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The paper addresses diffusion approximations of magnetic field penetration of
ferromagnetic materials with emphasis on fractional calculus applications and
relevant approximate solutions. Examples with applications of time-fractional
semi-derivatives and singular kernel models (Caputo time fractional operator)
in cases of field independent and field-dependent magnetic diffusivities have
been developed: Dirichlet problems and time-dependent boundary condition
(power-law ramp). Approximate solutions in all theses case have been devel-
oped by applications of the integral-balance method and assumed parabolic
profile with unspecified exponents. Tow version of the integral method have
been successfully implemented: SDIM (single integration applicable to time-
fractional semi-derivative model) and DIM (double-integration model to frac-
tionalized singular memory models). The fading memory approach in the sense
of the causality concept and memory kernel effect on the model constructions
have been discussed.
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1. Introduction

There are many natural phenomena which can be
modelled in diffusion approximations. Here mag-
netic field diffusions in solid ferromagnetics is con-
sidered with attempts to apply approximate solu-
tion based on synergism of fractional calculus and
the integral-balance method in different versions.
The main idea is to demonstrate the feasibility
of both the fractional calculus approach and the
integral solution.

In the context of the main idea of this communi-
cation magnetic diffusion of a field with parallel
lines (see Figure 1) is taken as example. Two ba-
sic cases considering filed-independent and field-
dependent diffusions with fixed (Dirichlet) and
time dependent (power-law) boundary conditions
are chosen as test examples. Moreover, the prob-
lem of magnetic field diffusion with memory is
discussed with either the common time fractional
operator of Caputo with singular kernel or from

the more fundamental fading memory principle
allowing different memory functions to be used.

1.1. Magnetic field transport in
conducting media

The field transport in magnetizable and conduct-
ing media can be presented as superposition of the
fundamental processes of advection and diffusion
as key parts of describing behaviour of magnetic
field in materials. In homogeneous (and ideal)
materials, the magnetic field B , the electric field
E and the material velocity (mainly in the case
of plasma) v are related by the following consti-
tutive relationship [1]

E+ v ×B = 0 (1)

It is worthy to mention, that if the material is not
ideal,that is when the material resistance is finite
then the right-hand side of (1) we have [1]

*Corresponding Author
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E+ v ×B = Dµ (∇×B) (2)

where Dµ = σ/µ (σ is the material resistivity, µ
is magnetic permeability) is the magnetic diffu-
sivity. In such a case the magnetic field induction
equation is [1]

∂B

∂t
= ∇× (v ×B) +∇× (Dµ∇×B) (3)

If a pure resistive magnetic diffusion is considered
then Eq. (3) reduces to [1]

∂B

∂t
= ∇× (Dµ∇×B) (4)

Figure 1. Schematic presentation of
magnetic field with straight lines ap-
plied to a ferromagnetic material

The physics behind these relationships means
that the changes in the magnetic field lines in time
can be due to two principle causes: magnetic field
advection (if the material is flowing as plasma or
highly conductive fluid) and its diffusion through
the material. Hence, as in the classical transport
theory we assume a superposition of two trans-
port mechanism: advection and diffusion. If the
magnetic diffusivityDµ is uniform (spatially inde-
pendent), then it is possible to express (3), as [1]

∂B

∂t
= ∇× (v ×B) +Dµ∇2B (5)

That is, the magnetic field flux velocity w is re-
lated to the temporal change of the induction B
by the relation [1]

∂B

∂t
= ∇× (w ×B) (6)

and w is termed flux transporting velocity [1]
In a particular case considered in this article if
the pure resistive material is at issue, then E =
η∇ × B and the ideal Ohm law holds (see (1))

the magnetic flux velocity is practically equal to
the velocity of the medium (flowing conductive
medium) v and (1) becomes

E+ v ×B = ∇F (7)

and F is an arbitrary function of integration [1]

1.2. Magnetic field diffusion with straight
field lines

1.2.1. Medium with field independent
permeability

If one-dimensional case is considered then equa-
tion (4 ) reduces to the following diffusion equa-
tion [1–5] with constant magnetic diffusivity.

∂B

∂t
=

∂

∂x

(

Dµ
∂B

∂x

)

(8)

With uniform magnetic diffusivity Dµ = Dµ0 =
σ/µ = const. (σ is the resistivity of the material,
µ = dB/dH = f (B) is the field dependent per-
meability of the material) and a sharp unit step
at the boundary x = 0 (Dirichlet problem), that
is (i.e. for the case µ = dB/dH = f (B) = kB =
const.) we get

B (x, 0) =

{
+B0, x > 0

−B0, x < 0
(9)

The case is relevant to an infinitesimally thin cur-
rent sheet [1]. If the field is maintained fixed
at two boundary points of a finite domain (±L)
obeying the conditions B (L, t) = −B (−L, t) =
B0, the solution of (8) with Dµ = Dµ0 is [1]

B (x, t) = B0
x

L
︸ ︷︷ ︸

stationary
profile

+

+2
B0

π

∞∑

k=1

1

k
exp

[

−k2π2

(
Dµ0

L2
t

)]

sin
(

kπ
x

L

)

︸ ︷︷ ︸

transient term

(10)

The solution means very rapidly establishment
of the magnetic field stationary profile B0 (x/L ).
Moreover, taking into account the finite Ohmic
heating

(
j2/σ

)
= (Dµ0/µ ) (B0/L )2 per unit

length of the medium due the continuous supply
of magnetic energy through the boundaries with
a rate

(
Dµ0B

2
0/µL

)
[1]
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1.2.2. Medium with field dependent
permeability

Commonly the power-law approximation [2] de-
scribes the magnetic field induction dependent on
the field intensity, namely

B̄ =
B (H)

Bs
=

(
H

Hs

)γ

, 0 < γ < 1 (11)

where Bs and HS are corresponding to the point
of magnetic saturation (specific characteristics for
every magnetic material that can be used as char-
acteristic scales). Actually, this permits the diffu-
sion equation to be presented in a dimensionless
form as [2, 6]

∂B̄

∂t
= DB̄

µ

∂

∂x

(

B̄β ∂B̄

∂x

)

(12)

where β = 1−γ
γ , DB

µ = σ

µsB
β
s

, µs =
Bs

Hs
.

Equation (12) is a degenerate parabolic equation
because of the power-law diffusivity Dµ = DB

µ B
β ;

in such a case the solution has a finite speed in
contrast to model (8) where the solution speed is
infinite. Hereafter, for the sake of simplicity of
the expressions we will omit the symbol B̄ and
will use only B.

1.3. Aim and motivation notes

The following part of this article demonstrates
how fractional calculus can be applied to solve
magnetic diffusion models with either field-
independent or field-dependent diffusivity. The
assumption behind these models and the approx-
imate solutions developed is there is no changes
in the material resistivity (that is, no Joules ef-
fects as result of the magnetic field changes ex-
ist). The only magnetic field effect on the ma-
terial property considered is the power-law de-
pendence of the magnetic diffusivity as implicit
performance of the field dependent magnetic per-
meability. The fractional calculus approach envis-
ages two directions: 1) Semi-derivative approach
to the parabolic model (8), and 2) Fractionaliza-
tion of the magnetic diffusion equation through a
constitutive flux-gradient relationship with singu-
lar memory. In addition, the general problem of
the causality principle in modelling of non-local
diffusion and the fading memory approach are
discussed. In general, the models and the solu-
tions developed consider the magnetic material as
a semi-infinite with a boundary condition at x = 0
since we are interested in the laws behind the
magnetic field front propagation; before reaching
the physical limit L of the medium as in solution

(10). This approach allows straightforwardly see-
ing what would be the transient solution of the
magnetic diffusion problem if memory formalism
would be implemented in the diffusion model.

1.4. Paper organization

In what follows fractional semi-derivative diffu-
sion model is developed by splitting the model
(8) in section 2 and demonstrating two solutions
with fixed (Dirichlet) (section 2.1.1) and time-
ramp boundary condition (section 2.1.2). Fur-
ther, time-fractional models of magnetic diffu-
sions are developed (section 3) through a con-
stitutive equation with singular memory (section
3.1) with two problem solved (section 4): Dirich-
let problem (section 4.2.1) and ramp (power-
law) time-dependent boundary condition (sec-
tion 4.2.2) solved by application of the Double-
integration Method (DIM) (section 4.1) in the
general case of of field-independent magnetic dif-
fusivity. The model counterparts with field-
dependent magnetic diffusivity are solved in sec-
tions (4.3) by preliminary transform of the diffu-
sion term in two cases: Dirichlet problem (sec-
tion 4.3.1) and ramp boundary condition (sec-
tion 4.3.2). The fading memory principle and the
causality concept are discussed in sections 5) and
5.1.1, respectively, thus allowing to construct a
more general model of magnetic diffusion (section
5.1.2) and a qualitative analysis of the different
kernel functions on it (section 5.1.3).

2. Fractional calculus to magnetic

diffusion problem

Here we address three principle problems :

• Fractional calculus solution by semi-
derivatives of the problem with constant
magnetic diffusivity with fixed and time-
dependent boundary conditions

• Fractional models of magnetic diffusion
with singular memories as counterparts of
the integer-order models (8) and (12).

• Fractional models based on the causality
principle and fading memory concept

2.1. Fractional calculus solution by
semi-derivatives: general approach

Consider the model (8) which can be presented as
product of two operators
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(

∂1/2 B

∂t1/2
−
√

Dµ
∂B

∂x

)

×

×

(

∂1/2 B

∂t1/2
+
√

Dµ
∂B

∂x

)

= 0

(13)

where

∂1/2 B

∂t1/2
=

1

Γ (1/2 )

d

dt

u∫

0

B (x, t)√
t− u

du− B (x, 0)√
πt

(14)

is a Riemann-Liouville derivative of order 1/2 . In
(13) only the second term has a physical mean-
ing [7,8]. Hence, the time-fractional equivalent of
(8) is [9]

∂1/2 B

∂t1/2
= −

√

Dµ
∂θ

∂x
⇒

∂1/2 B (0, t)

∂t1/2
= −

√

Dµ
∂B (0, t)

∂x

(15)

Applying the operatorD
−1/2
t to both sides of (15)

we get (16)

B (0, t) = −
√

Dµ
∂−1/2

∂t−1/2

[
∂B (0, t)

∂x

]

(16)

With initial condition B (x, 0) = 0, applying a
single integration with respect to the spatial co-
ordinate x and using the Leibniz rule for differen-
tiation under the integral sign we get

d

dt

δ∫

0

B (x, t)dx =
√

Dµ
∂1/2 B (0, t)

∂t1/2
(17)

The upper terminal of the integral in (17) defines
a sharp front of magnetic field penetration into
the medium with conditions (Goodman’s bound-
ary condition [10, 11])

B (δ) = 0,
∂B

∂x
(δ) = 0 (18)

Equation (17) is the principle equation of Semi-
Derivative Integral Method-single integra-
tion( SDIM-1) [12]. The exact solution of this
problem (8) is well -known [13], namely

Bexact = 1− erf (η/2 ) (19)

where η = x/
√
Dµt is the Boltzmann similarity

variable. The approximate solution developed in
this work applies an assumed general parabolic
profile with unspecified exponent

Ba = Bs(1− x/δ )n (20)

This assumed profile satisfies all boundary condi-
tions (18) for any values of the exponent n [11].

2.1.1. SDIM solution: Dirichlet problem

With the assumed parabolic profile (20) and ap-
plying the Goodman boundary conditions we get
Ba (0, t) = Bs = 1. Now, replacing B(x, t) in the
integral relation (17) by the approximate profile
(20 ) the result is

d

dt

δ∫

0

(

1− x

δ

)n
dx =

√

Dµ
D1/2

∂t1/2
C (21)

The integration of (21) with the initial condition
δ (t = 0) = 0 yields

1

n+ 1

dδ

dt
=
√

Dµ
1√
πt

⇒ δB =
√

Dµt
2 (n+ 1)√

π
(22)

Hence the approximate distribution Ba (x, t) of
the magnetic field in the material is

Ba (x, t) = Bs

(

1− x
√
Dµt

√
π

2 (n+ 1)

)n

(23)

Hence, in terms if Boltzmann similarity variable
η = x/

√
Dµt the front is defined by the equality

η = 2 (n+ 1)/
√
π (i.e. when x = δB ) since at this

point Ba = 0. The optimal solution of this prob-
lem, i.e. solution with minimal mean squared er-
ror of approximation over the entire magnetic field
penetration layer is nopt = 2.248 (similar problem
was resolved in [12] ). Comparative numerical
simulations are presented in Figure 2.

That is, the dimensionless penetration depth
corresponding to the optimal solution is

δB/
√
Dµt = 2(n+1)

√
π

≈ 3.665. Here
√
Dµt plays a

role of a length scale. Taking into account that
Dµ = (σ/µ ) any Joule heating can change the
magnetic diffusivity, as well changes in µ due to
temperature effects on the material resistivity and
magnetic permeability, correspondingly.
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(a)

(b)

Figure 2. Approximate profiles de-
veloped by SDIM-1 approach and
Dirichlet problem: for stipulated ex-
ponent n = 2 (a) and optimal nopt =
2.248 (b), compared to exact solu-
tions

2.1.2. SDIM solution: Time-dependent
boundary condition

Let us consider a generalized ramp time-
dependent boundary condition b0t

m/2 with m ≥
0 at x = 0. This problem has an exact solu-
tion [13] (Chaptert 2 ) expressed through the er-
ror function (in terms of the process parameters
discussed here), namely

Be = b0Γ
(m

2
+ 1
)

(4t)m/2 imΦ

(

x

2
√
Dµt

)

(24)

which can be applied only by either numerical so-
lution or tabulated data.

With the generalized parabolic profile (20) and
the Goodman’s boundary conditions we get

Ba (0, t) = Bs = b0t
m/2 , Ba (δ) = B∞ = 0,

∂Ba

∂x
(x = δ) = 0

(25)

That is, the assumed profile is

Ba = b0t
m/2

(

1− x

δ

)n
(26)

Now, applying the relation (17 ) the result is

d

dt

δ∫

0

b0t
m/2

(

1− x

δ

)n
dx =

√

Dµ
D1/2

∂t1/2

(

b0t
m/2

)

(27)

The integration of eq. (27) yields

d

dt

(

b0t
m/2 δ

n+ 1

)

=

=
√

Dµ

[

b0
Γ
(
m
2 + 1

)

Γ
(
m
2 + 1

2

) tm/2−1/2

] (28)

The integration of (28) with the initial condition
δ (t = 0) = 0 yields

δB =
√

Dµt
2 (n+ 1)

(m+ 1)
Gm

⇒
δB

√
Dµt

= Cn
m(B) =

2 (n+ 1)

(m+ 1)
Gm

(29)

where Gm = Γ(m/2+1)
Γ(m/2+1/2) is a constant. Then, the

approximate filed induction profile is

Ba (x, t) = b0t
m/2



1− x
√
Dµt

2(n+1)
(m+1)Gm





n

=

= b0t
m/2



1− η
2(n+1)
(m+1)Gm





n

(30)

Hence, the front is defined by the condition η =
2(n+1)
(m+1)Gm. The optimal values of the exponent n

depend on the rate of the surface magnetization,
i,e. on the values of m. The minimization of the
squared mean error of approximation for different
values of m yields optimal exponents summarized
in Table 1. Plots of the approximate solutions are
shown in Figure 3.
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(a)

(b)

(c)

Figure 3. Normalized magnetic field
profiles developed by SDIM-1 for dif-
ferent values of the parameter m of
the surface ramping magnetization:
a) SDIM-1 solution with stipulated
parabolic profile exponent n = 2; b,
c) SDIM-1 solutions with optimal ex-
ponents: Comparison with exact so-
lutions (tabulated) from [13]

Table 1. SDIM-1:Optimal expo-
nents for different values of m

m 1 2 3 4 5 6
n (optimal) 1.336 1.618 1.822 1.919 2.158 2.302

3. Fractional models of magnetic

diffusion: simplified approach

Here we address magnetic diffusion equation with
memory. Precisely, the memory function used to

model is power-law with allows the fractional Ca-
puto derivative to be applied.

3.1. Magnetic flux with memory: general
approach

Let us consider a finite speed of the diffusion mag-
netic field into the material which cannot be as-
sured by the parabolic model (8). In such a case
following the causality principle that the reaction
should follow the cause, a time shift between them
can be presented through a convolution integral,
that is

jµ (x, t) = −Dµ∇B(x, t)
︸ ︷︷ ︸

instantaneous (long times)

−

−Dµ1

∞∫

0

R (t− τ)∇B (x, t− τ) dτ

︸ ︷︷ ︸

relaxation (memory effect)

(31)

with a memory R (t) controlled by a fractional pa-
rameter α , 0 < α < 1. In (31) the first term is
relevant to long times where the relaxation disap-
pears, known also as instantaneous term. If only
this term is considered we get the parabolic model
(8) with infinite speed of the solution. Now, we
will omit this term in order to develop a model of
magnetic diffusion of subdiffusion type. Applying
the continuity equation

∂B

∂t
= − ∂

∂x
jµ (32)

as well as omitting the term −Dµ∇B(x, t) (and
for the sake of simplicity getting Dµ1 = Dµ) we
get a general relationship

∂B

∂t
= Dµ

∞∫

0

R (t− τ)
∂2B (x, t− τ)

∂x2
dτ (33)

The function of R (t) depends strongly on the
physics of the magnetization and the material
properties itself.

4. Fractional models of magnetic

diffusion: Singular memory

approach

As first example we will address a singular power
law memory. In such a case the memory integral
in (33) becomes a Riemann-Liouville integral of
order α , namely
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Iαt =
1

Γ (α)

t∫

0

(t− τ)α−1∂
2B (x, τ)

∂x2
dτ =

= D−α
t

[
∂2B (x, τ)

∂x2

]

, 0 < α < 1

(34)

and the flux-gradient relationship can be ex-
pressed as

jµ = −DµI
α
t

(
∂B

∂x

)

(35)

Then, the application of the continuity equation
yields

∂B

∂t
= DµI

α
t

(
∂2B

∂x2

)

= Dµ

[

D−α
t

(
∂2B

∂x2

)]

(36)

Applying the operator Dα−1
t to both sides of (36)

and recalling the semi group properties of the
fractional derivatives and integrals (here we con-
sider Caputo time-fractional derivative) we get

∂αB

∂tα
= Dµ

∂2B

∂x2
(37)

which the well-known time-fractional diffusion
(subdiffusion equation) with boundary and initial
conditions

B (0, t) = Bs (t) , t ≥ 0,

B (x, 0) = B∞ = 0, x > 0
(38)

Now, the magnetic diffusivity has a dimension
[Dµ] =

[
m2/secµ

]
. With Dµ independent of the

time and space as well magnetic field independent,
the linear problem is (37) with which the double
integration method will be demonstrated next.

4.1. Double integration method (DIM)

The first step of DIM is the integration of (37)
from 0 to x [14]

δ∫

x

∂αB

∂tα
dx = Dµ

∂B (x, t)

∂x
−Dµ

∂u (0, t)

∂x
(39)

Taking into account that the single integration

from 0 to δ can be presented as a sum
δ∫

0

f (x) dx =

x∫

0

f (x) dx+
δ∫

x
f (x) dx = −Dµ

∂
∂xf (x = 0) we can

obtain

δ∫

x

∂αB

∂tα
dx = −Dµ

∂B (x, t)

∂x
(40)

The second step of DIM is the integration of (40)
from 0 to δ

δ∫

0





δ∫

x

∂αB

∂tα
dx



dx = DµB (0, t) (41)

Equation (41) is the principle relationship of the
double integration method when the differential
equation is of a fractional order [14]

4.2. Field independent magnetic
permeability

Now, we will apply the integral-balance solutions
to the time-fractional magnetic diffusion equation
in two cases : fixed boundary condition (Dirich-
let problem and time-ramping boundary condi-
tion (power-law).

4.2.1. Dirichlet problem

Now, we will apply DIM to (37) with assumed
generalized parabolic profile. In this case we have

∂Ba (x, t)

∂t
=

x

δ2
n
(

1− x

δ

)n−1dδ

dt
(42)

and incorporating this approximation in to the
Caputo derivative one obtain

δ∫

0





δ∫

x

CD
αBa (x, t) dx



 dx =

=
1

Γ (1− α)

t∫

0

1

(t− τ)α
1

(n+ 1) (n+ 2)

dδ2

dt
dτ

(43)

δ∫

0





δ∫

x

CD
α
t Ba (x, t) dx



 dx =
Dα

t

(
δ2
)

NC
,

NC = (n+ 1) (n+ 2)

(44)

CD
α
t δ

2 = Dµ [(n+ 1) (n+ 2)] (45)



8 J. Hristov / IJOCTA, Vol.11, No.3, pp.1-15 (2021)

Therefore, the fractional integrations (with the
physical condition δ (t = 0) = 0) results in

CD
α
t δ (t) =

√

Dµtα

√

(n+ 1) (n+ 2)

Γ (1 + α)
(46)

Therefore the approximate solution is

Ba =

(

1− x
√
DµtαFnjα

)n

,

Fn =
√

(n+ 1) (n+ 2), jα = 1/
√

Γ (1 + α)
(47)

The solution defines a non-Boltzmann similarity
ηµ = x/

√
Dµtα . Numerical simulations are pre-

sented in Figure 4 . For more details related to
the optimization of the solution and the technol-
ogy of DIM to fractional subdiffusion models see
the extended analysis in [14].

(a)

(b)

Figure 4. DIM solutions to the mag-
netization of field-independent mate-
rial with Dirichlet Boundary condi-
tion, with : stipulated exponent of
the parabolic profile n = 2 (a) and
optimal exponent nopt = 2.248 (b),
compared to exact solutions

4.2.2. Time-dependent boundary condition

With time-dependent (power-law) boundary con-

dition Ba (0, t) = Bs = b0t
m/2 the generalized

parabolic profile (20) with the Goodman’s bound-
ary conditions (25) we get the assumed profile
(26). Then, with the integral relation (41) we
get

δ∫

0





δ∫

x

∂µBa

∂tµ
dx



dx = DµB (0, t) = Dµb0t
m/2

(48)

With (42) incorporated in (48) we have

δ∫

0





δ∫

x

∂µ

∂tµ

[(

b0t
m/2

)

× ∂Ba

∂t

]

dx



dx =

= Dµb0t
m/2

(49)

The integration in left-hand side of (49) yields

CD
µ
t

(

δ2b0t
m/2

)

= Dµ

(

b0t
m/2

)

NC ,

NC = (n+ 1)(n+ 2)
(50)

δ2b0t
m/2 = DµNCG

α
mb0t

m/2+α ,

Gα
m =

(
Γ (m/2 + 1 )

Γ (α+m/2 + 1 )

)

δ2 = Dµt
αNCG

α
m ⇒ δαm =

√

Dµtα
√

NCGα
m

(51)

Hence , the approximate solution is

Bα
a,m = b0t

m/2

(

1− x
√
Dµtα

√
NC

√
Gα

m

)n

(52)

This solution defines a non-Boltzmann similarity
variable ηα = x/

√
Dµtα . Numerical simulations

with various values of the fractional order α and
the non-linear parameter β are shown in Figure
5.
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(a)

(b)

(c)

Figure 5. Approximate profiles for
stipulated exponent n = 2 (a) and
optimal nopt = 2.248 (b) compared
to exact solutions

4.3. Field dependent magnetic
permeability

The application of the integral method needs a
preliminary treatment of the of the diffusion term
in the right-hand side of (12), namely [15, 16]

DB
µ B

m∂u

∂x
=

DB
µ

β + 1

∂Bβ+1

∂x
(53)

Therefore, the result (53) can be considered as a
non-linear counterpart of the constitutive equa-
tion (32), namely

∂B

∂t
=

DB
µ

β + 1

∞∫

0

R (t− τ)
∂2Bβ+1 (x, t− τ)

∂x2
dτ

(54)

With a singular (power-law) memory function,
similarly to transformations done in 3.1 we get
a fractional analogue of (37) with non-linear dif-
fusion term (similar problem was solved in [16]).

∂αB

∂tα
= DB

µ

1

β + 1

∂2Bβ+1

∂x2
(55)

Then applying DIM we have

δ∫

0

δ∫

x

∂αB (x, t)

∂tα
dxdx =

DB
µ

β + 1
Bβ+1 (0, t) (56)

This is the principle DIM integral relationship
when the diffusion term has a power-law non-
linearity.

4.3.1. Dirichlet problem: Approximate
solution

With Caputo time-fractional derivative and the
assumes parabolic profile (20) as well as by help
of (41) the integration in LHS of Eq.(56) yields

CD
α
t δ

2 = DB
µ

(n+ 1) (n+ 2)

β + 1
(57)

That is

δ2 = DB
µ

NC

(β + 1)

tα

Γ (α+ 1)
(58)

Hence, the penetration depth is

δαB =
√

DB
µ t

α

√

NC

(β + 1)

1

Γ (α+ 1)
(59)

and the approximate solution of (55) can be ex-
pressed as

Ba (x, t) =




1− x

√

DB
µ t

α
√

(n+1)(n+2)
(β+1)Γ(1+α)






n

(60)

The solution defines a new similarity variable

ηα = x/
√

DB
µ t

α . For α = 1 it reduces to

the classical Boltzmann similarity variable ηα=1 =

x/
√

DB
µ t .
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4.3.2. Time-dependent boundary condition:
Approximate solution

From (56) it follows that the right-hand side is
DB

µ

β+1B
β+1 (0, t). Then, if the boundary condition

is of power law type Bs = B (0, t) = b0t
m/2 we

have

DB
µ

β + 1
Bβ+1 (0, t) =

DB
µ

β + 1

(

b0t
m/2

)β+1
(61)

Therefore the DIM integral solutions is

δ∫

0

δ∫

x

∂αB (x, t)

∂tα
dxdx =

DB
µ

β + 1

(

b0t
m/2

)β+1

(62)

Now, repeating the integration in the left-hand
side of (62), as in (48) and (49) we get

CD
µ
t

(

δ2b0t
m/2

)

=

DB
µ

β + 1
bβ+1
0 tm(β+1)/2 NC

(63)

The fractional integration in (63) yields

δ2b0t
m/2 =

DB
µ

β + 1
Gm

α,βNCb
β+1
0 tm(β+1)/2+α

(64)

where

Gm
α,β =

Γ
(
m(β+1)

2 + 1
)

Γ
(

α+ m(β+1)
2 + 1

) (65)

The re-arrangement in (65) results in

δ2 =
DB

µ

β + 1
Gm

α,βNCb
β
0 t
[m4 (β−1)+α] (66)

In a more useful form we have

δ =

√

DB
µ t

m(β−1)+4α
4

√

Gm
α,βNCb

β
0

β + 1
(67)

The exponent m(β−1)+4α
4 in (67) should be posi-

tive since we have to assure a positive growth of
the front δ. Therefore, the condition that should

be obeyed is β > 1 − 4α/m . Taking into ac-
count that 0 < α < 1 and m = 1, 2, 3... , then the
condition imposed on β is satisfied.

