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 In this work, we develop a formulation for the approximate-analytical solution of 

fractional partial differential equations (PDEs) by using conformable fractional 

derivative. Firstly, we redefine the conformable fractional Adomian 

decomposition method (CFADM) and conformable fractional modified 

homotopy perturbation method (CFMHPM). Then, we solve some initial 

boundary value problems (IBVP) by using the proposed methods, which can 

analytically solve the fractional partial differential equations (FPDE). In order to 

show the efficiencies of these methods, we have compared the numerical and 

exact solutions of the IBVP. Also, we have found out that the proposed models 

are very efficient and powerful techniques in finding approximate solutions for 

the IBVP of fractional order in the conformable sense.  
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1. Introduction 

Fractional differential equations have an important 

role in modelling and describing certain problems 

such as diffusion processes, chemistry, engineering, 

economic, material sciences and other areas of 

application. Zhang [1] used a finite difference method 

for the fractional PDEs. Ibrahim [2] interpreted 

holomorphic solutions for nonlinear singular 

fractional differential equations. Odibat and Momani 

[3, 4] applied several different types of methods to 

fractional PDEs and compared the results they 

obtained.  

On the other hand, several researchers [5-17] have 

applied the homotopy perturbation/analysis methods 

(HPM/HAM) and Adomian decomposition method 

(ADM) to solve different kinds of fractional ordinary 

differential equations (ODEs), fractional partial 

differential equations (ODEs), integral equations (IEs) 

and integro-differential equations (IDEs). Among 

them Javidi and Ahmad [18] proposed a numerical 

method which is based on the homotopy perturbation 

method and Laplace transform for fractional PDEs. In 

[19], LHPM which is a combination of the HPM and 

Laplace Transform (LT) has been employed for 

solving one-dimensional partial differential equations. 

Recently, [20-22] introduced a new fractional 

derivative called conformable derivative operator 

(CDO) and by the help of this operator, the behaviors 

of many scientific problems have been solved and 

some solution methods have been developed. Many 

researchers [23-27] have studied on CDO in 

engineering, physical and applied mathematics 

problems. The aim of this study is to construct CADM 

and CMHPM by using conformable derivative. Many 

linear and nonlinear fractional PDEs can be solved 

with these methods. We have solved two fractional 

order PDEs with these mentioned methods and 

compared the numerical and approximate-analytical 

solutions in term of figures and tables. When looking 

at the results, it is obvious that these methods are very 

effective and accurate for solving fractional partial 

differential equations. 

2. Some preliminaries 

In this section, we give some basic concepts of 

conformable fractional derivative and its properties. 

Definition 1. Given a function  : 0, .f    Then 

the conformable derivative of f  order  0,1   is 

defined by [20]:  

  
   1

0
lim

f t t f t
CD f t















 
   (1) 
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for all 0.t   

Theorem 1. [20] Let  0,1   and ,f g  be  

differentiable at a point 0.t   Then;  

(i)      CD af bg aCD f bCD g        for all 

, ,a b  

(ii)  k kCD t kt 





   for all ,k   

(iii)    0CD f t   for all constant functions 

  ,f t k   

(iv)      ,CD fg fCD g gCD f        

(v)  
   

2
/ ,

gCD f fCD g
CD f g

g

 



 




   

(vi) If  f t  is differentiable, then 

    1 .
d

CD f t t f t
dt







    

 

Definition 2. [20, 27] Let f  be an n times 

differentiable at .t  Then the conformable derivative of 

f  order   is defined as: 

  
        

1 1

0
lim

f t t f t
CD f t

   








            




 
  

for all  0, , 1 .t n n    Here     is the smallest 

integer greater than or equal to .   

  

Lemma 1. [20, 27] Let f  be an n times 

differentiable at .t  Then  

    CD f t t f t
  



      
   

for all  0, , 1 .t n n  
 

3. Conformable fractional adomian decomposition 

method 

Consider the following nonlinear fractional partial 

differential equation: 

          , , , ,L u x t R u x t N u x t v x t           

(2) 

where L CD    is a linear operator with 

conformable derivative of order  1 ,n n      

R  is the other part of the linear operator, N  is a non-

linear operator and  ,v x t  is a non-homogeneous 

term. In Eq. (2), if we apply the linear operator to 

Lemma 1, we obtain the following equation [28]:  

 
       

,
, , , .

u x t
t R u x t N u x t v x t

t



 



  
  

  


  


 

Applying the inverse of linear operator 

 
11

1

1 1

0 0

1
. ,

nt

n n

n n

L d d d



  
  







   
      to both sides 

of Eq. (2), we obtain  

        

 

1 1 1

1

, , ,

, .

L L u x t L R u x t L N u x t

L v x t

   



  

   





 


  (3) 

The conformable ADM suggests the solution  ,u x t  

be decomposed into the infinite series of components  

   
0

, , .n

n

u x t u x t




   (4) 

The nonlinear function in Eq. (2) is decomposed as 

follows:   

   0 1

0

, , , , ,n n

n

N u A u u u




   (5) 

where 
nA  is the so-called Adomian polynomials. 

These polynomials can be calculated for all forms of 

nonlinearity with respect to the algorithms developed 

by Adomian [29].  

Substituting (4) and (5) into (3), we obtain  

  1 1 1

0 0 0

,0 .n n n

n n n

u u x L v L R u L A  

  
  

  

  

   
      

   
    

 (6) 

By using Eq. (6), the iteration terms are obtained by 

the following way: 

          

  1

0

1 1

1 0 0

1 1

1

,0 ,

,

, 0.n n n

u u x L v

u L Ru L A

u L Ru L A n



 

 





 

 

 

  

 

  

   

  (7) 

Then, the approximate-analytical solution of Eq. (2) is 

obtained by  

   
0

, , .
k

k n

n

u x t u x t


  

Finally, we obtain the exact solution of Eq. (2) as  

   , lim , .k
k

u x t u x t



 

4. Conformable fractional modified homotopy 

perturbation method 

In this section, some basic solution steps and 

properties of modified homotopy perturbation method 

are given in the conformable sense (CMHPM) 

definition. We introduce a solution algorithm in an 

effective way for the nonlinear PDEs of fractional 

order. Firstly, we consider the following nonlinear 

fractional equation:  

       , , , , , , ,t x xx x xxCD u x t L u u u N u u u v x t

     

 (8) 

where 0,t   L  is a linear operator, N  is a nonlinear 

operator, v  is a known analytical function and 

, 1 ,tCD m m      is the Conformable fractional 

derivative of order ,  subject to the initial conditions  

   ,0 , 0,1, , 1.k

ku x v x k m    

According to the homotopy technique, we can 

construct the following homotopy:  
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   

 

, , ,

, , ,

m

x xxm

m

x xx tm

u
L u u u v x t

t

u
p N u u u CD u

t






 



 
   

 

  (9) 

 or evenly,  

 

   

,

, , , , ,

m

m

m

x xx x xx tm

u
v x t

t

u
p L u u u N u u u CD u

t










 
    

 

 (10) 

where  0,1 .p  Here, the homotopy parameter p  

always changes from zero to unity. In case 0,p   Eq. 

(9) becomes the linearized equation   

     

   , , , ,
m

x xxm

u
L u u u v x t

t


 


 

and Eq. (10) becomes the linearized equation  

              

 , .
m

m

u
v x t

t





 

If we take the homotopy parameter 1,p   Eq. (9) or 

Eq. (10) turns out to be the original differential 

equation of fractional order (8). As the basic 

assumption is that the solution of Eq. (10) can be 

written by using a power series in :p  

    
2 3

0 1 2 3 .u u pu p u p u      

At the end of the solution steps, we approximate the 

solution as:  

   
0

, , .n

n

u x t u x t




  

5. Numerical examples 

In this section of the study, we show the effectiveness 

and appropriateness of the CADM and CMHPM by 

applying them to two different problems.  

 

Example 1. We consider the linear time-fractional 

initial boundary value problem [30] 
2

2
, 0, , 0 1,

u u u
x u t x R

xt x






  
      

 
 (11) 

with the initial condition  

                   ,0u x x   (12) 

and the boundary conditions  

          ,0 1, 0, 0.xu x u t    (13) 

Firstly, we will solve this problem by using the 

proposed conformable Adomian decomposition 

method of fractional order. Let L CD
t



   


 


 be 

a linear operator, then if we apply the operator to Eq. 

(11) we have  

        
2

2
, .

u u
CD u x t x u

xx


 
  


  (14) 

By using the Lemma 1, we can write the Eq. (14) as  

    
  2

1

2

,
.

u x t u u
t x u

t xx


  

  
 

  (15) 

Now, we apply the inverse of operator L   which is 

 1

1

0

1
.

t

L d 






 
   to both sides of Eq. (15), we get  

   
2

1

2
, ,0 .

u u
u x t u x L x u

xx






  
    

 
  

According to the iteration terms (7) and the initial 

condition (12), we can write the iterations and the 

decomposition series terms as: 

 0

2

1 0 0

1 02

2 2
1 1 1

2 12 2

2 3
1 2 2

3 22 3

2

1 2 1

2

,0 ,

2 ,

4 ,
2!

8 ,
3!

1
2 .

2 !

n
nn

n n

u u x x

u u t
u L x u x

xx

u u t
u L x u x

xx

u u t
u L x u x

xx

u t
u L x x

x n





































 



 

  
    

 

  
    

 

  
    

 

 
  

 

  (16) 

So, by using the decomposition series in Eq. (16), the 

approximate solution of Eq. (11) obtained by 

Adomian decomposition method in conformable sense 

is 

   
0 0

, , 2 .
!

nk k
n

k n n
n n

t
u x t u x t x

n



 

     

From the last equation we obtain the approximate 

analytical solution of the problem as 

       
 2

, lim , .

t

k
k

u x t u x t xe






    

Then the exact solution of the Eq. (11) subject to the 

initial condition (12) and the boundary conditions (13) 

for special case of 1,   is obtained as  

                  2, .tu x t xe   

Secondly, we solve the Eq. (11) by using the modified 

homotopy perturbation method in conformable sense. 

If we consider the initial condition (12) and according 

to the homotopy (9), we can obtain the following set 

of linear partial differential equations:  

 

 

 

0

0

2

0 0 01

0 0 12

2

2 1 1 1

1 1 22

0, ,0 ,

, ,0 0,

, ,0 0,

u
u x x

t

u u uu
x u CD u u x

t t xx

u u u u
x u CD u u x

t t xx










 



  
     

  

   
     

  

  

 (17) 

By solving the Eq. (17) according to 0 1 2, ,u u u and 3 ,u  

the first several components of the modified 

homotopy perturbation solution for Eq. (11) are 
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derived as follows: 

 

 

 

 

  

0

1

2
2

2

3 2
2

3

3 3 3 2

, ,

, 2 ,

2
, 2 2 ,

2

4 4
, 2 4

3 2

4 4 2
,

2 3 3 3 2

u x t x

u x t xt

t
u x t x t t

t t
u x t x t t

t t t
x





  





   





  





 
   

 

 
    

 

 
        

  

and so on, in this way the rest of components of the 

homotopy can be obtained. Then the approximate 

solution of Eq. (11) is given by  

         

  

0 1 2 3

3 2 3
2

3 3 2

, , , , ,

4 6 4
1 6 6 .

3 2 2 3

4 2

3 3 2

u x t u x t u x t u x t u x t

t t t
x t t

t t
x

 

 

  

 

 

 

    

 
          

 
    

  

Then the exact solution of the Eq. (11) subject to the 

initial condition (12) and the boundary conditions (13) 

for special case of 1,   is obtained with CMHPM as 

                   2, .tu x t xe   

The following Figure 1 shows CMHPM, CADM and 

exact solutions for various values of .  According to 

the Figure 1, it can be say that the numerical results 

found are very close to the exact solution results.   
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Figure 1. Comparison the numerical solutions and the exact 

solutions at 0.6x   for various values of .  

Example 2. Now let us consider the following time-

fractional diffusion equation [31] 

2

2
, 0, , 0 1,

u u
t x R

t x






 
    

 
  (18) 

with the initial condition  

            ,0 sin .u x x   (19) 

subject to the boundary conditions  

    ,0 cos , 0, 0.xu x x u t    (20) 

Solve the problem by using CADM. Let us apply the 

linear operator to Eq. (18), then we obtain  

 
 2

2

,
, , 0, , 0 1,

u x t
CD u x t t x R

x
 


    


 

 (21) 

Also, we can write the Eq. (21) as  

   2

1

2

, ,
, 0, , 0 1,

u x t u x t
t t x R

t x

 
 

    
 

 

 (22) 

Applying the inverse of operator L   to both sides of 

Eq. (22), we have  

   
 2

1

2

,
, ,0 .

u x t
u x t u x L

x






 
     

  

Using Eq. (7) and the initial condition (19), we can 

obtain the iterations in conformable sense as:  

 

 

0

2

1 0

1 2

2 2
1 1

2 2 2

2 3
1 2

3 2 3

2

1 1

2

,0 sin ,

sin ,

sin ,
2!

sin ,
3!

sin 1 .
!

n
nn

n n

u u x x

u t
u L x

x

u t
u L x

x

u t
u L x

x

u t
u L x

x n





































 



 

 
   

 

 
  

 

 
   

 

 
   

 

  (23) 

Then, by using the obtained values in Eq. (23) the 

approximate solution of Eq. (18) is obtained as  

     
0 0

, , sin 1 .
!

nk k
n

k n n
n n

t
u x t u x t x

n



 

      

Using the last equation we obtain the approximate 

analytical solution of the proposed problem  

        , lim , sin .
t

k
k

u x t u x t xe







    

The exact solution of the Eq. (18) with the initial 

condition (19) for special case of 1,   is found as  

               , sin tu x t xe   

which is the same solution with [31]. Now, let us 

consider the solution of problem (18) with CMHPM. 

In order to obtain the solution, we use the homotopy 

and following set of linear partial differential 

equations:  
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 

 

 

0

0

2

0 01

0 12

2

2 1 1

1 22

0, ,0 sin ,

, ,0 0,

, ,0 0,

u
u x x

t

u uu
CD u u x

t t x

u u u
CD u u x

t t x










 



 
   

  

  
   

  

  (24) 

By solving Eq. (24) according to 
0 1,u u and 

2 ,u  the 

first three components of the modified homotopy 

perturbation solution for Eq. (18) are obtained as 

follows: 

 

 

 

 

  

0

1

2 2

2

3 2
2

3

3 3 3 2

, sin ,

, sin ,

, sin ,
2 2

2
, sin ,

6 2

sin
2 3 3 3 2

u x t x

u x t t x

t t
u x t x t

t t
u x t x t t

t t t
x





  





   





  



 

 
    

 

 
     

 

 
        

  

and so on, in this manner the rest of components of the 

homotopy can be obtained. The approximate solution 

of problem (18) is given by  

       

  

0 1 2

2 3 2

3 3 3 2

, , , ,

3 3
sin 1 3

2 6 2

sin
2 3 3 3 2

u x t u x t u x t u x t

t t t
x t

t t t
x



  



   



  

   

 
     

 

 
        

  

Then, for the special value of 1,   the exact solution 

of the Eq. (18) subject to the initial condition (19) is 

obtained with CMHPM as  , sin tu x t xe  which is 

the same solution with obtained CADM one. 

 

Table 1. Absolute errors    , ,ku x t u x t  obtained with 

CADM for Example 2. 

x    t  

 
 0.1 0.3 0.5 0.7 

0.1 

0.20    

0.45    

0.80    

6.08E-04 

5.24E-03 

6.49E-01 

1.80E-03 

1.80E-02 

1.80E-02 

3.45E-04 

5.06E-02 

1.28E-01 

4.80E-02 

3.56E-02 

5.69E-01 

0.4 

0.20    

0.45    

0.80   

6.82E-04 

5.42E-04 

3.96E-02 

9.03E-04 

6.07E-03 

5.80E-03 

3.33E-05 

8.43E-03 

1.45E-02 

3.15E-04 

8.62E-04 

5.69E-03 

0.7 

0.20    

0.45    

0.80   

5.39E-03 

4.44E-02 

8.43E-02 

6.03E-04 

5.24E-02 

3.94E-01 

1.75E-05 

3.08E-02 

7.80E-02 

9.03E-05 

5.56E-03 

3.78E-02 

1.0 

0.20    

0.45    

0.80   

4.32E-05 

3.74E-04 

6.20E-02 

4.80E-03 

6.92E-02 

3.42E-01 

3.35E-04 

5.42E-02 

5.06E-02 

3.07E-03 

9.10E-02 

6.05E-02 

 

According to Table 1, we can say about the solution of 

Eq. (18) that the absolute error values are very small 

for various values , x  and .t  

In addition, in the following Figure 2 and Figure 3, the 

graphs of solution functions of Eq. (18) with respect to 

the CADM and the exact solution for 0.70   are 

shown, respectively.  

