +m11m33 +m22m33 −m12m21 > 0
if m11m33 − m12m21 > −(m11m22 + m22m33)
since m11m22 < 0, m11m33 > 0, m22m33 < 0
and m12m21 < 0. Clearly B3 = m33m12m21 −
m33m11m22 > 0 if m33m12m21 > m33m11m22

since m33m12m21 < 0 and m33m11m22 < 0. Now
B1B2 − B3 > 0 if B1B2 > B3. Therefore, ac-
cording the Routh-Hurwitz criteria, all roots of
above equation have negative real parts. Thus S4

is locally asymptotically stable. �

Lemma 6. The coexistence equilibrium of the
system (5) is locally asymptotically stable if Θi >

0 where i=1,2,3 and Θ1Θ2 −Θ3 > 0.

Proof. The Jacobian matrix of system (5)
around the positive interior equilibrium S∗ =
(x∗, y∗, E∗) is

V ∗ =





n11 n12 0
n21 n22 n23

0 n32 0



 ,

where n11 = r1 − 2r1x∗

K1
− a1α1y

∗

(a1+x∗)2
− d1 = − r1x

∗

K1
+

α1x
∗y∗

(a1+x∗)2
, n12 = − α1x

∗

a1+x∗ < 0, n21 = a1β1y
∗

(a1+x∗)2
>

0, n22 = − r2y
∗

K2
< 0, n23 = −c1y

∗ < 0, n32 =

mc1(p1 − τ1)E
∗ > 0.

The characteristic equation is

Q3 +Θ1Q
2 +Θ2Q+Θ3 = 0,

where Θ1 = −(n11+n22), Θ2 = n11n22−n32n23−
n12n21, Θ3 = n11n32n23.

Case 1: If n11 > 0, which shows that Θ3 < 0.
Then S∗ is unstable.
Case 2: If n11 < 0, Then Θ1 = −(n11 + n22) > 0
Also, Θ2 = n11n22 − n32n23 − n12n21 > 0 since
n11n22 > 0, n32n23 < 0 and n12n21 < 0. Clearly,
Θ3 = n11n32n23 > 0. Now Θ1Θ2 − Θ3 > 0
if Θ1Θ2 > Θ3. Therefore according the Routh-
Hurwitz criteria, all roots of above equation have
negative real parts. Thus S∗ is locally asymptot-
ically stable. �

The analytical results are summarized in the Ta-
ble 1.

Theorem 1. When the intrinsic growth rate of
predator r2 crosses a critical value, say r∗2, the
system (5) enters into a Hopf-bifurcation around
the coexistence equilibrium, which induces oscilla-
tions of the populations.

Proof. If the Hopf-bifurcation exists for r2 =
r∗2, the following are the necessary and suffi-
cient conditions: (i) Θi(r

∗

2) > 0, i = 1, 2, 3
(ii)Θ1(r

∗

2)Θ2(r
∗

2)−Θ3(r
∗

2) = 0 and (iii) the eigen-
values of above characteristic equation should be
of the form λi = ui + ivi, and

dui

dr2
6= 0, i = 1, 2, 3.

The Hopf-bifurcation condition (iii) will now be
tested by putting λ = u + iv in the above equa-
tion, we get

(u+iv)3+Θ1(u+iv)2+Θ2(u+iv)+Θ3 = 0. (10)

On distinguishing the real and imaginary parts
and removing v, we get

8u3+8Θ1u
2+2u(Θ2

1+Θ2)+Θ1Θ2−Θ3 = 0. (11)

From the foregoing, it is apparent that u(r∗2) = 0
iff Θ1(r

∗

2)Θ2(r
∗

2)−Θ3(r
∗

2) = 0. Further, at r2 = r∗2,
u(r∗2) is the only root, since the discriminant 8u2+
8Θ1u+2(Θ2

1+Θ2) = 0 if 64Θ2
1−64(Θ2

1+Θ2) < 0.
Further, differentiating (11) with respect to r2, we
have
24u2 du

dr2
+16Θ1u

du
dr2

+2(Θ2
1+Θ2)

du
dr2

+2u[2Θ1
dΘ1

dr2
+

dΘ2

dr2
] + dS

dr2
= 0 where S = Θ1Θ2 −Θ3.

Since at r2 = r∗2, u(r
∗

2) = 0 we get
[

du
dr2

]

r2=r∗
2

=

−
dS
dr2

2(Θ2
1
+Θ2)

6= 0.

This ensures that the above system has a Hopf-
bifurcation around the coexistence equilibrium
E∗.

�

Theorem 2. If the coexistence equilibrium S∗ ex-
ists, then (x∗, y∗, E∗) is globally asymptotically
stable in the x− y − E plane.

Proof. Let’s start by defining a Lyapunov func-
tion

W (x, y, E) =

∫

x∗

x ξ − x∗

ξ
dξ

+D1

∫

y∗

y η − y∗

η
dη +D2

∫

E∗

E ρ− E∗

ρ
dρ,

(12)

where D1 and D2 are positive constants.
It is easy to examine that W (x, y, E) is zero
at the equilibrium point and the positive for all
other positive values of W (x, y, E).
The time derivative of W along the trajectories of
the subsystem is

dW

dt
=

dx

dt

[

x− x∗

x

]

+D1

[

dy

dt

] [

y − y∗

y

]

+D2

[

dE

dt

] [

E − E∗

E

]
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Table 1. The table depicting thresholds and stability of steady states.

Thresholds S0(0, 0, 0) S1(x1, 0, 0) S2(0, y2, 0) S3(0, y3, E3) S4(x4, y4, 0) S∗(x∗, y∗, E∗)
(R0, R1, R2)

R0 < 1 Unstable Asymptotically Not feasible Not feasible Not feasible Not feasible
stable

R0 > 1, R1 < 1 Unstable Unstable Asymptotically Not feasible Not feasible Not feasible
stable

R1 > 1, R2 < 1 Unstable Unstable Unstable Asymptotically Not feasible Not feasible
stable

R2 > 1 Unstable Unstable Unstable Unstable Asymptotically Not feasible
stable

S∗ > 0,Θi > 0, i = 1, 2, 3.,Θ1Θ2 −Θ3 > 0. Unstable Unstable Unstable Unstable Unstable Asymptotically
stable

= [x− x∗]

[

r1(1−
x

K1
)− α1y

a1 + x
− d1

]

+D1

[

r2(1−
y

K2
) +

β1x

a1 + x
− d2 − c1E

]

[y − y∗] +D2 [mc1(p1 − τ1)y −mC] [E − E∗]

= [x− x∗][− r1

K1
(x− x∗)−

α1

(a1 + x)(a1 + x∗)
[(a1 + x∗)(y − y∗)− y∗(x− x∗)]]

+D1

[

r2(1−
y

K2
) +

β1x

a1 + x
− d2 − c1E

]

[y − y∗]

+D2 [mc1(p1 − τ1)y −mC] [E − E∗]

=

[

− r1

K1
+

α1y
∗

(a1 + x)(a1 + x∗)

]

(x− x∗)2

−α1(x− x∗)(y − y∗)

a1 + x

−r2D1

K2
(y − y∗)2 +D1(

β1x

a1 + x
− β1x

∗

a1 + x∗
)(y − y∗)

−D1c1(E − E∗)(y − y∗)

+D2mc1(p1 − τ1)(E − E∗)(y − y∗).

Now here we choose arbitrary constants D1 and

D2 such as D1 =
α1(a1+x∗)

a1β1
, D2 =

α1(a1+x∗)
a1mβ1β(p1−τ1)

.

Then

dW (x, y, E)

dt
=

[

− r1

K1
+

α1y
∗

(a1 + x)(a1 + x∗)

]

× (x− x∗)2 − r2

K2

α1(a1 + x∗)

a1β1
(y − y∗)2.

Clearly, the second term is negative. Now af-
ter some calculation in first term we see that if
x∗ > (K1−a1)−D1K1

r1
then dW (x,y,E)

dt
≤ 0. Clearly,

dW (x,y,E)
dt

= 0 if and only if x = x∗ and y = y∗

which yields E = E∗. Hence, dW (x,y,E)
dt

= 0 if
and only if x = x∗, y = y∗ and E = E∗. So
from Lasalle invariant principle we say that S∗ is
globally asymptotically stable. �

4. Optimal Taxation policy

Biologically, we care more about the coexistence
equilibrium in the presence of harvesting in order
to ensure the existence of both species. Our main

goal is to save each species while also maximis-
ing the monetary and social benefits. The profits
(revenues) received by the fisherman and regula-
tory agency are saved to the society through the
fishery in a large society. The entire economic
revenue is

(c1p1y−C)E = [c1(p1−τ1)y−C]E+τ1c1yE. (13)

It is equal to the sum of the entire fisherman’s
economic revenue and the regulating agency’s eco-
nomic revenue. It is obvious that

π(x, y, E) = (c1p1y − C)E. (14)

In order to maximise the present value J of a con-
tinuous time steam of revenues, we analyse opti-
mal harvest policy

J =

∫

∞

0
e−δt(c1p1y − C)Edt, (15)

where δ be the instantaneous annual rate of dis-
count [29–31].
Now we want to discover the path tracked by
(x(t); y(t);E(t)) with the tax policy τ1 so that if
fish populations and harvesting effort stay on this
path, the regulatory authority will be assumed to
have accomplished its goal.

Our goal is to use Pontryagin’s maximal principle
[32] to determine a tax policy τ1 = τ1(t) that max-
imises J under the state equation (5). The con-
trol variable τ1(t) is subjected to the constraints
min τ1 ≤ τ1 ≤ max τ1. When min τ1 < 0, we can
explore subsidies, which in this case would have
the effect of increasing the rate of expansion of
the fishery.
Hamiltonian function is defined as follows:

H = e−δt(c1p1y − C)E + λ1
dx

dt
+ λ2

dy

dt
+ λ3

dE

dt
.

(16)
where λ1, λ2 and λ3 are the adjoint variables.
Hamiltonian (16) must be maximized when τ1 ∈
[min τ1,max τ1]. We assume that the optimal
solution does not occur at τ1 = min τ1 or max τ2
which imply that constraints are not binding.
Therefore, singular control is represented by

δH

δτ1
= −λ3mc1yE =⇒ λ3 = 0. (17)
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The adjoint equations, according to Pontryagin’s
maximal principle, are

dλ1

dt
=

δH

δx
,
dλ2

dt
=

δH

δy
,
dλ3

dt
=

δH

δE
. (18)

As a result of the substitution and simplification,
we arrive at
dλ1

dt
= −δH

δx
= −λ1

[

r1(1−
2x

K1
)− a1α1y

(a1 + x)2
− d1

]

−λ2
a1β1y

(a1 + x)2
,

(19)
dλ2

dt
= −δH

δy
= −e−δtc1p1E + λ1

α1x

a1 + x

−λ2

[

(r2 −
2r2y

k2
) +

β1x

a1 + x
− d2 − c1E

]

,

(20)

dλ3

dt
= −δH

δE
= −(c1p1y − C)e−δt + λ2c1y = 0.

(21)
The solution of (21) is described in the following
in order to obtain an optimal equilibrium solu-
tion by considering the coexisting equilibrium as
follows:

λ2 = e−δt(p1 −
C

c1y∗
). (22)

Let

A1 = −
[

r1 −
2r1x

∗

K1
− a1α1y

∗

(a1 + x∗)2
− d1

]

,

A2 =
a1β1y

∗

(a1 + x∗)2
(p1 −

C

c1y∗
)e−δt,

A3 = c1p1E
∗ − A2

A1 + δ

α1x
∗

a1 +X∗
− r2y

∗

α2
(p1 −

C

c1y∗
).

(23)
Now the equations (19) and (20) can be written
as

dλ1

dt
= A1λ1 −A2e

−δt dλ2

dt
= −A3e

−δt. (24)

Solving the above linear differential equation we
get

λ1 =
A2

A1 + δ
e−δt, λ2 = −A3

δ
e−δt. (25)

Substituting the value of λ2 from (22) into (25),
we get

(p1 −
C

c1y∗
) =

A3

δ
. (26)

Now putting the value of x∗, y∗ and E∗ into (26),
we get an equation for τ1; let τ

∗

1 be a solution of
this equation. We get the optimal equilibrium so-
lutions x = x(τ∗1 ), y = y(τ∗1 ) and E = E(τ∗1 ) by
using the value of τ1 = τ∗1 . As a result, we have es-
tablished the existence of an optimal equilibrium
solution that satisfies the necessary conditions of
the maximum principle. From the above analysis
carried out in this section, we observe the follow-
ing.

From (21), we get

λ2c1y = (c1p1y − C)e−δt = e−δt δπ

δE
. (27)

Putting the value of λ2(t) into (27), we get

c1p1y −
A3

δ
c1y = C. (28)

When δ −→ ∞, (28) leads to the results c1p1y =
C, which implies that the economic rent is com-
pletely dissipated.
(ii) By (26) we get the optimal equilibrium pop-
ulations x = x(τ∗1 ), y = y(τ∗1 ), E = E(τ∗1 ), hence,
we have

π = (c1p1y − C)E =
A3

δ
c1yE. (29)

Thus π is a decreasing function of δ we, there-
fore, conclude that π leads to maximization when
δ leads to 0.

5. Numerical simulations

In this section, some numerical simulations are
performed with the help of used RK4 schemes to
discuss the dynamical behavior of system (5) and
to verify analytical results. To examine the dy-
namic of fishery system, we start with a set of
parametric values (Ref. [26])

r1 = 7, r2 = 1 K1 = 3, K2 = 20, α1 = 1.5,

β1 = 0.8, d1 = 0.01, d2 = 0.01, m = 0.8, c1 = 1.2,

p1 = 0.7, τ1 = 0.08, C = 0.49, a1 = 0.05, γ1 = 0.1.

(30)
Considering the parametric values, we find the co-
existence equilibrium point S∗ = (2.81, 0.83, 1.44)
which is locally asymptotically stable (cf. Figure
1a (black line)). Taking K2 = 200, the system (5)
exhibits oscillation around S∗ (cf. Figure 1a (red
line)). In case of K2 = 0.4, then Figure 1a (blue
line) shows the system switches to harvesting ef-
fort free equilibrium S4.

Further from Figure 1b (black line), it follows
tax per unit biomass of the predator, τ1 = 0.52,
the equilibrium S3 is locally asymptotically sta-
ble. Increasing the value of τ1 = 0.7, the sys-
tem switches to prey free equilibrium S2 in ab-
sence of harvesting effort (cf. Figure 1b (blue
line)). It is observe that the system switches to
stable to oscillatory behavior around S∗ due to
low value of r2 = 0.2 (cf. Figure 1c). But in
both case of r1 = 1 and K1 = 0.3 the system
switches to prey free equilibrium simultaneously
(cf. Figure 1d) . Figures 3a,3b and 3c illus-
trate the different steady state behaviour of each
species in the system (5) for the parameter τ1.
We note that Hopf point (red star (H)) situated
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Table 2. Natures of equilibrium points.

Parameters Values Eigenvalues Equilibrium points
τ1 0.436074 (4.23719,±0.900417i) Hopf (H)

0.557934 (0,−0.0901945± 0.92798i) Limit Point (LP)
p1 0.343926 (4.23719,±.900417i) Hopf (H)

0.222066 (0,−0.0901945± 0.92798i) Limit Point (LP)
2.279571 (0,−0.005825± 0.693768) Branch Point (BP)
4.942273 (0, 1.52281,−10.147, ) Branch Point (BP)

(τ1, r1) (0.046608, 2.014876) (0.8937,±0.934174i) Generalized Hopf (GH)
(p1, r1) (0.733392, 2.014876) (0.8937,±0.934174i) Generalized Hopf (GH)

(1.010732, 1.443315) (0.655091,±0.936168i) Generalized Hopf (GH)
(p1,K2) (1.590494, 0.669121) (1.64826,±0.688981i) Generalized Hopf (GH)

2
2.2

2.4
2.6

2.8
3

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

 x y

E

S
*

S
4

(a)

0
0.5

1
1.5

2
2.5

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 x y
 E

S
3

S
2

(b)

2
2.2

2.4
2.6

2.8
3

0

0.5

1

1.5

2
0.4

0.6

0.8

1

1.2

1.4

 x y

 E

S
*

(c)

0

0.5

1

1.5

2

0

1

2

3
0

0.5

1

1.5

2

2.5

      x y

 E

S
3

(d)

Figure 1. (a) Phase plane diagram showing local stability of S∗ for K2 = 20 (black solid
line), oscillatory behavior around S∗ for K2 = 200 (red solid line) and local stability at S4 for
K2 = 0.4 (blue solid line). (b) The solution of trajectory approaches to two different equi-
librium points S3 and S2 for τ1 = 0.52 (black line) and 0.7 (blue line) respectively. (c) The
system switches to oscillatory behavior for r2 = 0.2. (d) Phase plane diagram indicating the
local stability of S3 for r1 = 1 (red solid line) and K1 = 0.3 (black line) respectively.

at 0.436074 with two complex parts of eigenval-
ues ≈ 0. We also observe that at that particu-
lar point, the value of first Lyapunov coefficient is
positive 0.01112548 which indicates unstable limit
cycle bifurcates from Hopf point. To proceed fur-
ther, we have a limit point (LP) at τ1 = 0.557934
with eigenvalues 0, 0.0901945 ± 0.92798i. From
Figures 3d, it is evident that at τ1 = .4360747 and
0.4578429 we have two Limit point cycle (LPC)
and Branch Point cycle (BPC).

Figures 4a, 4b and 4c depict different behavior of
each species when p1 is a free parameter. Here we
observe that a Hopf points (H), two Branch points

(BP) and one Limit point (LP). In this case, Hopf
point is situated at 0.343929 with first Lyapunov
coefficients a .01112584 indicating subcritical bi-
furcation. Further, it is observed that one LP
and two Branch points are located at 0.222066,
2.279571 and 4.942273 respectively. Starting from
Hopf point and proceed further, a family of un-
stable limit cycle is generated (cf. Figure 4d).

To demonstrate the clear picture of changes in
dynamical system when K2 and r2 be the free pa-
rameters, we plot two bifurcation diagrams (cf.
Figure 2a, 2b) respectively. Finally, we draw two
parameter bifurcation diagrams for τ1−r1, p1−r1
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Figure 2. (a) Bifurcation diagram for K2. (b) Bifurcation diagram for r2.
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Figure 3. (a) Different steady state behavior of prey for the effect of τ1. (b) Different steady
state behavior of predator for the effect of τ1. (c) Different steady state behavior of harvesting
effort for the effect of τ1. (d)The family of limit cycles bifurcating from the Hopf point H for
τ1.

and p1 − K2 (cf. Figure 5a, 5b and 5c). In
each cases, we have generalized Hopf (GH) point.
Actually, two branches of sub and supercritical
Andronov-Hopf bifurcations split at GH point.

6. Conclusion

We investigate the interspecies competition of
prey and predator in a fishery system in this work.
We assumed that predator undergo exploitation
due to consume of prey. This work has a dual
goal, namely economic and ecological. The eco-
nomic goal is to maximize monetary benefit to
society while also preventing the predator from

extinction. Here we implement a tax to regulate
the harvesting effort in order to preserve the eco-
logical balance.

As a result, one of the most important features
of this approach is the harvesting effort and net
economic revenue to the fisherman. The first step
is to perform analytical conditions for the exis-
tence and stability of various steady states. We
also look into the global stability of coexistence
equilibrium while the tax remains certain thresh-
old value. The outcome of global stability shows
that when a tax provides a sustainable threshold
value, predator are not from a body of water at
a rate greater than that the species can replenish
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Figure 4. (a) Different steady state behavior of prey population for the effect of p1. (b)
Different steady state behavior of predator population for the effect of p1. (c) Different steady
state behavior of harvesting effort for the effect of p1. (d)The family of limit cycles bifurcating
from the Hopf point H for p1.
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Figure 5. (a) The two parameters bifurcation diagram for τ1 − r1. (b) The two parameters
bifurcation diagram for p1 − r1. (c) The two parameters bifurcation diagram for p1 −K2.

its population naturally. We note the following observations by numerical simulation:
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Two different scenarios are shown when changing
the value of carrying capacity of predator. Here
we observe that each fish species are present in
the system in absence of harvesting efforts for low
values of carrying capacity of predator. On the
other hand, because to the high value of preda-
tors’ carrying capacity, all species become unsta-
ble. Due to high tax levels, coexistence equilib-
rium switches to different boundary equilibrium,
which is related to transcritical bifurcations. The
system becomes oscillate due to low values of in-
trinsic growth rate of predator. Our research also
shows that maintaining carrying capacity and im-
posing a tax on harvesting of predator are criti-
cal factors in keeping predator exploitation under
control. In addition, we impose a tax to study
the the optimal harvesting policy for harvesting
predator. When the monetary social benefit is
subject to maximisation, it is demonstrated by
utilising Pontryagin’s maximal principle. We es-
tablished the optimal equilibrium solution by us-
ing optimal tax τ1 = τ∗1 . It has been demon-
strated that zero discounting maximises economic
revenue and that an infinite discount rate causes
economic rent to dissipate completely. It should
be noted that in this paper, several crucial factors
are disregarded, including ecological fluctuations,
refuge, allee effect etc. Therefore, further study
is required to meet the demands in this area.
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1. Introduction

In practice, many dynamic systems cannot be
satisfactorily modeled with ordinary differential
equations. Actually, in many systems, the future
behaviors of state variables depend on both their
current values and their past values [1]. Such sys-
tems are called time delay systems. Time delay
systems can occur in practice for many reasons.
So, many processes contain dead time in their in-
ner dynamics. Due to the increasing demands of
dynamic performances, we need models behaving
more like the real process. Therefore, the no-
tion of time delay keeps on growing attraction for
many scientific disciplines such as control engi-
neering.

Analysis and control of systems having time delay
are more complicated than integer order ones [2].
However, describing systems without using time

delay component may lead to incorrect conclu-
sions in terms of evaluating and obtaining desired
control aims. Thus, analysis and control of time
delay systems are very important, and consider-
able attention and effort have been given to the
stability of linear time delay systems during the
past 30 years [1, 3] (and references therein). It
is still an active research area in the literature.
However, to the best knowledge of the authors
of this article, studies related to the stability of
control systems having fractional order time delay
are not extensive. Only particular cases such as
a special class of distributed parameter systems
have been given in [4–7].

Distributed parameters and/or delay elements de-
scribed by partial differential equations can be
seen in many industrial systems such as fluid
lines, transmission lines, nuclear rocket engines,
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diffusion processes and chemical processes etc.
[5–8]. The distributed parameter approach pro-
vides more accurate design results than lumped
parameter approach [6]. Transfer functions of dis-
tributed parameter systems contain

√
s or e−hs,

e−(ks0.5) functions, where, real h ≥ 0 and k ≥ 0
stand for time delay and distributed lag, respec-
tively [6,8]. Calculating the inverse Laplace trans-
forms of these functions is an extremely complex
matter [8]. Distributed parameter systems can
be considered as a special form of fractional or-
der systems when

√
s term is used. The stabil-

ity analysis of systems with distributed parame-
ters, i.e., fractional order systems has some chal-
lenges since their mathematical descriptions have
irrational functions of “s” [5, 6]. The analytic
methods to evaluate time response of irrational
transfer functions are inadequate. Furthermore,
to solve this problem, used graphical methods are
inaccurate [8]. These are important shortcom-
ings of the works have been done on this topic.
In the literature, there are some important stud-
ies. In [9], necessary and sufficient conditions for
the B.I.B.O. (Bounded Input Bounded Output)
stability and the asymptotic stability of systems
whose transfer functions are functions of s,

√
s,

and e
√
Ts are established, where T is a positive

constant. An algorithm for the inverse Laplace
transform to obtain time response of irrational
transfer functions is developed in [8] by using the
Fast Fourier transform. The Hurwitz stability
test is extended to lumped-distributed RC net-
works in [10]. An algebraic test procedure such
as Routh algorithm and Hurwitz determinant is
improved to a certain class of distributed param-
eter systems with multiple delays in [4, 5]. Two-
dimensional stability criterion to a special class of
distributed parameter systems has been studied
in [6]. It has been showed that the conditions of
stability for such systems are independent of time
delay and distributed lag [6]. Similarly, a stability
test independent of distributed lag and another
stability test to find the intervals of distributed
lag are proposed for a special class of distributed
parameter systems in [7]. First order plus frac-
tional diffusive delay is studied in [11]. How-
ever, the works in this area are mostly focused on
systems containing terms e−hs or

√
s. The cur-

rent studies on e−
√
s consist of complex stability

test procedures. What is more, the time-response
analysis of such systems is quite a few [12] One
of the motivations of this study is to examine the
unit step responses of systems having fractional
order delay. Various methods have been used in
the literature to determine the parameters of PI
controllers for time-delay systems [12–16]. One

of these methods is the weighted geometrical cen-
ter method, and the other is the centroid of the
convex stability region method. In this study, a
method based on the centroid of the convex sta-
bility region is presented. In this new method,
the most optimum PI controller parameters are
obtained by creating a triangular area under the
stability curve of the system and searching this
area with PSO algorithm. The first application
of this method can be found in [17].

This paper is organised as follows. A brief intro-
duction of fractional order calculus and fractional
order systems are given in section 2. Fractional
order systems with fractional order delay are also
introduced in section 2. Brief information about
particle swarm optimization is given in section 3.
PI controller design for systems with fractional or-
der delay and a stability test procedure for such
systems are given in section 4. Finally, numerical
examples are given in section 5.

2. Fractional order calculus and
fractional order systems

Fractional order calculus, namely, non-integer or-
der calculus of control systems is gaining more
and more attention from many science disciplines.
The notion of non-integer order calculus which
is related to the development of regular calculus
has been known for 300 years [18]. But it has
mostly remained as a subject studied by promi-
nent mathematicians owing to its complex struc-
ture. There are studies in various fields related
to fractional expressions, especially in mathemat-
ics [11, 19–22]. Since it requires advanced math-
ematical analysis techniques, engineers and other
science disciplines could not use it effectively till
the development of analyzing and solution meth-
ods [18]. After obtaining important achievements
in fractional calculus recently, the real order of dy-
namic systems can be investigated. In fractional
calculus, the order of derivatives or integrals can
be real or complex number [11]. Thus, the or-
der of the fractional integrals and derivatives can
be considered as a function of time or some other
variable [23]. Using the fractional order models to
describe real-world systems has some advantages
in terms of both having more degrees of freedom
in the model and having an unlimited memory
which is very important to predict and influence
present and future behaviors. Fractional order
systems and their applications are one of the most
popular research topics of today. Recently, it has
been reported that fractional order representation
is more accurate to describe real world systems
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than those of integer order models since the real-
world processes are generally and/or most likely
fractional order [24]. It is known that using in-
teger order model to define a system can lead to
distinction between mathematical model and ac-
tual system [24].

A fractional order system (FOS) has transfer
function consisting of fractional order derivatives
sα, where α ∈ R. In the literature, many studies
conducted on FOS use integer order approxima-
tions due to the lack of analytical solution meth-
ods. There are some integer order approximation
methods of FOS such as continued fraction ex-
pansion, Oustaloup etc. (Details can be found
in [25]). Stability analysis of such systems is one
of the most challenging problems. To the best
knowledge of the authors, there are no analytical
stability test procedures such as Routh that can
be applied to such systems, directly. Although us-
ing integer order approximations provide the sta-
bility analysis of such systems, time domain anal-
ysis has remained the most challenging and im-
portant problem. However, some important stud-
ies to obtain inverse Laplace transform and time
response of FOS have been studied in [26,27], re-
cently.