To clarify this point, since β = (1− γ)/γ where
0 < γ < 1 (γ = 0.22 for steel [2] for exam-
ple) we have always β > 1. In the particular
case with steel magnetization (γ = 0.22) we get
β = 3.545. In such a case the diffusion model (12)
is a degenerate diffusion equation with convex so-
lutions moving as almost sharp waves [15, 16]. In
such a case the exponent of the parabolic profile
(20) is n = 1/β < 1 [15]. It is noteworthy to
mention that that the parabolic profile (20) with
n < 1 generate convex profiles, while for n > 1
the profiles are concave. Profile of approximate
solutions showing competitive actions of the sub-
diffusion behaviour (trough the fractional param-
eter α) and the diffusion non-linearity (through
the exponent β) are shown in Figure 6

(a)

(b)

Figure 6. DIM solutions to the mag-
netization of field-dependent material
with time-dependent boundary condi-
tion and optimal exponents [16] show-
ing how the value of the exponent β
deforms the solution profile towards
a rectangular wave with sharp front:
a) Case with α = 0.5 , b), case with
α = 0.8
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5. Fractional models by fading memory

approach

5.1. Fading memory principle

For simple materials [17–21], the fading memory
concept relating the flux to its gradient of a cer-
tain transported quantity A , is modelled by the
following integro-differential equation

jA (x, t) = −DA0
∂A

∂x
(x, t)−

−DA1

t∫

−∞

R (t− τ)
∂A

∂x
(x, τ) dτ

(68)

This is the Boltzmann linear superposition func-
tional [20] with a memory kernel R (t, z) . In (68)
DA0 and DA1 are transport (diffusion) coefficients
(diffusivities). In fact, we assume a linear super-
position of two fluxes

jA (x, t) = jA0
︸︷︷︸

instantaneous
flux

+ jA1
︸︷︷︸

transient
flux with finite speed

(69)

Actually, the convolution integral in (68) is Stielt-
jes integral but because there is a restriction
imposed on R (t, z) to be casual function, i.e.
R (t < 0, z) = 0 we may set the lower terminal
to t = 0 . Thus, the gradient of the flux jA can
be presented in a general form as

∂

∂x
j (x, t) = −DA0

∂2

∂x2
A (x, t)−

−DA1

t∫

0

R (t− τ)
∂2

∂x2
A (x, τ) dτ

(70)

In (69) the first term is the long time, or instanta-
neous diffusion term, while the second is relevant
to the finite sped of the diffusion wave of A (x, t)
. This is a general linear expression of the fading
memory principle since the transport coefficients
are constants.

If now the quantity A is replaced by the mag-
netic field induction B (x, t) we get the formula-
tion (31). Moreover, if there is no flux relaxation
and the speed is infinite, then the second term in
(68) (as well as in (69) and (70) ) is zero and the
result is the classical jA (x, t) = −DA0

∂A
∂x (x, t)

which gets different names as Fick’s (diffusion) ,
Fourier (heat conduction) or Newton law (diffu-
sion of momentum) laws.

The main idea behind the fading memory prin-
ciple is to assure the causality of the models of
dynamic systems (changing in time) as it is ex-
plained next

5.1.1. Causality principle

In all applied cases the chronological condition
allows the causal relation to be satisfied (i.e. the
time-shift between cause and effect) [22],i.e. al-
ways the cause precedes the effect. The principle
conditions of the causality principle are [22]:

• Primitive causality : The effect cannot
precede the cause.

• Relativistic causality : No signal can
propagate with velocity greater than the
speed of the light in the vacuum. It could
be considered as a macroscopic causality
condition.

Further, the causality concept means that the
functions describing transients should be: vanish-
ing over a range of values of its arguments (as the
memory functions in the convolution integrals).

If we consider the physical system of the magnetic
field diffusion with a time-dependent cause) Bs(t)
and the corresponding effect B(x, t) the following
conditions are obeyed [22].

C1: Linearity. This corresponds to the super-
position principle in its simple version implying
that the output is a linear functional of the input

B (t) =

∞∫

−∞

R (t, τ)Bs (τ) dτ (71)

C2: Time-translation invariance. In this case
the linear functional can be expressed as

B (x, t) =

∞∫

−∞

R (t− τ)Bs (τ) dτ = R (t) ∗Bs (t)

(72)

C3: Primitive causality condition. The in-
put cannot precede the output. As consequence,
R (τ) should be a causal function. Moreover, this
is equivalent to setting the lower terminal in the
(71) and (72) equal to zero, as mentioned in pre-
ceding point related to the fading memory con-
cept.

Now, we can turn on magnetic field diffusion mod-
els with memories.

5.1.2. Fading memory in magnetic field
diffusion

The fading memory concept was touched earlier
with equation (31). Actually, we immediately
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jumped to the model where instantaneous term
(long time term) does not exist thus entering into
the area supported by the concept of the Con-
tinuous Time Random Walk (CTRW) where long
time term does not exist. This was done espe-
cially in order to demonstrate how time-fractional
Caputo derivative can be implemented in a dif-
fusion model with respect to the non-locality,
i.e. the causality principle. Moreover, the mod-
els with the Caputo derivative are more familiar
and the solutions developed can be easily under-
stood. This models, could be applied (not in the
scope of this work) to composite magnetic media
where small magnetic particles (of nano or macro
sizes) are dispersed (almost homogeneously) is
non-magnetic matrix; the gaps between the mag-
netic kernels are zones with high resistances with
respect to the magnetic field lines, such as gaps
and obstacles in porous media where fractional
modelling is widely applied.

However, let us consider the case where all terms
of (31) take place. In the context of the magnetic
field diffusion, this precisely means that after the
initial relaxation and disappearance of the send
term, there is continuous magnetic energy supply
through the boundary x = 0; the simple exam-
ple is the Dirichlet problem. In such a case the
complete model is

jB (x, t) = −DB0
∂B

∂x
(x, t)−

−DB1

t∫

−∞

R (t− τ)
∂B

∂x
(x, τ) dτ

(73)

If the memory function is chosen to be singu-
lar power-law then the second term becomes the
Riemann-Liouville fractional integral (34) and the
flux-gradient relationship has be presented by an
extended version of (35), namely

jB = −DB0
∂B

∂x
−DB1I

α
t

(
∂B

∂x

)

(74)

After application of the continuity equation (32)
we get

∂B

∂t
= DB0

∂2B

∂x2
+DB1I

α
t

(
∂2B

∂x2

)

(75)

Here the non-locality is presented by the last
term. This construction shows the main idea how
non-locality has to be implemented at the level of
constitutive equation. We will discuss a magnetic
diffusion equation with exponential kernel next.

5.1.3. Memory kernel effect on the fractional
model

Now, let us follows the main line drawn in the
preceding point of this section and consider that
flux gradient relationship contains all elements of
the fading memory functional but now the con-
volution integral has exponential memory kernel,
namely

jB = −DB0

t∫

0

δD (z)
∂B (x, z)

∂x
dz

−DB1
1

τ

t∫

0

e−
(t−z)

τ
∂B (x, z)

∂x
dz

(76)

where the first term is the instantaneous one since
the memory kernel is the Dirac delta δD, while
the second term has exponential memory as in
the classical Cattaneo concept. This flux-gradient
construction was investigated in [23] and resulted
in a diffusion equation with a non-local damp-
ing term expressed through the Caputo-Fabrizio
time-fractional derivative (78)

∂B

∂t
= DB0

∂2B

∂x2
+DB1 (1− α) CFDα

t

[
∂2B

∂x2

]

(77)

solved in semi-infinite [25, 26] and finite domains
[27].

In (77), the operator CFDα
t is the Caputo-Fabrizio

time fractional derivative of order α [24]

CFDα
t B (x, t) =

M (α)

1− α

t∫

0

exp

[

−α (t− s)

1− α

]
dB (x, s)

dt
ds

(78)

and the relaxation time τ in (76) is related to
the fractional order α as τ (0,∞) = (1− α)/α ,
0 < α < 1 (see extended analysis in [28]) . More-
over, the concept expressed by (76) is valid even in
the case when the material exhibits spatial mem-
ory and leads to a spatial Caputo-Fabrizio deriva-
tive with exponential kernel [28,29]. It is obvious,
that the non-locality is not lost despite the use of
exponential kernel since the last term in (77) is
responsible for this.

Similarly, any other relaxation functions invoked
by the type of the relaxations in the observed
physical problems, may form kernels of non-local
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terms, but this problem is more general and be-
yond the scope of this work (some examples are
available in [30]).

6. Conclusion

This study addressed the magnetic field diffusion
model solved in various situations by tools of frac-
tional derivatives. The main results can be out-
lined as:

• The semi-derivative approach to the par-
abolic model (8) with Dirichlet boundary
condition, and especially with time ramp-
ing (power-law) boundary condition al-
lows a direct relation between the func-
tion and the gradient, and easy integra-
tion of the boundary condition. Moreover,
the approximate integral-balance solution
needs only a single integration step.

• The integral-balance method by the tech-
nology of double integration (DIM) allows
straightforward approximate solutions of
magnetic diffusion with field-dependent
diffusivity (with negligible Joules effects,
i.e unchanged material resistivity). The
solutions, sharp and almost rectangular
waves, are moving with finite speeds (due
the degenerate nature of the model).

• The magnetic field diffusion with mem-
ory was demonstrated on the basis of a
singular memory kernel (power-law allow-
ing the Caputo time-fractional derivative
to be applied. This fractionalization be-
haviour is analogue of the CTRW concept
and allows easy the approximate integral-
balance solutions to be applied.

• The fading memory approach and the
causality principle were used to formu-
late a general approach to implement non-
locality in constitutive equation, and con-
sequently to conservation laws; in the
present case to the magnetic diffusion
model.

• The problems and solutions presented
demonstrate a variety of approaches
where the fractional calculus can be ap-
plied efficiently for solving diffusion mod-
els, and particularly to the problems re-
lated to the magnetic field (straight lines)
diffusion in ferromagnetic materials. This
is only a step towards solutions of more
complex problems and we see the use of
the fractional calculus is promising.
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1. Introduction

Fractional calculus became one of the intensively
developing theories in modern mathematics due
to its wide range of applications in real life pro-
cesses and also its generalized nature [1]. In
particular, fractional derivative operators allow
the description of memory and hereditary prop-
erties and are useful for modeling dynamic. Re-
cently, several fractional operators have been de-
veloped to analyze the systems and models such
as Caputo-Fabrizio, Hilfer, hyper-Bessel, Erdélyi-
Kober fractional derivatives and many others. For
instant, in recent papers [2,3], fractional differen-
tial equations are used for modeling applications
in blood alcohol and fish farm models and in [4]
fractional partial differential equation is used for
Frankl-Type Problem.

Fractional order partial differential equations
(FPDE) is one of the key objects in mathemat-
ical modeling of many diffusion-wave processes

[5]. Different kind of direct and inverse prob-
lems for such equations were studied using dif-
ferent approaches, such as, integral transforma-
tions (Laplace, Fourier, Mellin), Green function
method, method of separation of variables and
etc. For PDEs, in general, one can determine spe-
cial type of solutions, which are invariant under
some subgroup of the full symmetry group of sys-
tem. These ”group-invariant” solutions are found
by solving a reduced system of equations having
fewer independent variables than the original sys-
tem [6]. Such solutions named as self-similar solu-
tions which play an important role in understand-
ing of fundamental processes in mathematics and
mechanics, we refer readers to [7] for application
in problems of imploding shock waves and to [8]
for filtration-slow groundwater motion in porous
media.

The self-similarity of the solutions of partial dif-
ferential equations has allowed their reduction to

*Corresponding Author
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ordinary differential equations, which often sim-
plifies the investigation. They have also served as
standards in evaluating approximate methods for
solving more complicated problems [8]. Moreover,
they often describe the intermediate asymptotics
behavior of solutions of wider classes of problems,
for more details see [8].

The idea of self-similarity of solutions and Lie
group analysis have been extended to fractional
differential equations. For instant, in [6] and [9],
the Lie group analysis of the equation

∂αu

∂tα
= d

∂βu

∂xβ
, x > 0, t > 0, d > 0, α, β ≥ 0

has been discussed by Buckwar, Luchko and
Gorenflo. Namely, the scale-invariant solutions
were found by solving an ordinary differential
equation of fractional order with a new indepen-

dent variable η = xt−
α
β . The general solution for

this equation is obtained in terms of the general-
ized Wright function.

Furthermore, the existence and uniqueness of the
space-fractional PDE with Caputo fractional de-
rivative

∂u

∂t
=

∂αu

∂xα
, 1 < α ≤ 2

was discussed, under the self-similar form

u(x, t) = tβf
( x

t1/α

)

, (x, t) ∈ [0, X]× [t0,∞),

where X, t0 > 0, β ∈ R [10].

In [6], an admitted group dilations is found for the
linear wave-diffusion equation of fractional order
and these transformations are used for the con-
struction of self-similar solutions. In [11], the
methods of Lie continuous groups for symme-
try analysis of FDEs were adapted and prolon-
gation formula for fractional derivatives was pro-
posed. Then, in [12], this formula is used for find-
ing the exact solutions for nonlinear sub-diffusion
equations with the Riemann-Liouville and Caputo
fractional derivatives.

In [13], the similarity solution of the fractional
diffusion equation

∂γp(r, t)

∂tγ
=

1

rds−1

∂

∂r

(

rds−1 ∂p

∂2r

)

, r >, t > 0,

(γ = 2
dw

, ds =
2df
dw

is the spectral dimension of

the fractal) was considered and through the in-
variants of the group of scaling transformations,

authors derived the integro-ordinary differential
equation for the similarity variable.

In [14], fractional nonlinear space-time wave-
diffusion equation was considered and solved by
the similarity method using fractional derivatives
in the Caputo, Riesz-Feller, and Riesz senses.
Some particular cases are presented and the cor-
responding solutions are shown by means of 2-D
and 3-D plots.

The following time-fractional cylindrical KdV
equation with Riemann-Liouville fractional deriv-
ative

∂αu

∂tα
+

u

2tα
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, α ∈ (0, 1)

was reduced to the nonlinear fractional ordinary
differential equation with Erdélyi-Kober frac-
tional differential operator, using similarity trans-

formation u(x, t) = t−
2α
3 f(z) along with the sim-

ilarity variable z = xt−
α
3 [15].

There are other approaches, were authors have
found self-similar solution by reducing considered
PDEs to the hypergeometric equations. For ex-
ample, Hasanov and Ruzhansky have found self-
similar solutions for degenerate PDEs of the sec-
ond, third and fourth orders using special method
(see for details [16]). Precisely, they considered
the following fourth order degenerate PDE:

xnut − tkuxxxx = 0, n, k = const > 0.

They are looking for a solution of this equation as

u(x, t) = P (t)ω(σ),

where

P =

(

1

k + 1
tk+1

)

−1

, σ = −
k + 1

(n+ 4)4tk+1
xn+4.

Then they have got the equation with respect to
ω:

x3ωxxxx + (3 + c1 + c2 + c3)x
2ωxxx

+(1 + c1 + c2 + c3 + c1c2 + c1c3 + c2c3)xωxx+
(c1c2c3 − x)ωx − aω = 0,

which has special solutions represented with hy-
pergeometric functions pFq.

The main motivation of the present research is the
consideration of combinations of special fractional
derivatives such as hyper-Bessel, Erdélyi-Kober
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(due to singularity) and Hilfer (due to generalized
character). The obtained self-similar solutions
will allow specialists in applied mathematics, who
may deal with such FPDEs to study in details,
since an explicit form of solutions are available.
Moreover,the offered approach can be developed
to conduct further investigations for more general
FPDE with aforementioned fractional derivatives
and also will contribute in studying the symmetry
group analysis of FPDEs with these derivatives.
In the present paper, we consider two problems,
namely, fractional differential equation involving
time and space Hilfer derivatives

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x), 0 < α ≤ 1, 1 < β ≤ 2,

and fractional differential equation involving
hyper-Bessel operator in time and Erdélyi-Kober
fractional derivative in space variable

(

tθ
∂

∂t

)α

u(t, x) = x−βρ ∂β

∂xβ
u(t, x),

where 1 < β ≤ 2, 0 < α ≤ 1.

The key result is the finding of self-similar solu-
tions of the above given equations with the spe-
cific conditions. The main tool is the reduction of
considered FPDEs to the integral equations using
specific transformation.

In literature, we refer some works devoted to
the considered fractional derivatives, for exam-
ple, hyper-Bessel operator was used to general-
ize the standard process of relaxation [17] and to
model fractional diffusion equations governing the
law of the fractional Brownian motion [18]. Also,
FPDEs with hyper-Bessel operator were consid-
ered in [19] for studying direct and inverse source
problems and in [20] for non-local problem of
mixed type equation. Furthermore, there are dif-
ferent works related to applications of Erdélyi-
Kober and Hilfer fractional derivatives such as
fractional diffusion with Erdélyi-Kober derivative
[21] and higher order partial differential equations
with Hilfer fractional derivatives [22], for more de-
tails see the reference therein.

The rest of the paper is organized as follows. In
the next section, we recall preliminaries related to
some fractional derivatives. The main results are
given in Section 3. The conclusion of the work is
given in the last section.

2. Preliminaries

In this section, we present some basic definitions
on fractional operators and their properties that
are used further in this article.

Definition 1 ( [1]). The Riemann-Liouville frac-
tional integral of order α > 0 is defined by

Iαatf(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, α > 0.

Definition 2 ( [23]). The right-sided Hilfer frac-
tional derivative of order α and type δ is defined
as

Dα,δ
0t f(t) = I

δ(n−α)
0t

dn

dtn
I
(1−δ)(n−α)
0t f(t), (1)

where n− 1 < α ≤ n, 0 ≤ δ ≤ 1.

For δ = 0, Hilfer fractional derivative is reduced
to the Riemann-Liouville fractional derivative, i.e;

Dα,δ
0t f(t) = Dα

0tf(t).
Now, we recall the following property [24]

Iσa+D
σ
a+f(t) = Iαa+D

α,δ
a+

f(t)

= f(t)−

n−1
∑

k=0

(t− a)σ−k−1

Γ(σ − k)
Dn−k−1

a+
In−σ
a+

f(a),

(2)

where σ = α+ δ − αδ.

Definition 3. ( [25]) The left and right-sided
Erdélyi-Kober fractional integrals of order α, re-
spectively, are defined as follows:

Iγ,αβ f(t) =

β

Γ(α)
t−β(γ+α)

∫ t

0
(tβ − sβ)α−1sβ(γ+1)−1f(s) ds,

(3)

Jγ,α
β f(t) =
β

Γ(α)
tβγ
∫

∞

t
(sβ − tβ)α−1s−β(γ+α−1)−1f(s)ds,

(4)

where α, β > 0 and γ ∈ R.

Definition 4. ( [25]) The left and right-sided
Erdélyi-Kober fractional derivatives of order α,
respectively, are given by (n− 1 < α < n, n ∈ N)

Dγ,α
β f(t) =

n
∏

j=1

(

γ + j +
1

β
t
d

dt

)

Iγ+α,n−α
β f(t),

(5)

and

P γ,α
β f(t) =

n−1
∏

j=0

(γ + j −
1

β
t
d

dt
) Jγ+α,n−α

β f(t), (6)

where γ ∈ R, β > 0.
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The following property of Erdélyi-Kober frac-
tional operators [25]

Iγ,αβ xλβf(x) = xλβIγ+λ,α
β f(x), (7)

Iγ,αβ Dγ,α
β f(x) = f(x)−

n−1
∑

k=0

ckx
−β(1+γ+k), (8)

are true, where

ck =
Γ(n− k)

Γ(α− k)
lim
x→0

xβ(1+γ+k)×

n−1
∏

i=k+1

(1 + γ + i+
1

β
x
d

dx
)Iγ+α,n−α

β f(x).

Furthermore, the Erdélyi-Kober fractional opera-
tors of power function are needed in the compu-
tations [26]:

P τ,α
β tp =

Γ(α+ τ − p/β)

Γ(τ − p/β)
tp, τ − p/β (9)

Jτ,α
β tp =

Γ(τ − p/β)

Γ(α+ τ − p/β)
tp, τ − p/β > 0 (10)

Iγ,αβ tp =
Γ(γ + 1 + p/β)

Γ(α+ γ + 1 + p/β)
tp, γ+1+p/β > 0. (11)

Definition 5. ( [27]) The hyper-Bessel operator
of order order 0 < α < 1, is defined as

(

tθ
d

dt

)α

f(t) =
{

(1− θ)αt−(1−θ)αI0,−α
1−θ f(t), if θ < 1,

(θ − 1)αI−1,−α
1−θ t(1−θ)αf(t), if θ > 1.

(12)

Note that I0,−α
β := D−α,α

β and when θ = 0, this

operator coincides with the Riemann-Liouville
fractional derivative.
Also, we need to recall the generalized Wright
function:

Definition 6. ( [9, 28]) The generalized Wright
function is defined by the series expansion:

W(µ,a),(ν,b) :=
∞
∑

k=0

zk

Γ(a+ µk)Γ(b+ νk)
,

where

ν, µ ∈ R, a, b ∈ C.

3. Main Result

3.1. Fractional differential equation

involving Hilfer derivative

Consider a time and space-fractional PDE

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x), 0 < α ≤ 1, 1 < β ≤ 2,
(13)

with the following conditions:

∂

∂x
I2−m
0x u(t, 0+) = a tγ+α(1−m)/β ,

I2−m
0x u(t, 0+) = b tγ+α(2−m)/β ,

(14)

where a, b are constants and m = β + δ − βδ.
We start by using similarity method to FPDE
(13) to determine a symmetry group of scaling
transformations. We introduce new independent
and dependent variables

t = λbt, x = λx, u = λcu.

The time fractional derivative becomes (σ1 =
α+ δ − αδ, δ1 = δ(1− α))

Dα,δ
t u(t, x) = Iδ1t Dσ1

t u(t, x)

= Iδ1t

(

1

Γ(1− σ1)

∂

∂t

∫ t

0
(t− s)−σ1

)

u(λbs, x)ds

= Iδ1t

(

λc+b

Γ(1− σ1)

∂

∂t

∫ t/λb

0
(λ−bt− s)−σ1

)

×u(λbs, x) ds

= Iδ1t

(

λc+bσ1

Γ(1− σ1)

∂

∂t

∫ t

0
(t− τ)−σ1

)

u(τ, x) dτ

=
λc+bσ1

Γ(δ1)

∫ t

0
(t− s)δ1−1Dσ1

t
u(λbs, x)ds

=
λc+bσ1

Γ(δ1)

∫ t/λb

0
(tλ−b

− s)δ1−1Dσ1

t
u(λbs, x)ds

=
λc+bσ1−b−b(δ1−1)

Γ(δ1)

∫ t

0
(t− τ)δ1−1Dσ1

t
u(τ, x)dτ

= λc+bαIδ1
t
Dσ1

t
u(t, x)

= λc+bαDα,δ

t
u(t, x).

One can do the same for the space-fractional de-
rivative, we have

Dβ,δ
x u(t, x) = λc+βDβ,δ

x u(t, x).

From the above we get

Dα,δ
t u(t, x)−Dβ,δ

x u(t, x)

= λc+bαDα,δ

t
u(t, x)− λc+βDβ,δ

x u(t, x) = 0,

if b =
β

α
. Thus, we choose the following invariant

of scaling transformation
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u(t, x) = tγU(η), η = xt−α/β , γ > 0.

Now, using the above transformation, we have the
following result:

Theorem 1. The transformation

u(t, x) = tγU(η), η = xt−α/β (15)

reduces FPDE (13) to the following ODE

Jγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U(η) = Dβ,δ
0η U(η), (16)

with

DI2−m
0η U(0+) = a and I2−m

0η U(0+) = b, (17)

where σ1 = α + δ − αδ, δ2 = 1 − σ1 and δ1 =
δ(1− α).

Proof. We begin by calculating the time-
fractional derivative in terms of U(η) using trans-
formation (15). Using the definition of Hilfer frac-
tional derivative (1) for n = 1, we have

Dα,δ
0t u(t, x) = Iδ1

∂

∂t
Iδ2tγU(xt−α/β). (18)

Now, using the substitution τ = t
(η

s

)β/α
, the

second integral of (18) can be reduced as follows:

Iδ2tγU(xt−α/β)

=
1

Γ(δ2)

∫ t

0
(t− τ)δ2−1τγU(xτ−α/β)dτ

=
β tδ2+γηβ/α(γ+1)

αΓ(δ2)

∫

∞

η
(sβ/α − ηβ/α)δ2−1

×

s−β/α(γ+δ2)−1U(s)ds

= tδ2+γJγ+1,δ2
β/α U(η).

Then, taking the derivative of the above integral,
we arrive to the following

d

dt
Iδ2tγU(xt−α/β)

= tδ2+γ−1

(

γ + δ2 −
α

β
η
d

dη

)

Jγ+1,δ2
β/α U(η)

= tδ2+γ−1P γ+δ2,σ1

β/α U(η).

Using the above result and proceeding the same

as above using substitution τ = t
(η

s

)β/α
and re-

lation z = xτ−α/β , the expression in (18) becomes

Iδ1
d

dt
Iδ2tγU(xt−α/β)

=
1

Γ(δ1)

∫ t

0
(t− τ)δ1−1τ δ2+γ−1P γ+δ2,σ1

β/α U(z)dτ

=
β tγ+δ2+δ1−1 ηβ/α(γ+δ2)

αΓ(δ1)

∫

∞

η
(sβ/α − ηβ/α)δ1−1

×s−β/α(γ+δ2+δ1−1)−1P γ+δ2,σ1

β/α U(s)ds.