 

Figure 2. CADM solution with 0.70   for Example 2. 

 

Figure 3. Exact solution with 0.70   for Example 2. 

In the following Figure 4 and Figure5, the sketches of 

solution functions of Eq. (18) with respect to the 

CMHPM and the exact solution for 0.30   are 

shown, respectively.  

According to the Figure 2, Figure 3, Figure 4 and 

Figure 5, we can say that the numerical results 

obtained from CADM and CMHPM are very close to 

the exact solution values. 
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Figure 4. CMHPM solution with 0.30   for Example 2. 

 
Figure 5. Exact solution with 0.30   for Example 2. 

6. Conclusion 

We have found out approximate solutions with two 

numerical methods for time-fractional linear partial 

differential equations. These methods are based on 

conformable derivative (CD) which is extremely 

popular in the last years. In this study, firstly, by using 

the CD, we have redefined ADM and MHPM. Then 

we have demonstrated the efficiencies and accuracies 

of the proposed methods by applying them to two 

different problems. It is found that the approximate 

solutions generated by our methods are in complete 

agreement with the corresponding exact solutions. 

Besides, in view of their usability, our methods are 

applicable to many initial-boundary value problems 

and linear-nonlinear partial differential equations of 

fractional order. 

 
 

References 

[1] Zhang, Y. (2009). A finite difference method for 

fractional partial differential equation. Applied 

Mathematics and Computation, 215(2), 524-529. 

[2] Ibrahim, R.W. (2011). On holomorphic solutions 

for nonlinear singular fractional differential 

equations. Computers & Mathematics with 

Applications, 62(3), 1084-1090. 

[3] Odibat, Z. and Momani, S. (2008). A generalized 

differential transform method for linear partial 

differential equations of fractional order. Applied 

Mathematics Letters, 21(2), 194-199. 

[4] Odibat, Z. and Momani, S. (2008). Numerical 

methods for nonlinear partial differential equations 

of fractional order. Applied Mathematical 

Modelling, 32(1), 28-39. 

[5] Bildik, N. and Bayramoglu, H. (2005). The solution 

of two dimensional nonlinear differential equation 

by the Adomian decomposition method. Applied 

mathematics and computation, 163(2), 519-524. 

[6] Bildik, N., Konuralp, A., Bek, F.O., & 

Küçükarslan, S. (2006). Solution of different type 

of the partial differential equation by differential 

transform method and Adomian’s decomposition 

method. Applied Mathematics and Computation, 

172(1), 551-567. 

[7] Daftardar-Gejji, V. and Jafari, H. (2005). Adomian 

decomposition: A tool for solving a system of 

fractional differential equations. Journal of 

Mathematical Analysis and Applications, 301(2), 

508-518. 

[8] Elbeleze, A.A., Kılıçman, A., & Taib, B.M. (2013). 

Homotopy perturbation method for fractional 

Black-Scholes European option pricing equations 

using sumudu transform. Mathematical Problems 

in Engineering, 2013. 

[9] El-Sayed, A. and Gaber, M. (2006). The adomian 

decomposition method for solving partial 

differential equations of fractal order in finite 

domains. Physics Letters A, 359(3), 175-182. 

[10] El-Wakil, S.A., Abdou, M.A., & Elhanbaly, A. 

(2006). Adomian decomposition method for 

solving the diffusion–convection–reaction 

equations. Applied Mathematics and Computation, 

177(2), 729-736. 

[11] Gülkaç, V. (2010). The homotopy perturbation 

method for the Black–Scholes equation. Journal of 

Statistical Computation and Simulation, 80(12), 

1349-1354. 

[12] Momani, S. and Odibat, Z. (2007). Numerical 

approach to differential equations of fractional 

order. Journal of Computational and Applied 

Mathematics, 207(1), 96-110. 

[13] Momani, S. and Odibat, Z. (2007). Homotopy 

perturbation method for nonlinear partial 

differential equations of fractional order. Physics 

Letters A, 365(5), 345-350. 

[14] Evirgen, F. and Özdemir, N. (2012). A fractional 

order dynamical trajectory approach for 

optimization problem with HPM. In: D. Baleanu, 

Machado, J.A.T., Luo, A.C.J., eds. Fractional 

Dynamics and Control, Springer, 145-155. 

 



Novel solution methods for initial boundary value problems of fractional order …                 7 

 
[15] Yavuz, M., Ozdemir, N., & Okur, Y.Y. (2016). 

Generalized differential transform method for 

fractional partial differential equation from finance, 

Proceedings, International Conference on 

Fractional Differentiation and its Applications, 

Novi Sad, Serbia, 778-785. 

[16] Kurulay, M., Secer, A., & Akinlar, M.A. (2013). A 

new approximate analytical solution of Kuramoto-

Sivashinsky equation using homotopy analysis 

method. Applied Mathematics & Information 

Sciences, 7(1), 267-271. 

[17] Turut, V. and Güzel, N. (2013). Multivariate pade 

approximation for solving nonlinear partial 

differential equations of fractional order. Abstract 

and Applied Analysis, 2013. 

[18] Javidi, M. and Ahmad, B. (2013). Numerical 

solution of fractional partial differential equations 

by numerical Laplace inversion technique. 

Advances in Difference Equations, 2013(1), 375. 

[19] Madani, M., Fathizadeh, M., Khan, Y., & Yildirim, 

A. (2011). On the coupling of the homotopy 

perturbation method and Laplace transformation. 

Mathematical and Computer Modelling, 53(9), 

1937-1945. 

[20] Khalil, R., Al Horani, M., Yousef, A., & Sababheh, 

M. (2014). A new definition of fractional 

derivative. Journal of Computational and Applied 

Mathematics, 264, 65-70. 

[21] Anderson, D. and Ulness, D. (2015). Newly defined 

conformable derivatives. Adv. Dyn. Syst. Appl, 

10(2), 109-137. 

[22] Atangana, A., Baleanu, D., & Alsaedi, A. (2015). 

New properties of conformable derivative. Open 

Mathematics, 13(1), 889-898. 

[23] Çenesiz, Y., Baleanu, D., Kurt, A., & Tasbozan, O. 

(2017). New exact solutions of Burgers’ type 

equations with conformable derivative. Waves in 

Random and Complex Media, 27(1), 103-116. 

[24] Avcı, D., Eroglu, B.I., & Ozdemir, N. (2016). 

Conformable heat problem in a cylinder, 

Proceedings, International Conference on 

Fractional Differentiation and its Applications, 572-

581. 

[25] Avcı, D., Eroğlu, B.B.İ., & Özdemir, N. (2017). 

Conformable fractional wave-like equation on a 

radial symmetric plate. In: A. Babiarz, Czornik, A., 

Klamka, J., Niezabitowski, M., eds. Theory and 

Applications of Non-Integer Order Systems, 

Springer, 137-146. 

[26] Avci, D., Eroglu, B.B.I., & Ozdemir, N. (2017). 

Conformable heat equation on a radial symmetric 

plate. Thermal Science, 21(2), 819-826. 

[27] Abdeljawad, T. (2015). On conformable fractional 

calculus. Journal of computational and Applied 

Mathematics, 279, 57-66. 

[28] Acan, O. and Baleanu, D. (2017). A new numerical 

technique for solving fractional partial differential 

equations. arXiv preprint arXiv:1704.02575,  

[29] Adomian, G. (1988). A review of the 

decomposition method in applied mathematics. 

Journal of Mathematical Analysis and 

Applications, 135(2), 501-544. 

[30] Demir, A., Erman, S., Özgür, B., & Korkmaz, E. 

(2013). Analysis of fractional partial differential 

equations by Taylor series expansion. Boundary 

Value Problems, 2013(1), 68. 

[31] Momani, S. and Odibat, Z. (2007). Comparison 

between the homotopy perturbation method and the 

variational iteration method for linear fractional 

partial differential equations. Computers & 

Mathematics with Applications, 54(7), 910-919. 
 

 

Mehmet Yavuz is a lecturer at the Department of 

Mathematics-Computer Sciences, Faculty of Science, 

Necmettin Erbakan University, Turkey. He received his 

B.Sc. (2009) degree from Department of Mathematics, 

Bulent Ecevit University, Turkey. He received his M.Sc. 

(2012) and Ph.D. (2016) degrees from Department of 

Mathematics, Balikesir University, Turkey. His research 

areas include fractional calculus, differential equations 

and financial mathematics. 

 

 

 

 

 
An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr) 

 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the 

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in 

IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit 

http://creativecommons.org/licenses/by/4.0/.  

 
 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://ijocta.balikesir.edu.tr/


 

*Corresponding author 

8 

An International Journal of Optimization and Control: Theories & Applications 

ISSN: 2146-0957   eISSN: 2146-5703 

Vol.8, No.1, pp.8-16 (2018) 

https://doi.org/10.11121/ijocta.01.2018.00461  
 

 

RESEARCH ARTICLE 

 

 

A hybrid approach for the regularized long wave-Burgers equation 

Asuman Zeytinoglu a,  Murat Sari b *,  Bilender P. Allahverdiev a 

 
a Department of Mathematics, Suleyman Demirel University, Turkey 
b Department of Mathematics, Yildiz Technical University, Turkey 

asumanzeytinoglu@sdu.edu.tr, sarim@yildiz.edu.tr, bilenderpasaoglu@sdu.edu.tr 

 

ARTICLE INFO  ABSTRACT 

Article history: 
Received: 13 March 2017 

Accepted: 11 August 2017 

Available Online: 10 October 2017 

 In this paper, a new hybrid approach based on sixth-order finite difference and 

seventh-order weighted essentially non-oscillatory finite difference scheme is 

proposed to capture numerical simulation of the regularized long wave-Burgers 

equation which represents a balance relation among dissipation, dispersion and 

nonlinearity. The corresponding approach is implemented to the spatial 

derivatives and then MacCormack method is used for the resulting system. Some 

test problems discussed by different researchers are considered to apply the 

suggested method. The produced results are compared with some earlier studies, 

and to validate the accuracy and efficiency of the method, some error norms are 

computed. The obtained solutions are in good agreement with the literature. 

Furthermore, the accuracy of the method is higher than some previous works 

when some error norms are taken into consideration.   

 

Keywords: 
Regularized long wave-Burgers equation 

High order finite difference scheme 

Weighted essentially non-oscillatory 

scheme 

Hybrid approximation 

MacCormack method 

 

AMS Classification 2010:  

65M06, 35Q35, 35G31 

 

 
1. Introduction 

In describing many models in a great deal of fields of 

science, nonlinear partial differential equations 

(PDEs) play a significant role. Hence, reaching exact 

or well approximate solutions of nonlinear PDEs is 

still important. These kinds of partial differential 

equations may not have an exact solution by reason of 

their nonlinearity.  So, it is of interest to introduce a 

new method or develop an existing technique to obtain 

accurate numerical results. One of the popular 

nonlinear partial differential equations studied for its 

numerical solutions is the regularized long wave-

Burgers (RLW-Burgers) equation also known as 

Benjamin-Bona-Mahony-Burgers (BBMB) equation. 

This equation describes the propagation of surface 

water waves in a channel [1]. The RLW-Burgers 

equation is considered as follows with physical 

boundary conditions 0u   as  x : 

 

 

0, , 0

,0 ( ) 0 , .

t xxt xx x x
u u u u g u x t

u x x x

 



         

   
 (1) 

The subscripts t  and x  are time and space 

derivatives, and denote the horizontal coordinate along 

the channel and the elapsed time, respectively. ( )x  is 

a known function as initial condition,   is a positive 

constant,    and  g u  is a  2C  smooth nonlinear 

function. Eq. (1) represents a balance relation among 

dissipation, dispersion and nonlinearity [2]. Due to the 

fact that this equation is important for understanding 

the nonlinear wave phenomena, many researchers [2-

9] have studied on it for many years.  

Since the numerical methods are good means of 

understanding these types of equations, the effort of 

finding a more accurate numerical approach is still in 

progress. Investigating an effective and accurate 

numerical method encourages us to produce a new 

hybrid approach based on some high order finite 

difference (FD) schemes for analyzing the behavior of 

the RLW-Burgers equation. One of these FD schemes 

is a seventh-order weighted essentially non-oscillatory 

(WENO7) [10, 11, 16] method. It can be clear from 

the literature that the WENO method based on ENO 

schemes is one of the popular numerical methods for 

PDEs in conservative form   0t x
u f u  . High 

order accuracy can be achieved in the smooth regions 

and discontinuities can be computed without spurious 

oscillations [12]. Some studies in recent years have 

introduced several versions of the WENO scheme 

derived for improving ENO properties [10-16]. 

However, some researchers have combined the 

WENO schemes with a high order method to 

overcome some drawbacks [17-19]. Inspired by these 

drawbacks in the corresponding studies, we prefer to 

http://www.ams.org/msc/msc2010.html
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combine the corresponding WENO scheme with the 

sixth-order finite difference (FD6) scheme [20, 21] 

because the FD6 gives convergent approximations as 

well as being effective, reliable and easy to 

implement. To validate the accuracy and efficiency of 

the proposed method, some error norms are presented 

and the obtained results are compared with the 

previous works in the literature. 

The arrangement of this paper is as follows: The 

suggested scheme in both space and time are 

introduced in Section 2. Five test problems including 

different  ,  parameters and  g u , ( )x  functions 

are solved to show the efficiency and accuracy of the 

proposed method, and the computed results are 

compared with others selected from the available 

literature in Section 3. Finally, the last section 

includes the summary of findings in the paper. 

2. Construction of the method 

One can rewrite problem (1) with the following form: 

      ,tu v                           (2) 

 xx xxx
v v f u u    ,      .

x x
f u u g u    (3)       

As  ,   and  g u change,  Eq. (3) changes for each 

test problem.  It can also be seen from the above 

system, there is no time derivative term in Eq. (3). The 

proposed approach is involved the FD6 and WENO7 

finite difference formulations to the spatial 

derivatives, and the MacCormack discretization is 

taken into account for the time derivative. Details of 

the implementation of the present method are 

introduced in the following subsections. 

2.1. Space discretization with the hybrid scheme 

First of all, we divide the domain of problem         

 ,a b  into N  subintervals such as 

1 2 1... N Na x x x x b       with the spatial step 

size 
1i ih x x x     for 1,2...,i N . Also,  1n  -

th time level is defined by 1n nt t t    where nt  is 

the initial time for 0n  . Thus, the numerical solution 

of u  is represented by n

iu  at grid point   , .n

ix t  We 

use the FD6 scheme derived for the second order 

derivatives to discretize the terms 
xxv  and 

xxu  in Eq. 

(3). The FD6 scheme can briefly be introduced as 

follows: 

v  and v  in space, can be approximated by the 

following FD6 formulae used 7-point stencil 

2

1 1
,   

 

   
R R

i j L i j i j L i j

j L j L

v a v v a v
h h

    (4) 

for 1 1.  i N  

In Equations (4),  1N   denotes the number of grid 

points, 
ka  and 

ka  0,...,k R L   are unknown 

constants, R and L denote the number of grid points in 

the right and left hand side for the taken stencil, 

respectively. At internal points, R and L is equal while 

they are different for the boundary nodes. The 

coefficients  
ka  and 

ka  can be determined with 

Taylor series expansions about the related point and 

they are given in Table 1. 