2.1. Fractional order systems with
fractional order delay

A system represented by a differential equation
where the orders of derivatives can take any real
number not necessarily integer number can be
considered FOS. Thus, FOS can be defined by the
fractional-order transfer function with fractional
order time delay. The transfer function of the
system non-integer order time delay is defined by

Gp(s) = G(s)e−
√
τs = N(s)

D(s)e
−
√
τs

= bmsβm+bm−1s
βm−1+...+b0sβ0

ansγn+an−1s
γn−1+...+a0sγ0

e−
√
τs

(1)

or in general form, it can be described as follows.

Gp(s) = G(s)e−(τs)α = N(s)
D(s)e

−(τs)α

= bmsβm+bm−1s
βm−1+...+b0sβ0

ansγn+an−1s
γn−1+...+a0sγ0

e−(τs)β
(2)

where τ is fractional order time delay, ak (k =
0, ..., n) and bk (k = 0, ...,m) are constants, γk
(k = 0, ..., n) and βk (k = 0, ...,m) are arbitrary
real numbers. And, also βm > βm−1 > .... > β0,
γn > γn−1 > .... > γ0 without loss of generality.
As stated before, the studies related to systems
with fractional order time delay are not exten-
sive. Thus, new studies need to be done on this
research topic.

3. Particle swarm pptimization

Particle Swarm Optimization (PSO) is a power-
ful metaheuristic optimization technique based on
the movement and intelligence of swarms. PSO
algorithm is inspired by flocks of birds and schools
of fish in nature. For instance, when birds flying
and searching randomly for food, they help each
other in the flock to find the best food place. In
1995, Dr. Kennedy and Dr. Eberhart have dis-
covered PSO algorithm by examining the behav-
ior of bird flocks [28].

The PSO algorithm can consider like a flock of
birds. Particles come together to form a swarm.
PSO algorithm can find problems’ minimum or
maximum value. In other words, it is finding
the optimum value of the problem. PSO algo-
rithm has individuals also referred to as particles.
These particles are solution sets of a problem. In
PSO, particles generate randomly between prob-
lems boundaries.

In the PSO algorithm, it is necessary to evaluate
whether the particles are suitable for the result
according to a certain criterion. This is done by
the fitness function. The fitness function tests the
fitness of particles. In some previous studies, per-
formance indexes such as “ISE”, “IAE”, “ITSE”,
“ITAE” were used as fitness functions [29–31].
These fitness functions are chosen according to
the problem. If it is desired to reach the mini-
mum point in the problem, the best particle of
the solution set, which gives the minimum value
of the fitness function, is selected. However, if it is
desired to reach the maximum point in the prob-
lem, the maximum value of the fitness function
should be selected. PSO algorithm is an iterative
algorithm, so it needs to be updated some param-
eters about the problems. There are two updates
in the PSO algorithm. The first one is velocity up-
date and the second one is position update. The
velocity update formula is given in Eq. (3) [28].

vij = ϵ∗vij+c1∗r1∗(xPb
ij −xij)+c2∗r2∗(xSbij −xij)

(3)

ϵ: Coefficient of inertia
c1: Cognitive coefficient
c2: Social coefficient
r1, r2: Random coefficient(0-1)
xij : Position of particle

xPb
ij : Position of the best particle

xSbij : Position of the best of the swarm

The velocity equation can be handled in three dif-
ferent parts. In the first part, every particle has
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inertia and wants to maintain its motion. The
expression ϵ ∗ vij is used to express this situation.
In the second part, the particle wants to reach its
best position. The expression c1 ∗ r1 ∗ (xPb

ij − xij)
is used to express this situation. In the last part,
the particle seeks to reach the best position of the
swarm. The expression c2 ∗ r2 ∗ (xSbij −xij) is used
to express this. The combination of all these com-
ponents gives us a new velocity. This process is
done for all particles. After the velocity update,
the position update is done.

∆v =
∆x

∆t
=

∆x

1
⇒ ∆v = ∆x (4)

Position update formula is given in Eq. (4). In
this equation, one unit time change in the PSO
algorithm is equal to one iteration cycle. Thus
Eq. (5) is used when updating the position [28].

xij = xij + vij (5)

After the position update, the PSO algorithm
tests the new positions of the swarm to avoid
leaving the determined search space. For points
outside the search space, a correction is made so
that they fall back into the search space. Oth-
erwise, the algorithm may give incorrect results
when it leaves the search space. When the iter-
ation is complete or the PSO algorithm satisfies
the stopping condition, the outputs of the PSO
algorithm are the best solutions for a problem.

4. PI controller design for systems with
fractional order delay and stability
analysis

PID controllers are the most common controller
type in practical systems due to their simple
structure. And, they have been applied to many
complex systems. They are widely used in prac-
tice even today despite significant development
in control theory [13]. A large number of studies
have been carried out to determine appropriate
parameters for these popular controllers and some
methods have been developed in [32–34]. In gen-
eral, the studies to obtain optimum controller
parameters are still in progress and the concept
of the best approach is not yet available. Thus, it
is still a research topic for control engineering. In
this section, PI controller design is presented for
the systems having fractional order time delay.
To obtain stabilizing controller parameters, the
PSO algorithm has been combined with the cen-
troid of the convex stability region concept based

on the stability boundary locus method [33]. To
explain PI controller design procedure, first, we
need to obtain some equations. Consider the sin-
gle input single output (S.I.S.O.) control system
as shown in Figure 1

Figure 1. A S.I.S.O. control system.

where

Gp(s) = G(s)e−(τs)α =
N(s)

D(s)
e−(τs)α (6)

is the plant to be controlled and C(s) is a PI

controller of the form

C(s) = kp +
ki
s

=
kps+ ki

s
(7)

The closed loop characteristic polynomial ∆(s)

of the system of Figure 1, i.e. the numerator of
1 + C(s)Gp(s) can be written as

∆(s) = sD(s) + (kps+ ki)N(s)e−(τs)α (8)

Separating the numerator and the denominator

polynomials of G(s) in Eq. (6) into even and odd
parts, and substituting s = jω in the equation
provides the following

G(jω) =
Ne(−ω2) + jωNo(−ω2)

De(−ω2) + jωDo(−ω2)
(9)

In the rest of the paper, (−ω2) notation will not

be used in the following equations for the simplic-
ity. Using Eq. (10), Eq. (12) can be obtained
instead of Eq. (11).

(jω)α = ωα(cos
π

2
α+ j sin

π

2
α) (10)

e−(sτ)α = e−(jω)ατα (11)

e−[(cos
π
2
α+j sin π

2
α)ωατα]

= e−(cos π
2
α)ωατα−j(sin π

2
α)ωατα

= e−(cos π
2
α)ωατα .e−j(sin π

2
α)ωατα

(12)

Where the first term which is a constant, and
the second term can be written as follows, respec-
tively.

e−(cos π
2
α)ωατα (13)

e−j(sin π
2
α)ωατα (14)

The second term can be rearranged as in Eq. (15).
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e−j(sin π
2
α)ωατα

= cos[(sin π
2α)ω

ατα]− j sin[(sin π
2α)ω

ατα]
(15)

Substituting Eqs. (16) and (17) in Eq. (11) the
closed loop characteristic polynomial of Eq. (8)
can be written as in Eq. (18)

e−(cos π
2
α)ωατα = e−m (16)

ωατα(sin
π

2
α) = n (17)

∆(jω) = −ω2Do − ω2kpNoe
−m cos(n)

+kiNee
−m cos(n) + ωkpNee

−m sin(n)
+ωkiNoe

−m sin(n)
+j[ωkpNee

−m cos(n) + ωkiNoe
−m cos(n)

+ω2kpNoe
−m sin(n)− kiNee

−m sin(n) + ωDe]
(18)

Then, equating the real and imaginary parts of
∆(jω) to zero, one obtains

kp[−ω2Noe
−m cos(n) + ωNee

−m sin(n)]
+ki[Nee

−m cos(n) + ωNoe
−m sin(n)] = ω2Do

(19)

and

kp[ω
2Noe

−m sin(n) + ωNee
−m cos(n)]

+ki[ωNoe
−m cos(n)−Nee

−m sin(n)] = −ωDe

(20)

Eqs. (19) and (20) can be rearranged as follows.

kpX3(ω) + kiX4(ω) = X1(ω) (21)

kpX5(ω) + kiX6(ω) = X2(ω) (22)

Where

X1(ω) = ω2Do (23)

X2(ω) = −ωDe (24)

X3(ω) = −ω2Noe
−m cos(n) + ωNee

−m sin(n)
= e−m[−ω2No cos(n) + ωNe sin(n)]

(25)

X4(ω) = Nee
−m cos(n) + ωNoe

−m sin(n)
= e−m[Ne cos(n) + ωNo sin(n)]

(26)

X5(ω) = ω2Noe
−m sin(n) + ωNee

−m cos(n)
= e−m[ω2No sin(n) + ωNe cos(n)]

(27)

X6(ω) = ωNoe
−m cos(n)−Nee

−m sin(n)
= e−m[ωNo cos(n)−Ne sin(n)]

(28)

From Eqs. (21) and (22), kp and ki can be ob-
tained as in Eqs. (29) and (30).

kp =
X1(ω)X6(ω)−X2(ω)X4(ω)

X3(ω)X6(ω)−X5(ω)X4(ω)
(29)

ki =
X2(ω)X3(ω)−X1(ω)X5(ω)

X3(ω)X6(ω)−X5(ω)X4(ω)
(30)

The stability boundary locus represented as
l(kp, ki, ω) can be obtained in the (kp, ki) plane
using Eqs. (29) and (30) when the denominator
X3(ω)X6(ω) − X5(ω)X4(ω) ̸= 0. It should be
noted that it is necessary to investigate whether
stabilizing controllers exist or not since the stabil-
ity boundary locus l(kp, ki, ω) and the line ki = 0
can divide the (kp, ki) plane into sub-regions as
stable and unstable [33] (Details can be found in
[33,35]).

Using Eqs. (29) and (30), PI controller parame-
ters kp and ki are obtained as follows.

kp =

(ω2NoDo +NeDe) cos(ω
ατα(sin π

2α))
+ω(NoDe −NeDo) sin(ω

ατα(sin π
2α))

−e−(cos π
2
α)ωατα(Ne

2 + ω2No
2)

(31)

ki =

ω2(NoDe −NeDo) cos(ω
ατα(sin π

2α))
−ω(NeDe + ω2NoDo) sin(ω

ατα(sin π
2α))

−e−(cos π
2
α)ωατα(Ne

2 + ω2No
2)

(32)

Exponential functions have an infinite number of
isolated roots [36]. The stability analysis of time
delay systems is difficult. Moreover, when the
system has a fractional order time delay, the sta-
bility analysis becomes much more complicated.
Recently, an approximation method has been pro-
posed in the literature to analyze the stability and
time response of such systems in [12, 37]. Sta-
bility analysis of such systems is possible with
this method. Besides, using this method time
response analysis of these systems can be ob-
tained. The 1st, 2nd and 3rd order approximations
of e−(sτ)α are given in Eqs. (33), (34) and (35),
respectively [12,37].

First order approximation:
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−(sτ)α

2 + 1
(sτ)α

2 + 1
(33)

Second order approximation:

(sτ)2α

12 − (sτ)2α

2 + 1

(sτ)2α

12 + (sτ)2α

2 + 1
(34)

Third order approximation:

− (sτ)2α

120 + (sτ)2α

10 − (sτ)2α

2 + 1

− (sτ)2α

120 + (sτ)2α

10 − (sτ)2α

2 + 1
(35)

The value of α is in the range of 0 ≤ α ≤ 1. In Fig-
ure 2, in order to see the efficiency of this approxi-
mation method, the stability regions are drawn by
taking α = 0.999 and α = 1 in the transfer func-
tion of the system given by (1/(s+1))e−(s)α . Here,
the second order approximation for the fractional
order time delay is used. The higher the approxi-
mation degree, the more the system’s approxima-
tion model will resemble the real system model.
However, the higher the degree of approximation,
the more difficult the system model will be to ana-
lyze. We used the second-order approximation for
the fractional order time delay in Examples 1 and
2. With the help of this approximation method,
analysis related to a system with a fractional or-
der time delay can be made easily. More detailed
information can be found in [12,37].

Figure 2. Stability regions for α = 0.999 and
α = 1 using second order approximation.

5. Numerical examples

5.1. Example 1

Consider the control system of Figure 1 with the
transfer function of Eq. (36)

Gp(s) =
1

s+1e
−
√
s (36)

The characteristic equation of the system without
using PI controller is obtained as follows.

∆(s) = s+ 1 + e−
√
s (37)

This equation can be rearranged as

∆(s) = (
√
s)2 + 1 + e−

√
s (38)

For the stability test of the system in Eq.(36), if
the second order approximation given by Eq.(34)
is substituted for the fractional order time delay
in Eq.(38), the new characteristic equation will be
as in Eq.(39).

∆(s) = (
√
s)2 + 1 +

s
12 − s

2 + 1
s
12 + s

2 + 1
(39)

If Eq.(39) is set to zero, Eq.(40) is obtained.

s2 + 6s
√
s+ 14s+ 24 = 0 (40)

In Eq.(40), the q =
√
s transform is performed

to find the roots of the characteristic equation.
Thus, the following equation is obtained.

q4 + 6q3 + 14q2 + 24 = 0 (41)

The roots of Eq.(41) are obtained as follows.
q1,2 = −3.2937± 2.3575i = 4.0504∠± 144.406
q3,4 = 0.2937± 1.1733i = 1.2095∠± 75.9465

The roots of the characteristic equation are shown
in Figure 3. As seen from the figure, the system is
stable. (Details about the stability can be found
in [37]).

Figure 3. Roots of the characteristic equation
in q =

√
s plane.

As stated before, conventional stability test meth-
ods such as Routh-Hurwitz cannot be applied to
the analysis of distributed systems whose transfer
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functions are irrational in s. However, to inves-
tigate the stability of fractional order systems,
geometric techniques based on the principle of ar-
gument can be applied. These techniques provide
information about the number of singularities
of the function by observing the development of
the function’s argument. The argument princi-
ple (Nyquist diagram) is a curve surrounding the
right half plane of the Riemann main sheet [38],
the stability of the system can be obtained by
determining the number of cycles of this curve
around the origin.

The Nyquist curve of the system has been shown
in Figure 4. As seen from Figure 4, the system
is stable because it does not include critical point
(-1, j0). The Nyquist curves for different values
of α, and constant value of τ = 1 are presented in
Figure 5. As seen from Figure 5, while the value
of α increases for constant τ , i.e., it gets closer
to 1, a curve similar to the time delay (e−s) in
the classical calculation is obtained. The Nyquist
curves for different values of τ , and constant value
of α = 0.9 are given in Figure 6. It can be seen
from Figure 6, when τ increases for the constant
value of α, the Nyquist curve approaches to the
critical point (-1, j0).
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Figure 4. Nyquist diagram of Example 1.
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Figure 5. Nyquist diagram of Example 1 for dif-
ferent values of α, and fixed τ = 1.
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Figure 6. Nyquist diagram of Example 1 for dif-
ferent values of τ , and fixed α = 0.9.

To compute all stabilizing PI controllers for the
system, kp and ki are obtained as follows.

kp =
cos(0.707ω0.5)− ω sin(0.707ω0.5)

−e−0.707ω0.5 (42)

ki =
−ω2 cos(0.707ω0.5)− ω sin(0.707ω0.5)

−e−0.707ω0.5 (43)

Stability region and unit step responses for the
system can be seen in Figures 7 and 8, respec-
tively. Any point selected within the stability
region guarantees system stability. However, in
order to ensure a good result in terms of system
performance, it is necessary to determine new cri-
teria to choose controller parameters from the sta-
bility region. For this purpose, a tuning method
presented in [17] is used. Thus, a triangular re-
gion which is known as convex stability region has
been determined in the stability curve as shown
in Figure 7. In this region, the optimum point
search is made with the PSO algorithm. In the
PSO algorithm, the number of swarms is taken
as 100 and the number of iterations is taken as
300. The number of swarms and the number of
iterations are obtained by trial and error method
according to the ITAE performance index.
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Figure 7. Stability Region and convex stability
region of Example 1

Step responses of Example 1 are shown in Fig-
ure 8. As seen in Figure 8, the PSO algorithm
provides a very good result.

Figure 8. Unit step responses of Example 1
for kp = ki = 5 and PSO parameters kp =
6.0417, ki = 2.3146.

Using a PI controller in Example 1, the charac-
teristic equation is given by Eq.(44) when kp =
ki = 5.

s3+6s2
√
s+18s2− 24s

√
s+77s− 30

√
s+60 = 0

(44)

Substituting q =
√
s in Eq.(44), Eq.(45) is found.

q6+6q5+18q4−24q3+77q2−30q+60 = 0 (45)

The roots are obtained as follows.

q1,2 = −3.8401± 3.6049i = 5.2670∠± 136.8094
q3,4 = 0.8401± 1.2071i = 1.4707∠± 55.1634
q5,6 = 0± i = 1∠± 90

The roots of the system are shown in Figure 9.
As seen in Figure 9, the system is stable.

Figure 9. The roots of the PI controlled system.

5.2. Example 2

Consider the fractional order control system of
Figure 1 with the transfer function of Eq.(46).

Gp(s) =
1

s1.5 + 1
e−

√
s (46)

The characteristic equation of the system without
controller is obtained as

∆(s) = s1.5 + 1 + e−
√
s (47)

This equation can be rearranged as follows.

∆(s) = (
√
s)3 + 1 + e−

√
s (48)

The Nyquist plot of Example 2 is shown in Fig-
ure 10. As seen from Figure 10, the system is
stable since it does not include critical point (-1,
j0). The stability region is shown in Figure 11.
The triangular region under the stability curve is
also obtained for Example 2. As shown in Figure
11, the PSO algorithm has been searched for the
optimum point within the triangular region. The
swarm number of the PSO algorithm was taken
as 100 and the number of iterations was taken
as 300. ITSE performance index was used as a
fitness function. The unit step changes of the
system for kp = 1, ki = 0.7 and PSO parameters
kp = 0.229, ki = 0.4267 are given in Figure 12. As
seen from this figure, the PSO algorithm provides
a better result than the selected point.
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Figure 10. Nyquist Diagram for Example 2

Figure 11. Stability region for Example 2

Figure 12. Unit step responses of Example
2 for kp = 1, ki = 0.7 and PSO parameters
kp = 0.229, ki = 0.4267

6. Conclusion

In this paper, stability analysis and PI controller
design for the systems with fractional order time
delay are presented. it is known that analysis of
the stability and time response of systems having

fractional order delay is not possible using classi-
cal methods. To overcome this difficulty, an ap-
proximation method to investigate the stability
of such systems is used. Using this approxima-
tion method, time response analysis can also be
made for these systems. As for PI controller de-
sign part, a new tuning algorithm is aimed. This
tuning method uses the PSO algorithm under the
stability region. Thus, it has been shown that op-
timum PI controller parameters can be obtained
with the PSO algorithm. This tuning method
provides very good results as seen from the nu-
merical examples. For future works, tuning of
different controller types such as fractional order
PI, PD and PID can be investigated for systems
having fractional order delay. Since the reported
studies are very restricted for such systems, these
investigations would be very important.
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Yayınevi, Izmir, TR, 249-278.

[18] Lazarevic, M., Rapaic, M. & Sekara, T.
(2014). Introduction to fractional calculus
with brief historical background . In: V.
Mladenov, & N. Mastorakis, eds. Advanced
Topics on Applications of Fractional Calcu-
lus on Control Problems, System Stability and
Modeling. WSEAS Press, 3-16.

[19] Yusuf, A., Qureshi, S., Mustapha, U.T.,
Musa, S.S., & Sulaiman, T.A. (2022). Frac-
tional modeling for improving scholastic per-
formance of students with optimal control. In-
ternational Journal of Applied and Computa-
tional Mathematics, 8(1).

[20] Muresan, C.I., & Ionescu, C.M. (2020). Gen-
eralization of the FOPDT model for identifi-
cation and control purposes. Processes, 8(6),
682.

[21] Ucar, E., Ucar, S., Evirgen, F., & Ozdemir,
N. (2021). A Fractional SAIDR model in the
frame of Atangana-Baleanu derivative. Frac-
tal and Fractional, 5, 32.

[22] Evirgen, F. (2023). Transmission of Nipah
virus dynamics under Caputo fractional de-
rivative. Journal of Computational and Ap-
plied Mathematics, 418, 114654.

[23] Lorenzo, C.F., & Hartley, T.T. (2002). Vari-
able order and distributed order fractional op-
erators. Nonlinear Dynamics, 29, 57–98.

[24] Podlubny, I. (1999). Fractional-order systems
and PIλDµ controllers. IEEE Transactions
on Automatic Control, 44(1), 208–214.
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1. Introduction

Functional differential equations (FDEs) which
include delay differential equations and differen-
tial integral equations have been studied for at
least 200 years. However, especially, it can be
seen from the relevant literature that during the
last seven decades numerous qualitative behav-
iors of various FDEs, in particular, delay deferen-
tial equations have been studied extensively and
they are still being investigated by researchers. It
is known that UAS, exponential stability, insta-
bility, integrability and boundedness of solutions
are the most important fundamental properties
of FDEs and ODEs. There are many publica-
tions on fundamental properties of solutions of
FDEs, ODEs and so on. We cite here the pa-
pers [1–6], [7–9], [10], [11–31] and the books of
( [32], [33–39]) fully or partially devoted to fun-
damental motions of trajectories of solutions of
these classes of equations. In particular, UAS
and boundedness of solutions at the infinity de-
scribe long time behaviors of solutions. Addition-
ally, during the applications of FDEs and ODEs

in control theory, engineering, medicine, etc., usu-
ally it is necessary to know qualitative estimates
of solutions such as instability, integrability, ex-
ponentially stability and so on.

We would like to summarize two recent works of
AS, UAS and some other fundamental motions of
solutions of DDEs. Recently, Tian and Ren [13]
took into consideration the below system of linear
DDEs:

dx

dt
= Ax(t) +Bx(t− h(t)). (1)

In [13, Theorem 1], an LKF was defined for the
system (1) and based on that LKF, a theorem
was proved on the AS of the zero solution of (1).
In [13], the method of proof is depending upon
the definition of a very interesting suitable LKF.

Later, Tunç et al. [23] dealt with the nonlinear
system of DDEs:

dx

dt
=A(t)x(t) +BF (x(t− h(t)))

+ E(t, x(t), x(t− h(t))). (2)

In [23], three theorems, which have sufficient con-
ditions, were proved on the UAS and integrability
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of solutions, when E(.) ≡ 0 in (2), and the bound-
edness of the solutions of (2), when E(.) ̸= 0. In
[35], the method used in the proofs is based on
the definitions of two suitable LKFs. For some
interesting recent and applicable results on the
fractional mathematical models, see [40–43].

In this article, by the virtue of the systems of
DDEs (1) and (2), the related ones in the refer-
ences of this paper and literature, we deal with
the following nonlinear system of DDEs:

dx

dt
=A(t)x(t) +G(x(t)) +H(t, x(t))

+BF (x(t− h(t))) +Q(t, x(t), x(t− h(t))),
(3)

where x ∈ Rn, t ∈ R+, R+ = [0,∞),
h(t) ∈ C1(R+, (0,∞)), A(t) ∈ C(R+,Rn×n),
G ∈ C(Rn,Rn),G(0) = 0, H ∈ C(R+ × Rn,Rn),
H(t, 0) = 0,B ∈ Rn×n, F ∈ C(Rn,Rn), F (0) = 0,
Q ∈ C(R+ ×Rn ×Rn,Rn) and the variable delay
h(t) of (3) fulfills the inequalities:

0 ≤ h1 ≤ h(t) ≤ h2,

h12 = h2 − h1,

0 ≤ h′(t) ≤ h0 < 1. (4)

We would now like to explain the objectives of
this paper.

1) In this paper, Theorem 1, Theorem 4
and Theorem 2 dealt with UAS, instabil-
ity and integrability of solutions nonlinear
system of DDEs (5):

dx

dt
=A(t)x(t) +G(x(t)) +H(t, x(t))

+BF (x(t− h(t))). (5)

2) The ES of the following system of ODEs
was discussed by Theorem 3, when
BF (x(t− h(t))) ≡ 0 in (5):

dx

dt
= A(t)x(t) +G(x(t)) +H(t, x(t)). (6)

3) Theorem 5 dealt with the bounded solu-
tions of the perturbed system (3).

4) In particular cases of the considered sys-
tems, four new examples are designed to
show applications of Theorems 1-5.

2. Basic information

Assume that C0 = C0([−τ, 0], Rn),τ > 0, is the
space of continuous functions ϕ : [−τ, 0] → Rn.
For any a ∈ R, a ≥ 0, ∀t0 ≥ 0 and x ∈
C0([t0 − τ, t0 + a], Rn), let xt = x(t + θ) when
−τ ≤ θ ≤ 0 and t ≥ t0.

Let x ∈ Rn. The norm ∥.∥ is defined as ∥x∥ =
n∑

i=1
|xi|. Additionally, the matrix norm ∥A∥ is de-

fined as ∥A∥ = max
1≤j≤n

(
n∑

i=1
|aij |

)
, where A ∈

Rn×n.

For any ϕ ∈ C0, let

∥ϕ∥C0
= sup

θ∈[−τ,0]
∥ϕ(θ)∥ = ∥ϕ(θ)∥[−τ,0]

and

CH = {ϕ : ϕ ∈ C0 and ∥ϕ∥C0
≤ H < ∞}.

In this article, without mention, let x(t) represent
x.

3. Stability and integrability

Let Q(.) = 0. Hence, we now have the nonlinear
system of DDEs (5).

A. Assumptions

(H1) Let aA ∈ R, aA > 0 with

aii(t) +
n∑

j=1,j ̸=i

|aji(t)| ≤ −aA for all t ∈ R+;

(H2) There exist positive constants h0 and aA
from (3) and (H1), respectively, and fF ,
gG, hH , K2 > 0 such that

∥F (u)− F (v)∥ ≤ fF ∥u− v∥ ,
∀u, v ∈ Rn, F (0) = 0,

sgnxiGi(x) < 0

as

xi ̸= 0,∀x ∈ Rn, G(0) = 0,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0,∀t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ , ∀t ∈ R+ and x ∈ Rn,

(aA + gG + hH)(1− h0)− fF ∥B∥ ≥ K2.

Theorem 1. We suppose that conditions (H1)
and (H2) are held. Then, trivial solution of (5) is
UA stable.

Proof. We define an LKF ∆1 := ∆1(t, xt) by

∆1(t, xt) := ∥x(t)∥+ γ

t∫
t−h(t)

∥F (x(s))∥ ds, (7)

where γ ∈ R, γ > 0, it will be chosen after some
calculations.
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From the LKF (7), we have

∆1(t, xt) := |x1(t)|+ ...+ |xn(t)|+ γ

t∫
t−h(t)

|f1(x(s))|ds

+ ...+ γ

t∫
t−h(t)

|fn(x(s))|ds.

According to the LKF of (7), it satisfies that

∆1(t, 0) = 0, γ1 ∥x∥ ≤ ∆1(t, xt),

where
γ1 ∈ (0, 1), γ1 ∈ R,

Let γ2 ≥ 1, γ2 ∈ R , and define

Z1(t, xt) :=

t∫
t−h(t)

∥F (x(s))∥ ds.

Next, we have

γ1 ∥x∥+γZ1(t, xt) ≤ ∆1(t, xt) ≤ γ2 ∥x∥+γZ1(t, xt).