The power γ + δ2 + δ1 − 1 = γ − α and hence the
time fractional derivative can be written as

Dα,δ
0t u(t, x) = tγ−αJγ+δ2,δ1

β/α P γ+δ2,σ1

β/α U(η).

Next, we compute the space-fractional derivative
in terms of U(η)

Dβ,δ
0x u(t, x) = tγIδ4

∂2

∂x2
Iδ3U(xt−α/β), (19)

where δ3 = (2− β)(1− δ) and δ4 = δ(2− β). We

use the substitution ξ = st−α/β , then the inner
integral of (19) can be written as

Iδ3U(xt−α/β) =
1

Γ(δ3)

∫ x

0

(x− s)δ3−1U(st−α/β)ds

=
tαδ3/β

Γ(δ3)

∫ η

0

(η − ξ)δ3−1U(ξ)dξ = tαδ3/βIδ3U(η).

Computing second derivative of the above gives

∂2

∂x2
I(2−β)(1−δ)U(xt−α/β) = tα(δ3−2)/β d2

dη2
Iδ3U(η),

since
dU

dx
=

dU

dη

dη

dx
.

Now, we do the same for the first integral of (19)

with ξ = st−α/β and z = st−α/β , we obtain

Iδ4
∂2

∂x2
Iδ3U(xt−α/β)

=
tα(δ3−2)/β

Γ(δ4)

∫ x

0
(x− s)δ4−1 d2

dz2
Iδ3U(z)ds

=
tα(δ3+δ4−2)/β

Γ(δ4)

∫ η

0
(η − ξ)δ4−1 d2

dξ2
Iδ3U(ξ)dξ

= t−αIδ4
d2

dη2
Iδ3U(η).

Thus, space-fractional derivative can be written
as

Dβ,δ
0x u(t, x) = tγ−αDβ,δ

0η U(η).



On self-similar solutions of time and space fractional sub-diffusion equations 21

Substituting the time and space-fractional deriva-
tives after transformation, we get the desired or-
dinary differential equation (16).
The solution of the fractional ordinary differential
equation (16) is given in the next theorem.

Theorem 2. The solution of FPDE (13) using
transformation (15) with conditions (17) has the
following form

u(t, x) = tγ
[

aηm−1Γ(γ + 1− α(m− 1)/β)×
W(β,m),(−α,γ+1−α(m−1)/β)(η

β)
+bηm−2Γ(γ + 1− α(m− 2)/β))×
W(β,m−1),(−α,γ+1−α(m−2)/β)(η

β)
]

,
(20)

where m = β + δ − δβ, η = xt−α/β ,

W(β,m),(−α,γ+1−α(m−2)/β)(η
β) =

∞
∑

k=0

ηβk

Γ(m+ kβ)Γ(γ + 1− kα− (m− 1)α/β)

and

W(β,m−1),(−α,γ+1−α(m−2)/β)(η
β) =

∞
∑

k=0

ηβk

Γ(m− 1 + kβ)Γ(γ + 1− kα− (m− 2)α/β)
.

Proof. Applying Riemann-Liouville fractional
integral Iβ to both sides of differential equation
(16) and using property (2), we have

U(η) =
aηm−1

Γ(m)
+

bηm−2

Γ(m− 1)
+IβJγ+δ2,δ1

β/α P γ+δ2,σ1

β/α U(η).

Then, the solution can obtained using successive
iterations method. We set

U0(η) =
aηm−1

Γ(m)
+

bηm−2

Γ(m− 1)
,

so the nth term Un can be written as

Un(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α Un−1(η).

Now, we compute U1 as follows:

U1(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U0(η).

Using properties (9)and (10), we calculate the fol-
lowing

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U0(η) =

IβJγ+δ2,δ1
β/α

[

aηm−1

Γ(m)

Γ(γ + δ2 + σ1 − (m− 1)α/β)

Γ(γ + δ2 − (m− 1)α/β)

+
bηm−2

Γ(m− 1)

Γ(γ + δ2 + σ1 − (m− 2)α/β)

Γ(γ + δ2 − (m− 2)α/β)

]

= Iβ
[

aηm−1

Γ(m)

Γ(γ + δ2 + σ1 − (m− 1)α/β)

Γ(γ + δ2 + δ1 − (m− 1)α/β)

+
bηm−2

Γ(m− 1)

Γ(γ + δ2 + σ1 − (m− 2)α/β)

Γ(γ + δ2 + δ1 − (m− 2)α/β)

]

=

[

aηm+β−1

Γ(m+ β)

Γ(γ + 1− (m− 1)α/β)

Γ(γ + 1− α− (m− 1)α/β)
+

bηm+β−2

Γ(m+ β − 1)

Γ(γ + 1− (m− 2)α/β)

Γ(γ + 1− α− (m− 2)α/β)

]

.

Hence, U1(η) is given by

U1(η) = a

(

1

Γ(m)
ηm−1 + ηm+β−1

Γ(γ + 1− (m− 1)α/β)

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

)

+b

(

1

Γ(m− 1)
ηm−2 + ηm+β−2

Γ(γ + 1− (m− 2)α/β)

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

)

.

Similarly, we compute U2(η)

U2(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U1(η)

= U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ×
[

U0(η) +
aΓ(γ + 1− (m− 1)α/β)ηm+β−1

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

+
bΓ(γ + 1− (m− 2)α/β)ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

]

.

One can check that

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ηm+β−1 = ηm+2β−1×

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

Γ(m+ 2β)Γ((γ + 1− 2α− (m− 1)α/β)

and

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ηm+β−2 = ηm+2β−2×

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)
.

Thus,
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U2(η) = a

(

1

Γ(m)
ηm−1 + ηm+β−1×

Γ(γ + 1− (m− 1)α/β)

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β)ηm+2β−1

Γ(m+ 2β)Γ(γ + 1− 2α− (m− 1)α/β)

)

+b

(

1

Γ(m− 1)
ηm−2 + ηm+β−2×

Γ(γ + 1− (m− 2)α/β)ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β)ηm+2β−2

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)

)

.

We similarly compute U3(η) and get

U3(η) = a

(

1

Γ(m)
ηm−1+

Γ(γ + 1− (m− 1)α/β) ηm+β−1

Γ(m+ β)Γ((γ + 1− α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β) ηm+2β−1

Γ(m+ 2β)Γ(γ + 1− 2α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β)ηm+3β−1

Γ(m+ 3β)Γ(γ + 1− 3α− (m− 1)α/β)

)

+

+b

(

1

Γ(m− 1)
ηm−2+

Γ(γ + 1− (m− 2)α/β) ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β) ηm+2β−2

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β) ηm+3β−2

Γ(m+ 3β − 1)Γ(γ + 1− 3α− (m− 2)α/β)

)

.

Now, we can write the nth term as follows:

Un(η) = aηm−1Γ(γ + 1− (m− 1)α/β)×
n
∑

k=0

ηβk

Γ(m+ kβ)Γ(γ + 1− kα− (m− 1)α/β))

+bηm−2Γ(γ + 1− (m− 2)α/β)×
n
∑

k=0

ηβk

Γ(m+ kβ − 1)Γ(γ + 1− kα− (m− 2)α/β))
.

As n goes to infinity, then

U(η) = a ηm−1Γ(γ + 1− (m− 1)α/β)
×W(β,m),(−α,γ+1−(m−1)α/β)(η

β)
+b ηm−2Γ(γ + 1− (m− 2)α/β)
×W(β,m−1),(−α,γ+1−(m−2)α/β)(η

β).

Substituting U(η) in the transformation (15), we
get the desired solution (20).

Remark 1. For δ = 0, Hilfer fractional deriv-
ative is reduced to Riemann-Liouville fractional
derivative and this case was considered by Luchko
and Gorenflo in [9]. The ordinary differential
equation becomes

Jγ,1−α
β/α P γ,α

β/αU(η) = Dβ
xU(η)

and one can check that the solution has the fol-
lowing form

U(η) = a ηβ−1Γ(γ + 1− α+ α/β)
×W(β,β),(−α,γ+1−α+α/β)(η

β)

+bηβ−2Γ(γ + 1− α+ 2α/β)
×W(β,β−1),(−α,γ+1−α+2α/β)(η

β),

which coincides with their result.

For β = 2 and 0 < α ≤ 2, this case was studied by
Buckwar and Luchko, for more details see [6,28].

Remark 2. One may consider the same problem
with n− 1 < α ≤ n and n− 1 < β ≤ n:

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x)

with conditions

Dn−k−1In−m
0x u(t, 0+) = cn, m = β + δ − βδ,

and then use the same transformation in (15) to
find the exact solution. Proceeding the same, the
solution has the following form:

u(t, x) = tγ
n
∑

i=0

ci η
m−i−1

×

Γ(γ + 1− (m− i− 1)α/β)
×W(β,m−i),(−α,γ+1−(m−i−1)α/β)(η

β).

3.2. Fractional differential equation

involving hyper-Bessel operator

Consider the problem

(

tθ
∂

∂t

)α

u(t, x) = x−βρ ∂β

∂xβ
u(t, x), (21)

with the boundary conditions:

lim
x→0

xρ(β−1)(1− β +
1

ρ
x
d

dx
)I0,2−β

ρ u(t, x) =

U0t
γ−αρ(β−1)/β

(22)

lim
x→0

xρ(β−2)(2− β +
1

ρ
x
d

dx
)I0,2−β

ρ u(t, x) =

U1t
γ−αρ(β−2)/β

(23)
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where 1 < β ≤ 2, 0 < α ≤ 1, ρ = 1 − θ,
(

tθ
∂

∂t

)α

stands for hyper-Bessel operator defined

by (12) and
∂β

∂xβ
= D−β,β

ρ represents the left-sided

Erdélyi-Kober fractional derivative.

First, we use similarity method for FPDE 21 to
determine a symmetry group of scaling transfor-
mations. We introduce new independent and de-
pendent variables as before

t = λbt, x = λx, u = λcu.

The time fractional derivative becomes

(

tθ
∂

∂t

)α

u(t, x)

= ραt−ραI0,−αρu(t, x)

= ραt−ραD−α,α
ρ,t u(t, x)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α
ρ,t u(t, x)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ t−ρ(1−α)

Γ(1− α)

∫ t

0
(t− s)−α

×sρ−1u(sλb, x)ds

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ λbρ(1−α) t
−ρ(1−α)

Γ(1− α)

×

∫ t/λb

0
(tλ−b

− s)−αsρ−1u(sλb, x)ds

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ λbρα t−ρ(1−α)

Γ(1− α)

×

∫ t

0
(t− τ)−ατρ−1u(τ, x)dτ

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α

ρ,t
u(t, x)

= λbρα

(

t
θ ∂

∂t

)α

u(t, x).

Similarly, we do for the space-fractional derivative
and deduce

D−β,β
ρ,x u(t, x) =
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ,x u(t, x)

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

ρ λρ(2−β) x−ρ(2−β)

Γ(2− β)

×

∫ x/λ

0
(x/λ− s)1−βsρ−1u(t, sλ)ds

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

ρ x−ρ(2−β)

Γ(2− β)

×

∫ x

0
(x− z)1−βzρ−1u(t, z)dz

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ,x u(t, x)

= D−β,β
ρ,x u(t, x).

From the above we get

(

tθ
∂

∂t

)α

u(t, x)− xρβD−β,β
ρ,x u(t, x)

= λbρα

(

t
θ ∂

∂t

)α

u(t, x)− λρβxρβD−β,β
ρ,x u(t, x)

= 0,

if b =
β

α
. Thus, we choose the following invariant

of scaling transformation

u(t, x) = tγU(η), η = xt−α/β .

The result related to equation (21) is given in the
following theorem;

Theorem 3. The transformation given by (15)
reduces the FPDE (21) to the following ODE

ραηβρP
1−α+γ/ρ,α
ρβ/α U(η) = D−β,β

ρ U(η), (24)

with

lim
η→0

ηρ(β−1)(1− β+
1

ρ
η
d

dη
)I0,2−β

ρ U(η) = U0 (25)

and

lim
η→0

ηρ(β−2)(2−β+
1

ρ
η
d

dη
)I0,2−β

ρ U(η) = U1. (26)

Proof. We start by rewriting the time-hyper-
Bessel operator using definition (12):

(

tθ
∂

∂t

)α

u(t, x) = ραt−ραI0,−α
ρ tγU(η).

Then, make change of variable τ = t
(η

s

)β/α
and

simplify as follows
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ραt−ραD−α,α
ρ tγU(η)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α
ρ tγU(xt−α/β)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρt−ρ(1−α)

Γ(1− α)

×

∫ t

0
(tρ − τρ)−ατρ−1+γU(xτ−α/β)dτ

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρβtγηρβ/α(1+γ/ρ)

αΓ(1− α)

×

∫

∞

η
(sρβ/α − ηρβ/α)−αs−ρβ(1−α+γ/ρ)−1U(s)ds

= ραtγ−ρα

(

1− α+
1

ρ
t
d

dt

)

J
1+γ/ρ,1−α
ρβ/α U(η).

Thus, we arrive

ραt−ραD−α,α
ρ tγU(η)

= ραtγ−ρα

(

1− α+
γ

ρ
−

α

ρβ
η
d

dη

)

J
1+γ/ρ,1−α
ρβ/α U(η)

= ραtγ−ραP
1−α+γ/α,α
ρβ/α U(η),

where J
1+γ/ρ,1−α
ρβ/α and P

1−α+γ/α,α
ρβ/α are right-sided

Erdélyi-Kober fractional operators. Similarly, we
transform the space fractional derivative

D−β,β
ρ u(t, x)

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ tγU(xt−α/β),

and substitute s = x

(

z

η

)

in the above in the

integral as follows:

I0,2−β
ρ tγU(xt−α/β)

=
ρtγ x−ρ(2−β)

Γ(2− β)

∫ x

0
(xρ − sρ)1−βsρ−1U(st−α/β)ds

=
ρtγη−ρ(2−β)

Γ(2− β)

∫ η

0
(ηρ − zρ)1−βzρ−1U(z)dz

= tγI0,2−β
ρ U(η).

Hence,

D−β,β
ρ u(t, x)

= tγ
1
∏

k=0

(

1− β + k +
1

ρ
η
d

dη

)

I0,2−β
ρ U(η)

= tγD−β,β
ρ U(η).

Finally, substituting the transformed time and
space fractional derivatives in differential equa-
tion (21), we get

ραtγ−ραP
1−α+γ/α,α
ρβ/α U(η) = x−ρβtγD−β,β

ρ U(η)

which can be written as ordinary differential equa-
tion (24).

In the next theorem, we give the self-similar solu-
tion (invariant solution) of equation (21):

Theorem 4. The solution of FPDE (21) using
transformation (15) with conditions (25)-(26) has
the following form

u(t, x) = tγ
[

ηρ(β−1)Γ(γρ + 1 + α
β − α)

×W(β,β),(−α, γ
ρ
+1+α

β
−α)(ρ

αηβ)

+ηρ(β−2)Γ(γρ + 1 + 2α
β − α))

×W(β−1,β),(−α, γ
ρ
+1+ 2α

β
−α)(ρ

αηβ)
]

.

(27)

Proof. Applying Erdélyi-Kober fractional inte-
gral to both sides of equation (24) and using the
property (8), we have

U(η) = c0 η
ρ(β−1) + c1 η

ρ(β−2)

+ραI−β,β
ρ ηβρP

1−α+γ/ρ,α
ρβ/α U(η),

where c0 =
U0

Γ(β)
and c1 =

U1

Γ(β − 1)
.

Also, using property (7), we get

U(η) = c0 η
ρ(β−1) + c1 η

ρ(β−2)

+ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U(η).

Note that I−β,β
ρ ηβρ = ηβρI0,βρ , see [25].

To find the solution of the above equation, we use
successive iteration method. We start with

U0 = c0η
ρ(β−1) + c1η

ρ(β−2)

and

Un(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α Un−1(η).

The first iteration is

U1(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U0(η)

= U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α

(

c0η
ρ(β−1) + c1η

ρ(β−2)
)

.

Compute the second term of U1(η) using property
(11), we have



On self-similar solutions of time and space fractional sub-diffusion equations 25

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(β−1)

= I0,βρ ηρ(β−1)
Γ
(

γ
ρ + 1 + α

β − α
)

Γ
(

γ
ρ + 1 + α

β − 2α
)

= ηρ(β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
) ,

and similarly we do for the last term

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(β−2)

= ηρ(β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
) .

Substituting back the above results in U1(η), we
get

U1(η) = c0
[

ηρ(β−1) + ραηρ(2β−1)

×

Γ(β)Γ
(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
)





+c1
[

ηρ(β−2) + ραηρ(2β−2)

×

Γ(β − 1)Γ
(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
)



 .

Repeating the same procedure, one can compute
U2(η) :

U2(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U1(η).

So,

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(2β−1)

= I0,βρ ηρ(2β−1)
Γ
(

γ
ρ + 1 + α

β − 2α
)

Γ
(

γ
ρ + 1 + α

β − 3α
)

= ηρ(2β−1)
Γ(2β)Γ

(

γ
ρ + 1 + α

β − 2α
)

Γ(3β)Γ
(

γ
ρ + 1 + α

β − 3α
)

and

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(2β−2)

= ηρ(2β−2)
Γ(2β − 1)Γ

(

γ
ρ + 1 + 2α

β − 2α
)

Γ(3β − 1)Γ
(

γ
ρ + 1 + 2α

β − 3α
) .

Thus, U2(η) can be written as follows

U2(η)

= c0



ηρ(β−1) + ραηρ(2β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
)

+ρ2αηρ(3β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(3β)Γ
(

γ
ρ + 1 + α

β − 3α
)





+c1

[

ηρ(β−2)

+ραηρ(2β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
)

+ρ2αηρ(3β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(3β − 1)Γ
(

γ
ρ + 1 + 2α

β − 3α
)



 .

Now, the nth iteration can be written as

Un(η) = U0Γ
(

γ
ρ + 1 + α

β − α
)

n
∑

k=0

ρkαηρ(kβ−1)

Γ(k + 1)β)Γ
(

γ
ρ + 1 + α

β − (k + 1)α
)

+U1Γ
(

γ
ρ + 1 + 2α

β − α
)

n
∑

k=0

ρkαηρ(kβ−2)

Γ(k + 1)β − 1)Γ
(

γ
ρ + 1 + 2α

β − (k + 1)α
)

and as n approaches infinity, we have

U(η) = U0Γ
(

γ
ρ + 1 + α

β − α
)

ηρ(β−1)

W(β,β),(−α, γ
ρ
+1+α

β
−α)(ρ

αηβ)

+U1Γ
(

γ
ρ + 1 + 2α

β − α
)

ηρ(β−2)

W(β−1,β),(−α, γ
ρ
+1+ 2α

β
−α)(ρ

αηβ).

Substituting U(η) in the transformation (15), we
obtain the desired solution (27).

Remark 3. Particular case when ρ = 1, the frac-
tional derivatives in (21) are reduced to Riemann-
Liouville fractional derivatives and the problem
was considered by Luchko and Gorenflo as men-
tioned above, for more details see the reference
therein.

4. Conclusion

To summarize, Fractional Partial Differen-
tial Equations (FPDEs) involving hyper-Bessel,
Erdélyi-Kober and Hilfer fractional derivatives
were main targets in this investigation. Using
special transformation (see (15)) we first reduced
the considered FPDEs to the fractional ODEs (see
Theorem 1 and 3) and then we solved these ODEs
using successive iterative method (see Theorem 2



26 F. Al-Musalhi, E. Karimov / IJOCTA, Vol.11, No.3, pp.16-27 (2021)

and 4). The obtained self-similar solutions are ex-
pressed in terms of generalized Wright type func-
tion.

Our motivation is based on possible usage of sub-
diffusion equations with such special fractional
operators by specialists in applied mathematics
who may deal with such sub-diffusion equations.
Moreover, we believe that suggested approach
can be applied for investigation of more general
FPDEs and also in studying the symmetry group
analysis of these of derivatives.
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The fear response is an important anti-predator adaptation that can signifi-
cantly reduce prey’s reproduction by inducing many physiological and psycho-
logical changes in the prey. Recent studies in behavioral sciences reveal this
fact. Other than terrestrial vertebrates, aquatic vertebrates also exhibit fear
responses. Many mathematical studies have been done on the mass mortality
of pelican birds in the Salton Sea in Southern California and New Mexico in
recent years. Still, no one has investigated the scenario incorporating the fear
effect. This work investigates how the mass mortality of pelican birds (preda-
tor) gets influenced by the fear response in tilapia fish (prey). For novelty, we
investigate a modified fractional-order eco-epidemiological model by incorpo-
rating fear response in the prey population in the Caputo-fractional derivative
sense. The fundamental mathematical requisites like existence, uniqueness,
non-negativity and boundedness of the system’s solutions are analyzed. Local
and global asymptotic stability of the system at all the possible steady states
are investigated. Routh-Hurwitz criterion is used to analyze the local stability
of the endemic equilibrium. Fractional Lyapunov functions are constructed
to determine the global asymptotic stability of the disease-free and endemic
equilibrium. Finally, numerical simulations are conducted with the help of
some biologically plausible parameter values to compare the theoretical find-
ings. The order α of the fractional derivative is determined using Matignon’s
theorem, above which the system loses its stability via a Hopf bifurcation. It is
observed that an increase in the fear coefficient above a threshold value desta-
bilizes the system. The mortality rate of the infected prey population has a
stabilization effect on the system dynamics that helps in the coexistence of all
the populations. Moreover, it can be concluded that the fractional-order may
help to control the coexistence of all the populations.
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Stability
Hopf bifurcation
Numerical simulation

AMS Classification 2010:
37M10; 37N25; 37G15; 34K37; 34K99

1. Introduction

The conventional notion that predator affects the
prey population only through direct killing has
been changed to a great extent in recent past [1].
The population dynamics of the prey is more af-
fected by indirect interaction with a predator as
compared to direct killing [2]. In addition to
killing, predators often elicit a fear response in the
prey population which brings about many psycho-
logical and physiological changes in the prey [3].

The primary line of anti-predator behaviour is to
avoid detection. Due to predation risk, prey may
compromise with the source and choice of for-
aging, which ultimately affect personal or com-
munity growth and thereby affecting reproduc-
tion [2, 4]. Fear may affect the physiological con-
dition of the juvenile prey, and this could leave
a negative effect on their survival as adults [4, 5].
In the experiment conducted by Zanette et al. [6],
it is observed that song sparrows had a reduced
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growth rate due to the perceived predation risk
even after the absence of direct killing. So, preda-
tors frequently affect the prey, indirectly, enforc-
ing a stressful life.

Similarly, fear-induced phenomena can also be
found in different fishes in marine ecology. In
rainbow trout species (Oncorhynchus mykiss), for
example, reproduction timing may vary due to
stress like disturbance or handling. However,
Tilapia (Oreochromis niloticus), when subjected
to a stressed environment, show different types of
the psychology of reproduction depending on its
maturity [7]. It is observed that the minimum
threshold of stimulus that is required to elicit
a behavioral response in prey is lower for fishes
(prey individuals) who are previously exposed to
higher levels of predation risk. Fish actually op-
timizes their feeding rate under the constraints of
predation severity leading to mortality [8].

Physiological changes are observed in the body of
the prey as a response to the actual presence or
background knowledge of predators. These phys-
iological changes are brought about by hormonal
or neuronal changes that bring about different
responses in organ systems and ultimately lead
to altered reproductive capacity. Showing anti-
predator behaviour costs a rebalance in energy
allocation and subsequently could affect the re-
production process [9].

Salton sea is a very stressed environment for fish.
From 1970 onwards, the total fish biomass of
Salton sea has been crashed many times due to
three physiological stressors viz. extreme tem-
perature fluctuation, increasing salinity, and high
sulphide levels and anoxia associated with mix-
ing events [10]. This stress environment affects
the vital life functions of fish, mainly population
growth via reproduction [9]. Although the role
of stressors directly from the environment has an
active role in the life cycle of fish species at Salton
sea, another stress, that is, fear of predation, can
not be ruled out considering recent discussions in
literature [2].

Avian botulism(Clostridium botulinum type C)
is a regular outbreak causing sizeable mortality
among the piscivorous birds of the Salton sea
since the twentieth century [11]. In 1996, around
9000 white Pelicans and around 1200 brown Peli-
cans were killed due to this dreaded disease. How-
ever, the mortality number has dropped signifi-
cantly, and white pelicans were affected less in
mortality than brown pelicans [12]. Type C bo-
tulinum toxin formed inside the gastrointestinal
tracts of Tilapia, infected by a variety of bacteria
like vibrato, is considered to be the main cause of
death among pelicans.

Mathematical modeling has a very important role
in studying the interaction among the predator
and prey species. After the pioneering work of
Kermack and Mc Kendrick on SIRS type, epi-
demiological modeling has been studied widely in
recent years by various researchers [13–17]. Math-
ematical modeling of the fear effect in prey species
was first proposed by Wang et al. [18] in the year
2016. Subsequently, some fear-induced mathe-
matical studies of predator-prey interaction have
been carried out [19–21]. In their study, Hossain
et al. investigated the effect of fear in a three-
species intraguild predation model. Their analy-
sis revealed that fear could stabilize the chaos pro-
duced due to omnivory predators [19]. Predators
that follow cooperation strategies while hunting
also creates fear upon the prey. Combining hunt-
ing cooperation (by predators) and fear effect (in
prey), Pal et al. investigated a Lotka–Volterra
type predator-prey model. Their study shows
that an increase in the hunting cooperation in-
duced fear may destabilize the system and pro-
duce periodic solutions via a Hopf-bifurcation
[20]. Panday et al. in [21] studied the impact
of fear in a tri-trophic food chain model. They
observe that fear can stabilize the system from
chaos to stable focus through the period halving
phenomenon. Till now, we have not come across
any literature where the role of fear has been an-
alyzed in the case of the marine ecosystem. This
has motivated us for the present investigation.