 

Table 1. The coefficients 
ka  and 

ka  

i  Coefficients* 
k  

0k   1k   2k   3k   4k   5k   6k   

1 
ka  -147 360 -450 400 -225 72 -10 

ka  812 -3132 5265 -5080 2970 -972 137 

2 
ka  -10 -77 150 -100 50 -15 2 

ka  137 -147 -255 470 -285 93 -13 

3 
ka  2 -24 -35 80 -30 8 -1 

ka  -13 228 -420 200 15 -12 2 

Internal 

Nodes 

ka  -1 9 -45 0 45 -9 1 

ka  2 -27 270 -490 270 -27 2 

1N  
ka  1 -8 30 -80 35 24 -2 

ka  2 -12 15 200 -420 228 -13 

N  
ka  -2 15 -50 100 -150 77 10 

ka  -13 93 -285 470 -255 -147 137 

1N  
ka  10 -72 225 -400 450 -360 147 

ka  137 -972 2970 -5080 5265 -3132 812 

*Each given values of 
ka  and 

ka  in the table must be divided by 60 and 180, respectively 
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For the term  
x

f u  in Eq. (3), the WENO7 scheme is 

implemented together with the FD6 scheme. The 

WENO schemes are based on ENO schemes and it 

was first suggested by Liu et al [22]. They provide 

high order accurate solutions in smooth regions and 

have a good convergence since they use a convex 

combination of all candidate stencils against the ENO 

schemes. In the literature, many researchers have 

focused on the WENO schemes in order to improve 

them. Taking inspiration from those studies, the 

present work discusses a combination of the WENO7 

finite difference scheme with the FD6 scheme in 

computing highly accurate results. The mentioned 

WENO scheme is applied to internal nodes and the 

FD6 formulae given in above are implemented for 

near the boundaries. We can then introduce the 

WENO7 procedure with its main points herein below 

[10, 11, 16]: 

The WENO schemes for discretization of the spatial 

derivatives in the following hyperbolic conservation 

law 

  0t x
u f u                              (5) 

are successful in terms of the numerical 

approximation. A reconstruction procedure based on 

the local smoothness of numerical solution is used as 

the main point of the WENO finite difference scheme 

in order to produce high order accurate solutions. The 

term  
x

f u  is approximated by 

  1 1

2 2

1 ˆ ˆ ,
j

x x x j j
f u f f

x  

 
  
  

              (6) 

where 
1

2

ˆ
j

f


 represents the numerical flux. The 

WENO7 scheme uses 7 candidate stencils written as a 

set  3 3,...,j jS x x   for these numerical fluxes. It is 

divided into four subset as  3 ,...,m

j m j mS x x   , 

0,1,2,3m  . The numerical flux 
1

2

ˆ
j

f


 is written using 

stencil sets mS  as 

   

1 1

2 2

3 3

1

0 02

ˆ ˆ ˆ,
j j

m m

m mi j m i
j

m i

f f f b f
 

 


 

          (7) 

for 0,1,2,3m  . In Eq. (7), 
m  are called non-linear 

weights defined by  

3

0


 


m

m

kk

,  
 

71


  
          

q

m m

m

d   

with 7 0 3     and the linear weights 

0 1 35,d 1 12 35 ,d 2 18 35,d 3 4 35d . The 

coefficients 
mib  can be calculated with the approach 

inspired by Xie [23] using a fourth order polynomial  

     

 

2 3

1 2 1 2 1 2

4

1 2

( )   



      

 

j j j

j

h x A B x x C x x D x x

E x x

with the four candidate stencils above and are 

presented in Table 2. The coefficients required for 

1

2

ˆ
j

f can be found using the same stencils in a similar 

way.  In calculations, 2q  , and   is used to avoid 

the division by zero and it is selected to be quite small,  
1010  . The smoothness indicators, 

m , are given 

by 

                 

         

0 3 3 2 1 2 2 1

1 1

547 3882 4642 1854 7043 17246 7042

11003 9402 2107 ,

       

 

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u

                 

         

1 2 2 1 1 1 1 1

1 1 1

267 1642 1602 494 2843 5966 1922

3443 2522 547 ,

       

  

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u
 

                 

         

2 1 1 1 2 1 2

1 1 2 2 2

547 2522 1922 494 3443 5966 1602

2843 1642 267 ,

      

    

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u
 

                 

         

3 1 2 3 1 1 2 3

2 2 3 3 3

2107 9402 7042 1854 11003 17246 4642

7043 3882 547 .

       

    

         
   

     
   

j j j j j j j j j

j j j j j

f u f u f u f u f u f u f u f u f u

f u f u f u f u f u

 

Table 2. The coefficients 
mib  for the WENO7 scheme 

mib  0i   1i   2i   3i   

0m   25 12  23 12  13 12  1 4  

1m   1 4  13 12  5 12  1 12  

2m   1 12  7 12  7 12  1 12  

3m   1 12  5 12  13 12  1 4  
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For more details of the WENO finite difference 

scheme, interested readers are referred to as the 

literature such as [10-13, 16]. 

 

2.2. Time discretization with MacCormack 

method 

After the implementation of the aforementioned main 

schemes to Eq. (3), the values of variable v  are found 

and then the MacCormack method is used to find new 

values of u  at the next time level from Eq. (2). This 

method is widely used for solving nonlinear PDEs 

representing fluid flows and provides accurate results 

[24]. Let us consider the following general form of 

governing equation 

i

i

du
Pu

dt
 . 

In this form, P represents a spatial differential 

operator, and each values on the right hand side of the 

above equation are already known through the method 

described in the previous subsection. In order to solve 

this semi-discrete equation, the MacCormack 

approach is then implemented via the following 

process: 

 

Pre. Step: 1 ,  n n n

i i iu u tPu  

Cor. Step: 
1 1 2 1,

2

  
 n n n

i i i

t
u u Pu

1
1 2

2


 


n n

n i i
i

u u
u . 

 

 

3. Numerical Illustrations 

In this section, we implement the previous procedure 

to five test problems for producing numerical 

solutions of the RLW-Burgers equation. The accuracy 

of the numerical solutions is observed by using 

absolute error and the following error norms 

2

2

1

N
analytical numerical

j j

j

L h u u


  ,    

max analytical numerical

j jL u u   . 

which measure the mean and maximum differences 

between the numerical and analytical solutions.  To 

show the behaviors of corresponding problems, some 

figures are also plotted. 

 

Example 1. As the first test problem, Eq. (1) with 

1  , 1   and   2 2g u u  is considered by the 

following initial condition   

 2( ,0) sech 4u x x . 

Table 3 gives the obtained results using 0.25h  and 

0.01t   in the interval 12 12x   . It can be 

clearly seen that the produced results are compatible 

with the results of Zarebnia and Parvaz [8]. Also, the 

solutions at various times are qualitatively presented 

in Figure 1. As is the case in the study of Zarebnia and 

Parvaz [8] and as naturally expected, the amplitude of 

wave slightly decreases as the time goes on (see 

Figure 1). 

Table 3. Numerical results with the parameters 0.25h   and 0.01t   for Example 1 

x  

Present method 
t  

0.2 0.5 0.7 1 1.5 2 

-10 0.024700 0.022144 0.020606 0.018518 0.015529 0.013038 

-5 0.256292 0.224794 0.206475 0.182379 0.149529 0.123687 

0 0.978142 0.933383 0.897619 0.838349 0.733532 0.631524 

5 0.319370 0.380986 0.423415 0.487534 0.589834 0.676862 

10 0.032031 0.041918 0.049799 0.063792 0.093622 0.132550 

 [8] 

-10 0.022951 0.019822 0.017950 0.015435 0.011934 0.009165 

-5 0.256278 0.224742 0.206391 0.182231 0.149239 0.123215 

0 0.978102 0.933352 0.897596 0.83834 0.733537 0.631526 

5 0.319376 0.380993 0.42342 0.487532 0.589817 0.676809 

10 0.030420 0.039796 0.047263 0.060502 0.088659 0.12528 

 

 

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
(x

,t
)

 

 

t=0.2

t=0.5

t=0.7

t=1

t=1.5

t=2

  
Figure 1. The behavior of the wave in Example 1.  

 

Example 2. Consider Eq. (1) with the initial condition 

29 6 3
( ,0) tanh tanh

5 5 2 5 2

x x
u x

   
      

   
 

using 1  , 1   and   2 2g u u . The analytical 

solution is given by 

29 6 5 3 5
( , ) tanh tanh

5 5 10 5 10

x t x t
u x t

    
      

   
. 

For this problem the parameters are chosen as 0.2h   

and 0.01t   in the interval 32 32x   . In Table 4, 
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the produced
2L , L

 errors are given. The obtained 

error values are quite good even for the larger time 

10t  . Furthermore, absolute errors at various points 

in the corresponding domain are presented and 

compared with the study of Alquran and Al-Khaled 

[4] for some time values in Table 5. It can be said that 

our results are at least three decimal digits better than 

the results of Alquran and Al-Khaled [4]. The 

qualitative behavior of solutions at 10t   and at 

various times are exhibited in Figure 2(a)-2(b), 

respectively. 

 
 

Table 4. 
2L  and L

 error norms for Example 2 

t  
2L  L

 

0.2 1.826363E-07 1.678531E-07 

0.4 3.371454E-07 3.068812E-07 

1 6.734666E-07 6.326276E-07 

3 1.096361E-06 9.812815E-07 

10 1.754436E-05 1.546722E-05 

 

 

-40 -30 -20 -10 0 10 20 30 40
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-2
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-0.5

0

0.5

x

u
(x

,t
)

 

 

t=10

 
(a) 
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0.5

t

x
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(b) 

Figure 2. Numerical solutions for Example 2 using 0.2h    

and 0.01t   for (a) 10t  and (b) various times. 

 

 

Table 5. Absolute errors at various times for Example 2 

 

 

Present 

Method 
[4] 

Present 

Method 
[4] 

Present 

Method 

Present 

Method 

Present 

Method 

x \ t  0.2 0.2 0.4 0.4 1 3 10 

0.2 1.28E-07 6.76E-04 2.22E-07 5.02E-04 3.39E-07 7.71E-08 1.92E-07 

0.4 6.42E-08 5.05E-04 1.00E-07 4.52E-04 9.16E-08 2.84E-07 2.11E-07 

0.6 1.63E-09 4.82E-04 1.16E-08 6.02E-04 1.02E-07 3.27E-07 1.97E-07 

0.8 4.01E-08 4.14E-04 8.19E-08 6.02E-04 1.97E-07 2.47E-07 1.65E-07 

1 5.50E-08 3.21E-04 1.03E-07 2.02E-04 1.98E-07 1.12E-07 1.26E-07 

1.2 4.85E-08 6.05E-05 8.56E-08 7.51E-05 1.39E-07 1.90E-08 8.94E-08 

1.4 3.07E-08 5.85E-05 5.05E-08 5.98E-05 6.02E-08 1.14E-07 5.81E-08 

1.8 4.73E-09 1.36E-05 1.39E-08 2.37E-05 5.65E-08 1.76E-07 1.66E-08 

2.4 1.96E-08 1.25E-05 3.75E-08 1.01E-05 7.90E-08 1.08E-07 5.72E-09 

3 1.20E-08 6.23E-06 2.19E-08 7.78E-06 4.08E-08 3.76E-08 7.24E-09 

5 3.92E-10 4.82E-06 6.01E-10 6.42E-06 4.69E-10 2.01E-09 6.30E-10 

 

 

Example 3. We now consider Eq. (1) with the 

parameters 1  , 1   and   2 2g u u  with the 

initial condition  

 2( ,0) exp .u x x   

In this example, the domain is taken to be 

30 30x    and the behavior of the problem is 

examined up to time 10t  . We use 0.2h   and 

0.1t   in the proposed scheme and the recorded 

values are presented in Table 6. Furthermore, the 

profile of the wave is plotted in Figure 3 from 0t   to 

10t  . It can be seen from the figure that the 

amplitude of wave and the position of that   amplitude 

changes in time. The amplitude of wave is equal to 1 

located at 0x   for initial time, while that value 

decreases as the times goes on and it becomes about 

0.2 located close by 10x  . 

 

 

Table 6. Numerical results for Example 3 with 0.2h   and 

0.1t   

x \ t  1 2 5 10 

-30    -5.100E-13 -3.027E-12 -6.602E-11 -1.174E-09 

-15     -4.952E-08 -4.754E-08 -1.567E-08 -1.462E-09 

0      5.726E-01   2.871E-01  2.032E-02 -2.175E-03 

15     2.199E-05   2.396E-04  8.813E-03  9.039E-02 

30     1.653E-10   5.346E-09  2.186E-06  4.348E-04 

 

 

 



A hybrid approach for regularized long wave-Burgers equation                                     13 

 

-30 -20 -10 0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u
(x

,t
)

 

 

 
Figure 3. The behavior of the wave in Example 3 from 

0t   to 10t   using 0.2h    and 0.1t  . 

 

 

Example 4. As the fourth test problem, Eq. (1) under 

the consideration of parameters 1  , 1  and 

  26g u u  is studied using the following initial 

condition 

223 1 1
( ,0) tanh tanh

120 5 10
u x x x     

extracted from the exact solution 

223 1 1
( , ) tanh tanh

120 5 10 10 10

t t
u x t x x

   
        

   
. 

For comparison with an early work by Zhao et al. [2], 

L
 errors are calculated for various times over the 

domain 50 50x   . The parameter h  is taken to be 

0.2  with both 0.01t   and 0.1t  , and the results 

are presented up to time 10t   in Table 7. It is seen 

that the obtained L
errors are less than the compared 

results. Furthermore, the presented errors still decrease 

when 0.01t  . The behavior of the problem for three 

different times are given in Figure 4. 

 
Table 7. 

L errors at various times for Example 4 using  

 L
 

Present Method [2] 
t  0.2h  , 

0.01 t  

0.2h  , 

0.1t   

0.2h  , 

0.1t   

0.2 6.048E-06 6.553E-06 7.650E-05 

0.3 9.310E-06 1.003E-05 6.954E-05 

0.4 1.274E-05 1.365E-05 1.490E-04 

0.5 1.632E-05 1.739E-05 1.334E-04 

0.6 2.001E-05 2.123E-05 2.160E-04 

0.7 2.377E-05 2.510E-05 1.918E-04 

0.8 2.752E-05 2.895E-05 2.774E-04 

0.9 3.119E-05 3.270E-05 2.474E-04 

1 3.472E-05 3.629E-05 3.385E-04 

2 5.823E-05 6.143E-05 - 

3 9.216E-05 9.493E-05 - 

5 1.481E-04 1.511E-04 - 

10 2.871E-04 2.889E-04 - 

 
Example 5. For the last problem, the nonlinear 

function  g u  is chosen as 
3 53 , 5u u  and 

9 9u , 

respectively, for Eq. (1) with 1 2, 1.    
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Figure 4. Numerical solutions for Example 4 at different 

times.  

The initial condition is taken to be 

 4( ,0) 1 1u x x  . 

In this example, the solutions with considering various 

nonlinear function  g u  are investigated up to time 

10t  . In Figure 5, the solutions are plotted at 

different times using 0.2h   and 0.1t  . To show 

the effect of parameter h , the solutions at 10t   are 

also displayed in Figure 6 using 0.1t   and various 

h  values. It is observed from the corresponding 

figures that due to the value of   parameter, a slight 

oscillation occurs at the beginning of the wave, and 

the amplitude of both wave and oscillation decreases 

as the time goes on. To see the effect of   parameter 

on the behavior of the wave, Figure 7 is presented for 

various values of  . In the calculations, the 

parameters are taken to be 0.2h  , 0.1t  , 

  3 3g u u . Figure 7 shows that as the value of   

decreases, the amplitude of the wave slightly 

increases. However, any oscillation does not appear in 

the wave motion if   value is taken larger. It can be 

also seen that as the  value decreases, some 

oscillations occur. The results in the above examples 

revealed that the proposed method has been seen to be 

usually more convergent and easier than its rival 

methods from the literature. 

4. Conclusion 

A hybrid approach based on two different types of 

finite difference scheme has been introduced and 

applied for the solutions of some physical problems 

constructed with the RLW-Burgers equation. To 

reveal the accuracy of the proposed scheme, five test 

problems are considered for various values of 

parameters taken part in the RLW-Burgers equation, 

and some error norms, such as absolute, 2L  and L , 

are presented. The computed results revealed that the 

suggested method highly accurate, computationally 

powerful and user-friendly. The present approach is 

also believed to be easier in producing computer codes 

for applications. Therefore, it is seen to be a strongly 

advisable alternative to discover both qualitative and 

quantitative behaviors of similar processes for further 

studies. 
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(b)   5 5g u u  
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(c)   9 9g u u  

Figure 5. The behaviors of the wave in Example 5 using 

0.2,h   0.1t   for various  g u  
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(a)   3 3g u u  
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(b)   5 5g u u  

-30 -20 -10 0 10 20 30
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

u
(x

,t
)

 

 

h=0.2

h=0.5

h=0.8

h=1

 
(c)   9 9g u u  

Figure 6. Numerical solutions for Example 5 at 10t   

using 0.1t   and various values of h  with various  g u  
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1. Introduction

The aim of mathematical biology is to develop
mathematical equations and to describe some
physical problems encountered in biology. Not-
ing that, the establishment of such mathematical
formula is achieved using the concept of differenti-
ation or more practically the notion of derivatives.
There exist two classes of differentiation in the lit-
eratures. The first one is based on the concept of
rate of change [8-11,21]. The second one is based
on the convolution of some functions including ex-
ponential decay law and the generalized Mittag-
Leffler law. The derivatives based on exponential
appear naturally in many problems in nature as
being able to describe the effect of fading memory.
This class of derivative has been applied in sev-
eral research papers for instance [5,7,13,15,16,18-
20,22]. However, it was noted by several experts
in the field that, this new derivative does not have
a non-local kernel as its corresponding integral is
not fractional, thus a new kernel was suggested
by Atangana and Baleanu [6] where after some
manipulations, the exponential decay kernel was

replaced by the generalized Mittag-Leffler kernel.
This last derivative, therefore appears to be a very
powerful mathematical tools form modeling real
world problems as the generalized Mittag-Leffler
function is combination of the power law and ex-
ponential decay law.