Using condition (H2) and some simple evalua-
tions, we find that

∥∆1(t, xt)−∆1(t, yt)∥
≤ ∥x(t)− y(t)∥
+ γFfh2 sup

t−h(t)≤s≤t
∥x(s)− y(s))∥

≤ M0 sup
t−h(t)≤s≤t

∥x(s)− y(s)∥ ,

where
M0 := 1 + γFfh2.

According to the above inequality, it is followed
that

|∆1(t, xt)−∆1(t, yt)| ≤ M0∥x(s)− y(s)∥[t−h(t),t].

Thus, the locally Lipschitz condition in xt is sat-
isfied by the LKF ∆1(t, xt). Thus, condition (A1)
of ( [32, Theorem 4.2.9], Tunç et al. [23, Theorem
1]) is held.

For the next step, by virtue of the definition of
Z1(t, xt) and condition (H2), we have

Z1(t, xt) =

t∫
t−h(t)

∥F (x(s))∥ ds

≤fFh(t) sup
t−h(t)≤s≤t

∥x(s)∥

≤fFh2 sup
t−h(t)≤s≤t

∥x(s)∥ .

Using some simple calculations and condition
(H2), we have

Z1(t2, xt)− Z1(t1, xt) =

t2∫
t2−h(t2)

∥F (x(s))∥ ds

−
t1∫

t1−h(t1)

∥F (x(s))∥ ds

=

t2∫
t1

∥F (x(s))∥ ds−
t2−h(t2)∫

t1−h(t1)

∥F (x(s))∥ds

≤
t2∫

t1

∥F (x(s))∥ ds

≤fF sup
t1≤s≤t2

∥x(s)∥ (t2 − t1) = M(t2 − t1),

M1 = fF sup
t1≤s≤t2

∥x(s)∥ , 0 < t1 < t2 < ∞.

The obtained inequality demonstrates that the
second condition, i.e., (A2), of ( [32, Theorem
4.2.9], Tunç et al. [23, Theorem 1]) is satisfied.

The differentiating the LKF ∆1(t, xt) of (7) and
taking into account (5), we arrive that

d

dt
∆1(t, xt) =

n∑
i=1

x′i(t)sgnxi(t+ 0) + γ ∥F (x(t))∥

− γ(1− h′(t)) ∥F (x(t− h(t)))∥ .
(8)

By virtue of conditions (H1) and (H2), we obtain
n∑

i=1

sgnxi(t+ 0)x′i(t)

≤
n∑

i=1

aii(t) +

n∑
j=1,j ̸=i

|aji(t)|

 |xi(t)|

− ∥G(x(t))∥ − ∥H(t, x(t))∥
+ ∥B∥ ∥F (x(t− h(t)))∥

≤ − (aA + gG + hH) ∥x(t)∥
+ ∥B∥ ∥F (x(t− h(t)))∥ . (9)

Thereby, putting the inequality (9) into (8) and
using the condition 0 ≤ h′(t) ≤ h0 < 1, we have

d

dt
∆1(t, xt) ≤− aA ∥x(t)∥ − gG ∥x(t)∥ − hH ∥x(t)∥

+ ∥B∥ ∥F (x(t− h(t)))∥
+ γ ∥F (x(t))∥
− γ(1− h′(t)) ∥F (x(t− h(t)))∥

≤ − (aA + gG + hH) ∥x(t)∥
+ ∥F (x(t− h(t)))∥ ∥B∥
+ γfF ∥x(t)∥
− γ(1− h0) ∥F (x(t− h(t)))∥ .
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Let γ = ∥B∥ (1− h0)
−1. Then, it follows that

d

dt
∆1(t, xt)

≤−
[
(aA + gG + hH)− (1− h0)

−1fF ∥B∥
]
∥x(t)∥

=− 1

1− h0
[(aA + gG + hH)(1− h0)− fF ∥B∥] ∥x(t)∥ .

Using the condition (H2), clearly, we have

d

dt
∆1(t, xt) ≤ −K2 ∥x(t)∥ < 0, ∥x(t)∥ ≠ 0.

(10)
Thus, it is obvious that d

dt∆1(t, xt) is negative def-
inite. From the inequality (10), it follows that as-
sumption (A3) of ( [32, Theorem 4.2.9], Tunç et
al. [23, Theorem 1]) is satisfied. Thus, all the as-
sumptions of ( [32, Theorem 4.2.9], Tunç et al. [23,
Theorem 1]) are held. Hence, the zero solution of
(5) is UA stable. □

Theorem 2. If the conditions (H1) and (H2)
are held, then the solutions of (5) satisfies that
∞∫
t0

∥x(s)∥ds < ∞.

Proof. As in the proof of the above first theo-
rem, we utilize the LKF ∆1(t, xt). According to
conditions (H1) and (H2) we have

d

dt
∆1(t, xt) ≤ −K2 ∥x(t)∥ .

This result confirms that the LKF ∆1(t, xt) is de-
creasing, i.e.,

∆1(t, xt) ≤ ∆(t0, ϕ(t0)) for all t ≥ t0.

Integrating this inequality, it follows that

K2

t∫
t0

∥x(s)∥ds ≤ ∆(t0, ϕ(t0))−∆1(t, xt) ≤ K3,

t ≥ t0,

where K3 = ∆(t0, ϕ(t0)). Then,

t∫
t0

∥x(s)∥ds ≤ K−1
2 ∆(t0, ϕ(t0)) ≡ K−1

2 K3.

Let t → +∞ . Hence,
∞∫

t0

∥x(s)∥ds ≤ K−1
2 K3 < ∞.

Thus, the proof of Theorem 2 is finished. □

Example 1. Let us take into account the below
system of non-linear DDEs:(

x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)(
x1
x2

)

+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)

+

(
3 2
2 3

)(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
,

(11)

where h(t) = 1
2 |arctan t| is the delay function,

t ≥ 2−1π.

A comparison between the systems of DDEs (11)
and DDEs (5) gives that

A(t) =

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
.

By the virtue of the matrix A(t), we derive that

aii(t) +
n∑

j=1,j ̸=i

|aji(t)| = −25 < −24 = −aA

because of

a11(t) + |a21(t)| = −25− 1

1 + t4
+

1

1 + t4

= −25 < −24 = −aA

and

a22(t) + |a12(t)| = − 1

1 + t4
− 25 +

1

1 + t4

= −25 < −24 = − aA.

Hence,

aii(t) +
2∑

j=1,j ̸=i

|aji(t)| < −aA = −24, ∀t ∈ R+.

As for the next step, we get

G(x) = G(x1, x2) =

(
G1(x1, x2)
G2(x1, x2)

)
=

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)
,

sgnx1G1(x) = sgnx1G1(x1, x2)

= −2x21 −
x21

1 + x21
< 0, x1 ̸= 0,

sgnx2G2(x) = sgnx2G2(x1, x2)

= −2x22 −
x22

1 + x22
< 0, x2 ̸= 0,

∥G(x)∥ = ∥G(x1, x2)∥ =

∥∥∥∥( G1(x1, x2)
G2(x1, x2)

)∥∥∥∥
=

∥∥∥∥∥
(

−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)∥∥∥∥∥
=

∣∣∣∣−2x1 −
x1

1 + x21

∣∣∣∣+ ∣∣∣∣−2x2 −
x2

1 + x22

∣∣∣∣
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≥ 2 |x1| −
|x1|

1 + x21
+ 2 |x2| −

|x2|
1 + x22

≥ |x1|+ |x2| = ∥x∥ , gG = 1 > 0.

Additionally, we have

H(t, x) = H(t, x1, x2)

=

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)
sgnx1H1(t, x) = sgnx1H1(t, x1, x2)

= −2x21 −
x21

1 + exp(t) + x21
< 0, x1 ̸= 0,

sgnx2H1(t, x) = sgnx2H1(t, x1, x2)

= −2x22 −
x22

1 + exp(t) + x22
< 0, x2 ̸= 0.

∥H(t, x)∥ = ∥H(t, x1, x2)∥

=

∥∥∥∥∥
(

−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)∥∥∥∥∥
=

∣∣∣∣−2x1 −
x1

1 + exp(t) + x21

∣∣∣∣
+

∣∣∣∣−2x2 −
x2

1 + exp(t) + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + exp(t) + x21

+ 2 |x2| −
|x2|

1 + exp(t) + x22
≥ |x1|+ |x2| = ∥x∥ , hH = 1 > 0.

B =

(
3 2
2 3

)
, ∥B∥ = 5.

F (x(t− 1

2
|arctg(t)|)

= F (x1(t−
1

2
|arctg(t)| , x2(t−

1

2
|arctg(t)|)

=

(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
F (0) = 0, h(t) =

1

2
|arctan(t)| .

Let

u = x(t− 1

2
|arctan(t)| , v = y(t− 1

2
|arctan(t)| ,

u1 = x1(t−
1

2
|arctan(t)|), v1 = y1(t−

1

2
|arctan(t)|),

and

u2 = x2(t−
1

2
|arctan(t)|)

v2 = y2(t−
1

2
|arctan(t)|), t ≥ π

2
.

Then,

∥F (u)− F (v)∥ = ∥F (u1, u2)− F (v1, v2)∥

=

∥∥∥∥( sinu1 − sin v1
sinu2 − sin v2

)∥∥∥∥
= |sinu1 − sin v1|+ |sinu2 − sin v2|

≤ 2

∣∣∣∣u1 − v1
2

∣∣∣∣+ 2

∣∣∣∣u2 − u2
2

∣∣∣∣
= ∥u− v∥ , fF = 1.

As for the variable delay h = h(t),

h(t) =
1

2
|arctan(t)| ,

0 < 0.001 = h1 =
1

2
|arctan(t)| ≤ π

4
= h2,

h12 = h2 − h1 =
π
4 − 0.001,

h′(t) =
1

2 + 2t2
,

0 ≤ h′(t) ≤ 1

2
= h0 < 1.

Next, we derive that

(aA + gG + hH)(1− h0)− fF ∥B∥
= (24 + 1 + 1)(1− 2−1)− 5 = 13− 5 = 8 ≥ K2.

By the virtue of the above estimates, it follows that
the conditions (H1) and (H2) of Theorem 1 are
held. For this reason, the solution (x1(t), x2(t)) =
(0, 0) of the system of DDEs (11) is UA sta-
ble. Furthermore, ∥x(t)∥, the norm of solutions
of (11) are integrable.

B. Assumption

For the exponentially stability of the system of
ODEs (6), we need the below conditions.

(H3) There exist constants h0 from (4), aA from
(H1), and fF > 0, gG > 0, H0 > 0,
K2 > 0, eE > 0 such that

G(0) = 0, sgnxiGi(x) < 0asxi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and x ∈ Rn ,

(aA + gG + hH) ≥ eE .

Theorem 3. We suppose that conditions (H1)
and (H3) are held. Then the trivial solution of
the system (6) is exponentially stable.

Proof. Define a Lyapunov function (LF) ∆2 :=
∆2(t, x) by

∆2(t, x) := ∥x(t)∥ . (12)

This function is equivalent to

∆2(t, x) := |x1(t)|+ ...+ |xn(t)| .
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From this point of view, we see that the LF
∆2(t, x) is positive definite. The derivative of the
LF ∆2(t, x) of (12) along the system of ODEs (6)
gives that

d

dt
∆2(t, x) =

n∑
i=1

x′i(t)sgnxi(t+ 0).

Using conditions (H1), (H3) and doing some sim-
ple calculations, we obtain

n∑
i=1

sgnxi(t+ 0)x′i(t)

≤
n∑

i=1

aii(t) +
n∑

j=1,j ̸=i

|aji(t)|

 |xi(t)|

− ∥G(x(t))∥ − ∥H(t, x(t))∥
≤ − (aA + gG + hH) ∥x(t)∥
=− (aA + gG + hH)∆2(t, x).

Hence,

d

dt
∆2(t, x) ≤ − (aA + gG + hH)∆2(t, x)

Integrating the last inequality, we derive that

∥x(t)∥ = ∆2(t, x(t))

≤ ∆2(t0, x(t0)) exp [− (aA + gG + hH)] (t− t0) .

According to this inequality,

∥x(t)∥ ≤∆2(t0, x(t0))

× exp [− (aA + gG + hH)] (t− t0) , t ≥ t0.

This inequality verifies that the zero solution of
(6) is exponentially stable. □

Example 2. Consider the following two dimen-
sional system of non-linear ODEs, which is a spe-
cial case of (6):

(
x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
×
(

x1
x2

)
+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)
(13)

A comparison between the systems of ODEs (13)
and ODEs (6) gives that BF (x(t − h(t))) ≡
0.Next, A(t), G(x(t))and H(t, x(t)) are the same
as in Example 1. The estimates for the functions
A(t), G(x(t)) and H(t, x(t)) remain the same and
correct. As for the final step for this example, it
follows that

(aA + gG + hH) = (24 + 1 + 1) = 26 > 25 = eE .

According to the above discussions, it follows that
conditions (H1) and (H3) of Theorem 3 are sat-
isfied. Thus, the solution (x1(t), x2(t)) = (0, 0) of
the system of ODEs (13) is exponentially stable.

4. Instability

C. Assumption

As for the instability of (5), we need the below
conditions.

(H4) There exists a constant positive constant
āA such that

aii(t)−
n∑

j=1,j ̸=i

|aji(t)| ≥ āA for all t ∈ R+.

(H5) There exist constants h0 from (4), āA from
(H4) and fF > 0, gG > 0, H0 > 0, K2 > 0
such that

F (0) = 0, ∥F (v)∥ ≤ fF ∥v∥ for allv ∈ Rn,

G(0) = 0, sgnxiGi(x) > 0 as xi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) > 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and x ∈ Rn,

āA + gG + hH − (1− h0)
−1fF ∥B∥ > 0.

Theorem 4. We suppose that conditions (H4)
and (H5) are held. Then, the trivial solution of
the system of DDEs (5) is unstable.

Proof. Define a new LKF ∆3 := ∆3(t, xt) by

∆3(t, xt) := ∥x(t)∥ − γ1

t∫
t−h(t)

∥F (x(s))∥ ds, (14)

where γ1 ∈ R, γ1 > 0. It will be determined at
the below.

Next, the LKF (14) is equivalent to

∆3(t, xt) := |x1(t)|+ ...+ |xn(t)|

− γ1

t∫
t−h(t)

|f1(x(s))|ds− ...− γ1

t∫
t−h(t)

|fn(x(s))|ds.
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From this point of view, the LKF ∆3(t, xt) satis-
fies the following relation:

∆3(t, xt) ≥ ∥x(t)∥ − γ1fF

t∫
t−h(t)

∥(x(s))∥ ds

≥ ∥x(t)∥ − γ1fFh(t) sup
t−h(t)≤s≤t

∥x(s)∥

≥ ∥x(t)∥ − γ1fFh1 sup
t−h(t)≤s≤t

∥x(s)∥

= [1− γ1fFh1] sup
t−h(t)≤s≤t

∥x(s)∥ > 0

provided that ∥x(t)∥ = sup
t−h(t)≤s≤t

∥x(s)∥, h1 <

(γ1fF )
−1 and ∥x(t)∥ ≠ 0.

Next, the differentiating the LKF ∆3(t, xt) of (14)
along (5) leads that

d

dt
∆3(t, xt) =

n∑
i=1

x′i(t)sgnxi(t+ 0)− γ ∥F (x(t))∥

+ γ ∥F (x(t− h(t)))∥ × (1− h′(t)).
(15)

For the first term of (15), using conditions
(H4), (H5) and doing some elementary calcula-
tions, we obtain

n∑
i=1

sgnxi(t+ 0)x′i(t)

≥
n∑

i=1

aii |xi(t)| −
n∑

i=1

n∑
j=1,j ̸=i

|aji| |xi(t)|

+
n∑

i=1

Gi(x(t))sgnxi(t+ 0)

+
n∑

i=1

Hi(t, x(t))sgnxi(t+ 0)

−
n∑

i=1

n∑
j=1

|bij | |Fj(x(t− h(t)))|

=
n∑

i=1

aii(t)−
n∑

j=1,j ̸=i

|aji(t)|

 |xi(t)|

+ ∥G(x(t))∥+ ∥H(t, x(t))∥
− ∥B∥ ∥F (x(t− h(t)))∥

≥āA ∥x(t)∥+ gG ∥x(t)∥+ hH ∥x(t)∥
− ∥B∥ ∥F (x(t− h(t)))∥ . (16)

Combining the inequalities (15), (16) and using
the condition 0 ≤ h′(t) ≤ h0 < 1, we derive that

d

dt
∆3(t, xt) ≥ āA ∥x(t)∥+ gG ∥x(t)∥+ hH ∥x(t)∥

− ∥B∥ ∥F (x(t− h(t)))∥ − γ1 ∥F (x(t))∥

+ γ1 ∥F (x(t− h(t)))∥ × (1− h′(t))

≥ (āA + gG + hH ) ∥x(t)∥
− ∥B∥ ∥F (x(t− h(t)))∥
− γ1fF ∥x(t)∥+ γ1(1− h0) ∥F (x(t− h(t)))∥ .

Let γ1 = (1− h0)
−1 ∥B∥. Then,

d

dt
∆3(t, xt) ≥

(
āA + gG + hH − (1− h0)

−1fF ∥B∥
)

× ∥x(t)∥ > 0.

Thus, the zero solution of the nonlinear system of
DDEs (5) is unstable. □

Example 3. Let us consider the system:(
x′1
x′2

)
=

(
25 + 1

1+t4
1

1+t4
1

1+t4
25 + 1

1+t4

)(
x′1
x′2

)
+

(
2x1 +

x1

1+x2
1

+2x2 +
x2

1+x2
2

)

+

(
3 2
2 3

)(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
,

(17)
where h(t) = 1

2 |arctan t| is the delay function,

t ≥ 2−1π.

A comparison between the systems of DDEs (17)
and DDEs (5) gives that

A(t) =

(
25 + 1

1+t4
1

1+t4
1

1+t4
25 + 1

1+t4

)
.

By the virtue of the matrix A(t), we derive that

aii(t)−
n∑

j=1,j ̸=i

|aji(t)| ≥ 25 = āA

since
a11(t)− |a21(t)|

= 25 +
1

1 + t4
− 1

1 + t4
≥ 25 = āA

and

a22(t)−|a12(t)| =
1

1 + t4
+25− 1

1 + t4
≥ 25 = āA.

Hence,

aii(t)−
2∑

j=1,j ̸=i

|aji(t)| ≥ āA = 25, ∀t ∈ R+.

As for the next step, we get

G(x) = G(x1, x2)

=

(
G1(x1, x2)
G2(x1, x2)

)
=

(
2x1 +

x1

1+x2
1

2x2 +
x2

1+x2
2

)
sgnx1G1(x) = sgnx1G1(x1, x2)

= 2x21 +
x21

1 + x21
> 0, x1 ̸= 0,
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sgnx2G2(x) = sgnx2G2(x1, x2)

= 2x22 +
x22

1 + x22
> 0, x2 ̸= 0,

∥G(x)∥ = ∥G(x1, x2)∥

=

∥∥∥∥( G1(x1, x2)
G2(x1, x2)

)∥∥∥∥ =

∥∥∥∥∥
(

2x1 +
x1

1+x2
1

2x2 +
x2

1+x2
2

)∥∥∥∥∥
=

∣∣∣∣2x1 + x1
1 + x21

∣∣∣∣+ ∣∣∣∣2x2 + x2
1 + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + x21

+ 2 |x2| −
|x2|

1 + x22
≥ |x1|+ |x2| = ∥x∥ , gG = 1 > 0.

Additionally, we have

H(t, x) = H(t, x1, x2)

=

(
2x1 +

x1

1+exp(t)+x2
1

2x2 +
x2

1+exp(t)+x2
2

)
,

sgnx1H1(t, x) = sgnx1H1(t, x1, x2)

= 2x21 +
x21

1 + exp(t) + x21
> 0, x1 ̸= 0,

sgnx2H1(t, x) = sgnx2H1(t, x1, x2)

= 2x22 +
x22

1 + exp(t) + x22
> 0, x2 ̸= 0.

∥H(t, x)∥ = ∥H(t, x1, x2)∥

=

∥∥∥∥∥
(

2x1 +
x1

1+exp(t)+x2
1

2x2 +
x2

1+exp(t)+x2
2

)∥∥∥∥∥ ,
=

∣∣∣∣2x1 + x1
1 + exp(t) + x21

∣∣∣∣
+

∣∣∣∣2x2 + x2
1 + exp(t) + x22

∣∣∣∣
≥ 2 |x1| −

|x1|
1 + exp(t) + x21

+ 2 |x2| −
|x2|

1 + exp(t) + x22
≥ |x1|+ |x2|
= ∥x∥ , hH = 1 > 0.

B =

(
3 2
2 3

)
, ∥B∥ = 5.

F (x(t− 1

2
|arctg(t)|)

= F (x1(t−
1

2
|arctg(t)| , x2(t−

1

2
|arctg(t)|)

=

(
sinx1(t− 1

2 |arctan(t)|)
sinx2(t− 1

2 |arctan(t)|)

)
F (0) = 0, h(t) =

1

2
|arctan(t)| .

Let

u = x(t− 1

2
|arctan(t)| , u1 = x1(t−

1

2
|arctan(t)|)

and

u2 = x2(t−
1

2
|arctan(t)|), t ≥ π

2
.

∥F (u)∥ = ∥F (u1, u2)∥ =

∥∥∥∥( sinu1
sinu2

)∥∥∥∥
= |sinu1|+ |sinu2|

≤ |u1|+ |u2|
= ∥u∥ ,
fF = 1.

As for the variable delay

h = h(t) =
1

2
|arctan(t)| ,

the verifications in Example 1 for this function
are the same there, too.

Finally, we have that

(āA + gG + hH)(1− h0)− fF ∥B∥
= (25 + 1 + 1)(1− 2−1)− 5

= 13.5− 5 = 8.5 > 0.

By the virtue of the above estimates, it follows
that the conditions (H4) and (H5) of Theorem
4 are satisfied. For this reason, the solution
(x1(t), x2(t)) = (0, 0) of the system of DDEs (17)
is unstable.

5. Boundedness

For the bounded solutions of (3), we need to mod-
ify condition (H2) as the below:

(H6) There exist positive constants h0 and
aA from (4) and (H1), respectively, fF ,
gG, hH and a continuous function qQ ∈
C(R,R) such that

F (0) = 0,

∥F (u)− F (v)∥ ≤ fF ∥u− v∥ for all u, v ∈ Rn,

G(0) = 0, sgnxiGi(x) < 0

as

xi ̸= 0, for all x ∈ Rn,

∥G(x)∥ ≥ gG ∥x∥ for all x ∈ Rn,

H(t, 0) = 0, sgnxiHi(t, x) < 0

as

xi ̸= 0, for all t ∈ R+ and x ∈ Rn,

∥H(t, x)∥ ≥ hH ∥x∥ for all t ∈ R+ and
x ∈ Rn,

∥Q(t, x(t), x(t− h(t)))∥ ≤ |qQ(t)| ∥x(t)∥ ,
(aA + gG + hH − |qQ(t)|)
×(1− h0)− fF ∥B∥ ≥ 0.
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Theorem 5. If conditions (H1) and (H6) are
held, then the solutions of the system of DDEs
(3) are bounded as t → +∞ .

Proof. By virtue of conditions (H1), (H6) and
the LKF ∆1(t, xt), we derive that

d

dt
∆1(t, xt) ≤− 1

1− h0

[
(aA + gG + hH)(1− h0)

−fF ∥B∥
]
∥x(t)∥

+ ∥Q(t, x(t), x(t− h(t)))∥

≤ − 1

1− h0

[
(aA + gG + hH − |qQ(t)|)

× (1− h0)− fF ∥B∥
]
∥x(t)∥ .

Hence, from condition (H6), it is clear that

d

dt
∆1(t, xt) ≤ 0.

Integrating this inequality, we obtain

∆1(t, xt) ≤ ∆1(t0, ϕ(t0)) ≡ K4 > 0, ϕ(t0) ̸= 0.
(18)

By virtue of the LKF ∆1(t, xt) and (18), we derive
that

∥x(t)∥ ≤ K4.

Next, it follows that

lim
t→+∞

∥|x(t)|∥ ≤ lim
t→+∞

K4 = K4.

Thus, the solutions of the system of nonlinear
DDEs (3) are bounded as t → +∞. This is the
end of proof of Theorem 5. □

Example 4. Consider the following perturbed
system of DDEs:(

x′1
x′2

)
=

(
−25− 1

1+t4
− 1

1+t4

− 1
1+t4

−25− 1
1+t4

)
×
(

x1
x2

)
+

(
−2x1 − x1

1+x2
1

−2x2 − x2

1+x2
2

)

+

(
−2x1 − x1

1+exp(t)+x2
1

−2x2 − x2

1+exp(t)+x2
2

)

+

(
3 2
2 3

)
×
(

sinx1(t− 1
2 |arctan(t)|)

sinx2(t− 1
2 |arctan(t)|)

)

+

( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)
,

(19)

where h(t) = 1
2 |arctan t| is time-varying delay,

t ≥ 2−1π .

A comparison between the systems of DDEs (19)
and DDEs (3) shows that the functions A(t),
G(x(t)), H(t, x(t)), F (x(t − h(t))) and the con-
stant matrix B are the same as in Example 1.
From this point of view, the relations for the func-
tions A(t), G(x(t)), H(t, x(t)), F (x(t−h(t))) and
the matrix B remain the same and correct as in
Example 1.

For the remain calculations, we consider the func-
tion

Q(t, x, x(t− 1

2
|arctan(t)|))

=

( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)

∥Q(t, x, x(t− 1

2
|arctan(t)|))∥

=

∥∥∥∥∥
( 4 sinx1

4+|arctan(t)|+x2
1(t−

1
2
|arctan(t)|)

4 sinx2

4+|arctan(t)|+x2
2(t−

1
2
|arctan(t)|)

)∥∥∥∥∥
=

4 |sinx1|
4 + |arctan(t)|+ x21(t− 1

2 |arctan(t)|)

+
4 |sinx2|

4 + |arctan(t)|+ x22(t− 1
2 |arctan(t)|)

≤ [|x1|+ |x2|] = |qQ(t)| ∥x∥ ,
where

|qQ(t)| = 1,

∥x∥ = |x1|+ |x2| .
Next,

(āA + gG + hH − |qQ(t)|)(1− h0)− fF ∥B∥
= (24+1+1−1)(1−2−1)−5 = 12.5−5 = 7.5 > 0.

Thus, conditions (H1) and (H6) of Theorem 6 are
held. By virtue of the given discussions, we con-
clude that all the solutions of (19) are bounded as
t → ∞.

6. Contributions

In this section, we make comments to the contri-
butions of Theorems 1-5.

1) It follows that the systems of (1) and
(2) are particular cases of the systems of
DDEs (3) and DDEs (5). This is an im-
provement and a new contribution (see,
[17, 23]).

2) In [13, Theorem 1], the authors proved a
theorem on the AS of the linear system
of DDEs (1) using a suitable LKF as ba-
sic tool. Next, in [23], the authors proved
three results on the UAS, the integrabil-
ity and the boundedness of the solutions
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of the nonlinear system of DDEs (2) using
a suitable LKF.

In this paper, we proved five new the-
orems related to the UAS, the instability
and the integrability of solutions of the
nonlinear system of DDEs (5) by Theorem
1, Theorem 4 and Theorem 2, the expo-
nentially stability of zero solution of the
system of nonlinear ODEs (6) by Theo-
rem 3 and the boundedness of solutions
of the system of nonlinear DDEs (3) by
Theorem 5, respectively.