In recent years, researchers have shown more in-
terest in using fractional-order differential equa-
tions (FDE) in mathematical modeling rather
than integro-differential equations (IDE). FDEs
can be used to model universal phenomena with
greater precision [23, 24]. In [23], Heymans et
al., through a series of examples, have demon-
strated that it is possible to attribute physical
meaning to initial conditions expressed in terms
of Riemann–Liouville fractional derivatives. Un-
like IDEs, FDEs are non-local operators where the
succeeding state of any function depends not only
on their existing state but also on all preceding
states [25,26]. In addition, classical IDEs are inca-
pable of providing data between two distinct inte-
ger values. To overcome such restrictions, various
types of fractional-order operators were adopted
in the available literature [27,28]. Moustafa et al.
in [29] investigated an eco-epidemiological model
with disease in the prey species in terms of Caputo
fractional derivative. Khan et al. in [26] investi-
gated a fractional SIR model with a generalized
incidence rate using both Caputo and the recently
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developed Atangana-Baleanu-Caputo (ABC) de-
rivative [28]. The ABC derivative having non-
singular and non-local kernel contains a strong
memory effect of the system. Recently, Singh et
al. investigated a fractional guava fruit model in-
volving ABC derivative for investigating the in-
teraction between guava pests and natural ene-
mies [30]. Tuan et al. studied the existence and
uniqueness of a mild solution to an initial value
problem for a fractional Rayleigh–Stokes equation
driven by fractional Brownian motion [31]. Fuzzy
ABC fractional derivative, fuzzy ABC fractional
initial value problems, and fuzzy ABC solutions
are discussed and utilized for the first time in [32].
Bonyah et al. studied a fractional optimal control
model of coronavirus in ABC derivative sense [33].

Mathematical research work on large-scale mor-
tality of pelicans in the Salton Sea was first car-
ried out by Bairagi et al. [34] in 2001. Through-
out their article, the authors presumed that peli-
cans only come into contact with infected tilapia.
Using the same perspective, Greenhalgh et al.
[36] in 2007 proposed a ratio-dependent predator-
prey interaction model ignoring the predation of
susceptible prey. In their research work, they
adopted a purely logistic growth function of the
susceptible prey. The predators do not have any
alternative food resources, and they prey only on
infected prey. So, their carrying capacity depends
only on infected prey. In their research, Chat-
topadhyay et al. [35] modified the previous study
by introducing an interaction between pelicans
and susceptible fish. The authors presumed that
the death rate of the pelicans is increased due to
feeding on infected fish. Later in 2017, Green-
halgh et al. [37] modified their earlier studies in
[36] by taking into account that predators feed on
both the susceptible and infected preys(tilapia).
Furthermore, they presumed that the diseased
prey significantly influences the growth rate of
susceptible prey and the carrying capacity of the
predator is dependent on the total number of prey
(tilapia). To make the discussions more realis-
tic and novel, we have considered the fear effect
in the prey (tilapia) due to predation (by peli-
cans), since Tilapia (Oreochromis niloticus) un-
der stressful circumstances (like predation risk)
react by boosting or completely hindering repro-
duction [7].

In this paper, we extend the mathematical model
proposed by Greenhalgh in [37] by incorporating
the fear effect in the susceptible prey (tilapia)
in terms of Caputo fractional derivative. The
integer-order derivative does not contain the com-
plete memory, and it does not describe the phys-
ical behavior of the model. The memory effect

in FDEs that provides data between two dis-
tinct integer values motivates us to study the
model using a fractional derivative. Besides ter-
restrial ecosystems, the fear effect also influences
marine ecosystems. Therefore we are interested
in exploring the complex dynamics of the critical
ecosystem of the Salton Sea (which became a dan-
gerous habitat for birds during the 1990s) with
fear effect. Additionally, the fear effect induced in
the prey population due to predation risk makes
the scenario a novel one and biologically more
realistic and meaningful. The paper is organized
as follows:

In section 2, we describe a modified predator-prey
interaction model with fear effect involving Ca-
puto fraction derivatives. In section 3, we provide
some mathematical preliminaries used for analyt-
ical discussions of our model. Fundamental math-
ematical results like the existence, uniqueness,
non-negativity and boundedness solutions of the
modified model are carried out throughout sec-
tion 4. In sections 5 and 6, the modified model’s
equilibrium points and their local stability are an-
alyzed. In sections 7 and 8, the global stability of
the disease-free equilibrium, positive equilibrium,
and condition for Hopf bifurcation at the disease-
free equilibrium is discussed. In section 9, nu-
merical simulations are carried out using biologi-
cally feasible parameters. Finally, in section 10, a
summary of the outcomes obtained from the cur-
rent study is provided. The conclusions derived
are purely on the basis of theoretical results. Ex-
perimental verification will suggest modification
required in fundamental assumptions.

2. Model formulation

In this section, we discuss a modified form of
a predator-prey interaction model initially for-
warded by Greenhalgh et al. [37]. The model
in [37] is based on the critical ecosystem of the
Salton Sea located in Southern California, New
Mexico, where pelicans and tilapia are the preda-
tor and prey, respectively. The disease is assumed
to spread among the prey through close contact.
The vibrio-infected prey is classified into suscep-
tible and infected prey and are represented by
S(T ) and I(T ) respectively. So, at any instant
T , the total number of prey (tilapia) population
is N(T ) = S(T ) + I(T ). Only susceptible prey
(tilapia) take part in reproducing offsprings, and
population growth is in logistic fashion with a car-
rying capacity of k > 0. The predators (peli-
cans) feed on both susceptible and infected prey,
preferably the infected ones, since they are easily
catchable. They assumed that the predators feed
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on the prey with a ratio-dependent functional re-
sponse. With these basic assumptions, the model
is,

dS

dT
= rS

(
1− S + I

k

)
− λSI − pY S

mY + S

dI

dT
= λSI − cY I

mY + I
− γI

dY

dT
= δY

(
1− hY

S + I

) (1)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0 where,

r: rate of growth of the prey species in the re-
producing population group,
k: total capacity of the system,
λ: the disease transmission coefficient,
p, c: catching rate of predators (pelicans) to-
wards susceptible and infected prey (tilapia),
respectively,
m: a strictly positive constant,
γ: the mortality rate of infected prey per capita,
δ: rate of growth of the predator (pelican)
species per capita,
h: a constant which is related to the density-
dependent death rate of the predator(pelican)
population.

The modified fractional-order model of the system
(1) is presented as follows

cDα
t S(T ) = rS

(
1− S + I

k

)
− λSI − pY S

mY + S

cDα
t I(T ) = λSI − cY I

mY + I
− γI

cDα
t Y (T ) = δY

(
1− hY

S + I

)
(2)

Since the induced fear in the prey (tilapia) due
to predation risk reduces their reproduction rate,
therefore we modify the first equation of system
(2) by multiplying the breeding rate r with a fac-
tor g(f, Y ) as below,

cDα
t S(T ) = rS

(
1− S + I

k

)
g(f, Y )− λSI

− pY S

mY + S

(3)

where Y describes the biomass of the predator
(pelican) and f describes the strength of fear due
to predation risk in the prey (tilapia). To make

f, Y and g(f, Y ) biologically feasible it is appro-
priate to assume that [18]

g(0, Y ) = 1, g(f, 0) = 1, lim
f→∞

g(f, Y ) = 0,

lim
Y→∞

g(f, Y ) = 0,
∂g(f, Y )

∂f
< 0,

∂g(f, Y )

∂Y
< 0.

(4)

Here we consider g(f, Y ) = 1
1+fY which satisfies

condition (4). Then the system (2) becomes:

cDα
t S(T ) = rS

(
1− S + I

k

)(
1

1 + fY

)
− λSI

− pY S

mY + S

cDα
t I(T ) = λSI − cY I

mY + I
− γI

cDα
t Y (T ) = δY

(
1− hY

S + I

)
(5)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0.
Now define T = λt, r1 = r

λ , p1 = p
λ , γ1 = γ

λ , δ1 =
δ
λ , c1 = c

λ . Then the system (5) reduces to

cDα
t S(t) = r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI

− p1Y S

mY + S

cDα
t I(t) = SI − c1Y I

mY + I
− γ1I

cDα
t Y (t) = δ1Y

(
1− hY

S + I

)
(6)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0.

3. Mathematical preliminaries

Throughout this section, we present a few prelimi-
nary definitions as well as some important lemmas
for Caputo fractional derivative [22,24,38,39].

Definition 1. [24] Let g be any function such
that g ∈ Cn([t0,+∞),R) then the Caputo frac-
tional derivative of g having order α is defined
by

c
t0D

α
t g(t) =

1

Γ(n− α)

∫ t

t0

g(n)(s)

(t− s)α−n+1
ds

where Γ(.) is the Gamma function, n is a non-
negative integer such that n − 1 < α < n and
t ≥ t0. In particular, when 0 < α < 1

c
t0D

α
t g(t) =

1

Γ(1− α)

∫ t

t0

g′(s)

(t− s)α
ds
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Lemma 1. [38] Let g(t) ∈ C[a, b] and c
t0D

α
t g(t) ∈

C[a, b], 0 < α ≤ 1, then

(i) for each t ∈ [a, b], g(t) is non-decreasing
provided c

t0D
α
t g(t) ≥ 0, a < t < b.

(ii) for each t ∈ [a, b], g(t) is non-increasing
provided c

t0D
α
t g(t) ≤ 0, a < t < b.

Lemma 2. [24] Consider the Cauchy problem

c
aD

α
t x̂(t) = λx̂(t) + g(t)

x̂(a) = b (b ∈ R)

with 0 < α < 1 and λ̄ ∈ R. Then the solution is
of the form

x̂(t) = bEα[λ̄(t− a)α]

+

∫ t

a
(t− s)(α−1)Eα,α

[
λ̄(t− s)α

]
g(s)ds

(7)

while the solution to the problem
c
aD

α
t x̂(t) = λ̄x̂(t)

x̂(a) = b (b ∈ R)

is given by

x̂(t) = bEα

[
λ̄(t− a)α

]
The preceding lemma is quite important to ver-
ify that the system (6) is uniformly bound which
is the generalization of the Lemma 2 provided
in [40].

Lemma 3. [22] Consider a function ū(t) con-
tinuous on [t0,+∞) satisfying

c
t0D

αū(t) ≤− λ̄ū(t) + µ

ū(t0) = ūt0
(8)

where 0 < α < 1, (λ̄, µ) ∈ R2, and λ̄ 6= 0 and
t0 ≥ 0 is the initial time. Then

ū(t) ≤
(
ūt0 −

µ

λ̄

)
Eα
[
−λ̄(t− t0)α

]
+
µ

λ̄
(9)

Lemma 4. Consider a function ū(t) continuous
on [t0,+∞) satisfying

c
t0D

α
t ū(t) ≥λ̄ū(t)− µ
ū(t0) = ūt0

(10)

where 0 < α < 1, (λ̄, µ) ∈ R2, and λ̄ 6= 0 and
t0 ≥ 0 is the initial time. Then

ū(t) ≥
(
ūt0 −

µ

λ̄

)
Eα
[
λ̄(t− t0)α

]
+
µ

λ̄
(11)

Proof. This lemma can be proved using the sim-
ilar approach used in the proof of the lemma
(3). �

Lemma 5. [39] Consider x̂(t) ∈ R+ be a contin-
uous and derivable function. Then for any t ≥ t0

c
t0D

α
t

[
x̂(t)− x̂∗ − x̂∗ ln

x̂(t)

x̂∗

]
≤
(

1− x̂∗

x̂(t)

)
c
t0D

α
t x̂(t),

x̂∗ ∈ R+, ∀ α ∈ (0, 1)

(12)

4. Mathematical analysis

In this section, we present the fundamental math-
ematical requisites like the existence, uniqueness,
non-negativity, and boundedness of the solutions,
as desired in any population dynamics.

4.1. Existence and Uniqueness of the
system

We investigate the existence and uniqueness of the
solutions of the fractional-order system (6) in the
region B × [t0, T ] where

B =
{

(S, I, Y ) ∈ R3 : max {|S|, |I|, |Y |} ≤ Ψ,
min {|S|, |I|, |Y |} ≥ Ψ0} and T < +∞.

(13)

Theorem 1. For each X0 = (S0, I0, Y0) ∈ B,
there exists a unique solution X(t) ∈ B of the
fractional-order system (6) with initial condition
X0, which is defined for all t ≥ 0

Proof. We denote X = (S, I, Y ) and X̄ =
(S̄, Ī, Ȳ ).
Consider a mapping
M(X) = (M1(X),M2(X),M3(X)) and

M1(X) = r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI

− p1Y S

mY + S

M2(X) = SI − c1Y I

mY + I
− γ1I

M3(X) = δ1Y

(
1− hY

S + I

)
(14)

For any X, X̄ ∈ B it follows from equation (14)
that

‖M(X)−M(X̄)‖
= |M1(X)−M1(X̄)|
+ |M2(X)−M2(X̄)|+ |M3(X)−M3(X̄)|

(15)
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|M1(X)−M1(X̄)|

=

∣∣∣∣r1S

(
1− S + I

k

)
− SI − p1Y S

mY + S
− r1S̄

(
1− S̄ + Ī

k

)
+ S̄Ī +

p1Ȳ S̄

mȲ + S̄

∣∣∣∣
=

∣∣∣∣r1(S − S̄)− r1

k
S (S + I)− SI − p1Y S

mY + S
− r1

k
S̄
(
S̄ + Ī

)
+ S̄Ī +

p1Ȳ S̄

mȲ + S̄

∣∣∣∣
≤
∣∣∣∣r1(S − S̄)

∣∣∣∣+
r1

k

∣∣∣∣(S2 − S̄2)

∣∣∣∣+
(r1

k
+ 1
) ∣∣∣∣(SI − S̄Ī)

∣∣∣∣+
p1

m

∣∣∣∣(S − S̄)

∣∣∣∣
+ p1

∣∣∣∣(Y − Ȳ )

∣∣∣∣
≤ r1|S − S̄|+

2r1

k
Ψ|S − S̄|+

(r1

k
+ 1
)

Ψ|S − S̄|+
(r1

k
+ 1
)

Ψ|I − Ī|

+
p1

m
|S − S̄|+ p1|Y − Ȳ |

|M2(X)−M2(X̄)|

=

∣∣∣∣(SI − S̄Ī)− γ1(I − Ī)−
(

c1Y I

mY + I

)
+

(
c1Ȳ Ī

mȲ + Ī

)∣∣∣∣
≤ Ψ|S − S̄|+ Ψ|I − Ī|+ γ1|I − Ī|+

c1

m
|I − Ī|+ c1|Y − Ȳ |

|M3(X)−M3(X̄)| =
∣∣∣∣δ1Y

(
1− hY

S + I

)
− δ1Ȳ

(
1− hȲ

S̄ + Ī

)∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣ Y 2

S + I
− Ȳ 2

S̄ + Ī

∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣(Y 2 − Ȳ 2)(S + I)− Y 2(S − S̄)− Y 2(I − Ī)

(S + I)(S̄ + Ī)

∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣(Y 2 − Ȳ 2)

(S̄ + Ī)

∣∣∣∣+ δ1h

∣∣∣∣ Y 2(S − S̄)

(S + I)(S̄ + Ī)

∣∣∣∣+ δ1h

∣∣∣∣ Y 2(I − Ī)

(S + I)(S̄ + Ī)

∣∣∣∣
≤ δ1|Y − Ȳ |+

δ1hΨ

Ψ0
|Y − Ȳ |+ δ1h

4Ψ2
0

|Y 2(S − S̄)|+ δ1h

4Ψ2
0

|Y 2(I − Ī)|

≤ δ1|Y − Ȳ |+
δ1hΨ

Ψ0
|Y − Ȳ |+ δ1hΨ2

4Ψ2
0

|(S − S̄)|+ δ1hΨ2

4Ψ2
0

|Y 2(I − Ī)|

Then equation (15) becomes,

‖M(X)−M(X̄)‖ ≤ r1|S − S̄|+
2r1

k
Ψ|S − S̄|+

(r1

k
+ 1
)

Ψ|S − S̄|+
(r1

k
+ 1
)

Ψ|I − Ī|

+
p1

m
|S − S̄|+ p1|Y − Ȳ |+ Ψ|S − S̄|+ Ψ|I − Ī|+ γ1|I − Ī|

+
c1

m
|I − Ī|+ c1|Y − Ȳ |+ δ1|Y − Ȳ |+ 2δ1hΨ|Y − Ȳ |+ δ1|Y − Ȳ |

+
δ1hΨ

Ψ0
|Y − Ȳ |+ δ1hΨ2

4Ψ2
0

|(S − S̄)|+ δ1hΨ2

4Ψ2
0

|Y 2(I − Ī)|

≤
{
r1 +

(
3r1

k
+ 2

)
Ψ +

p1

m
+
δ1hΨ2

4Ψ2
0

}
|S − S̄|+

{(r1

k
+ 2
)

Ψ + γ1 +
c1

m

+
δ1hΨ2

Ψ2
0

}
|I − Ī|+

{
p1 + c1 + δ1 +

δ1hΨ

Ψ0

}
|Y − Ȳ |

‖M(X)−M(X̄)‖ ≤ L‖X − X̄‖
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where

L = max

{(
r1 +

(
3r1

k
+ 2

)
Ψ +

p1

m
+
δ1hΨ2

4Ψ2
0

)
,(r1

k
+ 2
)

Ψ + γ1 +
c1

m
+
δ1hΨ2

Ψ2
0

,

p1 + c1 + δ1 +
δ1hΨ

Ψ0

}
Therefore M(X) obeys Lipschitz condition which
implies the existence and uniqueness of solution
of the fractional-order system (6). �

4.2. Non-negativity and boundedness

Consider the set

B+ =

{
(S, I, Y ) ∈ B : S ∈ R+, I ∈ R+

and Y ∈ R+

}
where R+ is the set of all non-negative real num-
bers.

Theorem 2. All the solutions of the fractional-
order system (6) initiating in the region B+ are
non-negative and bounded uniformly.

Proof. For the proof we follow the approach used
in [22].
First, we prove that the solutions S(t) that initi-
ate in B+ are non-negative i.e., S(t) ≥ 0 for all
t ≥ t0. Let us assume that is not true, then there
exists t > t0 such that

S(t) > 0, t0 ≤ t < t1

S(t1) = 0,

S(t+1 ) < 0, t+ = {t : t ≥ t1}
(16)

Based on (16) and the first equation of system (6)
we have

c
t0D

α
t1S(t1)|S(t1)=0 = 0 where 0 < α < 1

(17)
Using Lemma (1), we get S(t+1 ) = 0, which is
a contradiction as S(t+1 ) < 0. Hence S(t) ≥ 0
for all t ≥ t0. In similar way we can get
I(t) ≥ 0, Y (t) ≥ 0 for all t ≥ t0.
Now to prove the boundedness of all the solution
of system initiated in the region B+, we define
the function V (t) = S(t) + I(t) + Y (t), then we
have,

c
t0D

α
t V (t) + ηV (t)

= r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

+ SI − c1Y I

mY + I
− γ1I + δ1Y

(
1− hY

S + I

)
+ ηS

+ ηI + ηY

≤ r1S −
r1

k
S(S + I)− p1Y S

mY + S
− c1Y I

mY + I
− γ1I

+ δ1Y −
δ1hY

2

I + S
+ ηS + ηI + ηY

≤ (r1 + η)S − r1

k
S2 + Y (δ1 + η)− δ1h

2Ψ
Y 2 + (η − γ1)I

≤ (r1 + η)S − r1

k
S2 + Y (δ1 + η)− δ1h

2Ψ
Y 2

≤ −r1

(
S − k(r1 + η)

2r1

)2

+
k(r1 + η)2

4r1
− δ1h

2Ψ(
Y − Ψ(δ1 + η)

δ1h

)2

+
Ψ(δ1 + η)2

2δ1h

≤ k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h
where η = γ1. By Lemma 3 we have,

V (t) ≤
(
V (t0)− k(r1 + η)2

4r1
− Ψ(δ1 + η)2

2δ1h

)
Eα

[
− η(t− t0)α

]
+
k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h

→ k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h
, t→∞

(18)

Hence, all the solution of the fractional-order sys-
tem (6) which initiate in B+ are restricted to the
region Γ, where

Γ =

{
(S, I, Y ) ∈ Ω̄+|S + I + Y ≤ k(r1+η)2

4r1

+Ψ(δ1+η)2

2δ1h
+ ε, ε > 0

}
(19)

this completes the proof of theorem. �

5. Equilibrium points

The fractional-order system (6) has the following
biologically feasible equilibrium points.

(1) The trivial or vanishing equilibrium
E1(0, 0, 0) which always exists. In an eco-
logical sense, trivial equilibrium is impor-
tant since all populations will never be-
come extinct simultaneously.

(2) The axial equilibrium E2(k, 0, 0) where
there is only susceptible prey, which al-
ways exists.
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(3) The disease-free equilibrium

E3(S3, 0, Y3) where S3 = hk(r1(h+m)−p1)
fkp1+hr1(h+m) ,Y3 =

k(r1(h+m)−p1)
fkp1+hr1(h+m) .

The disease-free equilibrium E3 exists if
and only if r1(h+m) > p1.

(4) The predator-free equilibrium

E4(S4, I4, 0) where S4 = γ1, I4 = r1(k−γ1)
k+r1

which exists if and only if <0 > 1 where
<0 = k

γ1
. <0 is the basic reproduction

number of the epidemic theory deter-
mined with help of next generation matrix
method [41].

(5) The positive or endemic equilib-
rium E∗(S∗, I∗, Y ∗): From the equation
of predator nullcline we obtain Y = S+I

h .
Solving susceptible prey and infected prey
nullcline equations and substituting Y ∗

gives,

I∗ =
c1S
∗ −m(S∗)2 + γ1mS

∗

−c1 − γ1h+ hS∗ − γ1m+mS∗
,

Y ∗ =
S∗ (S∗ − γ1)

(h+m) (S∗ − γ1)− c1
.

Substituting I∗ and Y ∗ in susceptible prey
nullcline equation gives the following fifth
degree polynomial equation,

ρ0S
∗5 + ρ1S

∗4 + ρ2S
∗3

+ρ3S
∗2 + ρ4S

∗ + ρ5 = 0
(20)

where ρ0,ρ1,ρ2,ρ3,ρ4 and ρ5 are given in
the appendix.
I∗ and Y ∗ are uniquely defined if S∗ is

a solution of the above equation (20). If
S∗ 6= 0 is a real positive solution of the
polynomial equation (20), then I∗ and Y ∗

are real and positive if,

c1 + γ1h+ γ1m

h+m
< S∗ <

c1 + γ1m

m
.

For the parameters provided in section 9
with f = 0.05,m = 5, h = 0.5, k = 350
equation (20) has a unique non-zero posi-
tive real root S∗ = 41.59 for which the cor-
responding I∗ = 50.57 and Y ∗ = 164.31.

6. Local stability analysis

Throughout this section, we investigate the lo-
cal stability of the equilibrium points of the
fractional-order system (6). For local stability
analysis of the positive equilibrium, we use the
Routh-Hurwitz criterion.

6.1. Local stability of E1(0, 0, 0)

The Jacobian matrix of the fractional-order sys-
tem (6) is not well-defined at the equilibrium
point E1(0, 0, 0). In order to show that E1 is un-
stable, it is sufficient to prove that not all the
trajectories initiated in the neighborhood of E1

approach E1. Suppose a trajectory which initi-
ated with Y (0) = 0 and S(t) > 0 , then we have
Y (t) = 0 but S(t) > 0 ∀ t. Hence

1

S
.ctD

α
t S(t) = r1

(
1− S + I

k

)
− I > r1

2

=⇒ c
tD

α
t S(t) > S

(r1

2

)
Now, if S and I are small enough then by using
Lemma 4,

S(t) > S0Eα

[r1

2
(t− t0)

]
for t ≥ t0. Therefore the trajectory cannot ap-
proaches to E1. Hence E1 is locally asymptoti-
cally unstable.

6.2. Local stability of E2(k, 0, 0)

The Jacobian matrix of the fractional-order sys-
tem (6) is not well defined at the axial equilib-
rium E2(k, 0, 0). To prove that E2 is unstable we
presume that E2 is locally asymptotically stable
(LAS). Now suppose a trajectory which is initi-
ated with Y0 > 0 and either I0 > 0 or S0 > 0.
Hence either It > 0 or St > 0 ∀ t. Therefore

c
tD

α
t Y (t) ≥ δ1Y

2
Then by using Lemma 4

Y (t) ≥ Y0Eα

[
δ1

2
(t− t0)

]
for t ≥ t0. Therefore the trajectory never ap-
proaches to E2. Hence E2 is locally asymptoti-
cally unstable.

6.3. Local stability of E3(S3, 0, Y3)

Theorem 3. If <0 < 1 + c1+χ
γ1m

then the disease-

free equilibrium E3 of the fractional-order system
(6) is locally asymptotically stable under the con-
dition 2δ1 >

p1
m and r1 >

p1
m .

Proof. The Jacobian matrix of system (6) at E3

is given by

JE3 =

 J11 J12 J13

0 J22 0
J31 J32 J33


where J11 =

h((2h+fk+m)p1−(h+m)2r1)
(h+fk)(h+m)2

,

J12 = −h((h+m)r1−p1)(fkp1+(h+m)(k(h+fk)+hr1))
(h+fk)(h+m)(fkp1+h(h+m)r1) ,
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J13 = −hp1((h2+2fkh+fkm)r1−fkp1)
(h+fk)(h+m)2r1

,

J22 = h(h+m)r1(m(k−γ1)−c1)−kp1(fc1+m(h+fγ1))
m(fkp1+h(h+m)r1) ,

J31 = δ1
h ,J32 = δ1

h ,J33 = −δ1.
The eigenvalues of the Jacobian matrix of the
system at the equilibrium point E3 are the roots
of the following equation

(J22 − σI)
(
σ2 −Aσ +B

)
= 0 (21)

where

A =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

(h+m)2(fk + h)
,

B =
δ1 (r1(h+m)− p1) (fkp1 + hr1(h+m))

r1(h+m)2(fk + h)
.

The characteristic equation have the following
roots,

σI =
hr1(h+m) (m (k − γ1)− c1)− kp1 (c1f +m (γ1f + h))

m (fkp1 + hr1(h+m))

σ2 =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

2(h+m)2(fk + h)

− Λ̂

2
√
r1(h+m)2(fk + h)

σ3 =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

2(h+m)2(fk + h)

+
Λ̂

2
√
r1(h+m)2(fk + h)

Λ̂ =

√
−2p1r1(h+m)2

(
h2r1(fk + 2h+m)

+δ1(fk + h)(fk(3h+ 2m)− hm)

)
× p2

1

(
h2r1(fk + 2h+m)2 + 4δ1fk(h+m)2(fk + h)

)
+ r1(h+m)4 (hr1 − δ1(fk + h)) 2

If <0 < 1 + c1+χ
γ1m

then |arg(σI)| = π > απ
2 where

χ = kp1(c1f+m(γ1f+h))
hr1(h+m) .