Several research papers have been published using
this new concept of fractional differentiation with
Mittag-Leffler. More importantly the results ob-
tained in [1-4,6] revealed that, the new concept of
more adequate for modeling real world problems
to take into account the non-locality and also to
have a memory effect. We shall note that the
choice of a kernel is very important when mod-
eling real world problems. When looking at ex-
perimental data obtained from real world obser-
vations, we can see that, many biological prob-
lems may not always follow the power law based
on the function x−α which is the kernel mostly
used in the literature nowadays. For instance
the case of Rubella, which is also known as the
German measles or more precisely the three-day
measles is enveloped and has a single-stranded
RNA genome. The virus spreads via breathing
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route and photocopies in the nasopharynx and
lymph nodes. This virus can only be detected
in the stream blood after a period of between 5 to
7 days when the infection has taken place, later
spreads throughout the body. With its properties
of teratogenic and the ability of overpass the pla-
centa and infecting the fetus where it stops cells
developing or destroys them. Such a complex
dynamic will be suitable to portray a more ad-
vance concept of power with of course a non-local
concept which is the property inherited by the
newly established derivative with fractional order
called Atangana-Baleanu derivatives [6]. This pa-
per is therefore devoted to the analysis of the dy-
namic of the spread of Rubella virus exploring the
Atangana-Baleanu fractional derivative. The aim
of the research in this field, requires the use of
the new fractional derivative for Rubella disease
virus. The exactness and uniqueness of the solu-
tion of the fractional model is proved by applying
the fixed-point theorem.

The remainder part of this paper is broken into
sections. In Section 2, we give the definitions of
the new fractional derivative with non-singular
and non-local kernel. Section 3 deals with the
existence of solutions for the spread of rubella dis-
ease model via Picard-Lindelof method. In Sec-
tion 4, we provide a special solution of the model
which is considered using Atangala-Balenau de-
rivative in Caputo sense. Finally in Section 5,
some numerical results obtained at different in-
stances of fractional order are presented to justify
the suitability of the adopted derivative.

2. New fractional derivative with

non-singular and non-local kernel

Let us remind the definitions of the new fractional
derivative with non-singular and non-local kernel
[6].

Definition 1. Let f ∈ H1(a, b), b > a, α ∈
[0, 1] then, the definition of the new fractional de-
rivative (Atangana-Baleanu derivative in Caputo
sense) is given as:

ABC

a Dα

t (f (t)) =
B(α)

1− α

t
∫

a

f
′

(x)Eα

[

−α
(t− x)

α

1− α

]

dx,

(1)

where ABC
a Dα

t is fractional operator with Mittag-
Leffler kernel in the Caputo sense with order α

with respect to t and B(α) = B(0) = B(1) = 1 is
a normalization function [12].

Definition 2. Let f ∈ H1(a, b), b > a, α ∈
[0, 1] and not differentiable then, the definition of

the new fractional derivative (Atangana-Baleanu
fractional derivative in Riemann-Liouville sense)
is given as:

ABR

a Dα

t (f (t)) =
B(α)

1− α

d

dt

t
∫

a

f(x)Eα

[

−α
(t− x)

α

1− α

]

dx.

(2)

Definition 3. The fractional integral of order α

of a new fractional derivative is defined as:

AB
a Iαt {f(t)} =

1− α

B(α)
f(t)

+
α

B(α)Γ(α)

t
∫

a

f(y)(t− y)α−1dy. (3)

When α is zero, initial function is obtained and
when α is 1, the ordinary integral is obtained.

3. Existence of solutions for the spread

of rubella disease model

Let us consider the following model employing the
Atangana-Baleanu fractional derivative in Caputo
sense :

ABC
0 Dα

t S (t) = B(a)− [λ(a, t) + P (a) + µ(a)]S (t) ,

ABC
0 Dα

t E (t) = λ(a, t)S (t)− (σ + µ(a))E (t) ,

ABC
0 Dα

t I (t) = σE (t)− (β + µ(a)) I (t) , (4)

ABC
0 Dα

t R (t) = βI (t)− µ(a)R (t) ,

ABC
0 Dα

t V (t) = D(a)S (t)− µ(a)V (t) ,

where S (t) , E (t) , I (t) , R (t) , V (t) are suscep-
tible, latent, infectious, recovered and vaccinated
parameters respectively. P (a) is a parameter for
which immunized by vaccination and λ(a, t) is the
force of infection of age a at time t. Finally, σ is
the latent rate and β is the infection rate [14]. The
aim of this section is to find existence of solutions
for rubella disease model with Atangana-Balenau
fractional derivative. The system state is made
up with S,E, I, R, V . The above system (4) can
be converted to Volterra type integral equation
with the Atangana-Baleanu fractional integral.

Theorem 1. The following time fractional ordi-
nary differential equation

ABC
0 Dα

t (f (t)) = u(t), (5)
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has a unique solution with taking the inverse
Laplace transform and using the convolution the-
orem below [4]:

f(t) =
1− α

B(α)
u(t)+

α

B(α)Γ(α)

t
∫

a

u(y)(t−y)α−1dy.

(6)

By the theorem above, the model can be written
as (7):
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
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





















S(t)− g1(t) =
1−α
B(α) {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1

×{B(a)− [λ(a, y) + P (a) + µ(a)]S (y)} dy,

E(t)− g2(t) =
1−α
B(α) {λ(a, t)S (t)− (σ + µ(a))E (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1

×{λ(a, y)S (y)− (σ + µ(a))E (y)} dy,

I(t)− g3(t) =
1−α
B(α) {σE (t)− (β + µ(a)) I (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {σE (y)− (β + µ(a)) I (y)} dy,

R(t)− g4(t) =
1−α
B(α) {βI (t)− µ(a)R (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {βI (y)− µ(a)R (y)} dy,

V (t)− g5(t) =
1−α
B(α) {D(a)S (t)− µ(a)V (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {D(a)S (y)− µ(a)V (y)} dy,

(7)

The above system (7) of equations can be itera-
tively represented as:























S0(t) = g1(t),
E0(t) = g2(t),
I0(t) = g3(t),
R0(t) = g4(t),
V0(t) = g5(t).

(8)

Sn+1(t) =
1− α

B(α)

×{B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)} (9)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

×{B(a)− [λ(a, y) + P (a) + µ(a)]Sn (y)} dy,

En+1(t) =
1− α

B(α)
{λ(a, t)Sn (t)− (σ + µ(a))En (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {λ(a, y)Sn (y)− (σ + µ(a))En (y)} dy,

In+1(t) =
1− α

B(α)
{σEn (t)− (β + µ(a)) In (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {σEn (y)− (β + µ(a)) In (y)} dy,

Rn+1(t) =
1− α

B(α)
{βIn (t)− µ(a)Rn (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {βIn (y)− µ(a)Rn (y)} dy,

Vn+1(t) =
1− α

B(α)
{D(a)Sn (t)− µ(a)Vn (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {D(a)Sn (y)− µ(a)Vn (y)} dy.

As the exact solution of the iterative formula of a
Picard series used here converges toward the ex-
act solution as the number of series terms tends to
infinity. If we take the limit with greater than n,
we expect to obtain the exact solution of equation
as below:































lim
n→∞

Sn (t) = S (t) ,

lim
n→∞

En (t) = E (t) ,

lim
n→∞

In (t) = I (t) ,

lim
n→∞

Rn (t) = R (t) ,

lim
n→∞

Vn (t) = V (t) .

3.1. Existence of solution via

Picard-Lindelof method

Let us define the following operator for showing
the existence of solution:

f1(a, t) = B(a)− [λ(a, t) + P (a) + µ(a)]S (t) ,

f2(a, t) = λ(a, t)S (t)− (σ + µ(a))E (t) ,

f3(a, t) = σE (t)− (β + µ(a)) I (t) , (10)

f4(a, t) = βI (t)− µ(a)R (t) ,

f5(a, t) = D(a)S (t)− µ(a)V (t) .

Let

N1 = sup
C[b,c1]

‖f1(a, t)‖ , N2 = sup
C[b,c2]

‖f2(a, y)‖ ,

N3 = sup
C[b,c3]

‖f3(a, z)‖ , N4 = sup
C[b,c4]

‖f4(a, p)‖ ,

N5 = sup
C[b,c5]

‖f5(a, r)‖ , (11)
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where

C [b, c1] = [t− b, t+ b]× [x− c1, x+ c1] = B1 × C1,

C [b, c2] = [t− b, t+ b]× [x− c2, x+ c2] = B1 × C2,

C [b, c3] = [t− b, t+ b]× [x− c3, x+ c3] = B1 × C3,

C [b, c4] = [t− b, t+ b]× [x− c4, x+ c4] = B1 × C4,

C [b, c5] = [t− b, t+ b]× [x− c5, x+ c5] = B1 × C5.

(12)

We will make use of Banach fixed-point theorem
using the metric on C [b, ci] , (i = 1, 2, ..., 5) made
by the uniform norm

‖X(t)‖
∞

= sup |f(t)|
t∈[t−b,t+b]

. (13)

The next operator is defined between the two
functional spaces of continuous functions, Pi-
card’s operator as follows:

O : C(B1, C1, C2, C3, C4, C5)

→ C(B1, C1, C2, C3, C4, C5). (14)

For simplicity, let us define fi(a, t) = X(t),
fi(a, 0) = X0(t), (i = 1, 2, ..., 5) . Then the system
is reduced the following:

OX(t) = X0(t) + F (t,X(t))
1− α

B(α)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1F (y,X(y))dy,

(15)

where X is the matrice of given as

X(t) =























S(t)
E(t)
I(t)
R(t)
V (t)

, X0(t) =























S(0)
E(0)
I(0)
R(0)
V (0)

, (16)

F (a,X(t)) =























f1(a, t)
f2(a, t)
f3(a, t)
f4(a, t)
f5(a, t)

.

Let us assume that the physical problem under
investigation satisfies followings:

‖X(t)‖
∞

≤ max{c1, c2, c3, c4, c5}. (17)

‖OX(t)−X0(t)‖ (18)

=

∥

∥

∥

∥

∥

∥

F (t,X(t)) 1−α
B(α) +

α
B(α)Γ(α)

t
∫

0

(t− y)α−1F (y,X(y))dy

∥

∥

∥

∥

∥

∥

≤
1− α

B(α)
‖F (t,X(t))‖

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1 ‖F (y,X(y))‖ dy

≤
1− α

B(α)
N = max{N1, N2, N3, N4, N5}

+
α

B(α)
Nbα < bN ≤ c = max{c1, c2, c3, c4, c5},

where we demand that

b <
c

N
.

Also we evaluate the following equality

‖OX1 −OX2‖∞ = sup
t∈B

|X1 −X2| . (19)

Nonetheless using the definition of our defined op-
erator, we have

‖OX1 −OX2‖

=

∥

∥

∥

∥

∥

∥

∥

∥

{F (t,X1(t))− F (t,X2(t))}
1−α
B(α)

+ α
B(α)Γ(α)

t
∫

0

(t− l)α−1

{

F (l, X1(l))
−F (l, X2(l))

}

dl

∥

∥

∥

∥

∥

∥

∥

∥

(20)

≤
1− α

B(α)
‖F (t,X1(t))− F (t,X2(t))‖ (21)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× ‖F (l, X1(y))− F (l, X2(y))‖ dy

≤
1− α

B(α)
q ‖X1(t)−X2(t)‖

+
αq

B(α)Γ(α)

t
∫

0

(t− y)α−1 ‖X1(y)−X2(y)‖ dy

≤

{

1− α

B(α)
q +

αqbα

B(α)Γ(α)

}

‖X1(t)−X2(t)‖

≤ bq ‖X1(t)−X2(t)‖ .

with q < 1 since F is a contraction we have that
bq < 1, thus the defined operator O is a contrac-
tion. So system has a unique set of solution.

4. Special solutions via iteration

approach

The aim of this section is to provide a special
solution of the model which is considered using
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Atangala-Balenau derivative in Caputo sense. Let
us apply the Sumudu transform on both sides of
equation (4) together with an iterative method.
We shall give the Sumudu transform of Atangana-
Balenau fractional derivative in Caputo sense be-
low:

Theorem 2. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]
then, the Sumudu transform of Atangana-Balenau
fractional derivative in Caputo sense is given as:

ST
{

ABC
0 Dα

t (f (t))
}

(22)

=
B(α)

1− α

(

αΓ(α+ 1)Eα(−
1

1− α
pα)

)

× (ST (f(t))− f(0)) .

Proof. Proof of the theorem can be found in
[4]. �

To solve Equation (4), we apply the Sumudu
transform of the Atangana-Balenau fractional de-
rivative of f(t) on system with both sides. Then
we obtain below:

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (S(t))− S(0)) (23)

= ST {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (E(t))− E(0))

= ST {λ(a, t)S (t)− (σ + µ(a))E (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (I(t))− I(0))

= ST {σE (t)− (β + µ(a)) I (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (R(t))−R(0))

= ST {βI (t)− µ(a)R (t)} ,
B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (V (t))− V (0))

= ST {D(a)S (t)− µ(a)V (t)} .

Rearranging, we obtain following inequalities
where,

ST (S(t)) = S(0)

+ θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)} ,

ST (E(t)) = E(0)

+ θ ∗ ST {λ(a, t)S (t)− (σ + µ(a))E (t)} ,

ST (I(t)) = I(0)

+ θ ∗ ST {σE (t)− (β + µ(a)) I (t)} ,

ST (R(t)) = R(0)

+ θ ∗ ST {βI (t)− µ(a)R (t)} ,

ST (V (t)) = V (0)

+ θ ∗ ST {D(a)S (t)− µ(a)V (t)} .

For simplicity, here

θ =
1− α

B(α)
(

αΓ(α+ 1)Eα(−
1

1−α
pα)

) ,

is considered and ”∗” means multiplication sign .

We next obtain the following recursive formula;

Sn+1(t) = Sn(0) (24)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}} ,

En+1(t) = En(0)

+ST−1 {θ ∗ ST {λ(a, t)Sn (t)− (σ + µ(a))En (t)}} ,

In+1(t) = In(0)

+ST−1 {θ ∗ ST {σEn (t)− (β + µ(a)) In (t)}} ,

Rn+1(t) = Rn(0)

+ST−1 {θ ∗ ST {βIn (t)− µ(a)Rn (t)}} ,

Vn+1(t) = Vn(0)

+ST−1 {θ ∗ ST {D(a)Sn (t)− µ(a)Vn (t)}} .

Therefore, the solution of equation (24) approxi-
mate to following

S(t) = lim
n→∞

Sn(t), (25)

E(t) = lim
n→∞

En(t),

I(t) = lim
n→∞

In(t),

R(t) = lim
n→∞

Rn(t),

V (t) = lim
n→∞

Vn(t).

4.1. Application of fixed-point theorem

for stability analysis of iteration

method

Let (X, ‖.‖) be a Banach space and H a self-map
of X. Let yn+1 = g(H, yn) be recurcive proce-
dure. Suppose that, F (H) the fixed-point set of
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H has at least one element and that ynconverges
to a point p ∈ F (H). Let {xn}⊂X and de-
fine en = ‖xn+1 − g(H,xn)‖ . If lim

n→∞

en = 0 im-

plies that lim
n→∞

xn = p, then the iteration method

yn+1 = g(H, yn) is H-Stable. Then let we assume
that, our sequence {xn} has an upper boundary .
If all these conditions are satisfied for yn+1 = Hyn
which is known as Picard’s iteration, consequently
the iteration is H-Stable. We shall then state the
following theorem.