To prove Theorems 1, 2 and 5, the LKF

∆1(t, xt) := ∥x(t)∥+ γ

t∫
t−h(t)

∥F (x(s))∥ ds,

to prove Theorem 3, the LF

∆2(t, x) := ∥x(t)∥
and to prove Theorem 4, the LKF

∆3(t, xt) := ∥x(t)∥ − γ1

t∫
t−h(t)

∥F (x(s))∥ ds

were used as basic tools.
Indeed, these LKFs and LF lead

very suitable conditions for Theorem 1-
Theorem 5. Next, the instability and the
ES results are new, the other three results
are nonlinear generalizations of the former
results in the literature. These are some
other contributions to the topic and liter-
ature.

3) In this paper, we provide four examples,
which satisfy the conditions of Theorems
1-5, and, in particular cases, we also
show the applications of the Theorem 1-
Theorem 5.

4) The LKF ∆1(t, xt) implies to eliminate
the need to use the Gronwall’s inequality
for the boundedness of solutions at infin-
ity. Hence, the boundedness result, The-
orem 5, has weaker conditions and it is
also more general as well as has simple
conditions, which are more convenient for
applications.

7. Conclusion

In this article, the unperturbed nonlinear system
of DDEs (5) with variable delay, the perturbed
nonlinear system of DDEs (3) with variable delay
and the system of ODEs (6) were taken into con-
sideration. Here, five new results, i.e., Theorem 1
–Theorem 5, which are dealt with the qualitative
behaviors of trajectories of solutions called UAS,

instability and integrability of solutions of the un-
perturbed system of DDEs (5), the boundedness
of solutions of the perturbed system of DDEs (3)
and the exponentially stability of solutions of the
system of ODEs (6), were proved using the LKF
method for the delay systems (3), (5) and the sec-
ond method of Lyapunov for the system of ODEs
(6), respectively. In the proof of the bounded-
ness result, i.e., Theorem 5, it was not needed to
use the Gronwall’s inequality. This case allows
weaker conditions. Indeed, the novelty and the
contributions of the results of this paper are that
the results of this article are new and they have
weaker conditions than those available in the rel-
evant literature. This idea can be seen form the
items 1)-4). Finally, four examples, Example 1-
Example 4, were given to make clear the applica-
tions of our results.
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[16] Tunç, C. (2010). Stability and bounded of so-
lutions to non-autonomous delay differential
equations of third order. Nonlinear Dynam-
ics, 62(4), 945-953.
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[24] Tunç, O., Tunç, C.,& Wang, Y. (2021).
Delay-dependent stability, integrability and
boundedeness criteria for delay differential
systems. Axioms, 10(3), 138.
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Technology has revolutionized the way transactions are carried out in
economies across the world. India too has witnessed the introduction of nu-
merous modes of electronic payment in the past couple of decades, including
e-banking services, National Electronic Fund Transfer (NEFT), Real Time
Gross Settlement (RTGS) and most recently the Unified Payments Interface
(UPI). While other payment mechanisms have witnessed a gradual and consis-
tent increase in the volume of transactions, UPI has witnessed an exponential
increase in usage and is almost on par with pre-existing technologies in the
volume of transactions. This study aims to employ a modified Lotka-Volterra
(LV) equations (also known as the Predator-Prey Model) to study the competi-
tion among different payment mechanisms. The market share of each platform
is estimated using the LV equations and combined with the estimates of the to-
tal market size obtained using the Auto-Regressive Integrated Moving Average
(ARIMA) technique. The result of the model predicts that UPI will eventually
overtake the conventional digital payment mechanism in terms of market share
as well as volume. Thus, the model indicates a scenario where both payment
mechanisms would coexist with UPI being the dominant (or more preferred)
mode of payment.

Keywords:
Digital payments
Unified payments interface
Predator-prey model
ARIMA

AMS Classification 2010:
26A33; 65M99; 35J05

1. Introduction

The last couple of decades have witnessed technol-
ogy penetrating our lives in unimaginable ways.
One such area where technology has had a signif-
icant impact in is the financial sector. With the
advent of technology, payment mechanisms are
undergoing paradigm shifts. Electronic payment
systems offer various advantages over physical
currency, like speed, security, lower transaction
costs for individuals, elimination of counterfeit
currency, and enhanced regulation. For this rea-
son, Central Banks are not only promoting and fa-
cilitating digital payment mechanisms, but some
are also mooting the idea of completely shifting to
electronic transactions by replacing physical cash

with central bank digital currency (CBDC). Elec-
tronic payment mechanisms have been in vogue
for a considerable period of time. By provid-
ing the aforementioned benefits to users, these
mechanisms influence behaviour in very signifi-
cant ways. Numerous modes of electronic pay-
ments have emerged in the past couple of decades
including e-banking services, NEFT, RTGS and
most recently the Unified Payments Interface or
UPI.

UPI in particular, has witnessed phenomenal
growth within a short span of its introduction.
The UPI was launched by the National Payments
Corporation of India (NPCI), a joint initiative of
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the RBI and leading banks, which has been a pi-
oneer in developing efficient and accessible pay-
ment solutions in India. The UPI enables a set of
standard application programming interface spec-
ifications to facilitate digital payments using the
mobile phone [1]. It leveraged on the extensive
mobile phone network and the increasing usage
of smart phones, enhanced internet availability,
and the growth of mobile-based payment applica-
tions in India. UPI allows for a range of financial
and non-financial transactions by making mobile
phones the primary payment device. The intro-
duction of UPI coincided with two key events in
the economic and business landscape, which con-
tributed immensely to its popularity. The year
2016 saw the entry of new players like Jio, which
propelled the data revolution in India, which dras-
tically brought down the prices of internet data,
thus increasing its coverage and usage. With data
available at low cost, and increased availability of
smart phones, UPI witnessed a consistent increase
in the number of users, as well as the number
of banks, live on the platform. The second fac-
tor that was significant in the initial increase in
UPI usage was the demonetisation of high-value
currency notes, which the Government of India
announced in November 2016. This brought in
noticeable changes in the perception of users re-
garding digital payment technologies. UPI is a
significant improvement over its peers in numer-
ous ways:

• The UPI allows for both “pull”, i.e., payee
initiated as well as “push”, i.e., payer ini-
tiated transactions.

• UPI payments can be made using various
platforms like apps, websites, etc.

• UPI eliminates the need to divulge mul-
tiple, sensitive details like bank account
number, IFSC code, etc., by capturing all
information in a single verifiable UPI ID.

• UPI payments are based on 2-factor au-
thentication in which the customer only
needs to enter a single MPIN, unlike other
cashless payment modes where users need
to enter multiple details like name, pass-
word, OTP, and others.

• UPI only requires the presence of a mobile
phone and internet connection which re-
duces the infrastructure needed by a very
large amount.

• UPI does not work in “silos” as the in-
volved parties need not be on the same
interface.

The above features have brought about an expo-
nential increase in the usage of UPI. While this is

of great importance to policymakers and lawmak-
ers as it enhances the digitalisation of the financial
sector, it is of higher significance for banks as it
has a tremendous economic impact. The coexis-
tence of UPI with similar payment technologies
offers customers with a choice. When faced with
a choice, the decision often depends on the op-
portunity cost of each alternative. As has been
established, UPI outperforms its peers on impor-
tant parameters like time taken to complete the
transactions, cost incurred per transaction, and
convenience, among others. Currently, the UPI
allows for non-banking firms also to operate on
the common infrastructure. This has given rise to
a scenario where the market for UPI transactions
is largely dominated by three technology compa-
nies, none of them being banks. If this trend were
to continue, the dynamics would result in banks
losing out the major portion of their revenue com-
ing from transaction charges to these tech firms.
Hence the need to study the competition between
existing digital payment technologies and UPI,
and whether they can coexist gains importance.
While an empirical approach can be adopted to
examine these questions, the predictive powers of
such analyses are limited due to the fact that em-
pirical research involves the use of past data in
which variations are inherent. On the other hand,
using suitable mathematical models to study the
various scenarios arising out of competition can
prove to be superior in describing and predicting
the interaction among players in the market under
study.

Mathematical models have played a central role
in the understanding phenomena in various fields,
including natural and applied sciences. One such
model which has been widely studied is the Lotka-
Volterra model or the Predator-Prey Model. Pro-
pounded to understand the dynamic nature of
population growth of different species competing
against each other, the model has been extended
and modified extensively to mimic real life sce-
narios to a great extent. Though the model was
initially confined to the study of evolutionary the-
ories, it later found extensive application in eco-
nomics. It was evident to researchers that com-
petition in markets involving multiple players was
not dissimilar to dynamics present among com-
peting species. Thus the Lotka-Volterra model,
and its extensions, were used in various contexts
to study the different phenomena arising in eco-
nomics. Some of the popular applications include
the study of competition between different sec-
tors like agriculture, industry and agriculture in
a country; study of competition between different
industries in the economy; competition between
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different technologies within an industry; compe-
tition between firms at different stages seeking in-
vestment; dynamics between websites competing
for same user base; and competition between dif-
ferent companies within the same market to list
a few.

The investigation about real-world problems is al-
ways a hot topic in the present context. The ef-
ficiency of the predictor-corrector method is ef-
fectively illustrated by researchers in [2] in order
to examine the SIR model of COVID-19; in ex-
tension with this, the stability is derived in [3]
for the numerical technique, which helps to solve
predator-prey model, the predator-prey model as-
sociated with prey refuge was investigated in [4],
the effect of a numerical method to solve the at-
mospheric ocean model is illustrated in [5]. In
order to prove the essence and significance of
mathematical modelling in connection with real-
world problems, the authors in [6–8] investigated
the omicron and its earlier version and presented
some useful results. The current study can be
extended by generalizing the integer order de-
rivative with fractional order; for instance, the
stability of the integro-differential systems within
the frame of fractional order is connected by re-
searchers in [9], the hyper-chaotic system is ex-
amined with the help of novel fractional operator
in [10], the physical model with unstable cases
is investigated in [11], the numerical method for
higher order fractional system is proposed by re-
searchers in [12], the chemical reaction model is
investigated with the efficient numerical scheme in
[13], the scholars in [14–16] investigated the frac-
tional order models with numerical approaches.
These above-cited studies can help the readers to
extend the present work.

The purpose of this paper is to study one such
application of the Lotka-Volterra model, i.e., in
the context of the market for digital payments in
India. While the estimates and forecasts of the
aggregate transactions can be obtained by time
series methods, the competition element among
the platforms cannot be found using the same.
Thus the paper uses a combination of ARIMA
and LV model to analyse the dynamic between
the competing platforms, i.e., Conventional Digi-
tal Payments (CDP) consisting of NEFT, RTGS
and Internet Banking and the revolutionary tech-
nology UPI.

2. Literature review

2.1. Economic applications of the
Lotka-Volterra model

The Lotka-Volterra model has been applied ex-
tensively to understand the competing relation-
ships in various business ecosystems. Apedaille et
al. [17] use the predator-prey mechanism to model
the shares of agricultural, industrial and exo-
spheric wealth in the open interacting economic
systems. One of the earliest and most well-known
applications of the predator-prey model was given
by Maurer and Huberman [18] which developed a
model to explain the domination of the internet
by certain websites. Watanabe et al. [19] apply
the Lotka-Volterra model to forecast the transi-
tion from analogue broadcasting to digital broad-
casting in the context of Japan. Lee et al. [20]
study the interaction between competing tech-
nologies in communication systems by inputting
patent data to the Lotka-Volterra model. Tsenf
et al. use the Lotka-Volterra model to analyse
competition between smartphone operating sys-
tems and thus attempt to forecast sales volumes.
Lee and Oh [21] use the Lotka-Volterra model to
analyse the competition between two rival mar-
kets namely the Korean Stock Exchange and the
Korean Securities Dealers Automated Quotation.
Ren et al. [22] studies competition among web-
sites by dividing consumers into ‘users’ and ‘visi-
tors’ and formulating a two-competitor model to
find a situation (represented by a stable solution)
where the competing website can coexist. Bran-
der and de Bettignies [23] use the predator-prey
model to provide a contributing explanation for
both high-venture capital concentration by indus-
try and ‘boom and bust’ industry-level investment
dynamics. Kreng and Wang [24] use the Lotka-
Volterra equations to model the competition be-
tween LCD and Plasma Display televisions. Chi-
ang & Wong [25] considered the LV-model to es-
timate market diffusion by considering the com-
petition between desktops and notebook comput-
ers. A similar study in the Indian context by
Pant and Bagai [26] looks at the coexistence of
the organised and unorganised sectors in the re-
tail industry where use a modified Lotka-Volterra
model was used to describe the competition be-
tween the two sectors. Crookes and Blignaut [27]
use the predator prey model to stimulate the in-
tersectoral dynamics of the steel sector. Hung et
al. [28] apply an enhanced Lotka-Volterra model
to study the competition between convenience-
oriented and budget-oriented retail stores in Tai-
wan by decomposing data into three components
and hence obtaining more efficient estimates as a
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result. Nikolaieva and Bochko [29] have studied
the behaviour of the market share of operating
systems using the Lotka-Verra model and subse-
quently tried to predict the market share for An-
droid and iOS operating systems using numerical
integration. Evidently, the Lotka-Volterra model
is a reliable forecasting method for two or more
competing species.

2.2. UPI technology in India

Gochhwal [1] point out that penetration of
telecommunication, increase in bank coverage,
elimination of the need to share sensitive bank de-
tails, and reduction in time and cost compared to
pre-existing electronic payment services are fac-
tors favouring enhanced usage of UPI. Mohap-
atra [30] emphasises the proliferation of smart-
phones, availability of an online individual iden-
tity, universal access to banking and the intro-
duction of biometric sensors in smartphones as
some trends which would aid in further develop-
ing cashless payment technologies. Kakade and
Veshne [31] establish that among the reasons for
the widespread use of UPI is its 24x7 availability
and emphasise its role in enhancing transaction
efficiency and making India a cashless economy.
Vipin and Sumathy [32] found that habitual use
of cash and complexity in using digital payments
was the main barriers for trying digital payments
cited by the users. Patil [33] analyses the adop-
tion of UPI and studies the demographic factors
affecting UPI perception among consumers using
primary data. They found that while the age
of consumers did not influence the perceptions
regarding usefulness and cost, it did influence
the perception regarding ease of use. There was
no significant difference in perception among dif-
ferent educational groups and income categories.
Philip [34] analysed the impact of UPI on cus-
tomers’ satisfaction using primary data and found
that UPI had a significant positive impact on cus-
tomers, and perceptions of UPI and traditional
payment methods varied significantly among con-
sumers. Kumar et al. [35] analysed the security
dimension of UPI and other payment apps in In-
dia and discovered unreported multi-factor flaws
in the authentication design, making the interface
vulnerable to significant potential attacks.

3. Theoritical Framework

3.1. ARIMA

Auto-Regressive Integrated Moving Average is a
forecasting technique used to analyse time series
data. This model is applicable in cases where

data displays non-stationary behaviour (i.e., non-
constancy with respect to mean but not with re-
spect to variance). Non-stationarity thus arising
can be dealt with using differencing techniques,
i.e., differencing the data with itself one or more
times.

An ARIMA(p, d, q) implies

y′t = c+ φ1y
′
t−1 + φ2y

′
t−2 · · ·φpy

′
t−p

+εt − θ1εt−1 − θ2εt−2 · · · θqεt−q, (1)

where y′t is the differenced series with order of dif-
ferencing d; p is the order of the Auto-regressive
part and q is the order of the Moving-Average
part.

3.2. Lotka-Volterra equations

The simple Lotka-Volterra model or the predator-
prey model is a system of non-linear ordinary
differential equations that describe the trajecto-
ries of the population of two interacting species,
namely predator and prey, over a time period. It
is given by

dx

dt
= αx− βxy,

dy

dt
= δxy − γy, (2)

where

• x is the number of preys,
• y is the number of predators,
• dx

dt and dy
dt represent the instantaneous

growth rates of the two populations,
• t represents time,
• α, β, γ, δ are positive real parameters de-
scribing the interaction of the two species.

While the equations in system 1 represent the dy-
namics where species preys on another, the same
can be extended to represent the dynamic where
both the species prey on each other. Thus the
growth in one both species influences the popula-
tion of the other species negatively. Such a system
is given by

dx

dt
= αx− βx2 − γxy,

dy

dt
= φy − ψy2 − µxy, (3)

where

• x is the number of species x,
• y is the number of species y,
• dx

dt and dy
dt represent the instantaneous

growth rates of the two populations,
• t represents time,
• α, β, γ, φ, ψ, and µ are positive real pa-
rameters describing the interaction of the
two species.
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In the above system (3), α and φ are the per-
capita birth rates (we may also consider them as
overall per-capita growth rates) of x and y respec-
tively and incorporate deaths (independent of the
other species) as well as births. Thus they are
per-capita growth rates, or per-capita reproduc-
tion rates, while the parameters β and ψ are the
self-interaction parameters, which denote the de-
cline in x and y in the absence of the other species.
The parameters γ and µ are the interaction pa-
rameters and describe the competition between
the species.

While the ARIMA process provides parameters
that fit the behaviour of time series data, the esti-
mates and the subsequent forecasts obtained from
the model are valid only when certain assump-
tions made regarding the error terms are satisfied.
The ARIMA estimation technique makes two ma-
jor assumptions regarding the errors:

i There is no serial correlation among the
error terms.

ii The error terms are normally distributed
with constant mean and finite variance,
i.e., at ∼ N(µ, σ2)

Upon fitting the model and obtaining the best fit
parameter values, various tests can be performed
to check if the assumptions are satisfied in or-
der to validate the results of the model. The
first assumption can be checked by Box-Pierce
Test, Box-Ljung Test among others. With respect
to testing normality, standard testing procedures
like the Shapiro-Wilk test can be used.

The last couple of decades have witnessed technol-
ogy penetrating our lives in unimaginable ways.
One such area where technology has had a sig-
nificant impact in is the financial sector. With
the advent of technology, payment mechanisms
are undergoing paradigm shifts. Electronic pay-
ment systems offer various advantages over phys-
ical currency, like speed, security, lower transac-
tion costs for individuals, elimination of coun-
terfeit currency, and enhanced regulation. For
this reason, Central Banks are not only promot-
ing and facilitating digital payment mechanisms,
but some are also mooting the idea of completely
shifting to electronic transactions by replacing
physical cash with central bank digital currency
(CBDC). Based on the literature review, it can be
understood that in a market where two or more
firms compete against each other, the growth in
the market share of one firm affects the market
share of the other. In such cases, it is not possi-
ble to draw a clear distinction as to which firm is
the predator and which firm is the prey. Thus, us-
ing a model in which both populations compete

against each other, as in the system, would be
more appropriate to analyse such a market. This
leads us to the proposed model to describe the
dynamics in the market for digital payments in
India. Consider the system of equations

dU

dt
= α1U − β1U

2 − γ1UC,

dC

dt
= α2C − β2C

2 − γ2UC, (4)

where

• U is the market share of the UPI platform,
• C is market share of the Conventional
Digital Payment Mechanisms like NEFT,
RTGS, and Internet Banking,

• dU
dt and dC

dt represent the instantaneous
growth rates of the two competing plat-
forms,

• t represents time,
• α1, β1 γ1, α2, β2, and γ2 are real parame-
ters describing the interaction of the two
technologies

• no new technologies are introduced in sub-
sequent periods.

As in system (3), α1 and α2 are the growth rate
of the market shares of UPI and CDP platforms
simultaneously. While the per capita growth rate
in a biological context signifies the reproductive
capacity of the species, in the context of market
competition, they signify the ability of the con-
cerned player to attract new customers. In this
case, α1 represents the ability of the UPI as a
platform to induce existing users to repeat trans-
actions in the successive time period as well as
attract new users to perform transactions using
this mode. A similar explanation follows for α2.
Intuitively, α1 and α2 have a positive impact on
U and C respectively.
In system (4), β1 and β2 give the respective death
rates of the population. It is technically the inter-
nal interaction within the species. In this context,
β1 for example, describes the rate at which users
of the UPI platform withdraw from using it. A
similar explanation follows for β2.
On the other hand, the interaction parameters. γ1
and γ2 capture the competition between U and C
in a given time period. In particular, γ1 specifies
the rate at which the UPI platform loses its users
to Conventional Digital Payments. Similarly, γ2 is
the rate at which Conventional Digital Payments
lose users to the UPI platform. The model makes
some generalising assumptions. They are as fol-
lows:

• We assume the total number of users to be
sufficiently large so that random fluctua-
tions can be ignored without consequence
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• We assume that the two system model re-
flects the market sufficiently accurately

• We assume each population grows expo-
nentially in the absence of the other com-
petitor

• We assume that access to both the plat-
forms, level of awareness regarding both
platforms, access to the internet, etc. are
uniform across geographies and time peri-
ods

• Literature suggests that users of UPI have
a great experience using the platform,
hence reducing the chance of customer
withdrawal which brings us to the as-
sumption

0 < β1 < β2 < 1.

• Given that UPI outperforms its competi-
tors we expect it to behave more predato-
rily. Hence we assume that

0 < γ1 < γ2 < 1.

• Most importantly we assume that there is
no limit on the growth (i.e., carrying ca-
pacity) on the number of transactions in
a platform

3.3. Stability analysis

In order for the system to be at equilibrium,
the rate of change with respect to time must
be zero, i.e., dU

dt and dC
dt must be equal to zero.

We obtain the solutions for these by equating
the right hand side of the respective equations
to zero. By solving these we get two points
where the slopes are equal to zero P1(0, 0) and

P2(
α1β2−α2γ1
β1β2−γ1γ2

, α2β1−α1γ2
β1β2−γ1γ2

) .

Clearly, P1 is a trivial solution as it indicates a sit-
uation where both the platforms have zero trans-
actions and hence is of no interest to us. On the
other hand, P2 describes a situation where both
platforms have a positive number of transactions
and are of special interest to us.

The stability of this fixed point can be analysed
using the Jacobian matrix:

J =

∣∣∣∣ α1 − 2β1U − γ1C −γ1U
−γ2C α2 − 2β2C − γ2U

∣∣∣∣ ,
J (P2) =

∣∣∣∣∣ β1
α2γ1−α1β2

β1β2−γ1γ2
−γ1 α1β2−α2γ1

β1β2−γ1γ2

−γ2 α2β1−α1γ2
β1β2−γ1γ2

β2
α1γ2−α2β1

β1β2−γ1γ2

∣∣∣∣∣ .
The eigenvalues of the above matrix are calcu-
lated to determine the stability of the system at
the above point. Since one eigenvalue is positive
and one eigenvalue is negative, we infer that the
fixed point P2 is a saddle point.

3.4. Existence and uniqueness of Ssolution

Let G(J) be the Banach space with the maxi-
mal norm given by ∥x∥ = maxt∈J | x(t) | where
J = [0, T1] and T1 = G(J)× G(J).
Let us consider

F1(t, U) = α1U − β1U
2 − γ1UC,

F2(t, C) = α2C − β2C
2 − γ2UC.

Theorem 1. The kernel F1 and F2 admit the
Lipschitz condition and contraction when 0 ≤
Λ1,Λ2 < 1, where λ1 = α1 − β1(ϵ1 + κ1) −
γ1ϵ2, λ2 = α2 − β2(ϵ2 + κ2)− γ2ϵ1.

Proof. We assume that the solution of the sys-
tem is bounded, such that ∥U∥ ≤ ϵ1 and ∥C∥ ≤
ϵ2.
Consider two functions U and U∗, such that

∥F1(t, U)− F1(t, U
∗)∥

= ∥(α1U − β1U
2 − γ1UC)

− (α1U
∗ − β1U

2∗ − γ1CU
∗)∥

= ∥(α1 − γ1C)(U − U∗)− β1(U + U∗)(U − U∗)∥
≤ (α1 − β1(ϵ1 + κ1)− γ1ϵ2)∥(U − U∗)∥
≤ λ1∥U − U∗∥,
where ∥U∗∥ = κ1 and ∥C∗∥ = κ2.
Consider two functions C and C∗, such that

∥F3(t, C)− F3(t, C
∗)∥

= ∥(α2C − β2C
2 − γ2UC)

− (α2C
∗ − β2C

2∗ − γ2UC
∗)∥

= ∥(α2 − γ2U)(C − C∗)− β2(C + C∗)(C − C∗)∥
≤ (α2 − β2(ϵ2 + κ2)− γ2ϵ1)∥(C − C∗)∥
≤ λ2∥C − C∗∥.

□

Theorem 2. The solution of the model exists and
is unique.

Proof. Let, K = max(U,C)∈Λ{∥F1(U)∥, ∥F2(C)∥}.
The integral form of the system is given by

U(t) = U0 +

∫ t

0
F1(U(τ))dτ,

C(t) = C0 +

∫ t

0
F2(C(τ))dτ.

Using the successive approximations of the solu-
tion of the integral equations, we get

Un+1(t) = U0 +

∫ t

0
F1(Un(τ))dτ,

Cn+1(t) = C0 +

∫ t

0
F2(Cn(τ))dτ.
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The solutions are continuous and satisfy

∥Un+1(t)− T0∥ = ∥
∫ t

0
F1(Un(τ))dτ∥

≤
∫ t

0
∥F1(Un(τ))∥dτ

≤ Kt.
Let max∥U1(t) − U0∥ ≤ b. We show that
∥Un+1(t) − Un(t)∥ ≤ (a1t)

k−1b using principal of
mathematical induction. For n = 1 consider

∥U2(t)− U1(t)∥

= ∥U0 +

∫ t

0
F1(U1(τ))dτ − U0 −

∫ t

0
F1(U0(τ))dτ∥

= ∥
∫ t

0
(F1(U1(τ))− F1(U0(τ))) dτ∥

≤
∫ t

0
∥F1(U1(τ))− F1(U0(τ))∥dτ

≤ a1

∫ t

0
∥U1(τ)− U0(τ)∥dτ

≤ a1max∥U1(t)− U0∥t
≤ a1bt.

Assume that the inequality holds for some k ∈ N,
i.e., ∥Uk(t)− Uk−1(t)∥ ≤ (a1t)

k−1b.
Then for some integer k ≥ 2, it follows that,

∥Uk+1(t)− Uk(t)∥

= ∥U0 +

∫ t

0
F1(fk(τ))dτ − U0 −

∫ t

0
F1(Uk−1(τ))dτ∥

= ∥
∫ t

0
F1(Uk(τ))− F1(Uk−1(τ))dτ∥

≤
∫ t

0
∥F1(Uk(τ))− F1(Uk−1(τ))∥dτ

≤ a1

∫ t

0
∥Uk(τ)− Uk−1(τ)∥dτ

≤ (a1t)
kb.

Let at = γ. For some m,n ≥ N we get,

∥Um(t)− Un(t)∥ ≤
m−1∑
k=n

∥Uk+1(t)− UUk(t)∥

≤
∞∑

k=N

∥Uk+1(t)− Uk(t)∥

≤
∞∑

k=N

(a1t)
kb

=
∞∑

k=N

γkb

=
γN

1− γ
b.