The eigenvalues σ2,3 have negative real parts if
2δ1 >

p1
m and |arg(σ2,3)| = π > απ

2 , ∀ 0 < α < 1.
Therefore according to Matignon’s condition [42],
the disease-free equilibrium E3 is locally asymp-
totically stable if <0 < 1+ c1+χ

γ1m
with the condition

that 2δ1 >
p1
m and r1 >

p1
m . �

6.4. Local stability of E4(S4, I4, 0)

Theorem 4. The predator-extinction equilib-
rium point E4 of the system (6) is locally asymp-
totically unstable if <0 > 1.

Proof. The predator-free equilibrium E4 exists
for <0 > 1. The Jacobian matrix of system (6) at
E4 is given by

JE4 =

 − r1γ1
k − (k+r1)γ1

k
fr1γ1(γ1−k)−p1(k+r1)

k+r1
r1(k−γ1)
k+r1

0 −c1

0 0 δ1


The eigenvalues of the Jacobian matrix of the sys-
tem at E4 are the roots of the following equation

(δ1 − ΛY )

(
Λ2 +

r1γ1

k
+
γ1r1 (k − γ1)

k

)
= 0

Clearly one eigenvalue of the characteristic poly-
nomial is ΛY = δ1. Therefore the system (6) is
locally asymptotically unstable at E4. �

6.5. Local stability of E∗

The Jacobian matrix of system (6) at E∗ is given
by

JE∗ =

 V1 V2 V3

V4 V5 V6

V7 V8 V9


where

V1 =
r1 (k − I∗ − 2S∗)

fkY ∗ + k

− mp1 (Y ∗)2 + I∗ (mY ∗ + S∗)2

(mY ∗ + S∗)2

V2 = −S
∗ (fkY ∗ + k + r1)

fkY ∗ + k

V3 = S∗
(
fr1 (−k + I∗ + S∗)

k (fY ∗ + 1)2 − p1S
∗

(mY ∗ + S∗)2

)
V4 = I∗

V5 =
(S∗ − γ1) (mY ∗ + I∗)2 − c1m (Y ∗)2

(mY ∗ + I∗)2

V6 = − c1 (I∗)2

(mY ∗ + I∗)2

V7 =
δ1h

(
Ŷ ∗
)2

(I∗ + S∗)2

V8 =
δ1h (Y ∗)2

(I∗ + S∗)2

V9 =
δ1 (−2hY ∗ + I∗ + S∗)

I∗ + S∗

and the corresponding characteristic equation is
of the form

σ3 + ω1σ
2 + ω2σ + ω3 = 0 (22)

where ωi,(i = 1, 2, 3) are given in the Appendix.
By Routh-Hurwitz stability criterion the positive
equilibrium E∗ will be locally asymptotically sta-
ble if ω1 > 0, ω3 > 0 and ω1ω2 > ω3.

7. Global stability analysis

In this section, we study the global asymptotic
stability of the disease-free equilibrium point and
the positive equilibrium point by constructing
suitable Lyapunov functions.
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Theorem 5. If <0 < k
(
S3 − c1

m

)−1
then the

disease-free equilibrium E3 is globally asymptoti-
cally stable.

Proof. Proof of the theorem is given in the Ap-
pendix. �

Theorem 6. The positive equilibrium E∗ is glob-
ally asymptotically stable with respect to solu-
tions initiating in the interior of the region Γ if

L2 = L1

(
1 + r1

k(1+fY ∗)

)
and r1

k(1+fY ∗) >
p1

m2Y ∗ .

Proof. Proof of the theorem is given in the Ap-
pendix. �

8. Bifurcation analysis

Throughout this section, we analyze the possi-
bility of occurrence of Hopf-bifurcation at the
disease-free equilibrium point E3 and positive
equilibrium E∗. Oscillating behavior is one of
the most frequent dynamical behavior appears in
the nonlinear mathematical study of population
dynamics, which lead to the Hopf-bifurcation of
the system.

From the equation (21), the characteristic equa-
tion of the Jacobian matrix of the system at E3

has a pair of purely imaginary eigenvalues for
A = 0 and B > 0 which implies,

r1 >
2hp1 +mp1

h2 + 2hm+m2

f >
h2r1 + 2hmr1 − 2hp1 +m2r1 −mp1

kp1

c1 >
m (hr1(h+m) (k − γ1)− kp1 (γ1f + h))

fkp1 + hr1(h+m)

δ1 =
h
(
p1(fk + 2h+m)− r1(h+m)2

)
(h+m)2(fk + h)

(23)

Since we are discussing the effect of fear for the
model, so we use rate of fear f as the bifurcation
parameter. Again the characteristic equation of
JE∗ is of the form,

σ3 + ω1σ
2 + ω2σ + ω3 = 0 (24)

The positive equilibrium E∗ experiences a Hopf
bifurcation for some free parameter say f at a
threshold value f = f∗ if ω1(f∗), ω2(f∗), ω3(f∗) >
0, ∆ = ω1(f∗)ω2(f∗)− ω3(f∗) = 0 and ∂∆

∂f (f∗) 6=
0. Next, we mention Matignon’s criterion for the
existence of a Hopf bifurcation when the order
α of the fractional derivative passes through the
threshold value α = α∗.

Theorem 7. [44] (Existence of Hopf bifurca-
tion) When the bifurcation parameter α passes

through the critical value α = α∗ ∈ (0, 1), the
fractional-order system (6) undergoes a Hopf bi-
furcation at any equilibrium point E if the follow-
ing conditions hold

(a) the Jacobian matrix of the system at the
equilibrium point E has a pair of complex
conjugate eigenvalues λ̂2,3 = u± iv where

u > 0 and one negative real root λ̂1.
(b) m̂(α∗) = α∗ π2 −min1≤i≤3 | arg(λ̂i)| = 0.

(c) dm̂(α)
dα |α=α∗ 6= 0 (transversality condition)

9. Numerical simulation

Throughout this section, we compare the analyti-
cal findings using a biologically plausible parame-
ter set. Approximate solutions for our fractional-
order system are determined using the general-
ized Adams–Bashforth–Moulton type predictor-
corrector scheme [43]. We took the major-
ity of our base parameter values from the eco-
epidemiological study of pelicans in the Salton sea
by Chattopadhyay et al. [35].

r = 3/day, c = 0.05/day, γ = 0.24/day,

δ = 0.09/day, λ = 0.006/day, m = 1

Additionally, we take f = 0.2, p = 0.03/day,
h = 0.2.
With these parameter values,

r1 =
3

0.006
, f = 0.5, p1 =

0.03

0.006
, m = 1,

c1 =
0.05

0.006
, γ1 =

0.24

0.006
, δ1 =

0.09

0.006
, h = 0.2.

Now, we fix total capacity of the prey to be
k = 75. For the choice of parameter values men-
tioned above, S3 = 45.76 and

(
c1
m + γ1

)
= 48.33

satisfying S3 − c1
m − γ1 < 0. Equivalently, <0 <

k
(
S3 − c1

m

)−1
, which is the condition for global

stability of E3 obtained analytically in Theorem
5. With these set of parameter values the equi-
librium points of the fractional-order system (6)
are

E3 = (45.7692, 0, 228.846), E4 = (40., 30.4348, 0)

Under the above parameters no positive equilib-
rium appears. Between the two equilibria, E4

is unstable (Theorem 4) and Theorem 5 is sat-
isfied for global asymptotic stability of E3. It is
observed that all the trajectories of the system
(6) initialed at different values approach to the
disease-free equilibrium E3, see Figure 1. Next,
we consider f = 0.05,m = 5, h = 0.5 and
k = 350 along with the other parameters men-
tioned above. For these parameters S3 = 328.46,(
c1
m + γ1

)
= 41.66 and S3 − c1

m − γ1 > 0 which is

equivalently <0 > k
(
S3 − c1

m

)−1
. The equilibrium



38 A.J. Kashyap, D. Bhattacharjee, H.K. Sarmah / IJOCTA, Vol.11, No.3, pp.28-51 (2021)

points of the fractional-order system (6) which ex-
ist under these parameters are
E2 = (350, 0, 0), E3 = (328.462, 0, 656.923),
E4 = (40, 182.353, 0),
E∗ = (41.5882, 40.5682, 164.313). Among these
equilibria, E3 is unstable since the Theorem 5 is
not satisfied for the parameter set. From numer-
ical simulations, it is found that trajectories of
the system tend to the positive equilibrium E∗

with the increase in time irrespective of the ini-
tial value (Figure 5). This suggests that the posi-
tive equilibrium E∗ has a large domain of attrac-
tion. Again we set the parameter values h = 0.04,
k = 75 together with p1,m, γ1, δ1 as mentioned in
the beginning of section 9. From the first condi-
tion in equation (23),

r1 > 4.9926

So we fix r1 = 1
0.006 , then from the second con-

dition f > 0.466311. Again we fix f = 0.5,
then from third condition c1 > 1.59729, so we
fix c1 = 0.05

0.006 . Finally for the fourth condition
δ1 = 0.0124456 which implies δ → 0, i.e., the re-
production rate of predator population becomes
very very small. For r1, c1, δ1 as above, keep-
ing other parameter values fixed with f = 0.6
and initial population (55, 75, 190), the eigenval-
ues of the Jacobian matrix of the system at the
disease-free equilibrium E3 are λ̂1 = −46.156,
λ̂2,3 = 0.0143594 ± 0.244213i. From the second
condition of Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣ 0.244213

0.0143594

∣∣∣∣ = 0.962611 ≈ 0.962

and from the last condition,

dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0

which implies that the transversality condition
holds. Hence the fractional-order system (6)
at the disease-free equilibrium E3 experiences a
Hopf bifurcation when the bifurcation parame-
ter α passes through a critical value α∗ ≈ 0.962,
see Figure 2. Our main interest is to discuss the
fear induced in the prey as an anti-predator reac-
tion. We fix the rate of fear f as a free parame-
ter. The system (6) exhibits oscillatory behaviour
at the disease-free equilibrium E3 for f = 0.7,
r1 = 1/0.006, c1 = 0.05/0.006, δ1 = 0.0124456
and α = 0.98, see Figure 3. We take the initial
population (55, 75, 190) and α = 0.98 with the
fear coefficient f as a free parameter. It is ob-
served that increasing the fear effect f from f =
0.466311 the disease-free equilibrium E3 becomes
unstable due to a Hopf bifurcation when the bifur-
cation parameter f passes through a critical value

f∗ = 0.48, see Figure 4. Again we set the parame-
ter set f = 0.05,m = 5, h = 0.5, k = 350 together
with other parameter values as mentioned in the
beginning of section 9. In Figure 5, we plot the
trajectories of the system (6) for α = 0.99 with
initial population (55, 170, 450) which approach to
E∗(41.59, 40.57, 164.31). Moreover, for these pa-
rameter values ω1 > 0, ω3 > 0 and ω1ω2−ω3 > 0,
which confirms that the Routh-Hurwitz stability
criterion satisfies.
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(a) (b)

(c) (d)

Figure 1. Phase diagram of the sys-
tem (6) at the disease-free equilibrium
E3 with different initial values with
α = 0.9.

(a)

(b)

Figure 2. Bifurcation diagram of
the system at E3 with respect to the
bifurcation parameter α.

Figure 3. Time series of the
fractional-order system (6) at E3 for
f = 0.7 and α = 0.98

(a)

(b)

Figure 4. Bifurcation diagram of
the system at E3 with respect to the
fear effect f for α = 0.98

In Figure 6, we compute orbits with above param-
eters and α = 0.99 from several starting points
and observe that all trajectories of the system
(6) approach to the same positive equilibrium
E∗(41.59, 40.57, 164.31). This suggests that E∗

has a large domain of attraction. We fix the pa-
rameter values f = 0.05,m = 5, h = 0.5, k = 350
together with the parameter values mentioned in
the beginning of section 9 and keep γ1 as free
parameter. For γ1 = 0.12

0.006 and α = 1 it is ob-
served that for all the trajectories of the system
(6) undergoes a Hopf bifurcation, see Figure 7
and Figure 8. Increasing γ1 from γ1 = 0.12

0.006

to γ1 = 0.135
0.006 , it is observed that the positive

equilibrium E∗ undergoes a backward Hopf bi-
furcation at γ1 = 0.1284/0.006, see Figure 9.
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(a)

(b)

Figure 5. (a) Time series of positive
equilibrium point E∗ for α = 0.99, (b)
Phase diagram of positive equilibrium
point E∗ for α = 0.99.

Figure 6. Phase portrait of the pos-
itive equilibrium E∗ of the system (6)
for α = 0.99.

For γ1 = 0.07
0.006 the eigenvalues of the Jacobian

matrix of the system at the positive equilibrium
E∗ are λ̂1 = −19.0552, λ̂2,3 = 0.849491±32.1521i.
From Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣ 32.1521

0.849491

∣∣∣∣ = 0.983184 ≈ 0.983

and
dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0,

Figure 7. Time series of the
fractional-order system (6) for
γ1 = 0.12

0.006 and α = 1

Figure 8. Phase diagram of the
fractional-order system (6) for γ1 =
0.12
0.006 and α = 1

(a) (b)

(c)

Figure 9. Bifurcation diagram of
the system at E∗ with respect to mor-
tality rate of infected prey γ1 for α =
1.
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(a) (b)

(c)

Figure 10. Bifurcation diagram of
the system at E∗ with respect to the
bifurcation parameter α.

Figure 11. Time series of the system
(6) for γ1 = 0.07

0.006 α = 0.99.

Figure 12. Phase diagram of the
system for γ1 = 0.07

0.006 and α = 0.99.

Hence Hopf bifurcation occurs in the system (6)
at the positive equilibrium E∗ when the bifurca-
tion parameter α passes through a critical value
α∗ = 0.983, see Figure 10. For γ1 = 0.07

0.006 and
α = 0.99 all the trajectories of the system (6)
shows oscillatory behaviour via a Hopf bifurca-
tion, see Figure 11 and Figure (12). Increasing
γ1 from γ1 = 0.087

0.006 to γ1 = 0.099
0.006 , it is observed

that at the positive equilibrium E∗ the system (6)
undergoes a backward Hopf bifurcation when the
bifurcation parameter γ1 passes through a critical
value γ∗1 = 0.093

0.006 , see Figure 13.

(a) (b)

(c)

Figure 13. Bifurcation diagram of
the system at E∗ with respect to mor-
tality rate of infected prey γ1 for α =
0.99.

For h = 05, k = 2500, f = 0.05 along with other
parameters as mentioned in section 9 and ini-
tial population (55, 170, 450) all the population
coexists with population E∗(40.93, 154.9, 39.18)
(Figure 14). For f = 0.12 the eigenvalues
of the Jacobian matrix of the system at the
positive equilibrium E∗ are λ̂1 = −20.8432,
λ̂2,3 = 2.29661± 70.1413i. From Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣70.1413

2.29661

∣∣∣∣ = 0.979163 ≈ 0.979

and
dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0.

Hence a Hopf bifurcation occurs in the fractional-
order system (6) at the positive equilibrium E∗

when the bifurcation parameter α passes through
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a critical value α∗ = 0.979, see Figure 15. With a
increase in the fear coefficient all the trajectories
of the system (6) at the positive equilibrium E∗

undergoes a Hopf bifurcation. In Figure 16, the
oscillatory behaviour of all the population is pre-
sented for f = 0.12 and α = 0.98. Increasing f
from f = 0.05 to f = 0.18, it is observed that the
positive equilibrium undergoes a forward Hopf bi-
furcation when the bifurcation parameter f passes
through a critical value f∗ = 0.1, see Figure 17.

(a) (b)

(c) (d)

Figure 14. Time series and phase
diagram of the system for
f = 0.05, α = 0.98.

(a) (b)

(c)

Figure 15. Bifurcation diagram of
the system at E∗ with respect to the
bifurcation parameter α.

(a) (b)

(c) (d)

Figure 16. Time series and phase
diagram of the system for f = 0.12
α = 0.98.
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(a) (b)

(c)

Figure 17. Bifurcation diagram of
the system at E∗ with respect to to
fear coefficient f for α = 0.98.

9.1. Impact of the disease on predators in
the absence of susceptible prey

In the absence of susceptible prey both the in-
fected prey and predator populations become ex-
tinct, and the system approaches the trivial equi-
librium E1. Analytical discussion of the situa-
tion can be found in literature [37]. Here we
are exploring this scenario numerically for dif-
ferent values α. We fix the parameter values
m = 1, c1 = 0.03

0.006 , γ1 = 0.01
0.006 , δ1 = 0.05

0.006 , h = 0.2
and consider other parameters to be 0. From Fig-
ure 18, it is observed both the infected prey and
predator populations approach towards extinc-
tion for the initial population (I = 75, Y = 120).
The behaviour of the infected prey and predator
towards extinction under different values α is pre-
sented in Figure 19. Increasing the order α, the
time duration of extinction for both the species
become reduced.

10. Conclusion and discussion

In this paper, we investigate a modified eco-
epidemiological model incorporating the fear ef-
fect. The model equations are constructed with
the help of Caputo fractional-order differential
equations. Fundamental requisites such as exis-
tence, uniqueness, non-negativity, and bounded-
ness of the solutions of the system are discussed.

(c)

Figure 18. Time series of the sys-
tem in absence of susceptible prey for
α = 0.9.

(a) (b)

Figure 19. (a),(b) Time series of the
system when S = 0. Infected prey
and predator approach towards ex-
tinction for different values of α.

Biologically possible equilibrium states of the
model are determined. The basic reproduction
number <0 of the epidemiology theory is deter-
mined. Local and global asymptotic stabilities of
the equilibrium states are presented. The disease-
free equilibrium E3 is globally asymptotically sta-

ble if <0 < k
(
S3 − c1

m

)−1
, where <0 is the basic

reproduction number of the epidemic. The global
stability condition of the endemic case, i.e., the
positive equilibrium, is also discussed. We deter-
mine the threshold parameter values for which
the disease-free case and the endemic case be-
come unstable. In equation (23) we present a
parametric condition for which the disease-free
equilibrium loses its stability due to a Hopf bifur-
cation. With biologically plausible parameters,
we conduct numerical simulations to visualize the
system’s behaviour near the equilibrium points.
To explore the role of the order (α) of the dif-
ferential equations towards the stability of the
equilibrium states, we use Matignon’s theorem.
Global stability of the system at the disease-free
equilibrium E3 is presented in Figure 1. The tra-
jectories of the system at the equilibrium E3 with
α as a free parameter are presented in Figure
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2. Applying Matignon’s theorem, we determine
the threshold value of α as α∗ ≈ 0.962. When
α passes through the critical value α = α∗, the
endemic equilibrium E∗ of the system becomes
unstable via a Hopf bifurcation. An increase
in the fear coefficient f through a critical value
f∗ = 0.48 (with α = 0.98), the system shows oscil-
latory behaviour at the equilibrium E3 via a Hopf
bifurcation (Figure 4). From an ecological point
of view, an increase in fear due to predation risk
above a threshold value decreases the prey pop-
ulation’s reproduction rate, forcing the system
towards extinction. Global asymptotic stability
of the positive equilibrium can be observed in Fig-
ure 6. Behaviour of the system at E∗ with respect
to α can be seen in Figure 10. Mass mortality
of the pelicans was taking place mainly because
of consuming infected tilapias in the Salton Sea.
Numerically, it is observed that the parameter γ1

could stabilize the system dynamics at the posi-
tive equilibrium when it passes through a critical
value γ1 = γ∗1 = 0.093/0.006 (Figure 13). For
a different set of parameters, the system shows
oscillatory behaviour through a Hopf bifurcation
when α passes through α = α∗ ≈ 0.979 (Figure
15). It is also observed that the rate of fear in
prey due to predation risk is responsible for the
stability of the endemic equilibrium. An increase
in the rate of fear due to predation risk enforces
the endemic equilibrium to lose its stability via a
Hopf bifurcation (Figure 17). In ecological terms,
all the populations exhibit oscillatory behaviour
with a certain increase in the rate of fear due to
predation risk. From the numerical simulations,
it is observed that below some threshold value
0 < α < α∗ all the population coexists. So, it
can be concluded that the system’s fraction-order
(α) can help to control the coexistence of all the
species populations. In the absence of suscepti-
ble prey, both infected prey and predator extinct
after a specific time. The effect of infected prey
on the existence of the predator population is
discussed numerically in subsection 9.1. It is ob-
served that with an increase in the order α, the
time of extinction for both the species get reduced
(Figure 18).

We have already given brief summary of the
models in [34–37] at the introduction part. As
per the authors’ information, fewer studies have
been done in epidemic models with the fear ef-
fect. In [46], Wu et al. studied a delayed epi-
demic model incorporating fear effect in prey
and refuge. Pal investigated a modified Lesli-
Gower eco-epidemiological model with fear ef-
fect in prey [47] and observed that an increase

in the fear coefficient stabilizes the system dy-
namics. In [49], Sha et al. investigated an eco-
epidemiological model with disease in the prey.
They assumed that the induced fear also reduces
disease transmission along with reproduction and
obtained fear-induced backward bifurcation and
bi-stability. Our model differs from the model
proposed by Sha et al. [49] in functional response,
fear effect (no impact of fear effect in disease
transmission ), and type of the equations. In
a fractional-order sense, Mandal et al. [48] dis-
cussed an epidemic model with the fear effect of
an infectious disease. Our model is more realistic
than the models studied in [35,37] in the sense of
fear induced in prey and the type of the differen-
tial equations. The reproduction rate in the prey
population is affected because of the predation
risk that controls the system dynamics. Again,
the fractional-order of the equations may help to
control the stability of the coexistence equilib-
rium state. Interested readers can modify this
model by involving non-local, additionally, non-
singular fractional derivatives such as the ABC
derivative. Holling type IV functional response
can be assumed as most prey shows antipredator
defense mechanism. Group defense is a popular
anti-predator response where the prey defends
themselves by making groups; see [45]. More-
over, one can investigate the model, including the
impact of fear in the disease transmission by in-
volving fractional derivatives, see [49].
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Appendix A.

Coefficients of S∗ in (20)

ρ0 = fkm(h+ 2m),

ρ1 = −c1fk(h+ 3m)− fkp1(h+m)− (h+ 2m) (hr1(h+m)− km (−3γ1f + h+m)) ,

ρ2 = c1

(
−k
(
−2γ1f(h+ 3m) + h2 + 5hm+ 5m2

)
+ fkp1 + hr1(2h+ 3m)

)
+ c2

1fk

− kp1(h+m) (−3γ1f + h+m) + (h+ 2m) (r1(h+m) (3γ1h+ k(h+m))

− 3γ1km (−γ1f + h+m),

ρ3 = c1

(
−
(
γ1k

(
γ1f(h+ 3m)− 2

(
h2 + 5hm+ 5m2

))
− 2kp1 (−γ1f + h+m)

+ r1

(
k
(
3h2 + 8hm+ 5m2

)
+ 2γ1h(2h+ 3m)

)
− c2

1 (k (γ1f − 2(h+ 2m)) + hr1)

− γ1 ((h+ 2m) (γ1km (γ1f − 3(h+m)) + 3r1(h+m) (γ1h+ k(h+m)))

− 3kp1(h+m) (−γ1f + h+m),

ρ4 = − (c1 + γ1(h+m))
(
c1 (γ1k(h+ 3m)− r1 (γ1h+ 3hk + 4km) + kp1) + c2

1k

− γ1 (kp1 (γ1f − 3(h+m)) + (h+ 2m) (r1 (γ1h+ 3k(h+m))− γ1km)),

ρ5 = −k (c1 + γ1(h+m)) 2 (c1r1 + γ1 (r1(h+ 2m)− p1)) .

Proof of Theorem 5

Proof. At the equilibrium point E3 the system (6) reduces to,

r1S3

(
1− S3 + I3

k

)(
1

1 + fY3

)
− S3I3 −

p1Y3S3

mY3 + S3
= 0,

δ1Y3

(
1− hY3

S3 + I3

)
= 0.

Consider the Lyapunov function,

W(S, I, Y ) = N1

(
S − S3 − S3 ln

S

S3

)
+N2I +N3

(
Y − Y3 − Y3 ln

Y

Y3

)
.

We calculate the α-order derivative of W(S, I, Y ) along the solution of the system (6) and applying
Lemma 5 we get,

c
t0D

α
tW(S, I, Y )

= N1

(
S − S3

S

)
c
t0D

α
t S(t) +N2

c
t0D

α
t I(t) +N3

(
Y − Y3

Y

)
c
t0D

α
t Y (t)

= N1

(
S − S3

S

)[
r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3

(
Y − Y3

Y

)[
δ1Y

(
1− hY

S + I

)]
≤ N1(S − S3)

[
r1

(
1− S + I

k

)
− I − p1Y

mY + S
− r1

(
1− S3

k

)
1

1 + fY3

+
p1Y3

mY3 + S3

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3 (Y − Y3)

[
δ1

(
1− hY

S + I

)
− δ1

(
1− hY3

S3

)
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≤ N1(S − S3)

[
r1fY3

k(1 + fY3)
− r1(S + I)

k
+

r1S3

k(1 + fY3)
− I − p1Y

mY + S

+
p1Y3

mY3 + S3

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3δ1h(Y − Y3)

[
−δ1hY

S + I
+

δ1hY3

S3 + I3

]
≤ N1(S − S3)

[
r1fY3

k(1 + fY3)
−
(r1

k

) (S − S3) + I + fY3(S + I)

(1 + fY3)
− I +

p1(S − S3)

m2Y3

− p1S3(S − S3)(Y − Y3)

(mY + S)(mY3 + S3)

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3δ1h(Y − Y3)[

Y (S − S3) + Y (I − I3)

(S + I)(S3 + I3)
− (Y − Y3)

S3 + I3

]
≤ fN1r1 (S − S3)Y3

k(fY3 + 1)
− r1

k
(S − S3)2 −N1(S − S3)

[
I +

I + fY3(S + I)

1 + fY3

]
+
N1p1

m2Y3
(S − S3)2 − (S − S3)(Y − Y3)

N1P1S3

(mY + S)(mY3 + S3)
− N3δ1hS(Y − Y3)2

(S + I)S3

+
(S − S3)(Y − Y3)N3δ1h

(S + I)S3
+
N3δ1hY3(Y − Y3)

S3
+N2

(
SI − c1Y I

mY + I
− γ1I

)
≤ N1r1f (S − S3)Y3

k(fY3 + 1)
+N1(S − S3)2

[
p1

m2Y3
− r1

k

]
− N3δ1hS

(S + I)S3
(Y − Y3)2

+

[
(S − S3)(Y − Y3)

{
N3δ1h

(S + I)S3
− N1p1S

(mY + S)(mY3 + S3)

}
+N1S3

{
I +

I + fY3(S + I)

1 + fY3

}
+
N3δ1hY3Y

S3
−N1S

{
I +

I + fY3(S + I)

1 + fY3

}]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
.