Theorem 3. Let (X, ‖.‖) be a Banach space and
H a self-map of X satisfying

‖Hx −Hy‖ ≤ K ‖x−Hx‖+ k ‖x− y‖ ,

for all x, y in X where 0 ≤ K, 0 ≤ k < 1. Suppose
that H is Picard H-Stable [17].

Let us consider the following recursive formula
equation (27) with (4) where

θ =
1− α

B(α)
(

αΓ(α+ 1)Eα(−
1

1−α
pα)

) , (26)

is the fractional Lagrange multiplier.

Theorem 4. Let H be a self-map defined as (27)
as below.

H(Sn(t)) = Sn+1(t) = Sn(t) (27)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}} ,

H(En(t)) = En+1(t) = En(t)

+ST−1 {θ ∗ ST {λ(a, t)Sn (t)− (σ + µ(a))En (t)}} ,

H(In(t)) = In+1(t) = In(t)

+ST−1 {θ ∗ ST {σEn (t)− (β + µ(a)) In (t)}} ,

H(Rn(t)) = Rn+1(t) = Rn(t)

+ST−1 {θ ∗ ST {βIn (t)− µ(a)Rn (t)}} ,

H(Vn(t)) = Vn+1(t) = Vn(t)

+ST−1 {θ ∗ ST {D(a)Sn (t)− µ(a)Vn (t)}} .

Then (27) is H-stable in L1(a, b) if following
statement can be obtained.

(1− [λ(a, t) + P (a) + µ(a)]A(γ)) < 1, (28)

(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)) < 1,

(1 + σD(γ)− (β + µ(a))E(γ)) < 1,

(1 + βF (γ)− µ(a)G(γ)) < 1,

(1 +D(a)H(γ)− µ(a)J(γ)) < 1.

Proof. Let we start with showing that H has a
fixed point. To achieve this, we evaluate the fol-
lowings for all (n,m) ∈ N× N.

H(Sn(t))−H(Sm(t)) = Sn(t)− Sm(t) (29)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}}

−ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sm (t)}} .

Let us consider (29) and apply norm on both sides
and without loss of generality

‖H(Sn(t))−H(Sm(t))‖ (30)

=

∥

∥

∥

∥

∥

∥

Sn(t)− Sm(t)

+ST−1

{

θ ∗ ST

{

B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)
− (B(a)− [λ(a, t) + P (a) + µ(a)]Sm (t))

}}

∥

∥

∥

∥

∥

∥

≤ ‖Sn(t)− Sm(t)‖ (31)

+
∥

∥ST−1 {θ ∗ ST {− [λ(a, t) + P (a) + µ(a)] (Sn(t)− Sm(t))}}
∥

∥ .

Now we obtain :

‖H(Sn(t))−H(Sm(t))‖ ≤ ‖Sn(t)− Sm(t)‖

× (1− [λ(a, t) + P (a) + µ(a)]A(γ)), (32)

where A(γ) is the ST−1 {θ ∗ ST} . Since all solu-
tions have same role also we have following:

‖H(En(t))−H(Em(t))‖ ≤ ‖En(t)− Em(t)‖

× (1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)),

‖H(In(t))−H(Im(t))‖ ≤ ‖In(t)− Im(t)‖

× (1 + σD(γ)− (β + µ(a))E(γ)),

‖H(Rn(t))−H(Rm(t))‖ ≤ ‖Rn(t)−Rm(t)‖

× (1 + βF (γ)− µ(a)G(γ)),

‖H(Vn(t))−H(Vm(t))‖ ≤ ‖Vn(t)− Vm(t)‖

× (1 +D(a)H(γ)− µ(a)J(γ)). (33)

For

(1− [λ(a, t) + P (a) + µ(a)]A(γ)) < 1,

(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)) < 1,

(1 + σD(γ)− (β + µ(a))E(γ)) < 1,

(1 + βF (γ)− µ(a)G(γ)) < 1,

(1 +D(a)H(γ)− µ(a)J(γ)) < 1, (34)

then H-self mapping has a fixed point. Also non-
linear mapping H has to satisfy the conditions. So
let we assume

K = (0, 0, 0, 0, 0)

k =























(1− [λ(a, t) + P (a) + µ(a)]A(γ))
(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ))

(1 + σD(γ)− (β + µ(a))E(γ))
(1 + βF (γ)− µ(a)G(γ))

(1 +D(a)H(γ)− µ(a)J(γ))

,

(35)
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then all conditions of Theorem 3 hold. This com-
pletes the proof. �

5. Numerical Simulation

In this part, we present the numerical replication
of the model for different values of fractional or-
der using the proposed numerical scheme. The

numerical simulations are shown in figure 1, 2, 3,
and 4. Figures 1 is considered alpha to be 0.95,
figure 2 is considered alpha to be 0.65, figure 3 is
considered alpha to be 0.45 and finally in figure
4 is considered alpha to be 0.05. The paremeters
used in this simulations are given below:

B = 100, P = 0.3, λ = 0.4,
µ = 0.4, σ = 0.3, β = 0.4

. (36)

n
Figure 1 : Numerical simulation of solution for α = 0.95

Figure 2 : Numerical simulation of solution for α = 0.65
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Figure 3 : Numerical simulation of solution for α = 0.45

Figure 4 : Numerical simulation of solution for α = 0.05

6. Conclusion

In this work, we have extended the model of
rubella disease to the concept of fractional dif-
ferential based on the Mittag-Leffler. We stud-
ied the existence of the generalized model using
the fixed-point theorem. We presented the deriva-
tion of the solution using the Sumudu transform
of Atanagana-Balenau derivative in Caputo sense.
The stability analysis of the method is validated
with the H-stable approach. Finally. Numerical
simulations presented for different values of α.

References

[1] Abdeljawad, T. and Baleanu, D. (2016). Discrete frac-
tional differences with nonsingular discrete Mittag-
Leffler kernels. Advances in Difference Equations. (1),
232.

[2] Abdeljawad, T. and Baleanu, D. (2016). Integration
by parts and its applications of a new nonlocal frac-
tional derivative with Mittag-Leffler nonsingular ker-
nel. arXiv preprint arXiv, 1607.00262.

[3] Alkahtani, B.S.T. (2016). Chua’s circuit model with
Atangana–Baleanu derivative with fractional order.
Chaos Solitons and Fractals. 89, 547–551.

[4] Atangana, A. and Koca, I. (2016). Chaos in a simple
nonlinear system with Atangana-Baleanu derivatives
with fractional order. Chaos, Solitons and Fractals.
89, 447-454.

[5] Atangana, A. and Koca, I. (2016). On the new frac-
tional derivative and application to Nonlinear Baggs
and Freedman model. Journal of Nonlinear Sciences

and Applications. (9), 2467-2480.
[6] Atangana, A. and Baleanu, D. (2016). New frac-

tional derivatives with nonlocal and non-singular ker-
nel: theory and application to heat transfer model.
Thermal Science. 20 (2), 763-769.

[7] Atangana, A. and Owolabi, K.M. (2017). New nu-
merical approach for fractional differential equations.
preprint, arXiv, 1707.08177.



Analysis of rubella disease model with non-local and non-singular fractional derivatives 25

[8] Baskonus, H.M. and Bulut, H. (2015). On the nu-
merical solutions of some fractional ordinary dif-
ferential equations by fractional Adams-Bashforth-
Moulton Method. Open Mathematics. 13 (1), 547–556.

[9] Baskonus, H.M. and Bulut, H. (2016). Regarding on
the prototype solutions for the nonlinear fractional-
order biological population model. AIP Conference

Proceedings. 1738, 290004.
[10] Baskonus, H.M., Mekkaoui, T., Hammouch, Z. and

Bulut, H. (2015). Active control of a chaotic fractional
order economic system. Entropy. 17 (8), 5771-5783.

[11] Baskonus, H.M., Hammouch, Z., Mekkaoui, T. and
Bulut, H. (2016). Chaos in the fractional order logistic
delay system: circuit realization and synchronization.
AIP Conference Proceedings, 1738, 290005.

[12] Caputo, M. & Fabrizio, M. (2015). A new definition of
fractional derivative without singular kernel. Progress
in Fractional Differentiation and Applications. 1, 73-
85.

[13] Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu,
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The Capacitated Multi-facility Weber Problem (CMWP) tries to determine
the location of I capacitated facilities in the plane and to satisfy demand of J
customers so as to minimize the total transportation cost. The CMWP assumes
that the facilities can be located anywhere on the plane and customers are
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where there exist convex polyhedral barriers blocking passage and locating
facilities inside. As a result, the distances between facilities and customers
have to be measured by taking into account the polyhedral barriers. The
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1. Introduction

The Capacitated Multi-facility Weber Problem
(CMWP) tries to locate I facilities with capac-
ity restrictions in the plane and to meet the de-
mand of J customers while minimizing the total
cost of transportation. The objective function of
the CMWP is shown to be neither convex nor
concave [1]. When capacity restrictions of the
facilities are removed, the CMWP becomes the
so called Multi-facility Weber Problem (MWP).
Both of the MWP and CMWP are NP-hard as
shown by Sherali and Nordai [2], and Meggido and
Supowit [3], respectively. Moreover, they both
generalize the Weber Problem (WP) that aims to
find the optimal location of a single facility. The
objective function of the WP is convex, and thus,
easy to solve. However, this is not true for its
generalizations of the MWP and CMWP as ad-
ditional allocation decisions have to be made for
them. One can partition the customer set into

non-intersecting subsets each of which is served by
an uncapacitated facility for the MWP. This in-
dicates that each customer is served from exactly
one facility at the optimal solution of the MWP.
On the other hand, customer demands may need
to be met from multiple facilities for the CMWP
when capacity restrictions are imposed. Never-
theless, all of the WP, MWP and CMWP as-
sume that each facility can be freely located in
the plane. Such an assumption can be mislead-
ing in practice since there may exist physical ar-
eas that obstruct to travel and to open facilities
inside. For example, lakes, mountains, glaciers
and forests are natural barrier areas which can
prohibit both travelling and facility location in-
side. Indeed, traveling (or passage) is frequently
blocked by existing work-shop (office room) areas
in a manufacturing plant (in an office building).
This work focuses on an extension of the CMWP
where the existence of convex polyhedral barriers
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26

http://creativecommons.org/licenses/by/4.0/


Discretization based heuristics for the capacitated multi-facility Weber problem with convex polyhedral. . . 27

are considered as obstacles to pass inside and to
locate facilities. Namely, the CMWP with con-
vex polyhedral barriers (CMWP-B) is addressed.
We suggest several discretization based heuristic
approaches to efficiently solve the CMWP-B.

Mostly, the transportation cost between a facil-
ity and customer is a function of the distance and
the amount of shipment between them. In par-
ticular, the distance is usually modelled with the
Euclidean, squared Euclidean, rectilinear and ℓr
(with 1 ≤ r < ∞) norms in location-allocation
type problems such as the CMWP. Alpaydın et
al. [4] and Brimberg et al. [5] provide excellent
surveys that include techniques and functions to
model distances. In this work, the distances be-
tween facilities and customers are measured by
the so called “barrier distance” which uses the
Euclidean distance, i.e. ℓ2, as its underlying dis-
tance measure. Observe that the Euclidean dis-
tance may not be feasible when polyhedral barri-
ers exist between facilities and customers. There-
fore, “barrier distance” is determined as the short-
est path, which does not pass through the barrier
regions where the edge costs are calculated with
the Euclidean distance, between a facility and
a customer. Clearly, the “barrier distances” re-
quire extra efforts to calculate the distances which
makes the CMWP-B a more realistic and difficult
problem to solve than the unrestricted CMWP.
Nonetheless, the “barrier distance” still preserves
the metric properties [6].

This work has the following contributions. For all
we know, the CMWP-B is novel to the literature
and we suggest a mathematical programming for-
mulation for it. Next, we offer three discretization
based (DB) heuristics which reduce the contin-
uous location space into a discrete space using
a discretization strategy. The first DB heuris-
tic employs the solution of an approximating
mixed-integer linear programming (MILP) for-
mulation suggested for the CMWP-B. The sec-
ond DB heuristic applies a Lagrangean Relaxation
(LR) scheme on the suggested MILP formulation.
The third DB heuristic performs a Tabu Search
(TS) using neighborhoods defined over the dis-
cretized location space. All upper bounds are
calculated with alternate location-allocation type
heuristics for the DB heuristics. We generate new
test instances for the CMWP-B where they in-
herit the data of the standard CMWP instances.
For that purpose, convex polyhedral barriers are
randomly constructed such that the feasibility of
the CMWP-B instances is maintained. Lastly, we
perform extensive computational experiments on
randomly generated test instances derived from
the standard CMWP instances.

The remainder of this study is organized as fol-
lows. In Section 2 a brief review of the relevant
literature is presented. This is followed by the
mathematical programming formulation of the
CMWP-B in Section 3. Section 4 presents details
of the suggested DB heuristics. Section 5 is where
we discuss our computational findings. Lastly, the
paper is concluded and future research directions
are given in Section 6.

2. Literature Review

In this section, we present a short review of the
relevant literature. Both the MWP and CMWP
have attracted the attention of researchers start-
ing with the seminal works by Cooper [1,7]. There
exist several exact solution procedures suggested
for the MWP ( [8–11]) as well as heuristic ap-
proaches for the MWP ( [7,12–18]). Furthermore,
we can cite the works by Cooper [1], Sherali et
al. [19] and Akyüz et al. [20] as examples of exact
solution methods developed for the CMWP. On
the other hand, we can mention Cooper’s [7] Al-
ternate Location-Allocation (ALA) type heuris-
tics [21,22], Discrete Approximation (DA) heuris-
tics [23, 24] and metaheuristics [25] developed for
the CMWP. Akyüz et al. [26,27] also offer heuris-
tic procedures for a multi-commodity extension of
the CMWP. A survey on the location-allocation
type problems can be found in the work by Brim-
berg et al. [28].

As an extension of the single facility WP, the WP-
B arises when there exist barriers which prohibit
to travel inside and to locate a facility. Katz
and Cooper [29] introduce the WP-B having a
single circular barrier region. The WP-B with
rectilinear distances is considered in the works
by Larson and Sadiq [30] and Batta et al. [31].
Aneja and Parlar [32] design an algorithm for
the WP-B as well as for a variant of the WP-
B where travelling is permitted within the bar-
riers. Butt and Cavalier [33] address the WP-B
where barriers are convex polygons and propose
an algorithm which yields local optimum solution.
Klamroth [34] derives a reduction result for the
WP-B having convex polyhedral barriers. Then,
an exact and a heuristic procedure is developed
for the WP-B. McGarvey and Cavalier [35] de-
velop a branch and bound approach that parti-
tions the continuous location space to optimally
solve the WP-B in the presence of polyhedral bar-
riers. Bischoff and Klamroth [36] deal with the
WP-B where the barriers are convex polyhedral
sets. Their method benefits from the reduction
result by Klamroth [34] and decomposes the WP-
Bs into multiple subproblems (i.e. WPs) each can
be solved over a convex and bounded region. The
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authors [36] apply a genetic algorithm to decrease
the number of subproblems to solve.

The MWP with convex polyhedral barriers
(MWP-B) is first considered by Krau [10] which
applies a column generation approach based on
partitioning of the customer set. Bischoff et al.
[37] suggest two ALA type heuristics that have
similar allocation phases for the MWP-B. Their
first ALA type heuristic alternately solves multi-
ple WP-Bs and set partitioning problems result-
ing in an inefficient algorithm. The second ALA
type heuristic suggested by Bischoff et al. [37]
yields better results. In the location phase, the
reduction result of [34] is extended to the multi-
facility case. Unlike their first ALA type heuristic,
this results in solving multiple WPs over convex
restricted regions and increase the efficiency of the
location phase for the second ALA type heuristic.
In what follows, we give a formal definition of the
CMWP-B.