This tends to 0 as N → ∞. Therefore, for all
ϵ > 0 there exists N such that for m, k ≥ N ,

∥Um(t)− Un(t)∥ ≤ ϵ,

i.e., {Un} is a Cauchy sequence in G(J) and there-
fore converges uniformly to a function U . Taking
the limit as n → ∞ on both sides of the defini-
tion of successive approximation we see that the
function

U(t) = lim
n→∞

Un(t),

admits

U(t) = U0 +

∫ t

0
F1(U(τ))dτ.

Since f(t) is continuous, F1(U(t)) is also contin-
uous and using the Fundamental theorem of In-
tegral Calculus, we get U

′
(t) = F1(U(t)). Simi-

larly, we can show that Cn is a Cauchy sequence
that converges uniformly C(t), and we can oba-

tine C
′
(t) = F2(C(t)). Furthermore, U(0) = U0

and C(0) = C0. Therefore U(t), C(t) is a solution
of the system.
Suppose Ū(t), C̄(t) is another set of solution for
the system. Now, consider

∥U − Ū∥ = ∥U0 +

∫ t

0
F1(U(x))dx− f0

−
∫ t

0
F1(f̄(τ))dτ∥

= ∥
∫ t

0
F1(U(τ))−

∫ t

0
F1(Ū(τ))dτ∥

≤
∫ t

0
∥F1(U(τ))− F1(Ū(τ))∥dτ

≤ a1

∫ t

0
∥U(τ)− Ū(τ)∥dτ

≤ a1t∥U − Ū∥.
Since a1t < 1, the inequality is satisfied only when
∥U − Ū∥ = 0. Thus, U(t) = Ū(t). Similarly we
can show C(t) = C̄(t). Therefore, the system has
a unique solution. □

3.5. Boundedness

Theorem 3. The solution of the model is uni-
formly bounded.

Proof. Let P (t) = U(t) + C(t). Taking the de-
rivative along with the control parameter, we get(

d

dt
+ ϕ1(t)

)
(P (t))

=
d

dt
[U(t) + C(t)] + µ1(t)[U(t) + C(t)]

= α1U − β1U
2 − γ1UC + α2C − β2C

2
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− γ2UC + ϕ1(t)[U(t) + C(t)]

≤ α1U + α2C + ϕ1(t)[U(t) + C(t)].

The solution exists and is unique in

Λ = {U,C) ∈ R2 : max(| U |, | C |) ≤ ϵ}.
The previous inequality yields(

d

dt
+ ϕ1(t)

)
(P (t)) ≤ ϵ [α1 + α2 + 2ϕ1(t)] .

Therefore, the solution of the system is bounded.

4. Methodology

4.1. Data

For the purpose of this study, real-time data re-
garding transactions facilitated by the different
transforms are considered. In order to measure
the activity happening on each platform, the total
volume of transactions in each month is consid-
ered. Data was collected for two variables: Con-
ventional Digital Payments (CDP) which is the
sum of all transactions happening through NEFT,
RTGS and Internet Banking platforms and UPI
which is the volume of transactions happening
through UPI platforms. The data for CDP was
collected from the RBI, while data for UPI was
sourced from the NCPI. The data was collected
for a period of 62 months starting from January
2017 to February 2022.
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Figure 1. Volume of UPI and CDP
Transactions 2017-22.

It is evident from Figure 1 that there is an explic-
itly increasing trend in the volume of transactions
of both conventional digital payments as well as
the UPI platforms. However, when the market
share of each platforms is considered, there is a
clear indication of competition among the two
platforms. As seen in Figure 2, the UPI platform
has witnessed a phenomenal increase in market
share whereas the former has seen a consistent
decline.
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Figure 2. Market Share of UPI and
CDP 2017-22.

4.2. Forecasting Method

The proposed methodology for estimating the
market share of the respective platforms are cap-
tured in Figure 3. The estimation procedure con-
sists of two modules. The first module involves
estimating the total volume of transactions, V̂ ,
using time series techniques. The time series tech-
nique suitable for this purpose would be ARIMA
as the volume of the transaction contains no sig-
nificant seasonal or cyclical component. The sec-
ond module is concerned with estimating the mar-
ket share of each of the platforms i.e., U and C,
which is determined by their respective competi-
tive natures, using the Lotka-Volterra equations.
The particular values of the parameters are ob-
tained from real data and plugged into system 3.
The above system of equations is of a non-linear
kind and cannot be solved using known methods.
Hence we need to use some numerical methods
to obtain an approximate solution. For the pur-
pose of estimating the market shares in different
time periods, we propose to use the fourth order
Runge-Kutta method. Once the estimates of the
market share are obtained, it is combined with the
ARIMA estimate to obtain the estimates of the
volume of transactions in individual platforms, V̂U
and V̂C .

5. Results and Discussion

The fourth order Runge-Kutta method is em-
ployed to obtain a numerical solution of the mar-
ket share. The iterative method is employed after
using real data to estimate the value of the re-
quired parameters. Based on the collected data,
the following values of the parameters in system
2 is chosen

α1 = 0.0664, β1 = 0.0005, γ1 = 0.02,
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Figure 3. Proposed Forecasting Procedure

α2 = 0.0096, β2 = 0.0009, γ2 = 0.1,

and substituted in system 3. The results thus ob-
tained are presented are in Figure 4. It can be
observed that there is a progressive decline in the
market share of CDP which is consistent with the
trend established by the real data in Figure 2.
Similarly, the market share of UPI is seen to wit-
ness continuously, which is again consistent with
the trend established by real data. The results of
the LV equations also establish that the growth in
market share for UPI, and the decline in market
share of CDP, reduces gradually. This is made
evident by the plateauing and the stabilizing of
the respective curves. The stability analysis of
the same has been attached with the Appendix.

0 25 50 75 100 125 150 175
Months

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

ke
t S

ha
re

UPI
CDP

Figure 4. Estimated Market Share
of UPI and CDP.

The ARIMA procedure requires that the errors
of the fitted model are distributed normally. This
assumption is not satisfied by the variable under
consideration. Hence a log transformation is em-
ployed to ensure that error terms are normally
distributed. The diagnostic tests of the new
fitted model is added in the appendix. The new
variable provides the best fit model to be ARIMA
(0, 1, 0). The estimated equation is given as

V̂t = 0.0580 + V̂t−1 + εt.

This signifies a positive association between
the current values and the previously estimated
terms. The values forecasted using the above
equation are presented in Figure 5. The forecast
is in line with the behaviour observed in the real
data which shows a continuously increasing trend.

Figure 5. ARIMA estimate of ag-
gregate volume.

The estimated value of the total number of trans-
actions (V̂ ) and the estimated market share of
each platform (U and C) when combined, give
the estimates of the volume of transactions in in-
dividual platforms, V̂U and V̂C . The result of the
same can be seen in Figure 6 which shows an al-
most exponential increase in the volume of trans-
actions using the UPI platform. The volume of
transactions on the CDP platforms on the other
hand witnessed a steady increase before stabiliz-
ing after a given time period at a certain level.
Just as in the case of the market share estimates,
the volume of the UPI platform overtakes the vol-
ume of the CDP platform at a particular point in
time.
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Figure 6. Estimated Volumes of
UPI and CDP.

The above results establish certain phenomena
explicitly. The first clear trend that emerges is
that digital payment transactions in general wit-
ness a near exponential growth. The increase in
the volume of digital payments is driven by an
increase in both UPI and CDP platforms. This
fits well with economic intuition and empirical ev-
idence. As the Indian economy grows, and as
the greater portion of it gets formalised, it would
lead to greater adoption of digital payment mech-
anisms. This would in turn lead to an increase
in the volume as well as the value of transactions
being processed in each platform as suggested by
the forecasts.

The second trend, and the one which is of more
interest to us, is the coexistence of the two plat-
forms in current as well as future time periods.
This can be explained by some of the economic
and policy related features of the market for digi-
tal payments. For example, there exists an up-
per limit on the value of the transaction that
can be carried out using the UPI platform. This
naturally shifts a finite portion of the market to
conventional digital payment platforms which en-
able the transfer of money above a certain limit.
Literature also suggests the existence of concerns
among users regarding security, veracity and ac-
cessibility with regard to the UPI platform. Such
concern may result in the CDP platforms retain-
ing a certain market share despite the phenomenal
growth of UPI. This seeming anomaly of decreas-
ing market share but the increasing volume of the
CDP platform can be understood in the perspec-
tive of the first trend. While the volume of total
digital transactions increases, this causes an in-
crease in the volume of transactions on the CDP
platforms owing to the expansionary nature of the
economy. The enormous increase in the volume of
transactions on the UPI platform thus does not
necessarily imply a shift in the user ship from one

platform to another. While the rise in user ship
of UPI up to a certain point (represented by the
point where the two curves intersect) can be at-
tributed to a shift from the CDP platforms, the
volume of UPI transactions continues to rise be-
yond this point while the volume of transactions
on CDP platforms stabilises. One possible expla-
nation for this could be that while CDP platforms
retain the high value transactions, UPI platforms
gain popularity among low value transactions, re-
placing cash.

6. Concluding remarks

The purpose of this paper was to analyse the dy-
namics in the market for digital payments in In-
dia. The interaction between two competing plat-
forms, conventional digital payments (which con-
sist of NEFT, RTGS and Internet Banking) and
the Unified Payments Interface, was examined us-
ing the Lotka-Volterra system of equations. The
estimates of the competition element were com-
bined with the estimate of the volume of trans-
actions obtained using the ARIMA procedure to
forecast the trends in the volume of transactions
of the two platforms. The forecasts revealed
that the volume of transactions in such platforms
would increase manifold, thus highlighting the
trend of digitalization of the economy. The re-
sults also suggest that the market share occu-
pied by UPI would eventually overtake the mar-
ket share of other platforms. However, the former
would later exhibit a lack of growth and the lat-
ter a lack of decline, thus hinting at coexistence.
While the results of the model do not indicate
the extinction of services by banks, it asserts the
supremacy of technological innovation by predict-
ing that the technologically advanced UPI plat-
form will dominate the market. This is a clarion
call to banks and other financial institutions to
explore, adopt and invest in new technologies if
they seek to maintain their dominance over the
financial sector.
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1. Introduction

In this paper, we study the null controllability
problem for the Mullins equation [1] with peri-
odic boundary conditions. This equation is a lin-
ear analog of the Kuramoto-Sivashinsky equation
and has the form

yt +Byxxxx = 0, (1)

where B is a positive constant known as the
Mullins coefficient. The Mullins equation is a lin-
ear parabolic partial differential equation that is
often used to model the evolution of thin films in
materials science and engineering.

The controllability problems for parabolic equa-
tions have received considerable attention in the
literature (see [2–12]). However, the null con-
trollability of fourth-order parabolic equations
has been studied in a few papers. Firstly, Y.L.
Guo [13] used two well-posed problems to solve
the null boundary controllability problem for a
fourth-order parabolic equation. Later, the null
interior controllability problem for a fourth-order
parabolic equation was solved by Han Yu [14]

using the method based on Lebeau-Rabbino In-
equality. Also, Z. Zhou [15] derived the ob-
servability inequalities for a one-dimensional lin-
ear fourth-order parabolic equation with poten-
tial using establishing global Carleman estimates
and presented null controllability results for the
one-dimensional fourth-order semilinear equation.
More recently, S. Guerrero and K. Kassab ob-
tained the null controllability results for the
higher dimensional fourth-order parabolic equa-
tion in [16]. These studies have mostly focused
on the case of Dirichlet boundary conditions.
This paper, however, explores the null control-
lability problem with periodic boundary condi-
tions. There have been some works on null
controllability for different types of systems us-
ing periodic boundary conditions. For example,
Imanuvilov considered the controllability problem
for the Boussinesq system with periodic bound-
ary conditions [17], Beauchard and Zuazua stud-
ied the null controllability problem of the Kol-
mogorov equation under periodic boundary condi-
tions [18], and Chowdhury and Mitra proved that
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the linearized compressible Navier-Stokes equa-
tions with periodic boundary conditions are null
controllable [19]. More recently, Oner obtained
null controllability results for a heat equation with
periodic boundary conditions [20]. However, to
the best of our knowledge, no work on the control-
lability problem for fourth-order parabolic equa-
tions with periodic boundary conditions has been
published in the literature. This observation mo-
tivated us to consider this problem.

In addition, the above-aforementioned studies
generally preferred the Carleman method to solve
this problem and this method is quite technical.
Here, we used duality and the moment method.
The moment method was developed by Fattorini
and Russell (see [3, 21]), and it allows obtaining
the solution of the problem using the spectral
properties of the system.

The main contributions of this article are as fol-
lows. First of all, the existence and uniqueness
of the solution of the adjoint system have been
proven. Then, with periodic boundary conditions,
it is shown that the system is not always con-
trollable for every initial condition, and a class
containing controllable initial conditions is deter-
mined. Finally, for this admissible initial data
class, the null boundary controllability problem
of the Mullins equation with periodic boundary
conditions has been solved by using the moment
method.

The paper is organized as follows. In Section 2,
we define the problem and give some initial results
by using duality between controllability and ob-
servability. Subsequently, in Section 3, we provide
some spectral results to reduce the null control-
lability problem to a moment problem. In Sec-
tion 4, we focus on the null boundary controlla-
bility problem for the Mullins equation with pe-
riodic boundary conditions. Since the null con-
trollability of the system is not always possible,
we first determine the restricted initial data class
and then show that the system is null controllable
for this initial data class. Finally, in Section 4, we
indicate the conclusion.

2. Problem Formulation

In the present work, we consider the null control-
lability of the following system:

ut + uxxxx + cu = 0, in D

u(π, t)− u(−π, t) = v(t), in (0, T )

ux(π, t)− ux(−π, t) = 0, in (0, T )

uxx(π, t)− uxx(−π, t) = 0, in (0, T )

uxxx(π, t)− uxxx(−π, t) = 0, in (0, T )

u(x, 0) = u0(x), in Ω

(2)

where D = Ω × (0, T ), Ω = (−π, π), u0(x) ∈
L2(Ω), v(t) ∈ L2(0, T ), and c is any positive num-
ber. The system we are considering is not always
controllable. Therefore, we will first identify the
uncontrollable cases and then determine the con-
ditions under which the system is controllable.
Let us call this class F , which will be determined
later. Now, we can define the null controllability.

Definition 1. System (2) is null controllable at
time T if for every initial condition u0 ∈ F ,
there exists a control v(t) ∈ L2(0, T ) such that
u(x, T ) = 0 for all x ∈ Ω.

Now, we can present a lemma that will be used
in the proof of our main result.

Lemma 1. The system (2) is null controllable in
time T > 0 if and only if for any u0 ∈ F there
exists v(t) ∈ L2(0, T ) such that∫ π

−π
u0(x)φ(x, 0)dx+

∫ T

0
v(t)φxxx(π, t)dt = 0

(3)
holds for any φ0 ∈ L2(Ω), where φ(x, t) is a solu-
tion of the backward adjoint problem given in as
follows.

φt − φxxxx − cφ = 0, in D (4a)

φ(π, t)− φ(−π, t) = 0, in (0, T ) (4b)

φx(π, t)− φx(−π, t) = 0, in (0, T ) (4c)

φxx(π, t)− φxx(−π, t) = 0, in (0, T ) (4d)

φxxx(π, t)− φxxx(−π, t) = 0, in (0, T ) (4e)

φ(x, T ) = φ0(x), in Ω (4f)

Proof. Let v be an arbitrary element of L2(0, T ),
and let φ be the solution of (4). By multiplying
(2) by φ and integrating the resulting expression
over D using integration by parts, we obtain

0 =

∫ T

0

∫ π

−π
(ut + uxxxx + cu)φdxdt

=

∫ T

0

∫ π

−π
u(−φt + φxxxx + cφ)dxdt

+

∫ 1

0
uφ

∣∣∣T
0
dx

+

∫ T

0
[φuxxx − φxuxx + φxxux − uφxxx]

∣∣∣π
−π

dt.

Using the given initial condition and boundary
conditions, we have∫ π

−π
u(x, T )φ0(x)dx

−
∫ π

−π
u0(x)φ(x, 0)dx−

∫ T

0
v(t)φxxx(π, t)dt = 0.

(5)
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If equation (3) holds, then it follows that∫ π
−π u(x, T )φ

0(x)dx = 0 for all φ0(x) ∈ L2(Ω)

which means that u(x, T ) = 0 for all x ∈ Ω. As
a result, system (2) is null-controllable. On the
contrary, suppose that system (2) is null control-
lable at time T , that is, for every initial condi-
tion u0 ∈ F , there exists a control v(t) ∈ L2(0, T )
such that u(x, T ) = 0 for all x ∈ Ω. Substitut-
ing u(x, T ) = 0 into (5), we conclude that (3)
holds. □

Above Lemma shows that the system (2) is con-
trollable if and only if equation (3) holds. There-
fore, we need to find a solution for system (4). In
the following section, we will first prove the ex-
istence and uniqueness of the solution for system
(4).

3. Fourier Series representation of
adjoint system

To find solution of system in equation (4), we will
apply the method of separation of variables by
letting φ(x, t) = X(x)T (t). This gives us:

X
′′′′
(x) = (λ− c)X, −π < x < π

X(π)−X(−π) = 0, in (0, T )

Xx(π)−Xx(−π) = 0, in (0, T )

Xxx(π)−Xxx(−π) = 0, in (0, T )

Xxxx(π)−Xxxx(−π) = 0, in (0, T )

which is self adjoint in L2(Ω). Now, we will find
a basis for L2(Ω) formed by the eigenfunctions of
this auxiliary problem. The eigenvalues and nor-
malized eigenfunctions of this auxiliary spectral
problem are λn = n4 + c, n = 0, 1, . . . and

X0(x) =
1√
2π

,

X2n−1(x) =
cos(nx)√

π
,

X2n(x) =
sin(nx)√

π

for n = 1, 2, . . . Then, the solution of (4) can be
expressed as a Fourier series expansion as follows:

φ(x, t) =
β0e

−λ0(T−t)

√
2π

+
∞∑
n=1

e−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√
π

(6)

where βn = (φ(x, T ), Xn(x)) for n = 0, 1, 2, . . .

To prove the existence and uniqueness of the so-
lution of system (4), we need an auxiliary result
that will be presented in the following lemma.

Lemma 2. Assume that function φ0(x) ∈
C4[−π, π] satisfies the following conditions:

φ0(π)− φ0(−π) = 0,

φ0
x(π)− φ0

x(−π) = 0,

φ0
xx(π)− φ0

xx(−π) = 0,

φ0
xxx(π)− φ0

xxx(−π) = 0.

Then, the following inequality holds.
∞∑
n=1

n3(|β2n−1|+ |β2n|)

≤ 2C∥(φ0)′′′′∥L2(−π,π)

(7)

where β2n−1 = (φ0, X2n−1), β2n = (φ0, X2n), and

C =
π√
6
.

Proof. Let φ0(x) ∈ C4[−π, π] satisfy the as-
sumption of lemma. From equation (6), it is seen
that

β2n−1 = (φ0(x), X2n−1) and β2n = (φ0(x), X2n).

Then, we have

n3(β2n−1+β2n) =
1

n
(φ0, n4X2n−1)+

1

n
(φ0, n4X2n).

Since

X ′′′′
2n−1 = n4X2n−1 and X ′′′′

2n = n4X2n,

we can rewrite the equation as follows.

n3(β2n−1 + β2n) =
1

n
(φ0, X ′′′′

2n−1) +
1

n
(φ0, X ′′′′

2n).

Applying integration by part, we obtain

=
1

n
((φ0)′′′′, X2n−1) +

1

n
((φ0)′′′′, X2n).

Using this equation, we get
∞∑
n=1

n3(|β2n−1|+ |β2n|) =
∞∑
n=1

1

n
|(φ0)′′′′, Xn)|

By using Cauchy -Schwartz and Bessel inequali-
ties, we obtain

∞∑
n=1

n3(|β2n−1|+ |β2n|) =
∞∑
n=1

1

n
|((φ0)′′′′, Xn)|

≤
( ∞∑
n=1

1

n2

) 1
2
( ∞∑
n=1

[
|((φ0)′′′′, Xn)|2

) 1
2

≤ C∥(φ0)′′′′∥L2(−π,π)

with C =
(∑∞

n=1

1

n2

) 1
2 =

π√
6
. □

Now, we can prove the existence and uniqueness
of the solution.

Lemma 3. Let φ0(x) satisfy the conditions of
Lemma (2). Then, the system (4) has a unique
solution φ(x, t) ∈ (C4,1(D)∩C3,0(D̄)) of the form
(6).



The null boundary controllability for the Mullins equation with periodic boundary conditions 119

Proof. Since Xn(x)n≥0 are bases in L2(Ω),

φ(x, t) can be represented by equation (6). To
prove that φ(x, t) given in (6) is solution of sys-
tem (4), we need to show that the first partial de-
rivative of φ(x, t) with respect to t and the fourth
partial derivative of φ(x, t) with respect to x are
continuous and it satisfies (4a) in Ω for t > 0.
Additionally, the function in equation (6) and its
first, second, and third partial derivatives with re-
spect to spatial variable, as well as its first partial
derivative with respect to time, must be contin-
uous at boundary points. We need to show that
the series

φt(x, t) ∼
β0λ0e

−λ0(T−t)

√
2π

+
∞∑
n=1

λne
−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√

π

(8)

and

φxxxx(x, t)

∼
∞∑
n=1

n4e−λn(T−t)[β2n−1 cos(nx) + β2n sin(nx)]√
π

.

(9)

converge uniformly for T − t ≥ ϵ, where ϵ is an ar-
bitrary positive number. The majorants of these
series are

∞∑
n=1

λne
−λnϵ(|β2n−1|+ |β2n|)√

π

and
∞∑
n=1

n4λne
−λnϵ(|β2n−1|+ |β2n|)√

π
.

By using Lemma (3) and D’Alembert criterion, it
is seen that these two majorant series are conver-
gent. Therefore, the series in equations (8) and
(9) are uniformly convergent for T − t ≥ ϵ > 0.
Also, we conclude from superposition principle
that the function defined by (6) satisfies equa-
tion (4a) for all T > t because t is arbitrary. The
function in equation (6) and its first, second, and
third partial derivatives with respect to spatial
variable and first partial derivative with respect
to time must be continuous at boundary points.
Namely, the series in equation (6) must be con-
tinuous at t = T,

φ(x, T ) =
β0√
2π

+

∞∑
n=1

[β2n−1 cos(nx) + β2n sin(nx)]√
π

and the following functions must be continuous at
boundary points x = −π and x = π:

φxxx(x, t)

∼
∞∑
n=1

n3e−λn(T−t)[β2n−1 sin(nx)− β2n cos(nx)]√
π

,

φxx(x, t)

∼
∞∑
n=1

n2e−λn(T−t)[−β2n−1 cos(nx)− β2n sin(nx)]√
π

.

φx(x, t)

∼
∞∑
n=1

ne−λn(T−t)[−β2n−1 sin(nx) + β2n cos(nx)]√
π

.

By using Weierstrass M-test and Lemma (2), we
see that the following majorant series are uni-
formly convergent.

∞∑
n=1

|β2n−1|+ |β2n|√
π

,
∞∑
n=1

n3|β2n|√
π

∞∑
n=1

n2|β2n−1|√
π

and

∞∑
n=1

n|β2n|√
π

.

Therefore, the above series are continuous at the
boundary points. Finally, we obtain a function
φ(x, t) ∈ (C4,1(D) ∩ C3,0(D̄)) which is a solution
of system (4) given by the Fourier series in equa-
tion (6). This solution is also unique due to the
uniqueness of the Fourier representation of func-
tions. □

4. Null boundary controllability of
Mullins equation

In this section, we will reduce the null controllabil-
ity problem to a moment problem using the spec-
tral properties of the problem. Since {Xn(x)}n≥0

is a basis in L2(Ω), any initial data u0 ∈ L2(Ω)
can be represented as follows.

u0(x) =
η0√
2π

+
∞∑
n=1

[η2n−1 cos(nx) + η2n sin(nx)]√
π

,

(10)
where ηn = (u0(x), Xn(x)) for n = 0, 1, 2, . . . Sub-
stituting equations (6) and (10) into (3), we get

β0η0e
−λ0T +

∞∑
n=1

e−λnT [β2n−1η2n−1 + β2nη2n]

−
∫ T

0

v(t)√
π

∞∑
n=1

n3eλn(T−t)β2n(−1)ndt = 0

(11)
According to Lemma 1, system (2) is null control-
lable in time T > 0 if and only if for any u0 ∈ F
there exists v(t) ∈ L2(0, T ) such that (3) is sat-
isfied. Since {Xn(x)}n≥0 is an orthonormal basis
for L2(Ω), equation (3) is verified if and only if
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it is verified by φ0
m(x) = Xm(x),m = 0, 1, . . . .

Therefore, if in particular φ0
m(x) = Xm(x), then

βn = δm,n, and η0 = 0, η2m−1 = 0 and∫ T

0

v(t)√
π
eλm(T−t)m3(−1)mdt = e−λmT η2m

for m = 1, 2, . . . . Taking v(t) = f(T − t) in the
last equation, we have proven the following theo-
rem, which is the main result of this article. From
above, it is clear that system (2) is not always con-
trollable for all initial data classes. That is why
we need to define the following admissible initial
data classes to make the system null controllable.

F = {u0(x) ∈ L2(Ω)
∣∣η0 = 0 and η2m−1 = 0}.

Now, we are in a position to state the main theo-
rem of this article.

Theorem 1. The system (2) is null controllable
in time T > 0 if and only if for any u0 ∈ F with
Fourier expansion

u0(x) =

∞∑
n=1

η2n
sin(nx)√

π
,

there exists a function f ∈ L2(0, T ) such that∫ T

0
f(t)e−λmtdt =

(−1)mη2m
√
πe−λmT

m3
(12)

for m = 1, 2, · · · .

To have a precise understanding of Theorem 1,
we provide the following example.

Example 1. It is seen that

φn(x, t) =
cos(nx)√

π
e−λn(T−t)

is a solution of (4) with the initial data cos(nx)√
π

for arbitrary fixed positive integer n. Taking into
consideration these values in (5), we have∫ π

−π
u(x, T )

cos(nx)√
π

dx

−
∫ π

−π
u0(x)

e−λnT cos(nx)√
π

dx = 0

the second term of equation is independent of the
control and non-zero unless η2n−1 = 0. This ex-
plains how we choose the initial data classes.

4.1. Moment Problem

We need to find f(t) that satisfies (12) to find con-
trol v(t). This is a moment problem in L2(0, T )
with respect to the family Λ = {e−λmt}m≥0. From
Theorem (1), we see that controllability holds if
and only if the moment problem (12) is solvable.
To solve this moment problem, we can apply the
general theory developed in [21] by Fattorini and

Russell. Suppose that we can construct a se-
quence of functions {Ψn}n≥0 that are biorthog-
onal to the set Λ in L2(0, T ), such that∫ T

0
e−λmtΨn(t)dt = δn,m =

{
1, if n = m

0, if n ̸= m

(13)
for all m,n = 0, 1, 2 . . . . Then, moment problems
(12) have solutions by setting

f(t) =
∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn(t)

Since
∞∑
n=0

1

λn
=

∞∑
n=0

1

n4 + c
< ∞, (14)

Muntz’s Theorem shows that biorthogonal se-
quence {Ψn}n≥0 exists. In addition, the gen-
eral estimations of ∥Ψn∥L2(0,∞) was calculated by
H.O. Fattoroni and D. L. Russell. They showed
in [3] that if the λn are real and satisfy the fol-
lowing asymptotic relationship

λn = K(n+ α)ζ + o(nζ−1) (n → ∞)

whereK > 0, ζ > 1 and α is real, then there exists
constants K̂,Kζ such that

∥Ψn(t)∥L2(0,∞) ≤ K̂ exp[(Kζ + o(1))λ1/ζ
n ] (n ≥ 1)

where o(1) indicates a term tending to zero as n
goes to infinity. The computation of the constant
Kζ is given in [21]. To relate the interval [0,∞]
with the finite interval [0, T], they used results
given in [22]. Since λn = n4 + c, using these re-
sults it can be seen that

∥Ψn(t)∥L2(0,T ) ≤ Keρ for n ≥ 0

where K and ρ are some positive constants. Now,
we can state the following results.