Suppose p1
m2Y3

< r1
k and θ1 < S, I, Y < θ2. We choose N1 and N3 such that

N3

N1
> min

{
2θ2S3

(
θ2

2(m+ 1) (fY3 + 2) (mY3 + S3) + θ2p1Y3 (fY3 + 1)
)

δ1hθ2
1(m+ 1) (fY3 + 1) (mY3 + S3)

,
2θ3

2p1S
2
3

δ1hθ2
1(m+ 1)Y3

}
,

N3

N1
<

2θ3
2S3 (θ2 − fr1Y3)

δ1h (fY3 + 1)
(
Y3

(
θ2

1 + S3

)
+ 2θ2

1 (Y3 + 1)
) .

Then c
t0D

α
tW(S, I, Y ) < N2

(
SI − c1Y I

mY+I − γ1I
)

.

Clearly, Ct0D
α
tW(S, I, Y ) ≤ 0 when S3 − c1

m − γ1 < 0 which is equivalent to <0 < k
(
S3 − c1

m

)−1

Hence the proof. �

Proof of Theorem 6:

Proof. At the equilibrium point E∗ system (6) reduces to,

r1S
∗
(

1− S∗ + I∗

k

)(
1

1 + fY ∗

)
− S∗I∗ − p1Y

∗S∗

mY ∗ + S∗
= 0,

S∗I∗ − c1Y
∗I∗

mY ∗ + I∗
− γ1I

∗ = 0,

δ1Y
∗
(

1− hY ∗

S∗ + I∗

)
= 0.

(25)

To study the globally asymptotically stability of E∗ the following positive definite Lyapunov function
is considered:

W(S, I, Y ) = L1

(
S − S∗ − S∗ ln

S

S∗

)
+ L2

(
I − I∗ − I∗ ln

I

I∗

)
+ L3

(
Y − Y ∗ − Y ∗ ln

Y

Y ∗

)
.
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We calculate the α-order derivative of W(S, I, Y ) along the solution of the system (6) and applying
Lemma 5 we get,

c
t0D

α
tW(S, I, Y ) = L1

S − S∗

S
c
t0D

α
t S(t) + L2

I − I∗

I
c
t0D

α
t I(t) + L3

Y − Y ∗

Y
c
t0D

α
t Y (t)

= L1
S − S∗

S

[
r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

]
+ L2

I − I∗

I

[
SI − c1Y I

mY + I
− γ1I

]
+ L3

Y − Y ∗

Y

[
δ1Y

(
1− hY

S + I

)]
≤ L1(S − S∗)

[
r1

(
1− S + I

k

)
− I − p1Y

mY + S

− r1

(
1− S∗ + I∗

k

)(
1

1 + fY ∗

)
+ I∗ +

p1Y
∗

mY ∗ + S∗

]

+ L2(I − I∗)
[
S − c1Y

mY + I
− γ1 − S∗ +

c1Y
∗

mY ∗ + I∗
+ γ1

]
+ L3(Y − Y ∗)

[
δ1

(
1− hY

S + I

)
− δ1

(
1− hY ∗

S∗ + I∗

)]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)− L1r1

k(1 + fY ∗)
(S − S∗)2 − L1

(
1 +

r1

k(1 + fY ∗)

)
(S − S∗)(I − I∗) +

L1p1

m2Y ∗
(S − S∗)2 − L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)

+ L2(I − I∗)(S − S∗) +
L2c1

m2Y ∗
(I − I∗)2 − L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)− L1r1

k(1 + fY ∗)
(S − S∗)2 − (S − S∗)(I − I∗)[

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

]
+

L1p1

m2Y ∗
(S − S∗)2 +

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)−

[
L1r1

k(1 + fY ∗)
− L1p1

m2Y ∗

]
(S − S∗)2 − (S − S∗)(I − I∗)[

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

]
+

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ −

[
L1r1

k(1 + fY ∗)
− L1p1

m2Y ∗

]
(S − S∗)2 − (S − S∗)(I − I∗)(

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

)
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+

[
L1r1fY

∗

k(1 + fY ∗)
(S − S∗) +

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

{
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

}]
.

Suppose

L2 = L1

(
1 +

r1

k(1 + fY ∗)

)
r1

k(1 + fY ∗)
>

p1

m2Y ∗
,

and θ1 < S, I, Y < θ2.
We choose L1 and L3 such that

2θ2
2θ2p1S

∗ (I∗ + S∗) (S∗ + Y ∗)

δ1θ4
1h(m+ 1) (mY ∗ + S∗)

<
L3

L1
<

2θ2p1S
∗2Y ∗ (I∗ + S∗)

δ1hθ1(m+ 1) (mY ∗ + S∗)
(
Y ∗ (IY ∗ + S∗) + θ2

1 (2Y ∗ + 1)
) .

Then c
t0D

α
tW(S, I, Y ) < 0.

�

Expressions of ωi,(i = 1, 2, 3) in equation (24),

ω1 =
c1mz

2

(mz + y)2
+ γ1 −

r1(k − 2x− y)

fkz + k
− δ1(−2hz + x+ y)

x+ y
+

mp1z
2

(mz + x)2
− x+ y,

ω2 = −c1mr1z
2(k − 2x− y)

(fkz + k)(mz + y)2
+

c1δ1hy
2z2

(x+ y)2(mz + y)2
− c1δ1mz

2(−2hz + x+ y)

(x+ y)(mz + y)2
+

c1m
2p1z

4

(mz + x)2(mz + y)2

+
c1myz

2

(mz + y)2
−
δ1hxz

2
(
fr1(−k+x+y)
k(fz+1)2

− p1x
(mz+x)2

)
(x+ y)2

− δ1r1(−k + 2x+ y)(−2hz + x+ y)

(x+ y)(fkz + k)

− γ1r1(k − 2x− y)

fkz + k
+
xy (fkz + k + r1)

fkz + k
− r1x(−k + 2x+ y)

fkz + k
− δ1mp1z

2(−2hz + x+ y)

(x+ y)(mz + x)2

− γ1δ1(−2hz + x+ y)

x+ y
+
δ1x(−2hz + x+ y)

x+ y
− δ1y(−2hz + x+ y)

x+ y
+

γ1mp1z
2

(mz + x)2
− mp1xz

2

(mz + x)2

− xy + γ1y,

ω3 =

(
− δ1

(x+ y)2

)[
c1myz

2(x+ y)(−2hz + x+ y)

(mz + y)2
− c1hy

3z2

(mz + y)2
− xy(x+ y)(−2hz + x+ y)

+
c1m

2p1z
4(x+ y)(−2hz + x+ y)

(mz + x)2(mz + y)2
− c1hmp1y

2z4

(mz + x)2(mz + y)2
− mp1xz

2(x+ y)(−2hz + x+ y)

(mz + x)2

+
c1hr1y

2z2(k − 2x− y)

(fkz + k)(mz + y)2
+
r1x(x+ y)(k − 2x− y)(−2hz + x+ y)

fkz + k

+
xy(x+ y) (fkz + k + r1) (−2hz + x+ y)

fkz + k
− c1mr1z

2(x+ y)(k − 2x− y)(−2hz + x+ y)

(fkz + k)(mz + y)2

+
c1hxy

2z2 (fkz + k + r1)

(fkz + k)(mz + y)2
− hxyz2

(
p1x

(mz + x)2
− fr1(−k + x+ y)

k(fz + 1)2

)

+
c1hmxz

4
(
fr1(−k+x+y)
k(fz+1)2

− p1x
(mz+x)2

)
(mz + y)2

− hx2z2

(
fr1(−k + x+ y)

k(fz + 1)2
− p1x

(mz + x)2

)
+
γ1mp1z

2(x+ y)(−2hz + x+ y)

(mz + x)2
+ γ1y(x+ y)(−2hz + x+ y)

+ γ1hxz
2

(
fr1(−k + x+ y)

k(fz + 1)2
− p1x

(mz + x)2

)
− γ1r1(x+ y)(k − 2x− y)(−2hz + x+ y)

fkz + k

]
.
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The Korteweg–De Vries (KdV) equation has always provided a venue to study
and generalizes diverse physical phenomena. The pivotal aim of the study is to
analyze the behaviors of forced KdV equation describing the free surface criti-
cal flow over a hole by finding the solution with the help of q-homotopy analysis
transform technique (q-HATT). he projected method is elegant amalgamations
of q-homotopy analysis scheme and Laplace transform. Three fractional oper-
ators are hired in the present study to show their essence in generalizing the
models associated with power-law distribution, kernel singular, non-local and
non-singular. The fixed-point theorem employed to present the existence and
uniqueness for the hired arbitrary-order model and convergence for the solution
is derived with Banach space. The projected scheme springs the series solution
rapidly towards convergence and it can guarantee the convergence associated
with the homotopy parameter. Moreover, for diverse fractional order the physi-
cal nature have been captured in plots. The achieved consequences illuminates,
the hired solution procedure is reliable and highly methodical in investigating
the behaviours of the nonlinear models of both integer and fractional order.
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1. Introduction

Mankind is always looking for innovation, devel-
opment, novelty, modernization and modification
in science and technology to lead daily life in a
convenient manner. In this connection, mathe-
matics is the basic, essential and pivotal tool and
which aid us to study, investigate and predict the
essence of life associated with surrounding na-
ture. Among this tool, calculus with differential
and integral operators is the most efficient and
favourable instrument and it has been recanalized

most elegant discipline. Most of the concept in
nature associated with the rate of change, varia-
tion and modification are necessitates differential
calculus. Recently, many researchers came with
limitations of classical concept particularly to
capture power-law, non-local, non-singular, het-
erogeneities, exponential decay, fading memory,
fatigue effect, and other functions. Later, math-
ematicians suggested an old tool and which is
rooted soon after the classical concept, called frac-
tional calculus (FC). Many senior pioneers prear-
ranged the reputation of FC and proposed distinct
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notions and properties [1–15]. In a while, the
fundamental theory and extensive claims of es-
sential properties are broadly employed to model
diverse physical mechanisms and everyday prob-
lems [16–22].

The essence of studying the mathematical models
with differential equations of fractional and inte-
ger order is always a hot topic, and hence many
researchers are magnetized towards the new ap-
proaches with numerical and analytical methods.
For instance, authors in [23] find the invariant
solution for Bogoyavlensky-Konopelchenko equa-
tion, the fractional-reaction diffusion trimolecu-
lar models is studied in [24], the fractional-order
Gross–Pitaevskii equations are examined with the
help of unified method by researchers in [25].
Similarly, authors derived interesting results for
Calogero-Bogoyavlenskii-Schif [26] and coupled
Korteweg–de Vries equations [27] with similar
techniques. To show the essence of the Lie sym-
metry analysis, authors in [28] investigated about
the Bratu Gelfand model, the effect of fractional
derivatives are illustrated by authors to capture
the stimulating results associated with fifth-order
Schrodinger equation [29], COVID-19 [30], Mac-
cari systems [31], chaotic system [32], the math-
ematical model of Tumour invasion and metasta-
sis [33], and modified coupled Korteweg–de Vries
system [34]. The Lump and optical solitons solu-
tions are derived by researchers in [35] with the
analytical method, and authors in [36] derived
some stimulating results associated with bipar-
tite graph and fractional operator. The projected
method is hired by the scholars to investigate
the system associated with Jaulent–Miodek sys-
tem with energy-dependent Schrödinger poten-
tial [37], the epidemic model of childhood disease
[38], liquids with gas bubbles models [39], the Za-
kharov–Kuznetsov equation in dusty plasma [40],
and Degasperis–Procesi equations [41].

In a two-dimensional channel flow, the impact of
bottom configurations on the free-surface waves is
investigated with the help of the forced Korteweg-
de Vries equation. The bottom topography
plays a vital part in the study of shallow-water
waves, and which can significantly evaluate the
behaviours of wave motions [42, 43]. Shallow wa-
ter or long waves are the waves in water shal-
lower than 1/20 their actual wavelength. When
the bottom configuration is more complex, the in-
terplay between the bottom topography and soli-
tary waves can demonstrate more stimulating dy-
namics of the free surface waves. When the rigid
bottom of the channel has some obstacles and
for an incompressible and inviscid fluid, the two-
dimensional channel flow with free surface waves

have been studied [44, 45]. Fluid flows over an
obstacle, the forcing approximately with the KdV
equation can portray the development of the free
surface. The FKdV equation is very important
while describing the nature sine Gordon equa-
tion as well as the nonlinear Schrödinger equa-
tion. Further, the proposed model has numerous
applications in the connected branches of math-
ematics and physics. This equation is consid-
ered an essential tool to study the propagation of
short laser pulses in optical fibres, atmosphere dy-
namics, geostrophic turbulence and magnetohy-
drodynamic waves [46, 47]. Particularly, it offers
stimulating results associated to physical prob-
lems such as acoustic waves on a crystal lattice,
tsunami waves over obstacles, and shallow-water
waves over rocks.

Here, we consider the forced KdV equation with
the free water surface elevation measured u (x, t)
on critical flow over a hole from undisturbed wa-
ter level and which introduce and nurtured by Wu
in 1987 [48], and presented as follows:

1

c

∂u

∂t
+

[
(Fr − 1)− 3

2

u (x, t)

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
=

1

2

∂f (x)

∂x
, (1)

where Fr is Froude number and it also calls as the
critical parameter, h is the sea mean water depth,
f (x) is the external forcing term and define as

f (x) = pa(x)
ρg + b (x). Here, pa(x)

ρg is the surface

air pressure, and b (x) is rigid bottom topogra-

phy and is defined by b (x) = −0.1e−
xβ

4 − 1. The
Froude number (Fr) plays an important role in
Eq. (1), since its value elucidates the kind of crit-
ical flows over the localised obstacle. Specifically,
for > 1, = 1 and < 1 respectively represent the
flow is considered as supercritical, trans-critical
and subcritical. In the rigid bottom topogra-
phy b (x), two different kinds of hole examined,
namely for β = 2 and β = 8. The behaviours
of b (x) for two distinct cases is cited in Figure
1. These cases respectively signify the hole is ex-
pected an inverse of bell-shaped and the hole is
more flattened at the bottom as well as wider.
Authors in [49], considered the simplified above
equation by eliminating surface air pressure and
presented it as follows

1

c

∂u

∂t
+

[
(Fr − 1)− 3

2

u (x, t)

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
= 0. (2)
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In the literature, we have diverse fractional op-
erators and the most familiarly used are includ-
ing Riemann–Liouville (RL), Caputo [3], Caputo-
Fabrizio (CF) [50] and Atangana–Baleanu (AB)
[51] operators. However, mathematicians and sci-
entists are always looking and searching for the
tool which can help to derive and find the re-
quired consequences at a particular situation in
specific context. In this regard, each earlier pro-
posed concepts have their own confines. Includ-
ing, the RL operator be unsuccessful to admit the
universal truth of derivative and then M. Caputo
suggested new notion which overcame this draw-
back. Recently, researchers cited some additional
properties need to be incorporate with this opera-
tor and many new fractional operators with their
own merits are suggested by mathematicians.

Recently, many researchers are hired them as
generalizing tool to investigate diverse phenom-
ena and achieved some stimulating consequences
[6, 16, 43]. Particularly, these operators aid us
to investigate the long-range memory, hetero-
geneities, exponential decay and non-local and
non-singular, non-Gaussian without a steady-
state and crossover behaviour. Now, we consider
the fractional-order forced KdV (FF-KdV) equa-
tion by trading the time derivative with three
fractional operators. Now, the FF-KdV equation
is defined as follows

Dα
t u (x, t) = −c

([
(Fr − 1)− 3

2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (3)

CF
0 Dα

t u (x, t) = −c
([

(Fr − 1)− 3
2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (4)

ABC
a Dα

t u (x, t) = −c
([

(Fr − 1)− 3
2
u(x,t)
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
, (5)

where α ( 0 < α ≤ 1) is fractional-order. The
considered model offers an interesting insight into
diverse physical phenomena and hence it magne-
tizes researchers with different tools to present
their viewpoints with corresponding derived con-
sequences. For instance, authors in model [52]
find the analytic solutions to the projected model;
author in [53] presents some interesting result for
the proposed model; considering the model for
waves generated by topography, authors in [49,54]
find the approximated analytical solution by using
the HAM; authors in [55] investigated the consid-
ered problem and presented dynamics of trapped

solitary waves; lines and pseudospectral solutions
has been investigated by authors in [56].

The hired scheme is a blend of Laplace transform
(LT) with homotopy based scheme [57, 58]. The
uniqueness of q-HATT is that it does not require
assumptions, perturbations, conversion of nonlin-
ear to linear and PDE to ODE [59]. Moreover, it
is the generalization of many methods (results at-
tained by this technique is a particular case for the
value of parameters associated to method). The
projected algorithm has been employed due to its
efficiency and accuracy to examine the extensive
classes of complex as well as nonlinear models
and problems and also for the system of equa-
tions [60–67]. Recently, many interesting conse-
quences are derived by using the projected scheme
while analyzing the real-world problem.

The rest of the manuscript is systematized as fol-
lows: We followed the next section by basics and
essential notions of both FC and LT. In Section 3,
the solution for the hired model with three frac-
tional operators are presented and also the exis-
tence and uniqueness of solutions with two frac-
tional operators for the model is presented using
Banach space within the frame of fixed-point the-
ory. With the aid of attained outcomes and corre-
sponding consequences, the discussion about the
results is presented in Section 4 and finally, the
concluding remarks on the present study are pre-
sented in the lost segment.

2. Preliminaries

Here, we recall few basic notions of FC [3, 50, 51,
68,69]:
Definition 1. The Caputo fractional derivative
of f ∈ Cn−1 is presented for n ∈ N as

Dα
t f (t) =

dnf (t)

dtn
, α = n ∈ N,

=
1

Γ(n− α)

∫ t

0
(t− ϑ)n−α−1f (n) (ϑ) dϑ, n− 1 < α < n .

(6)

Definition 2. The fractional Caputo-Fabrizio
(CF) derivative in Caputo sense for a function
f ∈ H1 (a, b) (b > a) is presented as follows [68]

CFC
0 Dα

t (f (t)) (7)

=
M [α]

1− α

∫ t

0
f
′
(ϑ) exp

[
−α (t− ϑ)

1− α

]
dϑ,

where M [α] (M [0] =M [1] = 1) is a normaliza-
tion function.

Definition 3. The fractional Atangana-Baleanu-
Caputo derivative for f ∈ H1 (a, b) (b > a) is



A computational approach for shallow water FKdV equation with three fractional operators 55

β = 2

β = 8

-4 -2 0 2 4

-1.10

-1.05

-1.00

-0.95

x

b
(x
)

Figure 1. Nature of b (x) at β = 2 and 8.

ABC
a Dα

t (f (t)) (8)

=
M [α]

1− α

∫ t

a
f
′
(ϑ)Eα

[
−α(t− ϑ)α

1− α

]
dϑ.

Definition 4. The fractional AB integral is pre-
sented as

AB
a Iαt (f (t)) = 1−α

M[α]f (t)

+ α
M[α]Γ(α)

∫ t
a f (ϑ) (t− ϑ)α−1dϑ. (9)

Definition 5. The Laplace transform (LT ) for
a Caputo fractional derivative Dα

t f (t) is defined
for (n− 1 < α ≤ n), as

L [Dα
t f (t)] = sαF (s)−

n−1∑
r=0

sα−r−1f (r)
(
0+
)
, (10)

where F (s) is LT of f(t).

Note: According to [68], the following must hold

2 (1− α)

(2− α)M (α)
+

2α

(2− α)M (α)
= 1, 0 < α < 1,(11)

which gives M (α) = 2
2−α . By the assist of the

above equation researchers in [68] proposed a
novel Caputo derivative for 0 < α < 1 as fol-
lows

Dα
t (f (t)) =

1

1− α

∫ t

0
f
′
(t) exp

[
α
t− ϑ
1− α

]
dϑ.(12)

Definition 6. The LT for a CF derivative
CFC
0 Dα

t f (t) is presented as below

L
[
CFC
0 D

(α+n)
t f (t)

]
(13)

= sn+1L[f(t)]−snf(0)−sn−1f
′
(0)−···−fn(0)

s+(1−s)α .

Definition 7. The LT of AB derivative is defined
by

L
[
ABR
0 Dα

t (f (t))
]

=
B [α]

1− α
sαL [f (t)]− sα−1f (0)

sα + (α/(1− α))
. (14)

Theorem 1. The Lipschitz conditions for the RL
and AB derivatives are respectively held the fol-
lowing results [51]

∥∥ABR
a Dα

t f1 (t)− ABR
a Dα

t f2 (t)
∥∥

< K1 ‖f1 (x)− f2 (x)‖ , (15)

and ∥∥ABC
a Dα

t f1 (t)− ABC
a Dα

t f2 (t)
∥∥

< K2 ‖f1 (x)− f2 (x)‖ . (16)

Theorem 2. The fractional-order differential
equation ABC

a Dα
t f1 (t) = s (t) has a unique so-

lution [51] and which is

f (t) = 1−α
B[α]s (t)

+ α
B[α]Γ(α)

∫ t
0 s (ς) (t− ς)α−1dς. (17)

3. Solution for FKDV equation

The considered solution procedure is presented
for the FKDV equation with three fractional op-
erators to find the series solution. Further, for
both CF and AB fractional operators existence
and uniqueness is derived with fixed point theory.

3.1. Caputo Sense

Consider the equation defined in Eq. (3)

Dα
t u (x, t) + c

([
(Fr − 1)− 3

2
u
h

]
∂u
∂x

−h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

)
= 0, (18)

with

u (x, 0) = − 2ex

(1 + ex)2 . (19)

Taking LT on Eq. (18) and using Eq. (19), we
get
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L [u (x, t)] = 1
s

(
− 2ex

(1+ex)2

)
(20)

− c
sαL

{[
(Fr − 1)− 3

2
u
h

]
∂u
∂x −

h2

6
∂3u
∂x3
− 1

2
∂b(x)
∂x

}
.

Now, N is presented as

N [ϕ (x, t; q)] = L [ϕ (x, t; q)]− 1
s

(
− 2ex

(1+ex)2

)
+ c

sαL{
[
(Fr − 1)− 3

2
ϕ(x,t;q)

h

]
∂ϕ(x,t;q)

∂x

−h2

6
∂3ϕ(x,t;q)

∂x3
− 1

2
∂b(x)
∂x }. (21)

At H(x, t) = 1, the deformation equation pre-
sented as

L [um (x, t)− kmum−1 (x, t)] = }Rm [−→u m−1] , (22)

where

Rm [−→u m−1] = L [um−1 (x, t)]

−
(

1− km
n

){
1

s

(
− 2ex

(1 + ex)2

)}

+
c

sα
L{(Fr − 1)

∂um−1

∂x
− 3

2h

m−1∑
i=0

ui
∂um−1−i
∂x

−h
2

6

∂3um−1

∂x3
− 1

2

∂b (x)

∂x
}. (23)

On employing inverse LT on Eq. (22), one can
get

um (x, t) = kmum−1 (x, t) + }L−1 {Rm [−→u m−1]} .
(24)

On simplifying the above equations by assist of
u0 (x, t) = − 2ex

(1+ex)2
we can evaluate terms of se-

ries

u (x, t) = u0 (x, t) +
∞∑
m=1

um (x, t)

(
1

n

)m
. (25)

as

u1 (x, t) =
}tα

Γ [α+ 1]
(c(

6e2x(−1 + ex)

(1 + ex)5h

−ex(−1 + 11ex − 11e2x + e3x)h2

3(1 + ex)5 − 0.025e−
x2

4 x

+
2ex(−1 + ex)(−1 + Fr)

(1 + ex)3 )),

...

3.2. Caputo-Fabrizio Sense

Consider the equation defined in Eq. (4)

CF
0 Dα

t u (x, t) + c(

[
(Fr − 1)− 3

2

u

h

]
∂u

∂x
− h2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
) = 0, (26)

with initial conditions Eq. (19). Taking LT on
Eq. (26) and by the assist of Eq. (19), we get

L [u (x, t)] =
1

s

(
− 2ex

(1 + ex)2

)
− cs+ (1− s)α

s

L
{[

(Fr − 1)− 3

2

u

h

]
∂u

∂x
− h2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x

}
.(27)

Now, N is defined as

N [ϕ (x, t; q)] = L [ϕ (x, t; q)]− 1
s

(
− 2ex

(1+ex)2

)
+c s+(1−s)α

s L{
[
(Fr − 1)− 3

2
ϕ(x,t;q)

h

]
∂ϕ(x,t;q)

∂x − h2

6
∂3ϕ(x,t;q)

∂x3
− 1

2
∂b(x)
∂x }. (28)

At H(x, t) = 1, the deformation equation pre-
sented as

L [um (x, t)− kmum−1 (x, t)] = }Rm [−→u m−1] , (29)

where

Rm [−→u m−1] = L [um−1 (x, t)]−
(

1− km
n

)
{

1

s

(
− 2ex

(1 + ex)2

)}
+ c

s+ (1− s)α
s

(30)

L{(Fr − 1)
∂um−1

∂x
− 3

2h

m−1∑
i=0

ui
∂um−1−i
∂x

−h
2

6

∂3um−1

∂x3
− 1

2

∂b (x)

∂x
}.

Now, by the help of the initial condition, we can
derive the terms of Eq. (19) as

u1 (x, t) = }(1− α+ αt)(c(
6e2x (−1 + ex)

(1 + ex)5h

−
ex
(
−1 + 11ex − 11e2x + e3x

)
h2

3(1 + ex)5 − 0.025e−
x2

4 x

+
2ex (−1 + ex) (−1 + Fr)

(1 + ex)3 )),

...