3. Capacitated Multi-Facility Weber
Problem with Convex Polyhedral
Barriers

Let I, J and P denote the number of facilities,
the number of customers and the number of poly-
hedral barriers, respectively. The coordinates of
customer j is shown by aj = (aj1, aj2)

T and
its demand is denoted by qj . The parameter si
stands for the capacity of facility i. There are
two decisions to be made for the CMWP-B: lo-
cation decisions and allocation decisions. Then,
the unknown location of facility i is represented
as xi = (xi1, xi2)

T . The unknown amount of flow
between facility i and customer j is denoted by
fij . cij is the cost of transportation per unit flow
between customer j and facility i per unit dis-
tance. A polyhedral barrier p is indicated with set
Bp and the union of barriers are stated with the

set B, i.e. B =
P
⋃

p=1
Bp. Now, the feasible region to

locate facilities is given with the set X that can be
defined as X = E

2 \B where E2 is the two dimen-
sional Euclidean space. The Euclidean norm, i.e.

||xi − aj ||2 =
[

(xi1 − aj1)
2 + (xi2 − aj2)

2
]1/2

, is
used as the underlying distance measure to calcu-
late the “barrier distance” between facility i and
customer j. Note that barrier distance is repre-
sented with dB(xi,aj) between facility i and cus-
tomer j. The details about its calculation will
be discussed later on. Now a mathematical pro-
gramming formulation of the CMWP-B is given
as follows.

CMWP-B:

min Z =
I

∑

i=1

J
∑

j=1

cijfijdB(xi,aj) (1)

s.t.

J
∑

j=1

fij = si i = 1, . . . , I, (2)

I
∑

i=1

fij = qj j = 1, . . . , J, (3)

fij ≥ 0 i = 1, . . . , I; j = 1, . . . , J, (4)

xi ∈ X i = 1, . . . , I. (5)

The objective function (1) is to minimize the sum
of total transportation cost between facilities and
customers. Notice that constraints (2)-(4) are
the constraints of the well-known Transportation
Problem (TP). Constraints (2) state that the to-
tal flow sent from a facility i is equal to its ca-
pacity si. Constraints (3) imply that the demand
qj of customer j is exactly met. Constraints (4)
ensure the nonnegativity of flows. Constraints
(5) guarantee that facilities are placed within the
feasible region X . It is possible to further re-
strict the set of feasible region X . Wendell and
Hurter [38] show that an optimal solution of the
WP can be found within the convex hull of cus-
tomers. The result by Wendell and Hurter [38]
can be directly generalized to the WP-B as well
as to the CMWP-B in the case where barrier re-
gions stay within the convex hull of customer lo-
cations. In this case, it is enough to consider the
region within convex hull of customers that is out-
side of the polyhedral barriers. However, unlike
the CMWP, the resulting feasible region to locate
facilities is non-convex for the CMWP-B. More-
over, distances between facilities and customers
are measured with barrier distances dB(xi,aj) for
the CMWP-B. Observe that, the CMWP employs
the Euclidean distance between each facility and
customer. However, barrier distance is calculated
as the shortest path distance between any two
points when there exist barriers. The CMWP-
B can be reduced to the CMWP when all bar-
riers are removed. The optimal objective value
of the CMWP is a lower bound on the optimal
objective value of the CMWP-B since barrier dis-
tance between any two points is larger than or
equal to their Euclidean distances. That is to
say, the CMWP-B is more difficult to solve than
the CMWP which is NP-hard. This motivates the
implementation of efficient heuristic methods for
the CMWP-B.
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The calculation of the barrier distance dB(.) re-
quires additional efforts. Notice that convex poly-
hedral barriers can be represented with their ex-
treme points. Let epb = (epb1, epb2)

T be the coor-
dinates of their extreme points for each polyhedral
barrier p = 1, . . . , P with corresponding extreme
points b = 1, . . . , Bp. Here, Bp gives the number
of extreme points defining the polyhedral barrier
p represented with the set Bp. It should be em-
phasized that considering only convex polyhedral
barriers does not cause a loss of generality. Mc-
Garvey and Cavalier [35] have shown that optimal
solution of the WP-B can be found outside of the
convex hull of barriers which does not contain a
customer location. As the convex hull of any bar-
rier (convex or non-convex) can be approximated
with a convex polyhedron, barriers are assumed
to be convex polyhedrons. The barrier distance
between two points a and e is defined as the dis-
tance of the shortest feasible path from a to e.
To ensure that a path is feasible, it should not
coincide with the interior of polyhedral barriers.
The concept of visibility graph, e.g. Ghosh [39],
is used to ensure that a path is feasible. Two
points are said to be visible to each other if and
only if they can be connected with a line which
does not pass through the interior of polyhedral
barriers. Nodes of the visibility graph are cus-
tomer locations and the extreme points of poly-
hedral barriers. An edge is defined in the visibility
graph if and only if two points, say customer a and
extreme point e are visible to each other. Edge
costs are calculated with the Euclidean distance
d(a, e) =

[

(a1 − e1)
2 + (a2 − e2)

2
]1/2

. Clearly,
when two nodes are not visible to each other,
there is no corresponding edge in the visibility
graph. Finally, the barrier distance between two
points (nodes) dB(a, e) is equal to the cost of the
shortest path from a to e on the visibility graph.
Shortest paths can be obtained by a shortest path
algorithm such as the Dijkstra’s algorithm [40].

The discussion above only considers the barrier
distances among the nodes existing in the visibil-
ity graph. For an arbitrary point x within the set
of feasible locations, i.e. x ∈ X , the calculation
of barrier distances is slightly different. One may
consider re-constructing the visibility graph from
scratch such that x is also added into the node
set. Fortunately, it is sufficient to determine only
the set of nodes visible from x, say Vx, in the visi-
bility graph. Then, the barrier distances from the
point x to any customer location a is measured
using the formula:

dB(x,a) = min
h∈Vx

{d(x,h) + SPD(h,a)}, (6)

where h stands for the customer locations and/or
extreme points of barriers that are visible from
the point x. SPD(h,a) represents the shortest
path distance between points h ∈ Vx and a in
the visibility graph. The barrier distance function
dB(x,a) defines a metric on X satisfying the fol-
lowing properties of a metric: positivity, definite-
ness, symmetry and triangle inequality. Klamroth
[6] is an excellent reference to resort for more de-
tails on the single facility location problems with
barriers and their properties. In the left-hand side
of Figure 1, an example with four customers and
single tetragon barrier is given. In the right-hand
side of Figure 1, the corresponding visibility graph
is illustrated.

4. Discretization Based (DB)
Heuristics

The CMWP-B reduces to solving I WP-B’s when
the amount of shipments are known. This results
in a two dimensional minimum location problem
in continuous space. When all barriers are re-
moved, the resulting problem is a classical WP
and using the results by Wendell and Hurter [38]
and Hansen et al. [41], an optimal solution can
be found within the convex hull of customer loca-
tions. Clearly, the single WP is easy to solve be-
cause it is a convex programming problem. That
is to say, it can be solved by the Weiszfeld’s [42]
algorithm or one of its generalizations ( [43, 44]).
On the other hand, the objective function of the
CMWP-B is non-convex and the problem itself is
not easy to solve on continuous space. This sparks
a discretization strategy to solve the CMWP-B
using a discretized location space. It is conceiv-
able that the CMWP-B can be transformed into
a MILP problem formulation when facility loca-
tions are chosen from a set of candidate locations.
Indeed, the resulting MILP problem formulation
may yield the optimal solution of the CMWP-B
when the set of candidate locations to place facil-
ities includes the optimal facility locations. Ob-
viously, it is not possible to determine the opti-
mal facility locations in advance when construct-
ing the set of candidate facility locations. How-
ever, solving a MILP problem considering a set
of candidate facility locations produces an ap-
proximate solution for the CMWP-B. For that
purpose, a systematic way of choosing candidate
facility locations is of high importance and may
provide good solutions for the CMWP-B. In fact,
such a strategy is formerly offered by Hansen et
al. [14] and Aras et al. [23] for the MWP and
CMWP, respectively. They use customer loca-
tions as the set of candidate facility locations and



30 M.H. Akyüz / IJOCTA, Vol.8, No.1, pp.26-42 (2018)

Figure 1. An illustrative example with 4 customers, a single tetragon barrier and the corre-
sponding visibility graph.

solve approximating MILPs. Hansen et al. [14]
solve an approximating p-median problem and
obtain highly accurate solutions for the MWP.
Similar results also hold for the CMWP from the
work by Aras et al. [23]. The discretization strat-
egy that we pursue in this study is analogous to
the previous ones [14,23]. In what follows, we first
present the approximating MILP problem formu-
lation and the first DB (DB-I) heuristic. This
part also elaborates how we tackle with the dif-
ficulties imposed by the barrier distances for the
single WP-B. Then, the efficiency of DB-I heuris-
tic is improved by a LR scheme. This heuristic
is denominated as DB-II. Lastly, a Tabu Search
(TS) algorithm is employed to further improve the
efficiency of the DA-I heuristic. This heuristic is
called as DB-III heuristic.

4.1. Approximating MILP Problem
Formulation: DB-I Heuristic

Let k = 1, . . . ,K denote candidate facility lo-
cations with known coordinates given as vk =
(vk1, vk2)

T . The decision variables wijk represent
the amount of flow between facility i located at
candidate point k and customer j. Binary vari-
ables uik take a value of 1 if and only if facil-
ity i is opened at candidate point k and 0 oth-
erwise. cijk is the corresponding transportation
cost for flow wijk. Specifically, it is calculated
as cijk = cijdB(vk,aj). Now, an approximating
MILP problem formulation of the CMWP-B can
be stated as follows.

DA:

min ZDA =
I

∑

i=1

J
∑

j=1

K
∑

k=1

cijkwijk (7)

s.t.

J
∑

j=1

wijk = siuik i = 1, . . . , I;

k = 1, . . . ,K, (8)

I
∑

i=1

K
∑

k=1

wijk = qj j = 1, . . . , J, (9)

K
∑

k=1

uik = 1 i = 1, . . . , I, (10)

wijk ≥ 0 i = 1, . . . , I; j = 1, . . . , J ;

k = 1, . . . ,K, (11)

uik ∈ {0, 1} i = 1, . . . , I;

k = 1, . . . ,K. (12)

Here, constraints (8), (9) and (11) are analogous
to the TP constraints (2)-(4) for the approximat-
ing MILP problem formulation of the CMWP-
B. Constraints (10) ensure that every facility is
opened at exactly one candidate facility location.

Before giving the details of the DB-I heuristic,
we first introduce an improvement heuristic that
is employed within the DB heuristics in the fol-
lowing. This improvement heuristic is an adapta-
tion of the famous Alternate Location-Allocation
(ALA) heuristic that is offered for the MWP by
Cooper [7]. It consists of alternately solving two
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subproblems: allocation and location subprob-
lems. These subproblems respectively arise when
the facility locations and allocations between fa-
cility and customers are fixed. ALA heuristic
repeats alternating until the objective function
value does not change from one iteration to an-
other. This also indicates that facility locations
and allocation values do not significantly change
and the objective value becomes stable. It can
be observed that initialized from given facility lo-
cations, the CMWP-B reduces to solving a TP,
which is the “allocation” subproblem, in order
to determine allocations, i.e. flow between facili-
ties and customers. TP can be solved straightfor-
wardly using linear programming solvers. On the
other hand, with a given feasible shipment plan,
the CMWP-B can be decomposed into I single
facility WP-Bs so called the “location” subprob-
lems. Solving the resulting location subproblems,
i.e. the WP-Bs, is not trivial and our approach for
solving the location subproblems is summarized
in the following. Recall that the WP-B is a non-
convex problem and several solution approaches
can be used to solve ( [32, 33, 35]). Instead of an
exact solution procedure, which can be prohibi-
tive to use within an efficient heuristic approach,
we prefer to make use of the Weiszfeld’s [42] pro-
cedure that solves the unrestricted WP optimally.
Weiszfeld’s algorithm employs the gradient direc-
tion to update facility locations from one itera-
tion to the other and eventually converges to the
optimal facility locations. This procedure works
well on a convex problem like the WP. However,
there is no guarantee of optimality and it can-
not be directly used for the non-convex WP-B.
Nevertheless, observe that, when Weiszfeld’s al-
gorithm ends up with a solution x∗ that is within
the feasible location space outside of the polyhe-
dral barriers, i.e. x∗ ∈ X , then it is also opti-
mal for the WP-B. Otherwise, when Weiszfeld’s
algorithm terminates with a solution x∗ that is
within a polyhedral barrier p, then, the facility lo-
cation can be approximated by choosing the clos-
est point x̂ on the border of the barrier p. In
other words, our solution approach finds a so-
lution for the location subproblems that yields
approximate (or hopefully optimal) facility loca-
tions. This procedure is illustrated with Figure
2. This improvement heuristic solves the location
and allocation subproblems as described until the
objective value remains the same from one itera-
tion to another. This heuristic is named as ALA
with barriers (ALAB) heuristic. ALAB heuristic
is frequently resorted within our DB heuristics.

The DB-I heuristic works as follows. First, the
DA formulation is solved using the set of candi-
date facility locations consisting of customer loca-
tions. The DA formulation yields the facility loca-
tions which are used to initialize the improvement
heuristic. Second, the ALAB heuristic is used to
enhance the solution initialized with the facility
locations obtained in the first phase. Then, the
best solution found is reported as the outcome of
the DB-I heuristic. Note that applying the ALAB
heuristic in the second phase of the DB-I heuris-
tic usually improves the initial solution obtained
from the DA formulation.

4.2. A Lagrangean Relaxation (LR)
Scheme: DB-II Heuristic

The DA formulation can be intractable for large
problems and thus computationally very expen-
sive to solve exactly. Therefore, it may be better
to use an approximate solution approach. To this
end, a LR scheme and subgradient optimization is
employed to compute good feasible solutions for
the DA. The demand constraints (9) are relaxed
with Lagrangean multipliers µj to obtain the La-
grangean subproblem of DA, namely the LDA.

LDA(µ):

minZLDA(µ) =
I

∑

i=1

J
∑

j=1

K
∑

k=1

(cijk − µj)wijk

+
J
∑

j=1

µjqj (13)

s.t. (8), (10), (11), (12),

wijk ≤ min{si, qj} i = 1, . . . , I;

j = 1, . . . , J ; k = 1, . . . ,K. (14)

Observe that constraints (14) are introduced as
basic upper bounds on the flow quantities to the
LDA formulation. Clearly, these constraints are
redundant for the DA formulation. However, they
may significantly improve the optimal objective
value, say Z∗

LDA(µ), of the Lagrangean subprob-
lem LDA. The last term of the objective func-
tion (13) is constant and LDA(µ) can be further
decomposed over the facilities. That is to say,
solving the following subproblems for each facil-
ity i = 1, . . . , I is equivalent to solving the La-
grangean subproblem LDA(µ)
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(a) Case-I: x∗ is outside the barrier region (b) Case-II: x∗ is inside the barrier region

Figure 2. Two possible cases for the output of a Weiszfeld-like procedure.

LDAi(µ):

minZLDAi
(µ) =

J
∑

j=1

K
∑

k=1

cijkwijk (15)

s.t.

J
∑

j=1

wijk = siuik k = 1, . . . ,K, (16)

K
∑

k=1

uik = 1, (17)

wijk ≤ min{si, qj} j = 1, . . . , J ;

k = 1, . . . ,K, (18)

wijk ≥ 0 j = 1, . . . , J ;

k = 1, . . . ,K, (19)

uik ∈ {0, 1} k = 1, . . . ,K. (20)

where the unit costs cijk are determined as cijk =
(cijk − µj) with a given Lagrange multiplier vec-
tor µ. The resulting subproblem LDAi(µ) can be
solved by an inspection procedure for each candi-
date facility location k. Note that, when facility i
is placed at a candidate location k, then LDAi(µ)
further reduces to the following problem

LDAik(µ):

minZLDAik
(µ) =

J
∑

j=1

cijkwijk (21)

s.t.
J
∑

j=1

wijk = si (22)

wijk ≤ min{si, qj}

j = 1, . . . , J, (23)

wijk ≥ 0 j = 1, . . . , J. (24)

LDAik(µ) is a continuous bounded knapsack
problem that can be optimally solved in polyno-
mial time [45]. This approach requires sorting of
the cost coefficients for each candidate location

k. Hence, we need to run a sorting procedure K
times. The least cost candidate point k∗ is cho-
sen as the optimal location of facility i, and thus
for the subproblem LDAi(µ). Now, the optimal
value of LDAi(µ) is calculated as Z∗

LDAi
(µ) =

mink

{

Z∗
LDAik

(µ)
}

. It is conceivable that the val-

ues of binary variables are set as uik∗ = 1 for the
least cost candidate location k∗ and uik = 0 for
k = 1, . . . ,K and k 6= k∗. Once all subprob-
lems LDAi(µ) are solved, for a given Lagrange
multiplier vector µ, the optimal value of the La-
grangean subproblem LDA(µ) is determined as

Z∗
LDA(µ) =

∑I
i=1 Z

∗
LDAi

(µ) +
∑J

j=1 µjqj . Notice

that Z∗
LDA(µ) constitutes a lower bound on the

optimal value of the DA for any Lagrange mul-
tiplier vector µ. The best lower bound can be
obtained by solving the Lagrangean dual prob-
lem maxµ{Z

∗
LDA(µ)} that is accomplished using

subgradient algorithm by Held et al. [46]. For
the sake of brevity, we do not give details of
the subgradient algorithm. The subgradient al-
gorithm calculates upper bounds during its run,
and hence, feasible solutions for the CMWP-B.
For that purpose, the ALAB heuristic is used.
The values of binary variables uik are used to
determine the locations of each facility for each
solution of the resulting Lagrangean subproblem
LDA(µ) with given multiplier values µ. Lastly,
the DB-II heuristic reports the best feasible solu-
tion obtained from the subgradient algorithm.