Corollary 1. Given any T > 0, suppose that
there exists a sequence {Ψn(t)}n≥0 in L2(0, T )
biorthogonal to the set Λ such that

∥Ψn∥L2(0,T ) ≤ Kenρ, ∀n ≥ 0 (15)

holds, where K and ρ are two positive constants.
Then, system (2) is null-controllable in time T.

Proof. According to Theorem (1), the system (2)
is null controllable in time T if for any u0 ∈ F
with Fourier expansion

u0(x) =

∞∑
n=1

η2n sin(nx)√
π

,

there exists a function f ∈ L2(0, T ) which holds
(12). Choose

f(t) =

∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn(t) (16)
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Since ∥Ψn∥L2(0,T ) ≤ Kenρ, for all n ≥ 0, we de-
duce that

∥
∞∑
n=1

η2ne
−λnT (−1)n

√
π

n3
Ψn∥L2(0,T )

≤
∞∑
n=1

|η2n|
√
π

n3
e−λnT ∥Ψn∥L2(0,T )

≤ K
∞∑
n=1

|η2n|
√
π

n3
e−λnT+nρ < ∞

i.e., f(t) converges in L2(0, T ). Hence, (16) im-
plies that f satisfies (12) and the proof fin-
ishes. □

5. Conclusion

In this paper, we studied the null boundary con-
trollability of the Mullins equation with periodic
boundary conditions. We demonstrated that the
system is controllable on a specific admissible ini-
tial data class and solved the null boundary con-
trollability problem by reducing it to a moment
problem using the spectral properties of the sys-
tem. Additionally, we established the existence
and uniqueness of the solution of the system.

As a future direction, we will consider the system
with nonlocal boundary conditions. In this case,
the system is not self-adjoint and will require a
different approach.
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Appliquées, 121, 135-161.

[17] Imanuvilov, O. Y. (2006). Controllability
of evolution equations of fluid dynamics. In
Proceedings of the International Congress
of Mathematicians Madrid, August 22–30,
European Mathematical Society Publishing
House, 1321-1338.

[18] Beauchard, K., & Zuazua, E. (2009).
Some controllability results for the 2d kol-
mogorov equation. Annales de l’Institut Henri
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This article aims to examine M-truncated soliton solutions of the fractional
(4 + 1)-dimensional Fokas equation (FE), which is a generalization of the
Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations. The frac-
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also studied first time in this study. The generalized projective Riccati equa-
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presented method, a suitable fractional wave transformation is chosen to con-
vert the proposed model into a nonlinear ordinary differential equation. Then,
a linear equation system is acquired utilizing the GPREM, the system is solved,
and the suitable solution sets are obtained. Dark and singular soliton solutions
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1. Introduction

A variety of real-life problems have been mod-
eled using the nonlinear partial differential equa-
tions (NLPDEs) with integer or fractional or-
der. Moreover, NLPDEs with integer or frac-
tional order have main roles in area of quan-
tum mechanics, fluid dynamics, nonlinear optics,
plasma physics as well as biology, chemistry, and
finance. Because of its wide application, inves-
tigation of the analytical and soliton solutions
of the NLPDEs with integer or fractional or-
der has been very popular among authors over
the past few decades. Numerous techniques con-
sisting of the analytical and numerical methods
have been improved to gain the soliton and an-
alytical solutions of the PDEs such as the com-
bined improved Kudryashov-new extended auxil-
iary sub equation method [1], the enhanced mod-
ified extended tanh-expansion approach [2,3], the
sine-Gordon equation approach [4], F-expansion
method [5], the tanh–coth function, the modified
kudryashov expansion and rational sine–cosine
approaches [6], the Riccati equation method [7],

the tan(Θ/2) expansion approach [8], the Ja-
cobi elliptic functions methodology [9], the gen-
eralized Bernoulli sub-ODE scheme [10], the ex-

tended (G
′

G2 )-expansion scheme [11], Nucci’s re-
duction method [12], the new Kudryashov method
[13–15], the sub-equation method based on Ric-
cati equation [16], and the modified Sardar sub-
equation method [17].

Fractional differential equations have been uti-
lized the modeling many phenomena in a vari-
ety of branches of engineering and science [18,19].
Thus, various and substantial definitions of frac-
tional derivatives types have been enhanced in
the literature such as: Grunwald– Letnikov, Rie-
mann–Liouville, Caputo [20], Caputo–Fabrizio
[21], Atangana–Baleanu [22, 23], the conformable
fractional derivative [24], and the M-truncated de-
rivative [11].

The (4 + 1)-dimensional Fokas equation is ex-
pressed by the following structure [25]:

4ϑtx−ϑxxxy+ϑxyyy+12ϑxϑy+12ϑϑxy−6ϑzs = 0, (1)

in which ϑ(x, y, z, s, t). The model was firstly
presented by A. S. Fokas [25] and the FE
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is the extension form of Davey–Stewartson
and Kadomtsev–Petviashvili equations to some
higher-dimensional nonlinear wave equations [25].
So, the (4 + 1)-dimensional FE is taken into ac-
count as a higher dimensional integrable model in
mathematical physics. The (4 + 1)-dimensional
FE models the finite-amplitude wave packet in
fluid dynamics.

Up to now, soliton and analytical solutions of the
FE have been investigated by utilizing various sig-
nificant approaches. In [26], Yinghui He discussed
the analytical solutions using the extended F-
expansion scheme. Hirota’s bilinear methodology
was used to examine the FE in [27]. Kim and Sak-
thival obtained some traveling wave solutions of
the (4+1)-dimensional FE by applying the (G

′

G )-
expansion scheme in [28]. In [29], the Sardar
subequation scheme and new extended hyperbolic
function approach were utilized to build the soli-
ton solutions of the (4+1)-dimensional fractional-
order FE. Bo and Sheng used the generalized F-
expansion method to construct some exact solu-
tions with arbitrary functions in [30]. Wazwaz
implemented the simplified Hirota’s approach to
gain a variety of soliton solutions of the presented
model in [31]. In [32], the (4+1)-dimensional FE
was studied using the modified simple equation
and the extended simplest equation schemes by
Al-Amr and El-Ganaini. Baskonus et.al. con-
structed various soliton solutions by performing
sine-Gordon expansion method in [33].

In this paper, we intend to achieve the soliton
solutions of the space-time fractional (4 + 1)-
dimensional FE involving M-truncated derivative
in the form:

4Dα,γ
M,tD

α,γ
M,xϑ−D3α,γ

M,xD
α,γ
M,yϑ+Dα,γ

M,xD
3α,γ
M,y ϑ

+12Dα,γ
M,xϑD

α,γ
M,yϑ+ 12ϑDα,γ

M,xD
α,γ
M,yϑ

−6Dα,γ
M,zD

α,γ
M,sϑ = 0.

(2)

Herein, Dα,γ
M,xϑ(x, y, z, s, t) represents the M-

truncated derivative of ϑ with respect to x, 0 <
α ≤ 1 . The space-time fractional form including
the M-truncated derivative of (4+1)-dimensional
FE has been examined utilizing the GPREM for
the first time in this study.

The remain of this study is arranged as follows:
The definition and properties of the M-truncated
derivative are expressed in section 2. Mathemat-
ical analysis of the presented model is offered in
section 3. We also submit the description and en-
forcement of GPREM in section 4. To observe
the physical explanations of the derived results,
we present the graphical potraits in section 5. Fi-
nally, we give the conclusion in the last section.

2. The M-truncated derivative

Definition 1. The truncated Mittag-Leffler func-
tion [11] is identified as:

iEγ (c) =
i∑

m=0

cm

Γ (mγ + 1)
,

for γ > 0, and c ∈ C.

Definition 2. Presume that δ : [0,∞) → R, the
M-truncated derivative of δ with order α is defined
by [11]

Dα,γ
M (δ (x)) = lim

ε→0

δ (x iEγ (εx
−α))− δ (x)

ε
,

where x > 0 and α ∈ (0, 1).

Theorem 1. Consider if 0 < α ≤ 1,γ > 0 and
considering δ(t) and θ(t) are differentiable of α′s
order at x > 0, then

(1) Dα,γ
M (aδ (x) + bθ (x)) = aDα,γ

M (δ (x)) +
bDα,γ

M (θ (x)) , for all a, b ∈ R,

(2) Dα,γ
M (δ (x) θ (x)) = θ (x)Dα,β

M (δ (x)) +
δ (x)Dα,γ

M (θ (x)) ,

(3) Dα,γ
M

(
δ(x)
θ(x)

)
=

θ(x)Dα,γ
M (δ(x))−δ(x)Dα,γ

M (θ(x))

θ2(x)
,

(4) Dα,γ
M δ (x) = x1−α

Γ(γ+1)
dδ
dx .

The truncated M-fractional derivative is an exten-
sion structure of the conformable fractional deriv-
ative.

3. Nonlinear ordinary differential form
of the fractional (4 + 1)-dimensional
FE

In order to gain the NODE form of Eq. (2), we
should firstly determine wave transformation with
M-truncated derivative as follows:

ϑ (x, y, z, s, t) = V (ζ) ,

ζ =
Γ (1 + γ) (ρ1x

α + ρ2y
α + ρ3z

α + ρ4s
α + ρ5t

α)

α
.

(3)
Herein, ρ1, ρ2, ρ3, ρ4 and ρ5 are nonzero real num-
bers. Using the wave transformation in Eq.(3),
Eq. (2) transform into the following NODE:(

ρ1ρ2
3 − ρ1

3ρ2
)
V (iv) + (4ρ1ρ5 − 6ρ3ρ4)V

′′

+ 12ρ1ρ2
(
V V ′)′ = 0.

(4)

Integrating Eq.(4) twice with respect to ζ and
presuming the integration constants to zero, we
achieve the following equation:(

ρ1ρ2
3 − ρ1

3ρ2
)
V ′′ + (4ρ1ρ5 − 6ρ3ρ4)V

+12ρ1ρ2V
2 = 0.

(5)
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4. A brief sketch of the GPREM and
its application

4.1. Outline of the GPREM

According to the GPREM [14], the solution of the
Eq.(5) has the following structure:

V (ζ) = A0 +

M∑
k=1

κk−1 (ζ) [Akκ (ζ) +Bkσ (ζ)] , (6)

in which A0, Ak and Bk (1, 2, ...,M) are real con-
tants to be computed, M is the balance number,
and κ (ζ) and σ (ζ) satisfy the following equations:

κ′ (ζ) = εκ (ζ)σ (ζ) , (7)

σ′ (ζ) = λ+ εσ2 (ζ)− χκ (ζ) , ε = ∓1, (8)

in which

σ2 (ζ) = −ε

(
λ− 2χκ (ζ) +

χ2 + c

λ
κ2 (ζ)

)
, (9)

c = ∓1, λ and χ are nonzero real constants. As-
suming as λ = χ = 0, Eq.(5) has the following
solution structure:

V (ζ) =
M∑
k=1

Akσ
k(ζ), (10)

in which σ (ζ) satisfies the following relation:

σ′ (ζ) = σ2 (ζ) . (11)

Utilizing the Eqs.(7) and (8), the following solu-
tion functions are gained:

Case 1: If ε = −1, c = −1 and λ > 0, we get,

κ1 (ζ) =
λ sech(

√
λζ)

χ sech(
√
λζ)+1

,

σ1 (ζ) =

√
λ tanh(

√
λζ)

χ sech(
√
λζ)+1

.
(12)

Case 2: If ε = −1, c = 1 and λ > 0, we get,

κ2 (ζ) =
λ csch(

√
λζ)

χ csch(
√
λζ)+1

,

σ2 (ζ) =

√
λ coth(

√
λζ)

χ csch(
√
λζ)+1

.
(13)

Case 3: If ε = 1, c = −1 and λ > 0,we get,

κ3 (ζ) =
λ sec(

√
λζ)

χ sec(
√
λζ)+1

, σ3 (ζ) =

√
λ tan(

√
λζ)

χ sec(
√
λζ)+1

,

κ4 (ζ) =
λ csc(

√
λζ)

χ csc(
√
λζ)+1

, σ4 (ζ) = −
√
λ cot(

√
λζ)

χ csc(
√
λζ)+1

.

(14)
Case 4: If λ = χ = 0,

κ5 (ζ) =
C

ζ
, σ5 (ζ) =

1

εζ
. (15)

Herein, C is a nonzero constant. Insert Eq. (6)
and its derivatives to Eq. (5) and taking into ac-
count Eqs. (7)-(9), we acquire a polynomial con-
sisting of κk (ζ)σl (ζ) , (k, l = 0, 1.2.3, ...,M). If
we collect the coefficients of κk (ζ)σl (ζ) involving
the same power and equal each coefficient to zero,

we gain a system of algebraic equations which con-
sist of A0, Ak, Bk, χ, λ, ρ1, ρ2, ρ3, ρ4, and ρ5. Solv-
ing this system, then inserting these parameter
values into Eq. (5), afterwards utilizing the solu-
tions Eqs.(12)-(15) and Eq. (3), we achieve the
solutions to Eq. (2).

4.2. Implementation of GPREM to the
fractional (4 + 1)-dimensional FE

Considering Eq. (5) and applying the balance
rule, we get M = 2. Eq. (6) is rewritten in the
following structure:

V (ζ) = A0 +A1κ (ζ) +B1σ (ζ) +A2κ (ζ) +B2σ (ζ) ,
(16)

in which A0, A1, A2, B1, and B2 are constants. In-
serting Eq. (16) into Eq.(5) taking into account
Eqs. (7)-(9), we get a system of algebraic equa-
tions. Considering the coefficients of κk (ζ)σl (ζ)
as zero, then solving the system, we derive the
solution functions as:

Case 1: If ε = −1, c = −1 and λ > 0, we get the
following results:

Result1 :{ λ = 2(2ρ1ρ5−3ρ3ρ4)
(ρ12−ρ22)ρ1ρ2

, A0 = 0, A1 = −1
4χ

(
ρ1

2 − ρ2
2
)
,

A2 =
(ρ1−ρ2)2(ρ1+ρ2)2(χ2−1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
, B1 = 0,

B2 = −(ρ12−ρ22)
√
2
√

(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2−1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

,

}

(17)
Result2 :{ λ = 2(2ρ1ρ5−3ρ3ρ4)

(ρ12−ρ22)ρ1ρ2
, A0 = 0, A1 = −1

4χ
(
ρ1

2 − ρ2
2
)
,

A2 =
(ρ1−ρ2)2(ρ1+ρ2)2(χ2−1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
, B1 = 0,

B2 =
(ρ12−ρ22)

√
2
√

(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2−1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

,

}

(18)
and subsequently, we get the following solution
functions:

ϑ1,1 (x, y, z, s, t) =

(
(3χρ3ρ4−2χρ1ρ5)cosh(

√
λζ)

2ρ1ρ2(χ+cosh(
√
λζ))

)
−
(√

λω1 sinh( 1
α(

√
λζ))−3ρ3ρ4+2ρ1ρ5

2ρ1ρ2(χ+cosh(
√
λζ))

2

)
,

(19)

ϑ1,2 (x, y, z, s, t) =

(
(3χρ3ρ4−2χρ1ρ5)cosh(

√
λζ)

2ρ1ρ2(χ+cosh(
√
λζ))

)
+

(√
λω1 sinh( 1

α(
√
λζ))+3ρ3ρ4−2ρ1ρ5

2ρ1ρ2(χ+(cosh(
√
2λζ)))

2

)
,

(20)
in which

ω1 =

√
ρ1ρ2 (ρ12 − ρ22) (χ2 − 1)

(2ρ1ρ5 − 3ρ3ρ4)

2

and

ζ =
Γ (1 + γ) (ρ1x

α + ρ2y
α + ρ3z

α + ρ4s
α + ρ5t

α)

α
.

Case 2: If ε = −1, c = 1 and λ > 0,we get the
following results:
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Result3:{ λ = 2(2ρ1ρ5−3ρ3ρ4)
(ρ12−ρ22)ρ1ρ2

, A0 = 0, A1 = −1
4χ

(
ρ1

2 − ρ2
2
)
,

A2 =
(ρ1−ρ2)2(ρ1+ρ2)2(χ2+1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
, B1 = 0,

B2 = −(ρ12−ρ22)
√
2
√

(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2+1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

,

}

(21)

Result4:{ λ = 2(2ρ1ρ5−3ρ3ρ4)
(ρ12−ρ22)ρ1ρ2

, A0 = 0, A1 = −1
4χ

(
ρ1

2 − ρ2
2
)
,

A2 =
(ρ1−ρ2)2(ρ1+ρ2)2(χ2+1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
, B1 = 0,

B2 =
(ρ12−ρ22)

√
2
√

(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2+1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

,

}

(22)
and subsequently, we get the following solution
functions:

ϑ2,1 (x, y, z, s, t) =

−
√
λω2cosh

(√
λζ

)
+ (3ρ3ρ4 − 2ρ1ρ5)

(
χ sinh

(√
λζ

)
− 1

)
2ρ1ρ2

((
cosh

(√
λζ

))2

+ χ2 + 2χ sinh
(√

λζ
)
− 1

)
 , (23)

ϑ2,2 (x, y, z, s, t) =


√
λω2cosh

(√
λζ

)
+ (3ρ3ρ4 − 2ρ1ρ5)

(
χ sinh

(√
λζ

)
− 1

)
2ρ1ρ2

((
cosh

(√
λζ

))2

+ χ2 + 2χ sinh
(√

λζ
)
− 1

)
 , (24)

in which

ω2 = −
√

ρ1ρ2 (ρ12 − ρ22) (χ2 + 1)
(2ρ1ρ5 − 3ρ3ρ4)

2

and

ζ =
Γ (1 + γ) (ρ1x

α + ρ2y
α + ρ3z

α + ρ4s
α + ρ5t

α)

α
.

Case 3: If ε = 1, c = −1 and λ > 0,we get the following
results:

Result5:

{ λ = 2(2ρ1ρ5−3ρ3ρ4)

(ρ12−ρ22)ρ1ρ2
, A0 = − (2ρ1ρ5−3ρ3ρ4)

6ρ1ρ2
,

A1 = 1
4
χ
(
ρ1

2 − ρ2
2
)
,

A2 = − (ρ1−ρ2)
2(ρ1+ρ2)

2(χ2−1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

, B1 = 0,

B2 = − (ρ12−ρ2
2)

√
2
√

−(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2−1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
,

}

(25)

Result6:

{ λ = 2(2ρ1ρ5−3ρ3ρ4)

(ρ12−ρ22)ρ1ρ2
, A0 = − (2ρ1ρ5−3ρ3ρ4)

6ρ1ρ2
,

A1 = 1
4
χ
(
ρ1

2 − ρ2
2
)
,

A2 = − (ρ1−ρ2)
2(ρ1+ρ2)

2(χ2−1)ρ1ρ2
16ρ1ρ5−24ρ3ρ4

, B1 = 0,

B2 =
(ρ12−ρ2

2)
√
2
√

−(2ρ1ρ5−3ρ3ρ4)(ρ12−ρ22)(χ2−1)ρ1ρ2

16ρ1ρ5−24ρ3ρ4
,

}

(26)
and subsequently, we get the following solution function

ϑ3,1 (x, y, z, s, t) =

(
3
√
λ
√
−ω1 sin(

√
λζ)

6ρ1ρ2(χ+cos(
√
λζ))2

)
+

((
(cos(

√
λζ))2−χ cos(

√
λζ)+χ2−3

)
(3ρ3ρ4−2ρ1ρ5)

6ρ1ρ2(χ+cos(
√
λζ))2

)
,

(27)

ϑ3,2 (x, y, z, s, t) =

(
−3

√
λ
√

−ω1 sin(
√

λζ)
6ρ1ρ2(χ+cos(

√
λζ))2

)
+

((
(cos(

√
λζ))2−χ cos(

√
λζ)+χ2−3

)
(3ρ3ρ4−2ρ1ρ5)

6ρ1ρ2(χ+cos(
√
λζ))2

)
,

(28)

ϑ4,1 (x, y, z, s, t) =

(
3
√
λ
√

−ω1 cos(
√
λζ)

6ρ1ρ2(χ+cos(
√
λζ))2

)
+

((
(cos(

√
λζ))2+χ sin(

√
λζ)−χ2+2

)
(3ρ3ρ4−2ρ1ρ5)

6ρ1ρ2

(
2χ sin(

√
λζ)−2(cos(

√
λζ))2+χ2+1

)
)
,

(29)

ϑ4,2 (x, y, z, s, t) =

(
−3

√
λ
√
−ω1 cos(

√
λζ)

6ρ1ρ2(χ+cos(
√
λζ))2

)
+

((
(cos(

√
λζ))2+χ sin(

√
λζ)−χ2+2

)
(3ρ3ρ4−2ρ1ρ5)

6ρ1ρ2

(
2χ sin(

√
λζ)−2(cos(

√
λζ))2+χ2+1

)
)
,

(30)

in which

ω1 =

√
ρ1ρ2 (ρ12 − ρ22) (χ2 − 1)

(2ρ1ρ5 − 3ρ3ρ4)

2

and ζ = Γ(1+γ)(ρ1x
α+ρ2y

α+ρ3z
α+ρ4s

α+ρ5t
α)

α
.

5. Results and discussion

In this section, we present some graphical portraits and
physical interpretations of the resulted solutions. For
appropriate variables of unknown parameters, we de-
pict various graphs with 3D, 2D and contour plots.
We get the dark and singular soliton solutions for the
model. Figs. (1-2) show some of the obtained solutions.
We display 3D and contour graphs of ϑ1,1 (x, y, z, s, t)
in Eq. (19) for the parameters ρ1= 3, ρ2 = −1,
ρ3 = 2, ρ4 = 1, ρ5 = −2,γ = 0.5, y = 1, z = 1,
s = 1, χ = 5, and α= 0.8. Fig.1-(a) and fig.1-(b) show
the dark soliton. Fig. 1-(c) also demonstrates 2D soliton
profile for t = 5, 7, 9. It can be seen that the amplitude and
the shape of the dark soliton remain same. Moreover, as
t increases, soliton goes to the right. Fig. 1-(d) is the 2D
graphical portrait to demonstrate the effect of the α when
α takes the values as 0.7, 0.8, 0.9 and 1.0, respectively.
Soliton keeps its dark soliton view but if we pay attention
to the peaks of the soliton, as if soliton moves to the right.
Thus, we can say that this situation is not the various
structures of the soliton resting on the fractional orders.

Fig.2-(a) and Fig.2-(b) are 3D and contour graphs
of ϑ2,1 (x, y, z, s, t) given in Eq.(23) and these graphs
demonstrate the singular soliton for the parame-
ters ρ1= 3,ρ2 = −1,ρ3 = 3,ρ4 = 1,ρ5 = −3,γ= 0.5,
y = 1, z = 1, s = 1, χ = −5, and α= 1. Fig. 2-(c) also
demonstrates 2D soliton profile for t = 3, 5, 7. It can
be seen that the shape of the singular soliton remains the
same. Moreover, while t decrases, soliton moves to the left.
Fig. 2-(d) is the 2D graphical portrait to demonstrate the
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(a) 3D portrait of ϑ1,1(x, 1, 1, 1, t)
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(b) Contour plot of ϑ1,1(x, 1, 1, 1, t)
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(c) 2D portrait of ϑ1,1(x, 1, 1, 1, t)
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(d) 2D portraits of ϑ1,1(x, 1, 1, 1, 7)

Figure 1. The dark soliton portraits of ϑ1,1(x, 1, 1, 1, t) in Eq. (19) for the parameters
ρ1= 3,ρ2 = −1,ρ3 = 3,ρ4 = 2,ρ5 = −3,γ= 0.5, y = 1, z = 1, s = 1, χ = 5, and α= 0.8.

(a) 3D portrait of ϑ2,1(x, 1, 1, 1, t)
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(b) Contour plot of ϑ2,1(x, 1, 1, 1, t)
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(c) 2D portrait of ϑ2,1(x, 1, 1, 1, t)
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(d) 2D portraits of ϑ2,1(x, 1, 1, 1, 7) at t = 7

Figure 2. The singular soliton portraits of ϑ2,1(x, 1, 1, 1, t) in Eq. (23) for the parameters
ρ1 = 3, ρ2 = −1, ρ3 = 3, ρ4 = 2, ρ5 = −3, γ = 0.5, y = 1, z = 1, s = 1, χ = −5, and α = 1.



128 N. Ozdemir / IJOCTA, Vol.13, No.1, pp.123-129 (2023)

effect of the α when α takes the values as 0.8, 0.85, 0.9
and 1.0, respectively. Thus, we can say that this situation
is not the different structures of the soliton resting on the
fractional orders.

6. Conclusion

In this study, for the first time, the generalized projec-
tive Riccati equations method was efficaciously employed
to scrutinize analytical solutions for the fractional (4+1)-
dimensional Fokas equation with M-truncated derivative.
Some analytical solutions and singular and dark soliton
solutions are acquired. 3D, contour, and 2D graphs were
added to exhibit the physical illustrations of some resulted
solutions. The GPREM can be successfully implemented
to the different fractional forms of (4+1)-dimensional Fokas
equation. Hence, the results show that the GPREM is a
very effectual and profitable tool for solving such higher or-
der NLPDEs occurring in region associated with physics,
chemical, biology, and mathematics along with engineer-
ing.
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1. Introduction

Differential systems of fractional order are found
to be useful models for a variety of physical, bi-
ological, and engineering challenges. As a re-
sult, they have gotten greater attention from
researchers in the last two decades. Fractional
derivatives are a stronger tool for illustrating
memory and hereditary features. As a result,
they’ve found widespread use in physics, elec-
trodynamics, economics, aerodynamics, control
theory, viscoelasticity, and heat conduction. In
recent years, significant advances in the theory
and applications of fractional systems have been
made, one can review the books [1–4]. The no-
tation of exact and approximate controllability is
useful in analysis and design control frameworks.
In [5] authors studied the existence and control-
lability of fractional integro-differential system of

order 1 < r < 2 via measure of noncompact-
ness using fixed point theory approach. In [6–13]
Anurag et al. studied the controllability of semi-
linear deterministic and stochastic systems of in-
tegral and fractional order with several impor-
tant extensions using different approaches. The
numerical model of numerous physical phenom-
ena, such as the movement of liquid through split
rocks, thermodynamics, and so on, is usually
Sobolev-type. (see [14–17]).

Another type of fractional order derivative intro-
duced by Hilfer [18] is the Caputo fractional and
Riemann-Liouville derivative. Several authors
have focused on the Hilfer fractional derivative in-
cluding [19–27] for the existence and controllabil-
ity of deterministic and stochastic fractional order
systems. Many academics have recently consid-
ered the exact and approximate controllability of
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systems characterized by impulsive functional in-
clusions, integro-differential equations, semilinear
functional equations, neutral functional differen-
tial equations, and evolution inclusions, to name
a few examples, see [23, 24, 27] and references in
that. In [28–34] Ravi et. al. studied the ex-
istence, uniqueness, controllability, and optimal
control of fractional differential control systems
and their real-life mathematical applications us-
ing various types of approaches.

Consider the following Sobolev-type Hilfer frac-
tional control system as below.

yD℘,ϖ
0+

[Lz(σ)] = Az(σ) +Bv(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J = (0, c],
(1)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (2)

D℘,ϖ
0+

is the Hilfer fractional derivative, 0 ≤ ℘ ≤
1; 1

2 < ϖ < 1;is the Banach Space X with
∥ · ∥, and z(·) is the Banach Space X with ∥ · ∥.
The non densely defined closed linear operator
A : D(A) ⊆ X → X yields an integrated semi-
group {T (t)}t≥0 in Banach Space X with ∥ · ∥.
The function F : J × X × U → X is a purely
nonlinear function and B : X → U is a bounded
linear operator.