Here, the existence and uniqueness are illustrated
with CF operator for the considered Eq. (26) as

CF
0 Dα

t [u (x, t)] = Q (x, t, u) , (31)
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Now, using Eq. (31) and results derived in [46],
we obtained

u (x, t)− u (x, 0)

= CF
0 Iαt {−c(

[
(Fr − 1)− 3

2

u (x, t)

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
)}, (32)

Then we have from [41] as follows

u (x, t)− u (x, 0) =
2 (1− α)

M (α)
Q (x, t, u)

+
2α

(2− α)M (α)

∫ t

0
Q (x, ζ, u) dζ. (33)

Theorem 3. The kernel Q admits the Lip-
schitz condition and contraction if 0 ≤(
c (Fr − 1) Λ− 3

4hΛ (a1 + a2)− h2

6 Λ3 − 1
2Λξ

)
<

1 satisfies.

Proof. Consider the two functions A and A1 to
prove the theorem, then

‖Q (x, t, u)−Q (x, t, u1)‖

= ‖c((Fr − 1)
∂

∂x
[u (x, t)− u (x, t1)]

− 3

2h

[
u (x, t)

∂u (x, t)

∂x
− u (x, t1)

∂u (x, t1)

∂x

]
−h

2

6

∂3

∂x3
[u (x, t)− u (x, t1)]− 1

2

∂b (x)

∂x
‖

= ‖c((Fr − 1)
∂

∂x
[u (x, t)− u (x, t1)]

− 3

2h

[
1

2

∂

∂x

[
u2 (x, t)− u2 (x, t1)

]]
−h

2

6

∂3

∂x3
[u (x, t)− u (x, t1)]− 1

2

∂b (x)

∂x
‖

≤ ‖c (Fr − 1) Λ− 3

4h
Λ [u (x, t)− u (x, t1)]

−h
2

6
Λ3 − 1

2

∂b (x)

∂x
‖ ‖u (x, t)− u(x, t1)‖

≤ c((Fr − 1) Λ− 3

4h
Λ (a1 + a2)

−h
2

6
Λ3 − 1

2
Λξ) ‖u (x, t)− u (x, t1)‖ , (34)

where a1 = ‖u‖ and a2 = ‖u1‖ be
the bounded function and ‖b (x)‖ = ξ
is also a bounded function. Set Ψ =
c
(

(Fr − 1) Λ− 3
4hΛ (a1 + a2)− h2

6 Λ3 − 1
2Λξ

)
in

Eq. (34), then

‖Q (x, t, u)−Q (x, t, u1)‖
≤ Ψ ‖u (x, t)− u (x, t1)‖ . (35)

Eq. (35) provides the Lipschitz condition for
Q. Similarly, we can see that if 0 ≤
c
(

(Fr − 1) Λ− 3
4hΛ (a1 + a2)− h2

6 Λ3 − 1
2Λξ

)
<

1, then it implies the contraction. By the assist
of the above equations, Eq. (33) simplifies to

u (x, t) = u (x, 0) +
2 (1− α)

(2− α)M (α)
Q (x, t, u)

+
2α

(2− α)M (α)

∫ t

0
Q (x, ζ, u) dζ. (36)

Then we get the recursive form as follows

un (x, t) =
2 (1− α)

(2− α)M (α)
Q (x, t, un−1)

+
2α

(2− α)M (α)

∫ t

0
Q (x, ζ, un−1) dζ. (37)

Now, between the terms the successive difference
is defined as

φn (x, t) = un (x, t)− un−1 (x, t)

=
2 (1− α)

(2− α)M (α)
(Q (x, t, un−1)−Q (x, t, un−2))

+
2α

(2− α)M (α)

∫ t

0
(Q (x, t, un−1)

−Q (x, t, un−2))dζ.
(38)

Notice that

un (x, t) =
n∑
i=1

φi (x, t). (39)

Then we have

‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

=

∥∥∥∥ 2 (1− α)

(2− α)M (α)
(Q (x, t, un−1))

−Q (x, t, un−2) +
2α

(2− α)M (α)
(40)∫ t

0
(Q (x, t, un−1)−Q (x, t, un−2)) dζ

∥∥∥∥ .
Application of the triangular inequality, Eq. (40)
reduces to
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‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

=
2 (1− α)

(2− α)M (α)

‖(Q (x, t, un−1)−Q (x, t, un−2))‖

+
2α

(2− α)M (α)
(41)∥∥∥∥∫ t

0
(Q (x, t, un−1)−Q (x, t, un−2)) dζ

∥∥∥∥ .
The Lipschitz condition satisfied by the kernel t1,
then

‖φn (x, t)‖ = ‖un (x, t)− un−1 (x, t)‖

≤ 2 (1− α)

(2− α)M (α)
Ψ
∥∥φ(n−1) (x, t)

∥∥ (42)

+
2α

(2− α)M (α)
Ψ

∫ t

0

∥∥φ(n−1) (x, t)
∥∥ dζ.

�

By the aid of the above result, we state the fol-
lowing result:

Theorem 4. If we have specific t0, then the solu-
tion for Eq. (26) will exist and unique. Further,
we have

2 (1− α)

(2− α)M (α)
Ψ +

2α

(2− α)M (α)
Ψ t0 < 1.

Proof. Let u (x, t) is the bounded functions ad-
mitting the Lipschitz condition. Then, we get by
Eqs . (41) and (42)

‖φi (x, t)‖ ≤ ‖un (x, 0)‖ (43)[
2 (1− α)

(2− α)M (α)
Ψ +

2α

(2− α)M (α)
Ψ t

]n
.

Therefore, for the obtained solution, continuity
and existence are verified. Now, to prove the Eq.
(43) is a solution for Eq. (26), we consider

u (x, t)− u (x, 0) = un (x, t)−Kn (t) . (44)

Let us consider

‖Kn (t)‖ = ‖ 2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q(x, t, un−1))

+
2α

(2− α)M (α)

∫ t

0
(Q (x, ζ, u)−Q (x, ζ, un−1)) dζ‖

≤ 2 (1− α)

(2− α)M (α)
‖(Q (x, t, u)−Q (x, t, un−1))‖

+
2α

(2− α)M (α)

∫ t

0
‖(Q (x, ζ, u)−Q (x, ζ, un−1))‖ dζ

≤ 2(1−α)
(2−α)M(α)Ψ ‖u− un−1‖

+ 2α
(2−α)M(α)Ψ ‖u− un−1‖ t. (45)

This process gives

‖Kn (t)‖

≤
(

2 (1− α)

(2− α)M (α)
+

2α

(2− α)M (α)
t

)n+1

Ψn+1M.

Similarly, at t0 we can obtain

‖Kn (t) ‖ ≤ (46)(
2 (1− α)

(2− α)M (α)
+

2α

(2− α)M (α)
t0

)n+1

Ψn+1M.

As n → ∞, from Eq. (46), ‖Kn (t)‖ → 0 pro-

vided 2(1−α)
(2−α)M(α) + 2α

(2−α)M(α) t0 < 1. Next, for

the solution of the projected model, we prove the
uniqueness. Suppose u∗ (x, t) is another solution,
then

u (x, t)− u∗ (x, t)

=
2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q (x, t, u∗)) (47)

+
2α

(2− α)M (α)

∫ t

0
(Q (x, ζ, u)−Q (x, ζ, u∗)) dζ.

Now, employing the norm on the above equation
we get

‖u (x, t)− u∗ (x, t)‖

=

∥∥∥∥ 2 (1− α)

(2− α)M (α)
(Q (x, t, u)−Q (x, t, u∗))

+
2α

(2− α)M (α)∫ t

0
(Q (x, ζ, u)−Q (x, ζ, u∗)) dζ

∥∥∥∥
≤ 2 (1− α)

(2− α)M (α)
Ψ ‖u (x, t)− u∗ (x, t)‖

+
2α

(2− α)M (α)
Ψ t ‖u (x, t)− u∗ (x, t)‖ . (48)

On simplification

‖u (x, t)− u∗ (x, t)‖ (49)(
1− 2(1−α)

(2−α)M(α)Ψ − 2α
(2−α)M(α)Ψ t

)
≤ 0.

From the above condition, it is clear that
u (x, t) = u∗ (x, t), if



A computational approach for shallow water FKdV equation with three fractional operators 59

(
1− 2(1−α)

(2−α)M(α)Ψ − 2α
(2−α)M(α)Ψ t

)
≥ 0.

(50)

Hence, Eq. (50) proves our required result. �

3.3. Atangana-Baleanu Sense

Consider the equation defined in Eq. (5)

ABC
a Dα

t u (x, t) + c(

[
(Fr − 1)− 3

2

u (x, t)

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
) = 0, 0 < α ≤ 1, (51)

with initial conditions (19). Taking LT on Eq.
(51) and using Eq. (19), we have

L [u (x, t)] =
1

s

(
− 2ex

(1 + ex)2

)
− c

B [α](
1− α+

α

sα

)
L{
[
(Fr − 1)− 3

2

u

h

]
∂u

∂x

−h
2

6

∂3u

∂x3
− 1

2

∂b (x)

∂x
}. (52)

Now, N is defined as

N [ϕ (x, t; q)]

= L [ϕ (x, t; q)] +
1

s

(
2ex

(1 + ex)2

)
+

c

B [α]

(
1− α+

α

sα

)
L{
[
(Fr − 1)− 3

2

ϕ (x, t; q)

h

]
∂ϕ (x, t; q)

∂x

−h
2

6

∂3ϕ (x, t; q)

∂x3
− 1

2

∂b (x)

∂x
}. (53)

The deformation equation at H(x, t) = 1, is given
as follows

L [um (x, t)− kmum−1 (x, t)] = }Rm [−→u m−1] , (54)

where

Rm [−→u m−1]

= L [um−1 (x, t)] +

(
1− km

n

){
1

s

(
2ex

(1 + ex)2

)}
+

c

B [α]

(
1− α+

α

sα

)
L{(Fr − 1)

∂um−1

∂x

− 3

2h

m−1∑
i=0

ui
∂um−1−i
∂x

− h2

6

∂3um−1

∂x3
− 1

2

∂b (x)

∂x
}.

(55)

Now, by the help of the initial condition, we can
derive

u1 (x, t) = }
(

1− α+
αtα

Γ [α+ 1]

)

(c(
6e2x (−1 + ex)

(1 + ex)5h
−

ex
(
−1 + 11ex − 11e2x + e3x

)
h2

3(1 + ex)5

−0.025e−
x2

4 x+
2ex (−1 + ex) (−1 + Fr)

(1 + ex)3 )),

...

In the segment, the existence and uniqueness are
illustrated for the considered equation associated
with AB operator. We have from Eq. (51),

ABC
a Dα

t u (x, t) = G (x, t, u) , (56)

and the above equation is considered as

ABC
0 Dα

t [u (x, t)] = G (x, t, u). (57)

We have from Eq. (57) and Theorem 2

u (x, t)− u (x, 0) =
(1− α)

B (α)
G (x, t, u) (58)

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, u) (t− ζ)α−1dζ.

Theorem 5. The kernel G admits the Lip-
schitz condition and contraction if 0 ≤(
c
(

(Fr − 1) δ − 3
4hδ (a+ b)− h2

6 δ
3 − 1

2δξ
))

< 1

satisfies.

Proof. To prove the theorem, let us consider the
two functions u and u1, then

‖G (x, t, u)− G (x, t, u1)‖

= ‖ c((Fr − 1)
∂

∂x
[u (x, t)− u (x, t1)]

− 3

2h

[
u (x, t)

∂u (x, t)

∂x
− u (x, t1)

∂u (x, t1)

∂x

]
−h

2

6

∂3

∂x3
[u (x, t)− u (x, t1)]− 1

2

∂b (x)

∂x

∥∥∥∥
≤
∥∥∥∥c (Fr − 1) δ − 3

4h
δ [u (x, t)− u (x, t1)]

−h
2

6
δ3 − 1

2

∂b (x)

∂x

∥∥∥∥ ‖u (x, t)− u(x, t1)‖

≤ c
(

(Fr − 1) δ − 3

4h
δ (a+ b)− h2

6
δ3 − 1

2
δξ

)
×‖u (x, t)− u (x, t1)‖ , (59)

where a = ‖u‖ , b = ‖u1‖ (since u and u1

are the bounded functions) and ‖b (x)‖ = ξ
is also a bounded function. Putting η =
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c
(

(Fr − 1) δ − 3
4hδ (a+ b)− h2

6 δ
3 − 1

2δξ
)

in Eq.

(59), then

‖G (x, t, u)− G (x, t, u1)‖
≤ η ‖u (x, t)− u(x, t1)‖ . (60)

By the assist of forgoing relation, the Lipschitz
condition is achieved for G. Further, we can see

that if 0 ≤
(
σ2

2 δ
2 + λ

(
a2 + b2 + ab

))
< 1, which

leads to contraction. The recursive form of Eq.
(60) is presented as

un (x, t) =
(1− α)

B (α)
G (x, t, un−1) (61)

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, un−1) (t− ζ)α−1dζ,

and initial condition

u (x, 0) = u0 (x, t) . (62)

The successive difference between the terms is
presented as

φn (x, t) = un (x, t)− un−1 (x, t)

=
(1− α)

B (α)
(G1 (x, t, un−1)− G (x, t, un−2))

+
α

B (α) Γ (α)

∫ t

0
G (x, ζ, un−1) (t− ζ)α−1dζ. (63)

Notice that

un (x, t) =
n∑
i=1

φi (x, t). (64)

Plugging the norm on the Eq. (63), and by the
assist of Eq. (58), we get

‖φn (x, t)‖ ≤ (1− α)

B (α)
η
∥∥φ(n−1) (x, t)

∥∥
+

α

B (α) Γ (α)
η

∫ t

0

∥∥φ(n−1) (x, ζ)
∥∥ dζ. (65)

�

By the assist of the above result, we prove the
following theorem.

Theorem 6. The solution for Eq. (51) will exist
and unique if there exist a t0 then

(1− α)

B (α)
η +

α

B (α) Γ (α)
η < 1.

Proof. Let us consider the bounded function
u (x, t) satisfying the Lipschitz condition. Then,
we get by Eq. (63) and Eq. (65), one can get

‖φ (x, t)‖ ≤ ‖un (x, 0)‖ (66)[
(1− α)

B (α)
η +

α

B (α) Γ (α)
η

]n
.

Therefore, for the obtained solutions, continuity
and existence are verified. Now, to prove the Eq.
(66) is a solution for Eq. (51), we consider

u (x, t)− u (x, 0) = un (x, t)−Kn (x, t) . (67)

Now, we consider

‖Kn (x, t)‖ = ‖(1− α)

B (α)
(G (x, t, u)− G(x, t, un−1))

+
α

B (α) Γ (α)∫ t

0
(t− ζ)µ−1 (G (x, ζ, u)− G (x, ζ, un−1)) dζ‖

≤ (1− α)

B (α)
‖G (x, ζ, u)− G (x, ζ, un−1)‖

+
α

B (α) Γ (α)

∫ t

0
‖G (x, ζ, u)− G (x, ζ, un−1)‖ dζ

≤ (1− α)

B (α)
η1 ‖u− un−1‖

+
α

B (α) Γ (α)
η1 ‖u− un−1‖ t. (68)

Similarly, at t0 we can obtain

‖Kn (x, t) ‖ ≤
(

(1− α)

B (α)
+

α t0
B (α) Γ (α)

)n+1

ηn+1M. (69)

As n tends to ∞, then ‖Kn (x, t) ‖ approaches to
0 with respect to Eq. (69).

u (x, t)− u∗ (x, t)

=
(1− α)

B (α)
(G (x, t, u)− G (x, t, u∗)) (70)

+
α

B (α) Γ (α)

∫ t

0
(G (x, ζ, u)− G (x, ζ, u∗)) dζ.

The Eq. (70) simplifies on applying norm,

‖u (x, t)− u∗ (x, t)‖

=

∥∥∥∥(1− α)

B (α)
(G (x, t, u)− G (x, t, u∗))

+
α

B (α) Γ (α)

∫ t

0
(G (x, ζ, u)− G (x, ζ, u∗)) dζ

∥∥∥∥
≤ (1− α)

B (α)
η ‖u (x, t)− u∗ (x, t)‖

+
α

B (α) Γ (α)
η t ‖u (x, t)− u∗ (x, t)‖ . (71)

On simplification

‖u (x, t)− u∗ (x, t)‖ (72)(
1− α

B (α) Γ (α)
ηt− (1− α)

B (α)
η

)
≤ 0.

From the above condition, it is clear that
u (x, t) = u∗ (x, t), if(

1− α

B (α) Γ (α)
ηt− (1− α)

B (α)
η

)
≥ 0. (73)
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(a) (b)

(c)

Figure 2. Surfaces of q-HATT solution for (a) Caputo, (b)CF and (c) AB fractional operator
at n = 1, } = −1, β = 2, α = 1 and Fr = −1.
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Figure 3. Response of obtained solution with distinct α and time at n = 1, } = −1, β = 2
and Fr = −1.

Hence, Eq. (73) evidence required conse-
quence. �

4. Results and discussion

In this section, we consider two cases as men-
tioned above to analyze the hired model with a
hole, and presented in Figure 1. In the first case
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Figure 4. Nature of water elevation with b (x) at n = 1, } = −1, β = 2, t = 1.5 and α = 1.

(a) (b)

(c)

Figure 5. Surfaces of q-HATT solution for (a) Caputo, (b) CF and (c) AB fractional operator
at n = 1, } = −1, β = 8, α = 1 and Fr = −1.

for β = 2, the behaviour of b (x) is a lock-like re-
ciprocal of bell-shape and also sharp at the bot-
tom. For the second case (i.e., β = 8), the hole
at the bottom is more flattened and wider. In
the present investigation, we consider constant
wave speed c ≈

√
g × h =

√
9.8 with a mean

water depth of the sea h = 1. For β = 2, the
nature of archived results for the FF-KdV equa-
tion with different distinct fractional operator and
fractional-order is captured respectively in Fig-
ures 2 and 3. In Figure 3 we can observe that at
x = −2 and 2 the behaviour of water evaluation is
overlapped for different value of α and moreover
the change in time shows stimulating variation in
the behaviours. The nature of the water elevation
with sea bed topography with β = 2 and 8 are
presented in Figures 4 and 7 for different Froude

number in order to understand the importance of
b (x) and β in the obtained solution at the partic-
ular values of the time. In the same manner, for
n = 8 surfaces for an obtained solution with a dis-
tinct fractional operator is cited in Figure 5. The
response of q-HATT solution for FF-KdV equa-
tion with distinct α is dissipated in Figure 6 for
β = 8. In this case, also we can notice the huge
change in the behaviours with a small change in
time with fractional order.

The considered method is highly noticeable for
the parameters associated with the algorithm and
which help to make more convergence (they are
proposed based on the topological concept). To
illustrate the nature of the solution obtained with
homotopy parameter (}), the }-curves are plotted



A computational approach for shallow water FKdV equation with three fractional operators 63

α= 1 α= 0.75 α= 0.50 t = 0.1

-4 -2 0 2 4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

x

u
(x
,
t)

α= 1 α= 0.75 α= 0.50 t = 0.2

-4 -2 0 2 4

-0.6

-0.4

-0.2

0.0

x

u
(x
,
t)

α= 1 α= 0.75 α= 0.50 t = 0.5

-4 -2 0 2 4

-0.8

-0.6

-0.4

-0.2

0.0

x

u
(x
,
t)

α= 1 α= 0.75 α= 0.50 t = 1

-4 -2 0 2 4

-0.8

-0.6

-0.4

-0.2

0.0

0.2

x

u
(x
,
t)

Figure 6. Response of obtained solution with distinct α and time at n = 1, } = −1, β = 8
and Fr = −1.
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Figure 7. Nature of water elevation with b (x) at n = 1, } = −1, β = 8 and α = 1.
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Figure 8. }-curves for q-HATT solution with distinct α when n = 1 and t = 0.01 with
(a) β = 2 at x = 1 and (b)β = 8 at x = 5.

with different α for both cases (i.e., β = 2 and 8)
and are respectively captured in Figure 8. Line
flat segment designates the convergence provi-
dence of the solution.

5. Conclusion

In this study, the q-HATT is applied lucratively to
the analyzed effect of parameters associated with

the method (rigid bottom topography and Froude
number) by finding the solution for an arbitrary
order shallow water forced KdV equation describ-
ing the free surface critical flow over a hole. The
derived results show the effect of rigid bottom to-
pography and Froude number with change in time
and space with different fractional order. By us-
ing the considered model, two distinct kinds of
hole are analyzed and which shows that for β = 2
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exhibits a hole in inverse-bell shape and at β = 8
shows a hole has a sharp edge on two-sides and
also it has a flattened base. The condition is de-
rived for the considered model to illustrate the ex-
istence and uniqueness within the frame of fixed-
point theory using Banach space. The effect of
three fractional operators is presented and other
effects are illustrated with respect to the Caputo
operator. These fractional operators are playing
a vital role in generalizing the models associated
with power-law distribution, kernel singular, and
non-local and non-singular (respectively, Caputo,
CF and AB operators). Finally, the present study
is to demonstrate the effect of fractional order, pa-
rameters associated with models as well as meth-
ods with their corresponding consequences.
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[14] Daşbaşı, B. (2021). Stability analysis of an
incommensurate fractional-order SIR model.
Mathematical Modelling and Numerical Sim-
ulation with Applications, 1(1), 44-55.
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1. Introduction

The fundamental idea behind fractional calculus
is simply to replace the traditional integer orders
in integral and differential operators with arbi-
trary constant orders. Although it seems an el-
ementary consideration, fractional order opera-
tors play an important role in describing many
physical phenomena and have interesting impli-
cations. [1, 2].

The introduction of the notion of variable-order
(VO) integral and differential operators together
with their some main properties was firstly initial-
ized by Samko and Ross [3] in 1993. By these op-
erators, one can define the order of the fractional
integral and derivative as a function of indepen-
dent variables such as time and space variables.
In view of the characterization of the non-fixed
kernel, this operators allows us to designate the

memory and hereditary features of natural phe-
nomena in a better way. By virtue of its poten-
tial efficiency to model real world problems, this
topic has attracted many researchers in ongoing
decades. In this direction, lots of papers have
been published on different branches of science
and engineering such as viscoelasticity, medicine,
signal processing, control systems, so on [4–7].
Since its difficulty in getting an explicit solutions
for fractional differential equations of VO, many
papers have been devoted to find numerical solu-
tions for this type of problems. See [8–13] and the
references cited therein. Hovewer very few paper
on existence, uniquness and stability properties
of fractional variable order differential equations
have been published recently [14–20].

When we conduct an overview of the literature,
increasing number of authors from several areas
of the scientific community have focused on inves-
tigating the existence and uniqueness of fractional

*Corresponding Author
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constant order differential and integro-differential
equations [21–26].

In [27], Devi et al. studied the following Caputo’s
fractional boundary value problem by taking into
consideration the monotone iterative technique.{

CDqu = F (t, u, Iq(u)) +G(t, u, Iq(u)),
g (u (0) , u (T )) = 0

where 0 < q < 1. As a consequence, it has been
shown that the established monotone flows con-
verge uniformly to the coupled extremal solutions
of the considered problem.

In [28], some sort of stability results were studied
for fractional integro-differential equations involv-

ing Hilfer fractional derivative HDα,β;ψ
a+ (.) with

0 < α < 1 and 0 ≤ β ≤ 1.
In particular, Bai and Kong [29] considered the
existence of the solutions for the following initial
value problem{

CDα
a+y(t) = f(t, y(t), Iαa+y(t)), t ∈ [a, b],

y(a) = xa,

by employing the upper and lower solution ap-
proach. The operators CDα

0+ and Iα0+ stand for
the Caputo-Hadamard fractional derivative and
Hadamard fractional integral operators of order
α ∈ (0, 1], respectively.

Motivated by the preceding works, we deal with
the following boundary value problem on J :=
[0, b] such that{

CDu(t)
0+ y(t) = Φ(t, y(t), I

u(t)
0+ y(t)),

y(0) = 0, y(b) = 0,
(1)

where 1 < u(t) ≤ 2 and CDu(t)
0+ , I

u(t)
0+ are consid-

ered as in the sense of Caputo fractional derivative
and integral of variable-order u(t), respectively.

Our purpose is to investigate the existence and
uniqueness of the solution of equation (1). We
further show the stability of the solution in the
Ulam-Hyers-Rassias (UHR) sense.

2. Mathematical Preliminaries

This part covers some fundamental concepts and
lemmas that will be needed to understand the
main theorems discussed in the subsequent sec-
tions.We also introduce some of the specifications
for variable order operators.
Let C(J ,R) denote the the set of all real-valued
continuous functions from J into R. For an el-
ement χ ∈ C(J ,R), define the standart norm
‖χ‖ = Sup{|χ(t)| : t ∈ J }, and with this norm
C(J ,R) becomes a Banach space.

For −∞ < t1 < t2 < +∞, let the mappings to
be defined u(t) : [t1, t2] → (0,+∞) and v(t) :

[t1, t2] → (n − 1, n). Then, the left Riemann-
Lioville(R-L) fractional integral of VO u(t) ( [30])
is given as

I
u(t)

t+1
m(t) =

∫ t

t1

(t− s)u(t)−1

Γ(u(t))
m(s)ds, t > t1, (2)

as well as the left VO Caputo derivative ( [30]) is
defined by

CDv(t)

t+1
m(t) =

∫ t

t1

(t− s)n−v(t)−1

Γ(n− v(t))
m(n)(s)ds, t > t1.

(3)

These definitions, as expected, correspond with
the usual R-L fractional integral and Caputo frac-
tional derivative, respectively, when u(t) and v(t)
are constant.see e.g. [3, 30,31].

Lemma 1. ( [31]) Let σ1, σ2 > 0, t1 > 0,
m ∈ L(t1, t2) and CD

t+1
m ∈ L(t1, t2). Then, dif-

ferential equation
CDσ1

t+1
m(t) = 0

has the following general solution

m(t) = α0+α1(t−t1)+α2(t−t1)2+...+αn−1(t−t1)n−1

where n − 1 < σ1 ≤ n and α` (` = 0, 1, ..., n − 1)
are taken as arbitrary real numbers.

From that Lemma we deduce the next relation

Iσ1

t+1

CDσ1

t+1
m(t) = m(t) + α0 + α1(t− t1)

+ α2(t− t1)2 + ...+ αn−1(t− t1)n−1

Furthermore,
CDσ1

t+1
Iσ1

t+1
m(t) = m(t).

and

Iσ1

t+1
Iσ2

t+1
m(t) = Iσ2

t+1
Iσ1

t+1
m(t) = Iσ1+σ2

t+1
m(t).