4.3. A Tabu Search Algorithm: DB-III
Heuristic

Inspired with the promising results obtained by
using the customer locations as the set of candi-
date facility location, the DB-III heuristic consists
of applying a TS algorithm on the set of candidate
facility locations. A simple neighborhood search
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structure can be defined by exchanging the loca-
tion of a facility i′ at a candidate location k′ with
another one in order to move from one feasible so-
lution to another one. This yields a feasible solu-
tion for the CMWP-B. Further, feasible solutions
can be improved by applying a ALAB heuristic.

The suggested TS algorithm basically exchanges
the location of a facility with another candidate
location at each iteration. The selected candi-
date location is declared as tabu for that facility
and its status can not be revoked during the tabu
tenure. A greedy strategy of selecting the closest
candidate location is applied to move from the
current feasible solution to a neighbor solution.
To increase the intensity of the neighbor search
the closest N neighbor feasible solutions can be
checked and the best feasible solution is picked
as the new feasible solution. The TS algorithm
searches over the candidate location set and re-
ports the best solution found. For further details
on TS we refer to the work by Glover and La-
guna [47].

The TS algorithm uses a tabu list T that keeps
record of candidate facility locations which are
declared as tabu for a duration (tabu tenure) say
α iterations for each facility i. Each facility i is
associated with a set of candidate locations which
are declared as tabu. A tabu declared candidate
location k for a facility i can not be in the current
solution until the tabu tenure record, represented
as T (i, k), decreases to zero. Let t denote the cur-
rent iteration number and θ stand for the maxi-
mum number of iterations completed by the TS,
namely, the iteration limit of the TS. At each it-
eration, a facility i∗ is chosen and a non-tabu can-
didate location k∗ with T (i∗, k∗) = 0 is declared
as tabu for i∗. The facility i∗ is determined with
respect to their facility index in the order from
smallest facility index to largest facility index. In
other words, if facility i is selected at iteration t
then facility i+1 is the next facility to be selected
at iteration t+ 1. Note that, when i∗ = I for the
selected facility, the facility to be declared as tabu
is the one with index number 1 at the next tabu
iteration. Once tabu facility i∗ is set at iteration t,
the candidate point k∗ is searched over the closest
neighbors of the current candidate location, say
k′, of facility i∗. Clearly, all facilities other than
i∗ maintain their facility locations determined at
previous iteration t − 1 and the new feasible so-
lution only changes the location of facility i∗ at
iteration t. Let k′(1) be the closest candidate loca-

tion to k′, k′(2) denote the second closest candidate

location to k′, and so forth. The upper bound
obtained at tabu iteration t and the best upper

bound found so far are respectively represented
with Zt

UB and Zbest
Tabu. The upper bound Zt

UB is
determined as the lowest upper bound value ob-
tained by exchanging k′ with the candidate loca-
tions of the set {k′(1), k

′

(2), . . . , k
′

(N)} one by one

from the closest (k′(1)) to farthest (k′(N)) neigh-

bor candidate location. Here, N is the number
of neighbor solutions checked (or the width of the
neighborhood) and k′(N) is the N th closest can-

didate location to k′. This strategy is followed
as long as Zt

UB does not improve the best upper

bound Zbest
Tabu. When an improvement is obtained,

the neighborhood search is stopped. The best
upper bound Zbest

Tabu is updated whenever the im-
provement occurs and the TS proceeds to the next
iteration t+1 with the next facility. For example,
when the feasible solution obtained by exchanging
k′ with the closest candidate location k′(1) yields

a better upper bound than the best upper bound
Zbest
Tabu, then Zt

UB is calculated with candidate lo-

cation k′(1) for facility i∗ and Zbest
Tabu is updated. In

addition, the current tabu solution is updated so
that facility i∗ is located on the candidate loca-
tion k′(1). Similarly, such an approach is followed

until N th closest candidate location whenever an
improvement is achieved. If there is no improve-
ment for the best upper bound Zbest

Tabu after the

exchange of N th closest candidate location k′(N),

then facility i∗ is located at the candidate loca-
tion which gives the lowest objective value among
these N neighbor candidate locations.

Selection of the candidate location k∗ of facility
i∗ to move to another neighbor solution requires
further attention. The tabu status of candidate
locations terminates after a while and it is likely
that the same candidate location is selected repet-
itively. To avoid such a case, a tabu frequency list
(FL) keeps record of the total number of times a
candidate point k is declared tabu for a facility i
within the TS algorithm. FL(i, k) stands for the
FL, and initially, FL(i, k) = 0 for all i = 1, . . . , I;
k = 1, . . . ,K. When a candidate location k for fa-
cility i∗ is tested within the neighborhood search
described at an iteration, FL(i∗, k) is increased by
one. The candidate location k which has the high-
est FL(i∗, k) value is excluded from the neighbor-
hood search in the next iteration. Then the set
of neighbor candidate locations does not contain
a tabu declared candidate location or the most
frequent candidate location for i∗. Therefore, this
strategy favors diversification of the solutions dur-
ing the TS. The upper bound Zt

UB obtained

at iteration t is associated with a solution vector
(k1, k2, . . . , kI) which represents the candidate lo-
cations of each facility in the solution. Here, k1
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Algorithm 1: Tabu Search Algorithm

Step 1. (Initialization): Find initial upper bound Z0
UB and its associated solution vector of

candidate locations (k1, k2, . . . , kI)0. Set Zbest
Tabu = Z0

UB and iteration counter t = 1. Set
FL(i, k) = 0 for i = 1, . . . , I; k = 1, . . . ,K. Set T (i, ki) = α and FL(i, ki) = 1 for each facility
i = 1, . . . , I.
Step 2. For facility i = 1, . . . , I,
(i) determine the neighborhood set Ki as Ki = {ki(1), k

i
(2), . . . k

i
(N)} so that T (i, ki(n)) = 0 for

n = 1, . . . , N and FL(i, ki(n)) < max{FL(i, k)} for n = 1, . . . , N ; k = 1, . . . ,K.

(ii) for neighbor n = 1, . . . , N , set (k1, k2, . . . , ki, . . . , kI)t = (k1, k2, . . . , ki = ki(n),

. . . , kI)(t−1) and find its associated objective value as Z
ki
(n)

UB .

(iii) if Z
ki
(n)

UB < Zbest
Tabu then update Zbest

Tabu = Z
ki
(n)

UB , Zt
UB = Z

ki
(n)

UB . Set FL(i, ki(n)) =

FL(i, ki(n)) + 1 and T (i, ki(n)) = α. Go to Step 4.

Step 3. If Zbest
Tabu does not improve, find k∗ such that k∗ = argmin

k∈Ki

{Z
ki
(n)

UB },

(k1, k2, . . . , ki, . . . , kI)t = (k1, k2, . . . , ki = k∗, . . . , kI)(t−1). Set FL(i, ki(n)) = FL(i, ki(n)) + 1

for n = 1, . . . , N and T (i, k∗) = α.
Step 4. Set t = t+ 1 and decrease each tabu tenure value T (i, ki) > 0 by one. If t = θ or
Zbest
Tabu does not improve for 30 consecutive iterations STOP and report Zbest

Tabu, otherwise go to
Step 2.

is the candidate location of the first facility, k2 is
the candidate location of the second facility and
so forth, in the solution at iteration t. A formal
outline of the suggested TS algorithm is given in
Algorithm 1.

5. Computational Experiments

In this section, first the test bed used in this work
is given. Second, the results obtained with our
DB heuristics are presented for the CMWP-B. A
Dell Precision T5810 workstation with Intel(R)
Xeon(R) E5-1650v3 processor of 3.50 GHz and 64
GB RAM operating within Microsoft Windows 7
Pro 64-bit environment is employed as our com-
puting platform. The callable library of Gurobi
5.6.3 with default settings is used to solve MILP
and LP formulations presented and all codes are
written in C++ programming language.

5.1. Test Bed

We have performed our computational experi-
ments on randomly generated test instances that
are produced using standard CMWP test in-
stances from the literature. Standard test in-
stances are taken from the works by Sherali et
al. [19] and Boyacı [48]. Recall that the CMWP
instances do not have barriers forbidding loca-
tion and travel. However, the CMWP-B can in-
herit facility capacities, customers’ demand and
location information from the CMWP instances.
We have generated convex polyhedral barriers for

each CMWP instance by considering the follow-
ing two issues. First, we ensure that barrier re-
gions do not contain any customer location inside.
Second, interior areas of barriers should not be
coinciding with others. Then, these barriers are
integrated with the data of the CMWP instances
resulting in CMWP-B test instances.

The optimal objective value of the CMWP con-
stitutes a lower bound on the CMWP-B. We have
employed the best known objective values of stan-
dard CMWP test instances as benchmark values
to make a comparison among the performance of
the suggested DB heuristics. These benchmark
values representing the best known objective val-
ues of the CMWP instances are reported in Table
1. The first column indicates the names of the
instances. Original instance numbers are used as
stated in the work by Sherali et al. [19]. We add a
prefix “S” before the corresponding instance num-
ber. For example, the CMWP instance number 10
in the work by Sherali et al. [19] is shown as S10.
11 CMWP test instances from Sherali et al. [19]
are considered. Analogously, a total of 40 CMWP
test instances from Boyacı [48], which have non-
unique cost values, are represented with a prefix
“B” followed by an instance number. The second
column stands for the size of the instance by giv-
ing the number of facilities and the number of cus-
tomers in parenthesis, respectively. The instances
which have the same number of facilities and cus-
tomers are distinguished by adding a suffix letter
starting from “a” to “e” in accordance with the
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original denomination presented in the reference
works. The last column includes the best known
objective values that are taken from the reference
works ( [19, 27, 48]. As a remark, these bench-
mark values are not necessarily optimal for the
CMWP as the latter two studies present heuristic
outcomes.

To construct barriers for each standard CMWP
test instance given, we have randomly generated
different number of extreme points and convex
polygons. P polygons are chosen from the set
P ∈ {1, 3, 5, 10} for the CMWP-B test instances.
When P = 1, that is a single polygon, the to-
tal number of extreme points, denoted as B, of
the polygon is determined within the set H =
{2, 3, 4, 5, 6, 7, 8, 9}. For P > 1, when there are
more than one polygon, B is calculated by mul-
tiplying the elements of H with the number of
polygons P . For example, for P = 3, B is chosen
such that B ∈ H = {6, 9, 12, 15, 18, 21, 24, 27}.
This makes a total of 4 × 8 = 32 combinations
of CMWP-B test instances which are generated
for each source instance of the CMWP. Further,
two different strategies are followed to generate
instances that are grouped as regular and ran-
dom instances. Regular instances contains poly-
gons with the same number of extreme points.
For example, an instance is called regular when
all barriers are triangles. On the other hand, ran-
dom instances contains polygons each of which
do not necessarily have the same number of ex-
treme points as long as their total does not ex-
ceed B. Shortly, each of regular and random in-
stance groups for the CMWP-B contain 4×8 = 32
test instances. This makes 11 × 32 × 2 = 704
and 40 × 32 × 2 = 1920 CMWP-B test instances
that are constructed using existing CMWP test
instances Sherali et al. [19] and Boyacı [48] in-
stances, respectively.

5.2. Computational Results

We have employed the best known values of the
CMWP as our benchmark values as given in Table
1 to compare the performance of our DB heuris-
tics. The percent deviations of the heuristics are
determined using the following formula.

100×
ZUB − Zbest

CMWP

Zbest
CMWP

(25)

Table 1. Benchmark values for the
standard CMWP test instances from
the literature.

Instance Size Benchmark
Name (I, J) Value

S6 (3,9a) 221.40
S7 (3,9b) 871.62
S8 (4,8) 609.23
S9 (5,15) 8169.79
S10 (5,20a) 12846.87
S11 (5,20b) 1107.18
S12 (5,30) 23990.04
S15 (5,10) 2595.47
S16 (6,10) 7797.21
S18 (8,10) 1564.46
S20 (10,10) 7719.00

B1 (5,20) 22146.54b

B2 (5,25) 38236.43b

B3 (5,30) 42899.92b

B4 (5,40) 104983.19b

B5 (5,50) 71433.35b

B6 (5,100a) 119564.85b

B7 (5,250) 891589.16b

B8 (6,20) 14693.26b

B9 (6,25) 19036.28b

B10 (6,30) 59665.36b

B11 (7,20) 15075.29b

B12 (7,25) 16086.30b

B13 (7,30) 33627.21b

B14 (8,20) 6499.80b

B15 (8,25) 9486.23b

B16 (8,30) 18081.73b

B17 (9,20) 6551.37b

B18 (9,25) 5983.27b

B19 (9,30) 10643.15b

B20 (10,20) 4702.16b

B21 (10,25) 3950.70b

B22 (10,30) 6863.79b

B23 (10,40) 37834.75b

B24 (10,50) 47125.8b

B25 (10,100) 171126.36b

B26 (20,40) 8240.14a

B27 (20,50) 13535.76b

B28 (20,250) 220033.88b

B29 (25,250a) 208587.12a

B30 (25,250b) 278454.58a

B31 (25,250c) 259745.76a

B32 (25,250d) 195125.60a

B33 (25,250e) 289012.15a

B34 (25,500a) 646653.93a

B35 (25,500b) 512483.15a

B36 (25,500c) 484237.33a

B37 (25,500d) 643832.22a

B38 (25,500e) 491602.33a

B39 (30,100) 26185.03b

B40 (50,250) 81055.87b
a Results from [27]
b Results from [48]
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where ZUB is the upper bound value found by the

suggested heuristic for the CMWP-B. Zbest
CMWP

is the best known objective value for standard
CMWP test instances as shown in Table 1.
Clearly, the formula (25) yields an upper bound
on the performance of the heuristics. The in-
stances are divided into two groups as small and
large instances depending on their number of fa-
cilities and customers. For example, large in-
stances contain I > 10 facilities to locate. In
addition, instances with J ≥ 100 customers are
also considered as large instances.

The upper bounds are determined with the ALAB
heuristic as described in Section 4.1 for our DB
heuristics. The DB-I heuristic employs the ALAB
heuristic as an improvement step by using the fa-
cility locations obtained after the proposed MILP
formulation is solved. For the DB-II heuristic, an
initial upper bound is needed to increase the ef-
ficiency of the subgradient algorithm. Initially,
facilities are assumed to have unlimited capacity
and they can meet all customer demand. Then,
facilities are assigned to the candidate locations
from which they serve the customers with least
total cost. Once the corresponding candidate
locations are fixed as the starting facility loca-
tions, the ALAB heuristic is run initialized from
those facility locations. Lastly, the resulting up-
per bound is used as the initial upper bound of
the subgradient algorithm for the DB-II heuris-
tic. Besides, the ALAB heuristic is systemati-
cally run (i.e. once in ten iterations) to update
best upper bound found within the subgradient
algorithm. Finally, the ALAB heuristic is applied
on the best solution found by the TS algorithm
within the DB-III heuristic.

Table 2 gives the outcomes of the DB heuristics on
both random and regular CMWP-B test instances
generated from the instances by Sherali et al. [19].
The first three columns explain instance proper-
ties. The first column gives the name of the stan-
dard CMWP instance as mentioned. (I, J) stands
for the number of facilities and customers in the
second column. The third column states the total
number of barrier regions P in the instances. “%
Dev.” and “CPU” denote the percent deviation
calculated by the formula (25) and the CPU time
of the corresponding DB heuristic in seconds, re-
spectively. To be precise, the cells under these
columns are the average of 8 test instances hav-
ing different number of total extreme points from
the set H depending on the number of barriers
P . We should emphasize that all instances in Ta-
ble 2 are small instances. The last row indicates
the average of each column. Starting with column
4, six columns are consecutively dedicated to the

outcomes of the DB heuristics for random and
regular test instances. Best percent deviations
at each row are marked in bold characters. On
these instances, we observed that, DB-I heuris-
tic outperforms both DB-II and DB-III heuristics
in terms of accuracy. Indeed, the DB-I heuris-
tic yields outstanding accuracy for both random
and regular test instances. Using LR scheme as
in the DB-II heuristic increases the efficiency and
yields outcomes in almost half time of the DB-I
heuristic. Additionally, the DB-II heuristic pro-
duces similar accuracy to the DB-I heuristic in 12
out of 44 cases of random instances. This value
is 11 out of 44 cases when regular instances are
considered.