This article makes the following major contribu-
tions:

• Using two separate situations, investigate
the sufficient conditions for the approxi-
mate controllability of the suggested sys-
tems (1)-(2).

• In the first case, we assume that B = I
(where I is an identity operator) and in
the second case, we assume that B ̸= I.

• controllability results are achieved using
Gronwall’s inequality and the Cauchy se-
quence.

• Results are obtained with weaker con-
ditions (Lipschitz) on nonlinearity and
can be extended for the delay differential
equations.

• The suggested method is simple in terms
of hefty estimations as compared to stan-
dard ways such as the fixed point theory
approach.

• The results are advanced and weighted
enough as contribution in control differ-
ential equations.

We have divided this paper into the following sec-
tions: Section (1) provides a review of some es-
sential concepts and preparatory outcomes Sec-
tion (2). The main discussion of our manuscript

is presented in Section (3). Finally, in Section
(4), an application for drawing the theory of the
primary outcomes is discussed.

2. Preliminaries

Let the spaces of all continuous functions is de-
noted by C(J,X). Take η = ℘ + ϖ − ℘ϖ,
then (1 − η) = (1 − ℘)(1 − ϖ). We now define
C1−η(J,X) = {z : σ1−ηz(σ) ∈ C(J,X)} along
∥ · ∥η by ∥z∥C = sup{σ1−η∥z(σ)∥, σ ∈ J, η =
(℘ + ϖ − ℘ϖ)}. It is clear that C1−η(J,X) is a
Banach space.

The linear operators A : D(A) ⊂ X → X and
L : D(A) ⊂ X → X satisfies the properties dis-
cussed in A : D(A) ⊂ X → X. [17]:

(P1) A and L are closed linear operators.
(P2) D(L) ⊂ D(A) and L is bijective.
(P3) L−1 : X → D(L) is continuous.

Additionally, because (P1) and (P2), L−1 is
closed, by (P3) and from closed graph theorem,
we have the boundedness of AL−1 : X → X. De-
fine ||L−1|| = L̃1 and ∥L∥ = L̃2.

Introducing acquaint essential facts relevant to
fractional theory. (The readers can check [18,35]).

Definition 1. [3] “The left sided Riemann-
Liouville fractional integral of order ϖ having
lower limit c for F : [c,+∞) → R is presented
as

Jϖ
c+ F (ϱ) =

1

Γ(ϖ)

∫ ϱ

c

F (τ)

(ϱ− τ)1−ϖ
dτ, ϱ > c; ϖ > 0,

if the right side is pointwise determined on
[c,+∞), where Γ(·) denotes gamma function.”

Definition 2. [3] “The left-sided Riemann-
Liouville fractional derivative of order ϖ ∈ [k −
1, k), k ∈ X for F : [c,+∞) → R is given by

LDϖ
c+ F (ϱ) =

1

Γ(k −ϖ)

dk

dϱk

∫ ϱ

c

F (τ)

(ϱ− τ)ϖ+1−k
dτ,

ϱ > c, k − 1 < ϖ < k.”

Definition 3. [3] “The left-sided Hilfer frac-
tional derivative of order 0 ≤ ℘ ≤ 1 and 0 <
ϖ < 1 function of F (ϱ) is given by

D℘,ϖ
c+

F (ϱ) = (J
℘(1−ϖ)
c+

D(J
(1−℘)(1−ϖ)
d+

F ))(ϱ).”

Remark 1. [3] “

(i) Given ϖ = 0, 0 < ℘ < 1 also c = 0, the
Hilfer fractional derivative identical with
standard Riemann-Liouville fractional de-
rivative:

D0,ϖ
0+

F (ϱ) =
d

dϱ
J1−ϖ
0+

F (ϱ) = LDϖ
0+ F (ϱ).
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(ii) Given ϖ = 1, 0 < ℘ < 1 also c = 0, the
Hilfer fractional derivative identical with
standard Caputo derivative:

D1,ϖ
0+

F (ϱ) = J1−ϖ
0+

d

dϱ
F (ϱ) = cDϖ

0+ F (ϱ).”

Remark 2. We show the mild solution of (1)-
(2)in the following way using the Wright function
Mϖ(s).

Mϖ(s) =
∞∑
k=1

(−s)k−1

(k − 1)!Γ(1− kϖ)
, 0 < ϖ < 1, s ∈ C,

and satisfies∫ ∞

0
sζMϖ(s)ds =

Γ(1 + ζ)

Γ(1 +ϖζ)
, for s ≥ 0.

Lemma 1. There exists F : J×X×U → X such
that the system (1)-(2)is satisfied.

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
L−1Rϖ(σ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
L−1Rϖ(σ)Bv(ζ)dζ, σ ∈ J,

where

P℘,ϖ(σ) = J
v(1−ϖ)
0+

(σ)ϖ−1Sϖ(σ);

Rϖ(σ) = σϖ−1Sϖ(σ);

Sϖ(σ) =

∫ ∞

0
ϖωMϖ(ω)S(σ

ϖω)dω.

Definition 4. ( [36]) A function z : [0, c] → X
is called the mild solution of (1)-(2) provided that
z(0) = z0 ∈ X and fulfills

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bv(ζ)dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

F (ζ, z(ζ), v(ζ))dζ, σ ∈ J, (3)

where

P℘,ϖ(σ) =

∫ ∞

0
ξϖ(ω)M(σϖω)dω,

Sϖ = ϖ

∫ ∞

0
ωξϖ(ω)M(σϖω)dω,

and for ω ∈ (0,∞)

ξϖ(ω) =
1

ϖ
ω−1− 1

ϖ zϖ(ω
− 1

ϖ ) ≥ 0,

zϖ(ω) =
1

π

∞∑
n=1

(−1)n−1σ−nϖ−1Γ(nϖ + 1)

n!
sin(nπϖ),

where ξϖ is a probability density function defined
on (0,∞), i.e,

ξϖ(ω) ≥ 0, ω ∈ (0,∞) also

∫ ∞

0
ξϖ(ω)dω = 1.

Lemma 2. ( [36]) “The operators P℘,ϖ and Sϖ

fulfills:

(i) For σ ≥ 0, P℘,ϖ and Sϖ are linear
and bounded, that is, for every z ∈ X,

∥P℘,ϖ(σ)z∥ ≤ Mση−1

Γ(℘(1−ϖ)+ϖ)∥z∥
and ∥Sϖ(σ)z∥ ≤ M

Γ(ϖ)∥z∥, where

P℘,ϖ(σ) = J
℘(1−ϖ)
0+

Rϖ(σ), Rϖ(σ) =

σϖ−1Sϖ(σ).
(ii) The operators {P℘,ϖ(σ)}σ≥0 and

{Sϖ(σ)}≥0 are strongly continuous.
(iii) For every z ∈ X, µ,ϖ ∈ (0, 1], one can

get

ASϖ(σ)z = A1−µSϖ(σ)A
µz, 0 ≤ σ ≤ c;

∥AµSϖ(σ)∥ ≤ ϖCµΓ(2− µ)

σϖµΓ(1 +ϖ(1− µ))
, 0 < σ ≤ c.”

Definition 5. [6] “The reachable set of (1)-(2)
is given by

Kc(F ) = {z(c) ∈ X : z(σ) represents mild solu-
tion of (1)-(2)}.
In case F ≡ 0, then the system (1)-(2) reduces
to the corresponding linear system. The reachable
set in this case is denoted by Kc(0).”

Definition 6. [6] “If Kc(F ) = X, then the semi-
linear control system is approximately controllable
on [0, c]. Here Kc(F ) represents the closure of

Kc(F ). It is clear that, if Kc(0) = X, then linear
system is approximately controllable.”

3. Controllability results

3.1. Controllability of semilinear system:
when B = I

The linear system has an approximate controlla-
bility is proven to reach from the semilinear sys-
tem under specified nonlinear term constraints in
this study. Clearly, X = U .

Let us consider the subsequent linear system

D℘,ϖ
0+

[Lw(σ)] = Aw(σ) + u(σ), σ ∈ J = (0, c],

(4)

J
(1−℘)(1−ϖ)
0+

w(0) = z0, (5)

and the semilinear system

D℘,ϖ
0+

[Lz(σ)] = Az(σ) + v(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J, (6)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (7)
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We need to present the following assumptions to
prove the primary aim of this section, which is the
approximate controllability of (6)-(7):

Assumption 1. The linear system (4)-(5) is ap-
proximately controllable.

Assumption 2. F (σ, z(σ), v(σ)) is a nonlinear
function that, in z and v, satisfies the Lipschitz
condition.

∥F (σ, z, v)− F (σ,w, u)∥ ≤ l(∥z − w∥+ ∥v − u∥),
where l > 0, ∀ z, w ∈ X, σ ∈ [0, c].

Theorem 1. Under the assumptions (1)-(2), the
system (6)-(7) is approximately controllable pro-
vided that l < 1.

Proof. Assume that w(σ), along with the control
u, is the mild solution of (4)-(5). Assume that the
semilinear system of the following kind:

D℘,ϖ
0+

z(σ) = Az(σ) + F (σ, z(σ), v(σ))

+ u(σ)− F (σ,w(σ), v(σ)), (8)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (9)

Compare (6)-(7) and (8)-(9), the control function
v(σ) is chosen in such a way that

v(σ) = u(σ)− F (σ,w(σ), v(σ)). (10)

We consider for the given u(σ) and w(σ), there
exists v(ϱ) fulfilling (10) (We need to verify the
existence and uniqueness of v).

The mild solution of (4)-(5) is given by

w(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)u(ζ)dζ (11)

and for the system (8)-(9) is given by

z(σ)

= L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)u(ζ)dζ

−
∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, w(ζ), v(ζ))dζ

(12)

From (11) and (12), we get

w(σ)− z(σ) =

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

{F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))}dζ
(13)

Applying norm on both sides, one can get

∥w(σ)− z(σ)∥X

≤
∫ σ

0
(σ − ζ)ϖ−1∥L−1Sϖ(σ − ζ)∥

∥F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))∥dζ

≤ ML̃1

Γ(ϖ)

∫ σ

0
(σ − ζ)ϖ−1

∥F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))∥dζ (14)

Using assumption (2), we get

∥w(σ)− z(σ)∥X ≤ ML̃1l

Γ(ϖ)

∫ σ

0
(σ − ζ)ϖ−1

∥w(ζ)− z(ζ)∥dζ
By referring the Gronwall’s inequality, w(σ) =
z(σ), ∀ σ ∈ [0, c]. As a result, the linear sys-
tem’s solution w along the control u is a semi-
linear system’s solution z along the control v, i.e.,
Kc(F ) ⊃ Kc(0). Because Kc(0) is dense in X (ac-
cording to assumption 1), Kc(F ) is dense in X as
well, implying that system (6)-(7) is approximate
controllable. The proof is finished.

We need to verify that there exists a v(σ) ∈ X
such that v(σ) = u(σ) − F (σ,w(σ), v(σ)), ∀ σ ∈
[0, c].

Assume that v0 ∈ X and vn+1 = u −
F (σ,w(σ), vn) : n = 0, 1, 2, .... Thus, one can
get

vn+1 − vn = F (σ,w(σ), vn−1)− F (σ,w(σ), vn).

Hence, by referring assumption (2),

∥vn+1 − vn∥X = l∥vn − vn−1∥X ≤ ln∥v1 − v0∥X .
(15)

When n → ∞ (since l < 1), the R.H.S of (15)goes
to zero. As a result, {vn} is a Cauchy sequence in
X that converges to v ∈ X.

Next,

∥u− vn+1 − F (σ,w(σ), v)∥X =

∥F (σ,w(σ), vn)− F (σ,w(σ), v)∥X
≤ l∥vn − v∥. (16)

Because, R.H.S of (16) approaches to zero when
n → ∞, one can obtain

F (σ,w(σ), v) = lim
n→∞

(u− vn+1) = u− v

⇒ v = u− F (σ,w(σ), v).

Now, we will show that v is unique. For prov-
ing it let v1 = u − F (σ,w(σ), v1) and v2 =
u − F (σ,w(σ), v2). Then using assumption (2),
we get

∥v2 − v1∥ = ∥F (σ,w(σ), v1)− F (σ,w(σ), v2)∥
≤ l∥v2 − v1∥ ⇒ (1− l)∥v2 − v1∥ ≤ 0.
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But 0 < l < 1 therefore ∥v2 − v1∥ = 0 ⇒ v2 = v1.
Hence v is unique. □

3.2. Controllability of semilinear system:
when B ̸= I

The approximate controllability of the semilinear
system under simple conditions B and F as indi-
cated by assumptions (3)-(6). Let us consider the
subsequent linear system

D℘,ϖ
0+

[Lw(σ)] = Aw(σ) +Bu(σ), σ ∈ J,
(17)

J
(1−℘)(1−ϖ)
0+

w(0) = z0, (18)

and the semilinear system

D℘,ϖ
0+

[Lz(σ)] = Az(σ) +Bv(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J = (0, c],
(19)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (20)

We must make the following assumptions to prove
the fundamental aim of this section, namely, the
approximate controllability of (19)-(20):

Assumption 3. The linear system (17)-(18) is
approximately controllable.

Assumption 4. Assumption (2) is fulfilled.

Assumption 5. Range(F ) ⊆ Range(B).

Assumption 6. There exists ξ > 0 such that
∥Bv∥ ≥ ξ∥v∥, ∀ v ∈ U

Theorem 2. Under the assumptions (3)-(6), the
system (19)-(20) is approximately controllable,
provided that l fulfills l < ξ.

Proof. Assume that w(σ) and the control u are
the mild solution of (17)-(18). Assume that the
semilinear system that follows is

D℘,ϖ
0+

[Lz(σ)] = Az(σ) + F (σ, z(σ), v(σ))

+Bu(σ)− F (σ,w(σ), v(σ)),
(21)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (22)

In the above, the control function v in (21)-
(22) fulfills Bv(σ) = Bu(σ) − F (σ,w(σ), v(σ)),
and assumption (5), concludes that the con-
sidered equation is well defined. By employing
assumption (6) and the way of approached fol-
lowed in Theorem 2, we can easily prove that
provided that l < ξ, ∃ v(σ) ∈ U such that
Bv(σ) = Bu(σ)− F (σ,w(σ), v(σ)).

The mild solutions for (17)-(18) and (21)-(22) are
given by

w(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bu(ζ)dζ

(23)

and

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bu(ζ)dζ

−
∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, w(ζ), v(ζ))dζ

(24)
From equations (23) and (24), one can get

w(σ)− z(σ) =

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

× {F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))}dζ.
(25)

Equation (25) is the same when compared with
(13). From Theorem 2, one can easily verify
w(σ) = z(σ), ∀ σ ∈ [0, c], i.e., the reachable set of
(17)-(18) is dense in the reachable set of (19)-(20),
which is dense in X, by referring assumption (3)
and which concludes the proof. □

4. Example

Consider U = L2[0, π]. Also, define the operator
B : D(B) ⊂ U → U as

Bx = x′′, x ∈ D(B),

D(B) = {x ∈ U : x, x′ are absolutely contin-
uous, x” ∈ U, x(0) = x(π) = 0}. Assume that
A : D(A) ⊂ X → X, L : D(L) ⊂ X → X,
and Lx = x−x′′ are the operators determined by
Ax = x′′ and Lx = x− x′′, respectively, and that
D(A) and D(L) are presented by

{x ∈ X : x, x′ are absolutely continuous,

x(0) = x(π) = 0}.

Additionally, A and L are given by

Ax =
∞∑

m=1

m2⟨x, um⟩um, x ∈ D(A),

Lx =

∞∑
m=1

(1 +m2)⟨x, um⟩um, x ∈ D(L),

where um(y) =
√

2
π sin(my), m = 1, 2, 3, · · · is

the orthonormal of vectors of A. Additionally, for
z ∈ X, we have

L−1z =

∞∑
m=1

1

(1 +m2)
⟨z, um⟩um,
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and

AL−1z =
∞∑

m=1

m2

(1 +m2)
⟨z, um⟩um.

The operator B has eigen values λm = −m2 m ∈
N and corresponding eigenfunction is given by
un. Hence the spectral representation of B is pre-
sented as

Bz =
∞∑

m=1

−m2⟨x, un⟩un, x ∈ D(B).

Further, S(ϱ) which is a C0-semigroup generated
by B has en as the eigenfunctions corresponding
to eigenvalues exp(λmt), that is

S(ϱ)x =
∞∑

m=1

exp(−m2ϱ)⟨x, un⟩un, x ∈ U.

Define by

Û =

{
v|v =

∞∑
m=2

vmum, with
∞∑

m=2

v2m < ∞
}
,

where Û is an infinite dimensional space with a
norm of

∥v∥
Û
=

( ∞∑
m=2

v2m

) 1
2

Define B : Û → U by

Bv = 2v2e1 +
∞∑

m=2

vmum, v =
∞∑

m=2

vmum ∈ Û .

where B is a linear continuous map.

Assume that the Hilfer fractional semilinear con-
trol heat system is as follows:

D℘,ϖ
0+

[
z(ϱ, x)− ∂2z(ϱ, x)

∂z2

]
=

∂2z(ϱ, x)

∂z2
+Bu(ϱ, x) + γ(ϱ, z(ϱ, x)); 0 < ϱ ≤ ι,

(26)

z(ϱ, 0) = z(ϱ, π) = 0, ϱ > 0;

J
(1−γ)
0+

(z(0, x)) = z0(x), 0 ≤ x ≤ π, (27)

The Hilfer fractional derivative of order ℘ ∈ (0, 1)
and type ϖ ∈ [0, 1] is denoted by Dα,η

0+
. If the

assumptions (1)-(6) hold, the above system (26)-
(27) is approximate controllable.

5. Conclusion

The focus of this study is on the Sobolev-type ap-
proximate controllability of Hilfer fractional semi-
linear control systems. The results were obtained
using Gronwall’s inequality, the Cauchy sequence,
and the fixed point technique was avoided. With
appropriate changes, these conclusions may be
extended to include many types of delay for both

deterministic and stochastic systems.

Remark 3. One can replace the Lipschitz con-
dition on the nonlinearity by monotonic nonlin-
earity or integral contractor type nonlinearity and
obtained a different set of sufficient conditions
for the approximate controllability of the proposed
system.

Acknowledgments

The authors are thankful to all the reviewers for
their important suggestions in the improvement
of the article.

References

[1] Baleanu, D., Diethelm, K., Scalas , E., & Tru-
jillo, J. J. (2012). Fractional Calculus Models
and Numerical Methods, Series on Complex-
ity, Nonlinearity and Chaos, World Scientific
Publishing, Boston, Mass, USA.

[2] Lakshmikantham, V., Leela, S., & Devi, J.
V. (2009). Theory of Fractional Dynamic Sys-
tems, Cambridge Scientific Publishers.

[3] Podlubny, I. (1999). Fractional differential
equations, An introduction to fractional
derivatives, fractional differential equations,
to method of their solution and some of their
applications, San Diego, CA: Academic Press.

[4] Zhou, Y. (2015). Fractional Evolution Equa-
tions and Inclusions: Analysis and Control,
Elsevier, New York.

[5] Mohan Raja, M., Vijayakumar, V., & Ud-
hayakumar R. (2020). Results on the exis-
tence and controllability of fractional integro-
differential system of order 1 < r < 2 via
measure of noncompactness, Chaos, Solitons
& Fractals, 139, 1-11.

[6] Shukla, A., Sukavanam, N., & Pandey,
D.N. (2015). Complete controllability of semi-
linear stochastic system with delay. Ren-
diconti del Circolo Matematico di Palermo
(1952-), 64(2),209-220.

[7] Shukla, A., Sukavanam, N., & Pandey, D.N.
(2015). Approximate Controllability of Semi-
linear Fractional Control Systems of Order
α ∈ (1, 2]. In 2015 Proceedings of the Con-
ference on Control and its Applications (pp.
175-180), Society for Industrial and Applied
Mathematics.

[8] Shukla, A., Sukavanam, N., & Pandey, D.
N. (2014). Controllability of semilinear sto-
chastic system with multiple delays in control.
IFAC Proceedings Volumes, 47(1), 306-312.

[9] Shukla, A., Sukavanam, N., & Pandey,
D.N. (2018). Approximate controllability of



136 R. Pandey et al. / IJOCTA, Vol.13, No.1, pp.130-138 (2023)

semilinear fractional stochastic control sys-
tem. Asian-European Journal of Mathemat-
ics, 11(06), p.1850088.

[10] Shukla, A., Vijayakumar, V., & Nisar, K.S.
(2022). A new exploration on the existence
and approximate controllability for fractional
semilinear impulsive control systems of order
r ∈ (1, 2). Chaos, Solitons & Fractals, 154,
p.111615.

[11] Mohan Raja, M., Vijayakumar, V., Shukla,
A., Sooppy Nisar, K., Sakthivel, N., & Kali-
raj, K. (2022). Optimal control and approx-
imate controllability for fractional integrod-
ifferential evolution equations with infinite
delay of order r ∈ (1, 2). Optimal Control
Applocations and Methods, 43(4), 996-1019.
DOI:https://doi.org/10.1002/oca.2867.

[12] Kavitha, K., Nisar, K.S., Shukla, A.,
Vijayakumar, V., & Rezapour S. (2021).
A discussion concerning the existence re-
sults for the Sobolev-type Hilfer frac-
tional delay integro-differential systems. Ad-
vances in Differerence Equations, 467. DOI:
https://doi.org/10.1186/s13662-021-03624-1.

[13] Mohan Raja, M., Vijayakumar, V., Shukla,
A., Nisar, K.S. & Rezapour, S. (2021). New
discussion on nonlocal controllability for frac-
tional evolution system of order 1 < r < 2.
Advances in Difference Equations, 481. DOI:
https://doi.org/10.1186/s13662-021-03630-3.

[14] Agarwal, S., & Bahuguna, D. (2006). Exis-
tence of solutions to Sobolev-type partial neu-
tral differential equations, Journal of Applied
Mathematics and Stochastic Analysis, 1-10,
Article ID 16308.

[15] Brill, H. (1977). A semilinear Sobolev evolu-
tion equation in a Banach space. Journal of
Differential Equations, 24(3), 412-425.

[16] Chang, Y. K., & Li, W. T. (2006). Control-
lability of Sobolev type semilinear functional
differential and integrodifferential inclusions
with an unbounded delay, Georgian Mathe-
matical Journal, 13(1), 11-24.

[17] Lightbourne, J.H., & Rankin, S. (1983).
A partial functional differential equation of
Sobolev type. Journal of Mathematical Anal-
ysis and Applications, 93(2), 328-337.

[18] Hilfer, R. (2002). Experimental evidence for
fractional time evolution in glass forming ma-
terials. Chemical physics, 284(1-2), 399-408.

[19] Abbas, S., Benchohra, M., Lazreg, J.E., &
Zhou, Y. (2017). A survey on Hadamard and
Hilfer fractional differential equations: analy-
sis and stability. Chaos, Solitons & Fractals,
102, 47-71.

[20] Debbouche, A., & Antonov, V. (2017). Ap-
proximate controllability of semilinear Hilfer
fractional differential inclusions with impul-
sive control inclusion conditions in Banach
spaces. Chaos, Solitons & Fractals, 102, 140-
148.

[21] Dineshkumar, C., Sooppy Nisar, K., Ud-
hayakumar, R., & Vijayakumar, V. (2022).
A discussion on approximate controllability
of Sobolev-type Hilfer neutral fractional sto-
chastic differential inclusions. Asian Journal
of Control, 24(5), 2378-2394.

[22] Furati, K.M., & Kassim, M.D. (2012). Ex-
istence and uniqueness for a problem involv-
ing Hilfer fractional derivative. Computers &
Mathematics with Applications, 64(6), 1616-
1626.

[23] Kavitha, K., Vijayakumar, V., & Udhayaku-
mar, R. (2020). Results on controllability of
Hilfer fractional neutral differential equations
with infinite delay via measures of noncom-
pactness. Chaos, Solitons & Fractals, 139,
p.110035.

[24] Kavitha, K., Vijayakumar, V., Udhayaku-
mar, R., Sakthivel, N., & Sooppy Nisar, K.
(2021). A note on approximate controllabil-
ity of the Hilfer fractional neutral differential
inclusions with infinite delay. Mathematical
Methods in the Applied Sciences, 44(6), 4428-
4447.

[25] Gu, H., & Trujillo, J.J. (2015). Existence of
mild solution for evolution equation with Hil-
fer fractional derivative. Applied Mathemat-
ics and Computation, 257, 344-354.

[26] Nisar, K.S., & Vijayakumar, V. (2021). Re-
sults concerning to approximate controllabil-
ity of non-densely defined Sobolev-type Hil-
fer fractional neutral delay differential sys-
tem. Mathematical Methods in the Applied
Sciences, 44(17), 13615-13632.

[27] Yang, M., & Wang, Q.R. (2017). Approx-
imate controllability of Hilfer fractional dif-
ferential inclusions with nonlocal conditions.
Mathematical Methods in the Applied Sci-
ences, 40(4), 1126-1138.

[28] Belmor, S., Ravichandran, C., & Jarad, F.
(2020). Nonlinear generalized fractional dif-
ferential equations with generalized fractional
integral conditions. Journal of Taibah Univer-
sity for Science, 14(1), 114-123.

[29] Jothimani, K., Kaliraj, K., Panda, S.K.,
Nisar, K.S., & Ravichandran, C. (2021). Re-
sults on controllability of non-densely char-
acterized neutral fractional delay differential
system. Evolution Equations & Control The-
ory, 10(3), p.619.



A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations 137

[30] Vijayaraj, V., Ravichandran, C., Botmart,
T., Nisar, K.S., & Jothimani, K. (2023). Exis-
tence and data dependence results for neutral
fractional order integro-differential equations.
AIMS Mathematics, 8(1), 1055-1071.

[31] Kaliraj, K., Priya, P.L., & Ravichandran, C.
(2022). An Explication of Finite-Time Stabil-
ity for Fractional Delay Model with Neutral
Impulsive Conditions. Qualitative Theory of
Dynamical Systems, 21(4), p.161.

[32] Jothimani, K., Ravichandran, C., Kumar,
V., Djemai, M., & Nisar, K.S. (2022). In-
terpretation of Trajectory Control and Opti-
mization for the Nondense Fractional System.
International Journal of Applied and Compu-
tational Mathematics, 8(6), p.273.

[33] Nisar, K.S., Vijayaraj, V., Valliammal, N.,
Logeswari, K., Ravichandran, C., Abdel-
Aty, A.H., & Yahia, I.S. (2022). A note on
controllability of noninstantaneous impulsive
atangana-baleanu-caputo neutral fractional
integrodifferential systems. Fractals, 30(08),
p.2240203.

[34] Nisar, K.S., Logeswari, K., Vijayaraj, V.,
Baskonus, H.M., & Ravichandran, C. (2022).
Fractional order modeling the gemini virus in
capsicum annuum with optimal control. Frac-
tal and Fractional, 6(2), p.61.

[35] Miller, K. S., & Ross, B. (1993). An Introduc-
tion to the Fractional Calculus and Fractional
Differential Equations, Wiley, New York.

[36] Zhou, Y., & Jiao, F. (2010). Existence of
mild solutions for fractional neutral evolution
equations. Computers & Mathematics with
Applications, 59(3), 1063-1077.