Remark 1. ( [32]) It’s worth noting that the
semigroup property isn’t mostly satisfied by gen-
eral functions u(t), v(t), i.e.,

I
u(t)

t+1
I
v(t)

t+1
m(t) 6= I

u(t)+v(t)

t+1
m(t).

Definition 1. A function µ ∈ C(J ,R) is said to
be a Cδ class function if it belong to the set

Cδ(J ,R) =
{
µ ∈ C((0, b] ,R) : tδµ ∈ C(J ,R)

}
for 0 ≤ δ ≤ 1.

Lemma 2. [13] Assume that u : J → (1, 2) is
a continuous function and m ∈ Cδ(J ,R). Then

the fractional integral I
u(t)
0+ m(t) of variable order

exists for each point on J .

Lemma 3. ( [13]) Let u ∈ C(J , (1, 2)) and

m ∈ C(J ,R) then I
u(t)
0+ m(t) ∈ C(J ,R).

We now give the well-known Schauder fixed-point
result.
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Theorem 1. ( [31]) Assume that E is a Banach
space and Q is a nonempty convex subset of E
and moreover F : Q −→ Q is compact, and con-
tinuous map. Then, there exist fixed points of F
in Q.

Definition 2. ( [23]) The equation (1) is called
Ulam-Hyers-Rassias (UHR) stable with respect
to the function ψ ∈ C(J ,R+) if there exists
cΦ > 0, such that for any ε > 0 and for each
solution z ∈ C1(J ,R) of the inequality

|CDu(t)
0+ z(t)− Φ(t, z(t), I

u(t)
0+ z(t))| ≤ εψ(t), t ∈ J ,

there exists a solution y ∈ C(J ,R) of equation
(1) with

|z(t)− y(t)| ≤ cΦεψ(t), t ∈ J .

3. Existence Results

Let us begin with introducing the following as-
sumptions:

(H1): Let P = {J1 := [0, b1],J2 := (b1, b2],J3 :=
(b2, b3], ...Jn := (bn−1, b]} be a partition of
the interval J , and let u(t) : J → (1, 2] be
a piecewise constant function with respect
to P, i.e.,

u(t) =
n∑
`=1

u`I`(t) =



u1, if t ∈ J1,
u2, if t ∈ J2,
.
.
.

un, if t ∈ Jn,
where 1 < u` ≤ 2 are constants, and I` is the in-
dicator of the interval J` := (b`−1, b`],
` = 1, 2, ..., n, (with b0 = 0, bn = b) such that

I`(t) =

{
1, for t ∈ J`,
0, for elsewhere.

(H2): Let tδΦ : J × R× R→ R be a continuous
function (0 ≤ δ ≤ 1), there exist constants
K, L > 0, satisfying the inequality

tδ|Φ(t, w1, z1)− Φ(t, w2, z2)| ≤ K|w1 − w2|
+L|z1 − z2|,

For each ` ∈ {1, 2, ..., n}, the set E` = C(J`,R),
represents the Banach space of continuous func-
tions y : J` → R equipped with the sup norm

‖y‖E` = sup
t∈J`
|y(t)|,

where ` ∈ {1, 2, ..., n}
We now analyze BVP defined in (1). On account
of (3), the solution of (1) can be stated as∫ t

0

(t− s)1−u(t)

Γ(2− u(t))
y′′(s)ds = Φ(t, y(t), I

u(t)
0+ y(t)), (4)

for t ∈ J . If we employ (H1), the foregoing equa-
tion(4) can be written as∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′(s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y′′(s)ds = Φ(t, y(t), Iu`

0+y(t))

(5)
for t ∈ J`, ` = 1, 2, ..., n.
The solution to the BVP (1) will be introduced
in the following definition.

Definition 3. BVP (1) has a solution, if there
are functions y`, ` = 1, 2, ..., n, such that y` ∈
C([0, b`],R) satisfying equation (5) and boundary
conditions y`(0) = 0 = y`(b`).

Based on the preceding observation, BVP (1) can
be represented as in (4) and, with considering
J`, ` ∈ {1, 2, ..., n} as in (5).
Since we define y(t) identically 0 for t ∈ [0, b`−1),
then the equation (5) is expressed as

CDu`
b+`−1

y(t) = Φ(t, y(t), Iu`
b+`−1

y(t)), t ∈ J`.

We shall deal with following BVP{
CDu`

b+`−1

y(t) = Φ(t, y(t), Iu`
b+`−1

y(t)),

y(b`−1) = 0, y(b`) = 0,
(6)

for t ∈ J`. On the way to achieve our purpose,
the upcoming lemma will play an important role.

Lemma 4. A function y ∈ E` establishes a so-
lution for (6) if and only if y fulfills the integral
equation

y(t) = − t− b`−1

b` − b`−1

[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

]
t=b`

+ Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t)).

(7)

Proof. We first assume that y ∈ E` is solution
of the problem (6). If we apply the fractional op-
erator Iu`

b+`−1

to both sides of (6) and considering

Lemma 1, we obtain

y(t) = α1 + α2(t− b`−1) + 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×Φ
(
s, y(s), Iu`

b+`−1

y(s)
)
ds,

for t ∈ J`. By y(b`−1) = 0, we get α1 = 0.
Taking into account another boundary condition
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y(b`) = 0, it follows that

0 = α2(b` − b`−1)

+
1

Γ(u`)

∫ b`

b`−1

(b` − s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds

α2 = −(b` − b`−1)−1Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

∣∣∣∣
t=b`

Then, we observe that

y(t) = −(b` − b`−1)−1(t− b`−1)

×
[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

]
t=b`

+ Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t)), t ∈ J`.

On the contrary, let y ∈ E` be the solution of
integral equation (7). Taking into account the
continuity of function tδΦ and using Lemma (1),
we conclude that y is the solution of the problem
(6). �

We can now show our first existence result which
is based on Theorem (1)

Theorem 2. Assume that conditions (H1), (H2)
hold, and if

2(b`−b`−1)u`−1(b1−δ` −b1−δ`−1 )

(1−δ)Γ(u`)
(K + L

(b`−b`−1)u`

Γ(u`+1) ) < 1,

then, there exist at least one solution for the prob-
lem (6) on J .

Proof. Let us set the operator W : E` → E` such
that for t ∈ J`
Wy(t) = −(b` − b`−1)−1(t− b`−1)

×
[
Iu`
b+`−1

Φ(t, y(t), Iu`
b+`−1

y(t))

] ∣∣∣∣
t=b`

+
1

Γ(u`)

∫ t

b`−1

(t− s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds.

The operator W : E` → E` described in 3.1 is well
defined, as seen by the properties of fractional in-
tegrals and the continuity of function tδΦ.
Let

R` ≥
2η0(b`−b`−1)u`

Γ(u`)

1−
2(b`−b`−1)u`−1(b1−δ

`
−b1−δ
`−1

)

(1−δ)Γ(u`)
(K+L

(b`−b`−1)u`

Γ(u`+1)
)

,

with
η0 = sup

t∈J`
|Φ(t, 0, 0)|.

We generate the set

BR` = {y ∈ E` : ‖y‖E` ≤ R`}.

It is clear that BR` is nonempty, closed, convex
and bounded.

Now, we will see that W satisfies the claims of
the Theorem (1). We demonstrate it by using
following stages.

STEP 1: We show that W (BR`) ⊆ (BR`).
For y ∈ BR` and by (H2), we get

|Wy(t)| ≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

= 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×(K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+
2η0(b`−b`−1)u`

Γ(u`)

≤ 2(b`−b`−1)u`−1

Γ(u`)

∫ b`
b`−1

s−δ

×(K + L
(b`−b`−1)u`

Γ(u`+1) )|y(s)|ds

+
2η0(b`−b`−1)u`

Γ(u`)

≤ 2(b`−b`−1)u`−1(b1−δ` −b1−δ`−1 )

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )R`

+
2η0(b`−b`−1)u`

Γ(u`)

≤ R`,
which yields that W (BR`) ⊆ BR` .
STEP 2: W is continuous.
We assume that the sequence (yn) converges to y
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in E`. Then,
|(Wyn)(t)− (Wy)(t)|

≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× |Φ(s, yn(s), Iu`
b+`−1

yn(s))− Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

s−δ(b` − s)u`−1

× (K|yn(s)− y(s)|+ LIu`
b+`−1

|yn(s)− y(s))|)ds

≤ 2K
Γ(u`)
‖yn − y‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+ 2L
Γ(u`)
‖Iu`
b+`−1

(yn − y)‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2K
Γ(u`)
‖yn − y‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1) ‖yn − y‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤
(

2K
Γ(u`)

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1)

)
‖yn − y‖E`

×
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2(b`−b`−1)u`−1(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

×
(
K + L

(b`−b`−1)u`

Γ(u`+1)

)
‖yn − y‖E` i.e., we obtain

‖(Wyn)− (Wy)‖E` → 0 as n→∞.
As a consequence, the operator W is a continuous
on E`.

STEP 3: W is compact.
We will prove that W (BR`) is relatively compact,
which means that W is compact. In view of step
1, W (BR`) is uniformly bounded. Namely, we
have W (BR`) = {W (y) : y ∈ BR`} ⊂ BR` thus
for each y ∈ BR` we get ‖W (y)‖E` ≤ R` show-
ing that W (BR`)is bounded. Finally, It must be
demonstrated the equicontinuity of W (BR`).
For t1, t2 ∈ J`, t1 < t2 and y ∈ BR` , we write

|(Wy)(t2)− (Wy)(t1)|

=
∣∣− (b`−b`−1)−1(t2−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× Φ(s, y(s), Iu`
b+`−1

y(s))ds

+ 1
Γ(u`)

∫ t2
b`−1

(t2 − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds

+
(b`−b`−1)−1(t1−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

× Φ(s, y(s), Iu`
b+`−1

y(s))ds

− 1
Γ(u`)

∫ t1
b`−1

(t1 − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds
∣∣

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))|ds

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1
∣∣Φ(s, y(s), Iu`

b+`−1

y(s))

− Φ(s, 0, 0)
∣∣ds

+
(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, 0, 0)|ds+ 1

Γ(u`)

∫ t2
t1

(t2 − s)u`−1

× |Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, 0, 0)|ds

≤ (b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, y(s), Iu`
b+`−1

y(s))

− Φ(s, 0, 0)|ds

+
(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1|Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, y(s), Iu`

b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
× |Φ(s, 0, 0)|ds+ 1

Γ(u`)

∫ t2
t1

(t2 − s)u`−1



Some qualitative properties of nonlinear fractional integro-differential equations of variable order 73

× |Φ(s, y(s), Iu`
b+`−1

y(s))− Φ(s, 0, 0)|ds

+ 1
Γ(u`)

∫ t2
t1

(t2 − s)u`−1|Φ(s, 0, 0)|ds.

≤ (b`−b`−1)−1

Γ(u`)
((t2 − b`−1)− (t1 − b`−1))

×
∫ b`
b`−1

(b` − s)u`−1s−δ(K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+
η0(b`−b`−1)−1

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
×
∫ b`
b`−1

(b` − s)u`−1ds

+ 1
Γ(u`)

∫ t1
b`−1

s−δ
(

(t2 − s)u`−1 − (t1 − s)u`−1
)

× (K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+ η0

Γ(u`)

∫ t1
b`−1

(
(t2 − s)u`−1 − (t1 − s)u`−1

)
ds

+ 1
Γ(u`)

∫ t2
t1
s−δ(t2 − s)u`−1

× (K|y(s)|+ L|Iu`
b+`−1

y(s)|)ds

+ η0

Γ(u`)

∫ t2
t1

(t2 − s)u`−1ds

≤ (b`−b`−1)u`−2

Γ(u`)

(
(t2 − b`−1)− (t1 − b`−1)

)
× (K‖y‖E` + L‖Iu`

b+`−1

y‖E`)
∫ b`
b`−1

s−δds

+
η0(b`−b`−1)u`−1

Γ(u`+1)

(
(t2 − b`−1)− (t1 − b`−1)

)
+ 1

Γ(u`)
(K‖y‖E` + L‖Iu`

b+`−1

y‖E`)

×
∫ t1
b`−1

s−δ((t2 − t1)u`−1)ds

+ η0

Γ(u`)

(
(t2−b`−1)u`

u`
− (t2−t1)u`

u`
− (t1−b`−1)u`

u`

)
+ (t2−t1)u`−1

Γ(u`)
(K‖y‖E` + L‖Iu`

b+`−1

y‖E`)
∫ t2
t1
s−δds

+ η0

Γ(u`)
(t2−t1)u`

u`

≤ (b`−b`−1)u`−2(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

× ((t2 − b`−1)− (t1 − b`−1))

× (K‖y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖y‖E`)

+
η0(b`−b`−1)u`−1

Γ(u`+1)

(
(t2 − b`−1)− (t1 − b`−1)

)
+
(

(t11−δ−b`−1
1−δ)(t2−t1)u`−1

(1−δ)Γ(u`)

)
× (K‖y‖E` + L

(b`−b`−1)u`

Γ(u`+1) ‖y‖E`) + η0

Γ(u`+1)

×
(

(t2 − b`−1)u` − (t2 − t1)u` − (t1 − b`−1)u`
)

+ (t21−δ−t11−δ)(t2−t1)u`−1

(1−δ)Γ(u`)

× (K‖y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖y‖E`) + η0(t2−t1)u`

Γ(u`+1)

≤
(

(b`−b`−1)u`−2(b`
1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

(K + L
(b`−b`−1)u`

Γ(u`+1) )

× ‖y‖E` +
η0(b`−b`−1)u`−1

Γ(u`+1)

)
×
(

(t2 − b`−1)− (t1 − b`−1)
)

+
(
t21−δ−b`−1

1−δ

(1−δ)Γ(u`)
(K + L

(b`−b`−1)u`

Γ(u`+1) )‖y‖E`
)

× (t2 − t1)u`−1

+ η0

Γ(u`+1)

(
(t2 − b`−1)u` − (t1 − b`−1)u`

)
Hence ‖(Wy)(t2)−(Wy)(t1)‖E` → 0 as |t2−t1| →
0. It implies that W (BR`) is equicontinuous.

As a consequence of the Theorem (1), the prob-
lem (6) has at least a solution ỹ` in BR` .
Let

y` =

 0, t ∈ [0, b`−1],

ỹ`, t ∈ J`,
(8)

We know that y` ∈ C([0, b`], X) defined by (8)
satisfies the equation∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′` (s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y`
′′(s)ds = Φ(t, y`(t), I

u`
0+y`(t)),

for t ∈ J`, concluding that y` is a solution of (5)
with y`(0) = 0, y`(b`) = ỹ`(b`) = 0.

Then,

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2

.

.

.

.

yn(t) =

{
0, t ∈ [0, b`−1],
ỹ`, t ∈ J`

constitutes a solution for BVP(1).
The principle of Banach contraction is used to ar-
rive at the following result. �

Theorem 3. Assume that the assumptions (H1),
(H2) hold and if

2(b`
1−δ − b`−1

1−δ)(b` − b`−1)u`−1

(1− δ)Γ(u`)

×
(
K +

L(b` − b`−1)u`

Γ(u` + 1)

)
< 1 (9)

then the problem (6) has at most one solution in
E`.
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Proof. The Banach contraction concept will be
used to demonstrate the unique fixed point for W
specified in Theorem (3).
For y1(t), y2(t) ∈ E`, it follows that

|(Wy1)(t)− (Wy2)(t)|

≤ (b`−b`−1)−1(t−b`−1)
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, y1(s), Iu`
b+`−1

y1(s))−Φ(s, y2(s), Iu`
b+`−1

y2(s))|ds

≤ 2
Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×
(
K|y1(s)− y2(s)|+ LIu`

b+`−1

|y1(s)− y2(s))|
)
ds

≤ 2K
Γ(u`)
‖y1 − y2‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+ 2L
Γ(u`)
‖Iu`
b+`−1

(y1 − y2)‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2K
Γ(u`)
‖y1 − y2‖E`

∫ b`
b`−1

s−δ(b` − s)u`−1ds

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1) ‖y1 − y2‖E`
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤
(

2K
Γ(u`)

+
2L(b`−b`−1)u`

Γ(u`)Γ(u`+1)

)
‖y1 − y2‖E`

×
∫ b`
b`−1

s−δ(b` − s)u`−1ds

≤ 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×
(
K +

L(b`−b`−1)u`

Γ(u`+1)

)
‖y1 − y2‖E`

Therefore, by considering (9), the operator W
is a contraction. Employing Banach contraction
mapping, we result in that W has only one fixed
point, say it ỹ` ∈ E`, which also concludes that
the problem (6) has got unique solution.
We let

y` =

 0, t ∈ [0, b`−1],

ỹ`, t ∈ J`,
(10)

We know that y` ∈ C([0, b`],R) defined by (10)
satisfies the equation∫ b1

0

(t− s)1−u1

Γ(2− u1)
y′′` (s)ds+ ...

+

∫ t

b`−1

(t− s)1−u`

Γ(2− u`)
y`
′′(s)ds = Φ(t, y`(t), I

u`
0+y`(t)),

for t ∈ J`, which yields that y` is a unique solu-
tion of (5) with y`(0) = 0, y`(b`) = ỹ`(b`) = 0.

This led us to

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2

.

.

.

.

yn(t) =

{
0, t ∈ [0, b`−1],
x̃`, t ∈ J`

which is the unique solution of the boundary value
problem (1). �

4. Ulam-Hyers-Rassias stability

Theorem 4. Suppose that the conditions (H1),
(H2), together with (9) hold. Assume further that

(H3): The function ψ ∈ C(J`,R+) have increas-
ing property and there exists λψ > 0 such
that

Iu`
b`−1

+ψ(t) ≤ λψψ(t)

then, under these assumptions, the equation (1)
has UHR stability with respect to ψ

Proof. Suppose that z ∈ C(J`,R) is a solution
of the following inequality∣∣CDu`

b`−1
+z(t)− Φ(t, z(t), Iu`

b`−1
+z(t))

∣∣ ≤ εψ(t),(11)

for t ∈ J`. Let us denote y ∈ C(J`,R) to be the
unique solution of the problem{

CDu`
b`−1

+y(t) = Φ(t, y(t), Iu`
b`−1

+y(t)), t ∈ J`
y(b`−1) = 0, y(b`) = 0

By using Lemma (4), we have

y(t) = −(b` − b`−1)−1(t− b`−1)

Γ(u`)

∫ b`

b`−1

(b` − s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds

+
1

Γ(u`)

∫ t

b`−1

(t− s)u`−1

×Φ(s, y(s), Iu`
b+`−1

y(s))ds
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By integrating both sides of (11) and utilizing
(H3), we find∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds
∣∣∣

≤ ε
∫ t
b`−1

(t−s)u`−1

Γ(u`)
ψ(s)ds

≤ ελψψ(t)

In addition, we get for each t ∈ J`
|z(t)− y(t)|

=
∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, y(s), Iu`
b+`−1

y(s))ds
∣∣∣

≤
∣∣∣z(t) +

(b`−b`−1)−1(t−b`−1)
Γ(u`)

×
∫ b`
b`−1

(b` − s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds

− 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1Φ(s, z(s), Iu`
b+`−1

z(s))ds
∣∣∣

+
(b`−b`−1)−1(t−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1

×|Φ(s, z(s), Iu`
b+`−1

z)− Φ(s, y(s), Iu`
b+`−1

y)|ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1

×|Φ(s, z(s), Iu`
b+`−1

z)− Φ(s, y(s), Iu`
b+`−1

y)|ds

≤ λψεψ(t)

+
(b`−b`−1)−1(t−b`−1)

Γ(u`)

∫ b`
b`−1

(b` − s)u`−1s−δ

×(K|z(s)− y(s)|+ LIu`
b+`−1

|z(s)− y(s)|)ds

+ 1
Γ(u`)

∫ t
b`−1

(t− s)u`−1s−δ

×(K|z(s)− y(s)|+ LIu`
b+`−1

|z(s)− y(s)|)ds

≤ λψεψ(t) +
(b`−b`−1)u`−1

Γ(u`)
)

×(K‖z − y‖E` + L‖Iu`
b+`−1

(z − y)‖E`
∫ b`
b`−1

s−δds

+
(b`−b`−1)u`−1

Γ(u`)
(K‖z − y‖E` + L‖Iu`

b+`−1

(z − y)‖E`)

×
∫ t
b`−1

s−δds

≤ λψεψ(t) +
(b`−b`−1)u`−1(b`

1−δ−b`−1
1−δ)

(1−δ)Γ(u`)

×(K‖z − y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖z − y‖E`)

+
(b`−b`−1)u`−1(t1−δ−b`−1

1−δ)
(1−δ)Γ(u`)

×(K‖z − y‖E` + L
(b`−b`−1)u`

Γ(u`+1) ‖z − y‖E`)

≤ λψεψ(t) +
2(b`−b`−1)u`−1(b`

1−δ−b`−1
1−δ)

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )‖z − y‖E`
which gives

‖z − y‖E`

×
(

1− 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )
)

≤ λψεψ(t)

For each t ∈ J`, we arrive at the following relation

‖z − y‖E`

≤ λψεψ(t)

(1−
2(b`

1−δ−b`−1
1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)
(K+L

(b`−b`−1)u`

Γ(u`+1)
))

= [1− 2(b`
1−δ−b`−1

1−δ)(b`−b`−1)u`−1

(1−δ)Γ(u`)

×(K + L
(b`−b`−1)u`

Γ(u`+1) )]−1λψεψ(t)

:= cΦεψ(t)

which concludes that the equation (6) admits
UHR stability with respect to ψ for each i ∈
{1, 2, ..., n}.
Consequently, main problem (1) has UHR sta-
bility with respect to ψ. �

5. Example

Consider the fractional boundary value problem
that follows:
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CDu(t)

0+ y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|Iu(t)
0 y(t)|)

,

y(0) = 0, y(2) = 0.
(12)

for t ∈ J := [0, 2],
Let

Φ(t, y, z) =
t−

1
3 e−t

(ee
t2

1+t + 4e2t + 1)(1 + y + z)

,

(t, y, z) ∈ [0, 2]× [0,+∞)× [0,+∞) and

u(t) =


3
2 , t ∈ J1 := [0, 1],

9
5 , t ∈ J2 :=]1, 2].

(13)

Then, we have

t
1
3 |Φ(t, w1, z1)− Φ(t, w2, z2)|

=

∣∣∣∣∣ e−t

(ee
t2

1+t +4e2t+1)

(
1

1+w1+z1
− 1

1+w2+z2

)∣∣∣∣∣
≤ e−t(|w1−w2|+|z1−z2|)

(ee
t2

1+t +4e2t+1)(1+w1+z1)(1+w2+z2)

≤ e−t

(ee
t2

1+t +4e2t+1)

(|w1 − w2|+ |z1 − z2|)

≤ 1
(e+5) |w1 − w2|+ 1

(e+5) |z1 − z2|.

As a result, with δ = 1
3 and K = L = 1

e+5 , the

assumption (H2) is satisfied.
By (13), solution of the given problem (12) can
be split into two parts as follows

CD
3
2

0+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
3
2
0 y(t)|)

,

t ∈ J1,

CD
9
5

1+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
9
5
0 y(t)|)

,

t ∈ J2.

For t ∈ J1, we begin by looking at the following
boundary value problem:

CD
3
2

0+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
3
2
0 y(t)|)

,

y(0) = 0, y(1) = 0.
(14)

We are in position to check whether the condition
(9) is satisfied or not

(b1
1−δ−b01−δ)(b1−b0)u1−1

(1−δ)Γ(u1)

(
2K + 2L(b1−b0)u1

Γ(u1+1)

)
= 2

2
3

(e+5)Γ( 3
2

)

(
1 + 1

Γ( 5
2

)

)
' 0.7685 < 1

Let ψ(t) = t
1
2

Iu1

0+ψ(t) =
1

Γ(3
2)

∫ t

0
(t− s)

1
2 s

1
2ds

≤ 1

Γ(3
2)

∫ t

0
(t− s)

1
2ds

≤ 2

3Γ(3
2)
ψ(t) := λψψ(t).

It shows that the assumption (H3) holds with

ψ(t) = t
1
2 and λψ = 2

3Γ( 3
2

)
.

Regarding Theorem (3), the problem (14) has a
unique solution y1 ∈ E1, and from Theorem (4)
the solution of (14) is UHR stable.
For t ∈ J2, the problem (12) can be written in
the following way

CD
9
5

1+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|+|I
9
5
0 y(t)|)

,

y(1) = 0, y(2) = 0.
(15)

We see that
(b2

1−δ−b11−δ)(b2−b1)u2−1

(1−δ)Γ(u2)

(
2K + 2L(b2−b1)u2

Γ(u2+1)

)
= 2

2
3−1

2
3

Γ( 9
5

)
2
e+5

(
1 + 1

Γ( 14
5

)

)
' 0.3913 < 1

Thus, the condition (9) is satisfied.
Also

Iu2

1+ψ(t) =
1

Γ(9
5)

∫ t

1
(t− s)

4
5 s

1
2ds

≤ 1

Γ(9
5)

∫ t

1
(t− s)

4
5ds

≤ 5

9Γ(9
5)
ψ(t)

:= λψψ(t).

Therefore, the condition (H3) is satisfied with

ψ(t) = t
1
2 and λψ = 5

9Γ( 9
5

)
.

Taking into account of Theorem (3), the problem
(15) has a unique solution ỹ2 ∈ E2, and from The-
orem (4) the equation (15) has UHR stability.
It is known that

y2(t) =

{
0, t ∈ J1

ỹ2(t), t ∈ J2.

Hence, by considering definition (3), the bound-
ary value problem (12) has got a unique solution

y(t) =


y1(t), t ∈ J1,

y2(t) =

 0, t ∈ J1,
ỹ2(t), t ∈ J2.

Eventually, according to Theorem (4), the equa-
tion (12) is UHR stable with respect to ψ.
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6. Conclusion

We study some qualitative properties for a class
of nonlinear fractional boundary value problems
involving variable order operators. Since the ex-
istence and uniqueness as well as stability results
to variable-order equations is rarely discussed in
the literature, all of the outcomes in this paper
have a great deal of potential for contributing to
future researches.
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