Ritika Pandey currently an undergraduate stu-
dent of electronics engineering. Her interests in-
clude control systems and signal processing.

https://orcid.org/0000-0003-0304-6883

Chandan Shukla currently an undergraduate
student of electronics engineering. His interests
include control systems and signal processing.

https://orcid.org/0000-0002-0358-8925

Anurag Shukla received M.Sc, and Ph.D. de-
grees in Mathematics from IIT Roorkee, Uttarak-
hand, India in 2011, and 2016 respectively. He

is an Assistant Professor with the Department of
Applied Sciences and Humanities, Rajkiya Engi-
neering College, Kannauj, Uttar Pradesh, India.
His current research interests include Fractional
Differential Systems, Stochastic Differential Sys-
tems, Impulsive Differential Systems, and Mathe-
matical Control theory. To his credit, he has pub-
lished more than 70 papers in reputed scientific
journals.

https://orcid.org/0000-0001-5892-0342

Ashwini Kumar Upadhyay received an
M.Tech degree in Electronics Engineering from
IIT Kanpur, Uttar Pradesh, India in 2013. Cur-
rently, he is an Assistant Professor at the De-
partment of Electronics Engineering, Rajkiya En-
gineering College, Kannauj, Uttar Pradesh, In-
dia. His current research interests include medi-
cal image segmentation using deep learning, and
mathematical control theory.

https://orcid.org/0000-0001-7315-3647

Arun Kumar Singh obtained his B.E in Elec-
tronics and Instrumentation Engineering from
BIET Jhansi in year 1997, M.Tech. in Digi-
tal Electronics and Systems, and Ph.D. in the
area of distributed systems (Adhoc networks) from
Uttar Pradesh Technical University, Lucknow.
Presently he is Dean (Academics/PGSR), CoE
along with Head of the Electronics Engineering
Department at Rajkiya Engineering College, Kan-
nauj, U.P, and has more than 24 years of ex-
perience. Dr. Singh is a Fellow member of IE
(I), IETE, a Senior member of IEEE, and life
member of ISTE. He wrote several books on digi-
tal electronics and microcontrollers and got CMI
Level 5 Award in Management and Leadership.
He contributed research papers in several na-
tional and international conferences/journals and
also delivered many lectures/keynote address; or-
ganised several FDP and workshop/training pro-
grams for students and teachers. As a Technol-
ogist/Engineer, his interests are the application
of technology-driven education paradigm, wireless
communication, distributed systems, control sys-
tems, formal methods, and system modeling.

https://orcid.org/0000-0002-7367-8619

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

https://orcid.org/0000-0003-0304-6883
https://orcid.org/0000-0002-0358-8925
https://orcid.org/0000-0001-5892-0342
https://orcid.org/0000-0001-7315-3647
https://orcid.org/0000-0002-7367-8619


138 R. Pandey et al. / IJOCTA, Vol.13, No.1, pp.130-138 (2023)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

INSTRUCTIONS FOR AUTHORS 

Aims and Scope  

An International Journal of Optimization and Control: Theories & Applications (IJOCTA) is a scientific, 

peer-reviewed, open-access journal that publishes original research papers and review articles of high 

scientific value in all areas of applied mathematics, optimization and control. It aims to focus on 

multi/inter-disciplinary research into the development and analysis of new methods for the numerical 

solution of real-world applications in engineering and applied sciences. The basic fields of this journal 

cover mathematical modeling, computational methodologies and (meta)heuristic algorithms in 

optimization, control theory and their applications. Note that new methodologies for solving recent 

optimization problems in operations research must conduct a comprehensive computational study and/or 

case study to show their applicability and practical relevance. 

Journal Topics  

The topics covered in the journal are (not limited to): 

Applied Mathematics, Financial Mathematics, Control Theory, Optimal Control, Fractional Calculus and 
Applications, Modeling of Bio-systems for Optimization and Control, Linear Programming, Nonlinear 
Programming, Stochastic Programming, Parametric Programming, Conic Programming, Discrete 
Programming, Dynamic Programming, Nonlinear Dynamics, Stochastic Differential Equations, 
Optimization with Artificial Intelligence, Operational Research in Life and Human Sciences, Heuristic and 
Metaheuristic Algorithms in Optimization, Applications Related to Optimization in Engineering. 

Submission of Manuscripts 

New Submissions 

Solicited and contributed manuscripts should be submitted to IJOCTA via the journal's online submission 
system. You need to make registration prior to submitting a new manuscript (please click here to register 
and do not forget to define yourself as an "Author" in doing so). You may then click on the "New 
Submission" link on your User Home. 

IMPORTANT: If you already have an account, please click here to login. It is likely that you will have 
created an account if you have reviewed or authored for the journal in the past. 

On the submission page, enter data and answer questions as prompted. Click on the “Next” button on each 
screen to save your work and advance to the next screen. The names and contact details of at least four 
internationally recognized experts who can review your manuscript should be entered in the "Comments 
for the Editor" box.  

You will be prompted to upload your files: Click on the “Browse” button and locate the file on your 
computer. Select the description of the file in the drop down next to the Browse button. When you have 
selected all files you wish to upload, click the “Upload” button. Review your submission before sending to 
the Editors. Click the “Submit” button when you are done reviewing. Authors are responsible for verifying 
all files have uploaded correctly.  

You may stop a submission at any phase and save it to submit later. Acknowledgment of receipt of the 
manuscript by IJOCTA Online Submission System will be sent to the corresponding author, including an 
assigned manuscript number that should be included in all subsequent correspondence. You can also log-
on to submission web page of IJOCTA any time to check the status of your manuscript. You will receive an 
e-mail once a decision has been made on your manuscript. 

Each manuscript must be accompanied by a statement that it has not been published elsewhere and that it 
has not been submitted simultaneously for publication elsewhere. 

Manuscripts can be prepared using LaTeX (.tex) or MSWord (.docx). However, manuscripts with heavy 
mathematical content will only be accepted as LaTeX files.  

Preferred first submission format (for reviewing purpose only) is Portable Document File (.pdf). Please 
find below the templates for first submission. 

Click here to download Word template for first submission (.docx) 

http://ijocta.org/index.php/files/user/register
http://ijocta.org/index.php/files/login
http://www.ijocta.com/documents/firstsub_template_ijocta_word.dotx
http://www.ijocta.org/documents/finalsub_template_ijocta_word.dotx


ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

Click here to download LaTeX template for first submission (.tex) 

 

Revised Manuscripts 

Revised manuscripts should be submitted via IJOCTA online system to ensure that they are linked to the 
original submission. It is also necessary to attach a separate file in which a point-by-point explanation is 
given to the specific points/questions raised by the referees and the corresponding changes made in the 
revised version. 

To upload your revised manuscript, please go to your author page and click on the related manuscript 
title. Navigate to the "Review" link on the top left and scroll down the page. Click on the "Choose File" 
button under the "Editor Decision" title, choose the revised article (in pdf format) that you want to submit, 
and click on the "Upload" button to upload the author version. Repeat the same steps to upload the 
"Responses to Reviewers/Editor" file and make sure that you click the "Upload" button again.  

To avoid any delay in making the article available freely online, the authors also need to upload the source 
files (Word or LaTex) when submitting revised manuscripts. Files can be compressed if necessary. The 
two-column final submission templates are as follows: 

Click here to download Word template for final submission (.docx)  

Click here to download LaTeX template for final submission (.tex) 

Authors are responsible for obtaining permission to reproduce copyrighted material from other sources 
and are required to sign an agreement for the transfer of copyright to IJOCTA. 

 

Article Processing Charges  

There are no charges for submission and/or publication. 

 

English Editing  

Papers must be in English. Both British and American spelling is acceptable, provided usage is consistent 
within the manuscript. Manuscripts that are written in English that is ambiguous or incomprehensible, in 
the opinion of the Editor, will be returned to the authors with a request to resubmit once the language 
issues have been improved. This policy does not imply that all papers must be written in "perfect" English, 
whatever that may mean. Rather, the criteria require that the intended meaning of the authors must be 
clearly understandable, i.e., not obscured by language problems, by referees who have agreed to review 
the paper. 

 

Presentation of Papers  

Manuscript style 

Use a standard font of the 11-point type: Times New Roman is preferred. It is necessary to single line 
space your manuscript. Normally manuscripts are expected not to exceed 25 single-spaced pages 
including text, tables, figures and bibliography. All illustrations, figures, and tables are placed within the 
text at the appropriate points, rather than at the end.   

During the submission process you must enter: (1) the full title, (2) names and affiliations of all authors 
and (3) the full address, including email, telephone and fax of the author who is to check the proofs. 
Supply a brief biography of each author at the end of the manuscript after references. 

• Include the name(s) of any sponsor(s) of the research contained in the paper, along with grant 
number(s). 

• Enter an abstract of no more than 250 words for all articles. 

Keywords 

Authors should prepare no more than 5 keywords for their manuscript.  

http://www.ijocta.org/documents/finalsub_template_ijocta_latex.rar
http://www.ijocta.com/documents/finalsub_template_ijocta_word.dotx
http://www.ijocta.org/documents/finalsub_template_ijocta_word.dotx
http://www.ijocta.com/documents/finalsub_template_ijocta_latex.rar
http://www.ijocta.org/documents/finalsub_template_ijocta_latex.rar


ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

Maximum five AMS Classification number (http://www.ams.org/mathscinet/msc/msc2010.html) of the 
study should be specified after keywords. 

Writing Abstract 

An abstract is a concise summary of the whole paper, not just the conclusions. The abstract should be no 
more than 250 words and convey the following: 

1. An introduction to the work. This should be accessible by scientists in any field and express the 
necessity of the experiments executed. 

2. Some scientific detail regarding the background to the problem. 
3. A summary of the main result. 
4. The implications of the result. 
5. A broader perspective of the results, once again understandable across scientific disciplines. 

It is crucial that the abstract conveys the importance of the work and be understandable without 
reference to the rest of the manuscript to a multidisciplinary audience. Abstracts should not contain any 
citation to other published works. 

Reference Style 

Reference citations in the text should be identified by numbers in square brackets "[ ]". All references 
must be complete and accurate. Please ensure that every reference cited in the text is also present in the 
reference list (and vice versa). Online citations should include date of access. References should be listed 
in the following style: 

Journal article 

Author, A.A., & Author, B. (Year). Title of article. Title of Journal, Vol(Issue), pages. 

Castles, F.G., Curtin, J.C., & Vowles, J. (2006). Public policy in Australia and New Zealand: The new global 
context. Australian Journal of Political Science, 41(2), 131–143. 

Book 

Author, A. (Year). Title of book. Publisher, Place of Publication. 

Mercer, P.A., & Smith, G. (1993). Private Viewdata in the UK. 2nd ed. Longman, London. 

Chapter 

Author, A. (Year). Title of chapter. In: A. Editor and B. Editor, eds. Title of book. Publisher, Place of 
publication, pages. 

Bantz, C.R. (1995). Social dimensions of software development. In: J.A. Anderson, ed. Annual review of 
software management and development. CA: Sage, Newbury Park, 502–510. 

Internet document 

Author, A. (Year). Title of document [online]. Source. Available from: URL [Accessed (date)]. 

Holland, M. (2004). Guide to citing Internet sources [online]. Poole, Bournemouth University. Available 
from: http://www.bournemouth.ac.uk/library/using/guide_to_citing_internet_sourc.html [Accessed 4 
November 2004]. 

Newspaper article 

Author, A. (or Title of Newspaper) (Year). Title of article. Title of Newspaper, day Month, page, column. 

Independent (1992). Picking up the bills. Independent, 4 June, p. 28a. 

Thesis 

Author, A. (Year). Title of thesis. Type of thesis (degree). Name of University. 

Agutter, A.J. (1995). The linguistic significance of current British slang. PhD Thesis. Edinburgh 
University. 

 

 



ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

Illustrations 

Illustrations submitted (line drawings, halftones, photos, photomicrographs, etc.) should be clean 
originals or digital files. Digital files are recommended for highest quality reproduction and should follow 
these guidelines: 

• 300 dpi or higher  
• Sized to fit on journal page  
• TIFF or JPEG format only  
• Embedded in text files and submitted as separate files (if required) 

Tables and Figures 

Tables and figures (illustrations) should be embedded in the text at the appropriate points, rather than at 
the end. A short descriptive title should appear above each table with a clear legend and any footnotes 
suitably identified below.  

Proofs 

Page proofs are sent to the designated author using IJOCTA EProof system. They must be carefully 
checked and returned within 48 hours of receipt. 

Offprints/Reprints 

Each corresponding author of an article will receive a PDF file of the article via email. This file is for 
personal use only and may not be copied and disseminated in any form without prior written permission 
from IJOCTA. 

 

Submission Preparation Checklist 

As part of the submission process, authors are required to check off their submission's compliance with all 
of the following items, and submissions may be returned to authors that do not adhere to these guidelines. 

1. The submission has not been previously published, nor is it before another journal for 
consideration (or an explanation has been provided in Comments for the Editor). 

2. The paper is in PDF format and prepared using the IJOCTA's two-column template. 
3. All references cited in the manuscript have been listed in the References list (and vice-versa) 

following the referencing style of the journal. 
4. There is no copyright material used in the manuscript (or all necessary permissions have been 

granted). 
5. Details of all authors have been provided correctly. 
6. ORCID profile numbers of "all" authors are mandatory, and they are provided at the end of the 

manuscript as in the template (visit https://orcid.org for more details on ORCID). 
7. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines. 
8. Maximum five AMS Classification number (http://www.ams.org/mathscinet/msc/msc2010.html) 

of the study have been provided after keywords. 
9. The names and email addresses of at least FOUR (4) possible reviewers have been indicated in 

"Comments for the Editor" box in "Paper Submission Step 1-Start". Please note that at least two of 
the recommendations should be from different countries. Avoid suggesting reviewers you have a 
conflict of interest. 

 

Peer Review Process 

All contributions, prepared according to the author guidelines and submitted via IJOCTA online 
submission system are evaluated according to the criteria of originality and quality of their scientific 
content. The corresponding author will receive a confirmation e-mail with a reference number assigned to 
the paper, which he/she is asked to quote in all subsequent correspondence. 

All manuscripts are first checked by the Technical Editor using plagiarism detection software 
(iThenticate) to verify originality and ensure the quality of the written work. If the result is not 
satisfactory (i.e. exceeding the limit of 30% of overlapping), the submission is rejected and the author is 
notified. 



ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

After the plagiarism check, the manuscripts are evaluated by the Editor-in-Chief and can be rejected 
without reviewing if considered not of sufficient interest or novelty, too preliminary or out of the scope of 
the journal. If the manuscript is considered suitable for further evaluation, it is first sent to the Area 
Editor. Based on his/her opinion the paper is then sent to at least two independent reviewers. Each 
reviewer is allowed up to four weeks to return his/her feedback but this duration may be extended based 
on his/her availability. IJOCTA has instituted a blind peer review process where the reviewers' identities 
are not known to authors. When the reviews are received, the Area Editor gives a decision and lets the 
author know it together with the reviewer comments and any supplementary files. 

Should the reviews be positive, the authors are expected to submit the revised version usually within two 
months the editor decision is sent (this period can be extended when the authors contact to the editor and 
let him/her know that they need extra time for resubmission). If a revised paper is not resubmitted within 
the deadline, it is considered as a new submission after all the changes requested by reviewers have been 
made. Authors are required to submit a new cover letter, a response to reviewers letter and the revised 
manuscript (which ideally shows the revisions made in a different color or highlighted). If a change in 
authorship (addition or removal of author) has occurred during the revision, authors are requested to 
clarify the reason for change, and all authors (including the removed/added ones) need to submit a 
written consent for the change. The revised version is evaluated by the Area editor and/or reviewers and 
the Editor-in-Chief brings a decision about final acceptance based on their suggestions. If necessary, 
further revision can be asked for to fulfil all the requirements of the reviewers. 

When a manuscript is accepted for publication, an acceptance letter is sent to the corresponding author 
and the authors are asked to submit the source file of the manuscript conforming to the IJOCTA two-
column final submission template. After that stage, changes of authors of the manuscript are not possible. 
The manuscript is sent to the Copyeditor and a linguistic, metrological and technical revision is made, at 
which stage the authors are asked to make the final corrections in no more than a week. The layout editor 
prepares the galleys and the authors receive the galley proof for final check before printing. The authors 
are expected to correct only typographical errors on the proofs and return the proofs within 48 hours. 
After the final check by the layout editor and the proofreader, the manuscript is assigned a DOI number, 
made publicly available and listed in the forthcoming journal issue. After printing the issue, the 
corresponding metadata and files published in this issue are sent to the databases for indexing. 

 

 

Publication Ethics and Malpractice Statement 

IJOCTA is committed to ensuring ethics in publication and quality of articles. Conforming to standards of 
expected ethical behavior is therefore necessary for all parties (the author, the editor(s), the peer 
reviewer) involved in the act of publishing. 

International Standards for Editors 

The editors of the IJOCTA are responsible for deciding which of the articles submitted to the journal 
should be published considering their intellectual content without regard to race, gender, sexual 
orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors. The editors 
may be guided by the policies of the journal's editorial board and constrained by such legal requirements 



ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

as shall then be in force regarding libel, copyright infringement and plagiarism. The editors may confer 
with other editors or reviewers in making this decision. As guardians and stewards of the research record, 
editors should encourage authors to strive for, and adhere themselves to, the highest standards of 
publication ethics. Furthermore, editors are in a unique position to indirectly foster responsible conduct 
of research through their policies and processes. 

To achieve the maximum effect within the research community, ideally all editors should adhere to 
universal standards and good practices. 

• Editors are accountable and should take responsibility for everything they publish. 
• Editors should make fair and unbiased decisions independent from commercial consideration and 

ensure a fair and appropriate peer review process. 
• Editors should adopt editorial policies that encourage maximum transparency and complete, 

honest reporting. 
• Editors should guard the integrity of the published record by issuing corrections and retractions 

when needed and pursuing suspected or alleged research and publication misconduct. 
• Editors should pursue reviewer and editorial misconduct. 
• Editors should critically assess the ethical conduct of studies in humans and animals. 
• Peer reviewers and authors should be told what is expected of them. 
• Editors should have appropriate policies in place for handling editorial conflicts of interest. 

Reference: 

Kleinert S & Wager E (2011). Responsible research publication: international standards for editors. A 
position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22-24, 
2010. Chapter 51 in: Mayer T & Steneck N (eds) Promoting Research Integrity in a Global Environment. 
Imperial College Press / World Scientific Publishing, Singapore (pp 317-28). (ISBN 978-981-4340-97-7) 
[Link]. 

 

International Standards for Authors 

Publication is the final stage of research and therefore a responsibility for all researchers. Scholarly 
publications are expected to provide a detailed and permanent record of research. Because publications 
form the basis for both new research and the application of findings, they can affect not only the research 
community but also, indirectly, society at large. Researchers therefore have a responsibility to ensure that 
their publications are honest, clear, accurate, complete and balanced, and should avoid misleading, 
selective or ambiguous reporting. Journal editors also have responsibilities for ensuring the integrity of 
the research literature and these are set out in companion guidelines. 

• The research being reported should have been conducted in an ethical and responsible manner 
and should comply with all relevant legislation. 

• Researchers should present their results clearly, honestly, and without fabrication, falsification or 
inappropriate data manipulation. 

• Researchers should strive to describe their methods clearly and unambiguously so that their 
findings can be confirmed by others. 

• Researchers should adhere to publication requirements that submitted work is original, is not 
plagiarised, and has not been published elsewhere. 

• Authors should take collective responsibility for submitted and published work. 
• The authorship of research publications should accurately reflect individuals’ contributions to the 

work and its reporting. 
• Funding sources and relevant conflicts of interest should be disclosed. 
• When an author discovers a significant error or inaccuracy in his/her own published work, it is 

the author’s obligation to promptly notify the journal’s Editor-in-Chief and cooperate with them 
to either retract the paper or to publish an appropriate erratum. 

Reference: 

Wager E & Kleinert S (2011) Responsible research publication: international standards for authors. A 
position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22-24, 
2010. Chapter 50 in: Mayer T & Steneck N (eds) Promoting Research Integrity in a Global Environment. 

http://publicationethics.org/files/International%20standard_editors_for%20website_11_Nov_2011%20%281%29.pdf


ISSN: 2146-0957, eISSN: 2146-5703, http://www.ijocta.org 

Imperial College Press / World Scientific Publishing, Singapore (pp 309-16). (ISBN 978-981-4340-97-7) 
[Link]. 

 

Basic principles to which peer reviewers should adhere 

Peer review in all its forms plays an important role in ensuring the integrity of the scholarly record. The 
process depends to a large extent on trust and requires that everyone involved behaves responsibly and 
ethically. Peer reviewers play a central and critical part in the peer-review process as the peer review 
assists the Editors in making editorial decisions and, through the editorial communication with the author, 
may also assist the author in improving the manuscript. 

Peer reviewers should: 

• respect the confidentiality of peer review and not reveal any details of a manuscript or its review, 
during or after the peer-review process, beyond those that are released by the journal; 

• not use information obtained during the peer-review process for their own or any other person’s 
or organization’s advantage, or to disadvantage or discredit others; 

• only agree to review manuscripts for which they have the subject expertise required to carry out 
a proper assessment and which they can assess within a reasonable time-frame; 

• declare all potential conflicting interests, seeking advice from the journal if they are unsure 
whether something constitutes a relevant conflict; 

• not allow their reviews to be influenced by the origins of a manuscript, by the nationality, religion, 
political beliefs, gender or other characteristics of the authors, or by commercial considerations; 

• be objective and constructive in their reviews, refraining from being hostile or inflammatory and 
from making libellous or derogatory personal comments; 

• acknowledge that peer review is largely a reciprocal endeavour and undertake to carry out their 
fair share of reviewing, in a timely manner; 

• provide personal and professional information that is accurate and a true representation of their 
expertise when creating or updating journal accounts. 

Reference: 

Homes I (2013). COPE Ethical Guidelines for Peer Reviewers, March 2013, v1 [Link]. 

 

Copyright Notice 

All articles published in An International Journal of Optimization and Control: Theories & Applications 
(IJOCTA) are made freely available with our Open Access policy without any publication/subscription fee.  

Under the CC BY license, authors retain ownership of the copyright for their article, but authors grant 
others permission to use the content of publications in IJOCTA in whole or in part provided that the 
original work is properly cited. Users (redistributors) of IJOCTA are required to cite the original source, 
including the author's names, IJOCTA as the initial source of publication, year of publication, volume 
number and DOI (if available). 

Authors grant IJOCTA the right of first publication. Although authors remain the copyright owner, they 
grant the journal the irrevocable, nonexclusive rights to publish, reproduce, publicly distribute and 
display, and transmit their article or portions thereof in any manner. 

  Articles are published under the Creative Commons Attribution 4.0 International License 
(CC BY 4.0). 

 

 

 

http://publicationethics.org/files/International%20standards_authors_for%20website_11_Nov_2011.pdf
http://publicationethics.org/files/Ethical_guidelines_for_peer_reviewers_0.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

 

An International Journal of Optimization and Control:  
Theories & Applications 

 

Volume: 13 Number: 1  
January 2023 

  

 

1 Certain saigo type fractional integral inequalities and their q-analogues 

Shilpi Jain, Rahul Goyal, Praveen Agarwal, Shaher Momani 

10 A simple method for studying asymptotic stability of discrete dynamical systems and its applications 

Manh Tuan Hoang, Thi Kim Quy Ngo, Ha Hai Truong 

26 Observer design for a class of irreversible port Hamiltonian systems 

Saida Zenfari, Mohamed Laabissi, Mohammed Elarbi Achhab 

35 The effect of marketing and R&D expenditures on firm profitability and stock return: Evidence from 
BIST 

Gamze Sekeroglu, Kazım Karaboga 

46 Novel approach for nonlinear time-fractional Sharma-Tasso-Olever equation using Elzaki transform 

Naveen Sanju Malagi, Pundikala Veeresha, Gunderi Dhananjaya Prasanna, Ballajja Chandrappa 
Prasannakumara, Doddabhadrappla Gowda Prakasha 

59 Approximate controllability for systems of fractional nonlinear differential equations involving 
Riemann-Liouville derivatives 

Lavina Sahijwani, Nagarajan Sukavanam 

68 A predator-prey model for the optimal control of fish harvesting through the imposition of a tax 

Anal Chatterjee, Samares Pal 

81 The processes with fractional order delay and PI controller design using particle swarm optimization 

Münevver Mine Özyetkin, Hasan Birdane 

92 Stability tests and solution estimates for non-linear differential equations 

Osman Tunç 

104 Analysing the market for digital payments in India using the predator-prey mode 

Vijith Raghavendra , Pundikala Veeresha 

116 The null boundary controllability for the Mullins equation with periodic boundary conditions 

Isil Oner 

123 M-truncated soliton solutions of the fractional (4+1)-dimensional Fokas equation 

Neslihan Ozdemir 

130 A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations 

Ritika Pandey, Chandan Shukla, Anurag Shukla, Ashwini Upadhyay, Arun Kumar Singh 

 

CONTENTS 

 

www.ijocta.org                               

editor@ijocta.org 
 

 

 

 

http://www.ijocta.org/

	1. Introduction
	2.  Certain inequalities involving Saigo type fractional integral operator
	3. Saigo type fractional q-integral inequalities
	4. Concluding remark
	Acknowledgments
	References
	1. Introduction
	2. Preliminaries
	2.1. Stability of dynamical systems
	2.2. Nonstandard finite difference methods

	3. New stability method for discrete dynamical systems
	4. Stability-preserving NSFD methods
	5. Some applications and numerical experiments
	6. Conclusions and remarks
	Acknowledgements
	References
	1. Introduction
	2. Irreversible port Hamiltonian systems
	3. Problem formulation
	4. Observer design
	5. Application
	6. Conclusion and Outlook
	References
	1. Introduction
	2. Preliminaries
	3. Existence of mild solution
	4. Controllability results
	5. Example
	6. Conclusion
	References
	1. Introduction
	2. The mathematical model
	3. Some preliminary results
	3.1. Positive invariance
	3.2. Equilibria
	3.3. Stability analysis of the system (??)

	4. Optimal Taxation policy
	5.  Numerical simulations
	6. Conclusion
	References
	1. Introduction
	2. Fractional order calculus and fractional order systems
	2.1. Fractional order systems with fractional order delay

	3. Particle swarm pptimization
	4. PI controller design for systems with fractional order delay and stability analysis
	5. Numerical examples
	5.1.  Example 1
	5.2.  Example 2

	6. Conclusion
	References
	1. Introduction
	2. Basic information
	3. Stability and integrability 
	4. Instability
	5.  Boundedness 
	6. Contributions 
	7. Conclusion
	References
	1. Introduction
	2. Literature review
	2.1. Economic applications of the Lotka-Volterra model
	2.2. UPI technology in India

	3. Theoritical Framework
	3.1. ARIMA
	3.2. Lotka-Volterra equations
	3.3. Stability analysis
	3.4. Existence and uniqueness of Ssolution
	3.5. Boundedness

	4. Methodology
	4.1. Data
	4.2. Forecasting Method

	5. Results and Discussion
	6. Concluding remarks
	References
	1. Introduction
	2. Problem Formulation
	3. Fourier Series representation of adjoint system
	4. Null boundary controllability of Mullins equation
	4.1. Moment Problem

	5. Conclusion
	References
	1. Introduction
	2. The M-truncated derivative 
	3. Nonlinear ordinary differential form of the fractional (4+1)-dimensional FE
	4. A brief sketch of the GPREM and its application
	4.1. Outline of the GPREM
	4.2.  Implementation of GPREM to the fractional (4+1)-dimensional FE

	5. Results and discussion 
	6. Conclusion
	References
	1. Introduction
	2. Preliminaries
	3. Controllability results
	3.1. Controllability of semilinear system: when Lg
	3.2. Controllability of semilinear system: when Lg

	4. Example
	5. Conclusion
	Acknowledgments
	References