The tabu tenure parameter α for the DB-III
heuristic is set to α = max{I, 20} in the light of
our preliminary experiments. A maximum num-
ber of tabu iterations θ is set to 300. Another
stopping condition of 30 non-improving tabu iter-
ations is also imposed to avoid from unnecessary
computations for the DB-III heuristic. A neigh-
borhood search width denoted with N is empir-
ically determined as N = min{⌈J/3⌉, 30}. Here,
⌈a⌉ is the smallest integer value that is larger than
or equal to a. These TS settings are employed in
all of our computational experiments. Unfortu-
nately, the performance of the DB-III heuristic
is not promising on these small instances. Nev-
ertheless, running time of the DB-III heuristic is
shorter than the DB-I heuristic on the average for
small instances.

Although the instances based on Sherali et al. [19]
are small instances, their sizes are of limited va-
riety. Therefore, Table 3 shows additional results
obtained for random and regular CMWP-B in-
stances (small instances) based on Boyacı [48] in-
stances. Diversity of these instances is higher
than the ones by Sherali et al. [19]. Table 3 can be
read similar to Table 2 since they share the same
structure. The results of Boyacı [48] instances
are similar to Sherali et al. [19] instances and
strengthen the success of the DB-I heuristic for
small instances. The DB-I heuristic is the winner
for both random and regular CMWP-B instances
over all test instances in terms of accuracy. In
particular, the DB-I heuristic yields percent devi-
ations with a difference of 10% more than that of
the closest approach, the DB-II heuristic, on the
average for small instances. For these small in-
stances, it becomes evident that the efficiency of
the DB-I heuristic decreases drastically, i.e. 110.6
and 108.96 seconds on the average for random and
regular instances, respectively. The performance
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Table 2. The performance of the DB heuristics over random and regular CMWP-B instances
based on Sherali et al. [19] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
S6 (3,9) 1 0.27 0.05 0.27 0.24 6.64 0.16 0.51 0.33 0.51 0.24 5.54 0.13

3 0.48 0.16 0.48 0.29 24.44 0.16 0.36 0.39 0.37 0.24 17.07 0.13
5 0.27 0.33 0.45 0.29 6.34 0.17 0.72 0.56 0.72 0.23 13.51 0.16
10 0.27 0.23 0.28 0.35 1.96 0.20 0.20 0.22 0.26 0.30 7.03 0.19

S7 (3,9) 1 0.57 0.02 0.57 0.05 4.35 0.18 0.53 0.02 0.53 0.05 4.14 0.17
3 1.89 0.03 1.89 0.06 6.95 0.18 1.29 0.02 1.29 0.04 6.03 0.20
5 0.24 0.02 0.24 0.06 5.06 0.21 1.26 0.02 1.26 0.05 10.27 0.20
10 0.34 0.03 0.34 0.05 4.42 0.20 1.04 0.04 1.04 0.05 7.47 0.23

S8 (4,8) 1 0.34 0.06 0.34 0.30 32.06 0.19 0.22 0.41 0.22 0.29 32.44 0.18
3 0.69 0.47 0.69 0.29 33.77 0.17 0.09 0.52 0.09 0.28 35.85 0.18
5 0.42 0.08 0.42 0.29 30.89 0.20 0.34 0.62 0.34 0.27 32.42 0.19
10 0.33 0.32 0.33 0.32 30.78 0.25 0.72 0.42 0.72 0.28 29.74 0.23

S9 (5,15) 1 0.31 0.25 1.30 0.10 33.97 0.52 0.25 0.65 1.21 0.10 42.65 0.44
3 0.46 0.65 1.25 0.10 35.38 0.54 0.66 1.01 2.63 0.15 29.94 0.48
5 0.20 0.56 1.24 0.11 36.96 0.46 0.19 0.95 1.25 0.11 40.13 0.50
10 0.47 0.74 1.46 0.10 42.03 0.49 0.54 1.25 1.47 0.10 44.45 0.48

S10 (5,20) 1 0.00 0.37 1.81 0.31 4.16 0.39 0.05 0.99 2.34 0.31 3.22 0.44
3 0.26 0.75 1.36 0.31 4.60 0.39 0.10 1.29 2.43 0.32 4.32 0.40
5 0.69 0.91 2.16 0.35 4.72 0.39 0.45 0.68 1.89 0.31 4.47 0.41
10 1.11 0.69 3.23 0.34 5.30 0.47 0.86 0.63 2.96 0.31 5.54 0.45

S11 (5,20) 1 0.04 0.51 0.04 0.43 51.89 0.68 0.05 0.89 0.05 0.50 60.21 0.79
3 0.05 0.95 0.83 0.47 56.74 0.70 0.43 0.90 0.43 0.50 63.36 0.80
5 2.00 1.18 2.00 0.47 52.39 0.75 1.34 0.77 1.34 0.52 67.39 0.71
10 0.15 0.72 0.15 0.49 53.14 1.08 0.40 0.90 0.40 0.52 75.35 0.77

S12 (5,30) 1 0.09 1.84 5.46 0.48 19.49 0.88 0.20 2.49 4.83 0.60 20.60 0.90
3 0.16 2.09 5.90 0.50 17.59 0.96 0.07 2.43 5.16 0.56 18.85 0.84
5 0.02 3.68 5.50 0.54 20.28 0.95 0.08 2.52 5.11 0.55 17.63 0.90
10 0.11 2.13 6.72 0.55 14.22 1.04 0.28 2.59 4.87 0.58 20.82 1.00

S15 (5,10) 1 0.00 0.10 2.32 0.36 123.50 0.29 0.00 0.25 2.33 0.32 125.95 0.34
3 0.00 0.09 2.33 0.30 124.69 0.37 0.00 0.29 2.38 0.32 127.35 0.42
5 0.21 0.45 2.54 0.35 129.09 0.32 0.02 0.28 2.35 0.25 130.11 0.36
10 0.02 0.27 2.35 0.37 123.87 0.42 0.08 0.24 2.41 0.36 123.51 0.42

S16 (6,10) 1 0.00 0.51 1.65 0.31 54.28 0.22 0.01 0.53 1.66 0.28 56.84 0.23
3 0.02 0.12 1.67 0.28 50.54 0.24 0.22 0.90 1.87 0.32 58.82 0.28
5 0.02 0.61 1.68 0.32 59.27 0.24 0.05 0.45 1.71 0.37 73.10 0.28
10 0.21 0.47 1.70 0.38 45.93 0.26 0.55 0.47 2.20 0.40 54.90 0.28

S18 (8,10) 1 0.24 0.36 82.75 0.27 101.38 0.26 0.22 0.56 86.94 0.30 108.18 0.28
3 0.14 0.29 67.41 0.31 100.41 0.27 0.22 0.78 80.52 0.29 117.53 0.30
5 0.37 0.82 69.61 0.30 91.55 0.30 0.53 0.58 75.48 0.34 96.01 0.29
10 0.11 0.57 48.99 0.32 102.53 0.34 0.08 0.67 46.85 0.30 115.58 0.34

S20 (10,10) 1 0.43 0.40 18.82 0.22 61.25 0.45 0.77 0.57 19.16 0.22 50.91 0.48
3 0.32 0.22 18.62 0.22 50.76 0.58 0.62 1.09 19.04 0.24 56.04 0.61
5 0.60 0.54 18.92 0.22 53.93 0.55 1.03 0.76 19.60 0.23 51.51 0.49
10 0.33 0.47 18.73 0.26 46.57 0.57 0.07 0.67 18.57 0.24 37.40 0.56

Average 0.35 0.59 9.25 0.30 44.55 0.42 0.40 0.76 9.74 0.30 47.82 0.42

of the DB-II heuristic using LR scheme outper-
forms the DB-I heuristic in CPU times. More-
over, the DB-II heuristics yields the best results
in 18 out of 88 cases for the random instances.
Analogously, the DB-II heuristic finds the best
results in 17 out of 88 cases for the regular in-
stances. The DB-II heuristic is slightly more effi-
cient than the DB-III heuristic with CPU times of
0.75 (0.74) and 0.98 (0.98) seconds on the average,
respectively, for random (regular) instances. The
accuracy of the DB-III heuristic is poor for small

instances. The efficiency of the DB-I heuristic de-
teriorates especially for the instances with more
than 30 customers (or similarly 30 candidate facil-
ity locations). The DB-II and DB-III heuristics
show different behavior than the DB-I heuristic
does since they are not significantly affected from
number of customers. Observe that increasing the
number of facilities deteriorates the CPU time of
all DB heuristics.

Table 4 presents the results of the large CMWP-
B instances based on Boyacı [48] instances. The



38 M.H. Akyüz / IJOCTA, Vol.8, No.1, pp.26-42 (2018)

Table 3. The performance of the DB heuristics over small sized random and regular CMWP-B
instances based on Boyacı [48] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
B1 (5,20) 1 0.05 0.34 0.05 0.39 32.18 0.33 0.17 0.34 0.17 0.41 38.30 0.33

3 0.54 0.37 0.54 0.34 37.42 0.36 0.46 0.33 0.46 0.35 38.98 0.36
5 0.40 0.31 0.40 0.39 38.94 0.38 0.78 0.51 0.78 0.47 34.55 0.38
10 0.78 0.38 0.78 0.47 36.49 0.42 0.39 0.47 0.39 0.51 36.85 0.42

B2 (5,25) 1 0.00 0.70 3.76 0.60 51.09 0.52 0.00 0.83 3.37 0.56 58.36 0.52
3 0.67 0.75 8.27 0.50 63.57 0.54 0.78 0.87 7.08 0.51 56.15 0.54
5 0.44 0.81 8.49 0.57 57.21 0.60 0.68 0.88 9.85 0.53 53.32 0.60
10 0.74 0.77 9.19 0.63 57.23 0.65 0.66 1.12 11.14 0.59 61.46 0.65

B3 (5,30) 1 0.20 2.76 0.20 0.58 47.59 0.62 0.20 2.50 0.20 0.52 47.79 0.62
3 0.42 2.21 0.42 0.57 46.91 0.74 0.74 5.28 0.74 0.53 49.04 0.74
5 0.92 4.37 0.92 0.56 54.74 0.77 0.44 4.98 0.44 0.60 44.22 0.77
10 0.43 5.12 0.43 0.60 53.33 1.01 0.86 6.21 0.86 0.70 48.66 1.01

B4 (5,40) 1 0.02 3.02 0.05 0.32 21.15 1.04 0.07 2.99 0.10 0.28 21.45 1.04
3 0.19 3.10 0.22 0.29 22.98 1.23 0.58 3.31 0.61 0.27 26.89 1.23
5 0.59 2.80 0.62 0.28 27.10 1.22 0.23 3.23 0.26 0.31 21.80 1.22
10 0.32 2.85 0.35 0.34 27.77 1.34 0.36 3.01 0.39 0.34 33.58 1.34

B5 (5,50) 1 0.03 101.95 5.32 1.04 15.12 1.26 0.03 116.17 4.76 0.87 14.56 1.26
3 0.16 76.65 5.12 0.94 12.92 1.34 0.23 82.50 6.33 0.95 13.04 1.34
5 0.16 63.15 5.14 1.02 13.31 1.38 0.20 49.95 6.69 0.98 12.62 1.38
10 0.34 63.81 4.32 1.06 13.54 1.51 0.32 44.87 2.80 1.12 12.81 1.51

B8 (6,20) 1 0.31 0.59 0.31 0.53 68.57 0.50 0.19 0.48 0.19 0.48 58.26 0.50
3 0.32 0.56 0.32 0.65 64.36 0.54 0.00 0.57 0.00 0.57 70.93 0.54
5 0.42 0.56 0.42 0.54 52.49 0.63 0.53 0.54 0.53 0.57 61.18 0.63
10 0.23 0.56 0.23 0.54 73.76 0.58 0.35 0.61 0.35 0.77 68.48 0.58

B9 (6,25) 1 0.03 1.05 4.10 0.47 124.74 0.53 0.21 1.06 5.37 0.51 112.04 0.53
3 0.54 0.99 5.82 0.52 111.94 0.67 0.92 1.02 8.54 0.44 105.25 0.67
5 0.36 1.11 3.33 0.51 105.92 0.59 0.73 1.06 7.58 0.51 81.73 0.59
10 0.38 1.17 5.16 0.54 94.46 0.75 0.91 1.10 4.31 0.61 70.42 0.75

B10 (6,30) 1 0.00 8.24 7.50 0.62 28.19 0.80 0.05 8.21 5.41 0.68 35.84 0.80
3 0.57 19.68 18.18 0.61 44.18 0.87 0.30 16.25 12.86 0.62 35.18 0.87
5 0.66 10.77 15.38 0.66 36.87 0.84 0.57 19.02 10.88 0.70 36.86 0.84
10 0.24 13.75 15.67 0.77 29.06 1.03 0.59 17.23 12.53 0.69 36.15 1.03

B11 (7,20) 1 0.04 0.76 0.09 0.54 108.15 0.46 0.06 0.75 0.21 0.67 87.65 0.46
3 0.02 0.82 0.02 1.44 82.21 0.51 0.01 0.82 0.06 1.18 93.72 0.51
5 0.05 0.74 7.28 0.74 92.82 0.64 0.02 0.78 0.07 1.10 90.46 0.64
10 0.16 0.83 0.16 1.43 87.46 0.74 0.02 0.84 0.02 1.13 89.41 0.74

B12 (7,25) 1 0.00 1.39 0.17 0.25 105.95 0.63 0.00 1.20 0.17 0.24 95.98 0.63
3 0.07 1.20 0.30 0.30 93.29 0.68 0.13 1.26 0.40 0.29 92.26 0.68
5 0.17 1.16 0.40 0.33 89.13 0.73 0.13 1.22 0.30 0.38 77.31 0.73
10 0.19 1.36 0.55 0.38 83.14 0.83 0.18 1.49 0.38 0.28 85.83 0.83

B13 (7,30) 1 0.04 16.59 0.04 1.00 76.97 0.77 0.02 13.80 0.02 0.99 83.92 0.77
3 0.18 8.93 0.18 1.02 71.56 0.89 0.33 13.29 0.33 1.03 78.50 0.89
5 0.29 13.54 0.29 0.91 88.40 0.81 0.27 7.47 0.27 0.89 87.11 0.81
10 0.36 11.81 0.36 0.96 86.16 0.95 0.72 18.39 0.72 0.96 81.93 0.95

B14 (8,20) 1 0.30 5.39 4.50 0.48 133.92 0.63 0.10 7.61 4.30 0.44 115.08 0.63
3 0.46 5.31 4.13 0.47 117.73 0.63 0.81 3.42 6.07 0.48 97.48 0.63
5 0.50 4.43 4.59 0.50 105.46 0.75 0.64 5.58 4.21 0.49 107.66 0.75
10 0.43 4.26 4.77 0.49 120.21 0.80 0.13 7.06 4.06 0.51 103.52 0.80

B15 (8,25) 1 0.03 2.01 3.55 0.87 65.21 0.71 0.14 6.83 3.67 0.87 68.04 0.71
3 0.21 5.41 3.77 0.80 67.40 0.77 0.36 2.23 3.79 0.84 74.58 0.77
5 0.17 1.95 3.76 0.84 65.58 0.79 0.28 3.35 3.94 0.80 67.69 0.79
10 0.36 2.04 3.75 1.05 67.55 0.89 0.15 1.91 4.03 0.92 68.80 0.89

B16 (8,30) 1 0.08 51.08 10.58 0.75 45.20 1.00 0.04 39.32 10.36 0.73 34.97 1.00
3 0.52 31.69 14.88 0.76 49.86 0.86 0.76 38.38 13.66 0.83 53.35 0.86
5 0.37 43.56 14.77 0.80 30.17 0.93 0.42 36.88 11.79 0.83 40.73 0.93
10 0.27 42.10 8.35 0.88 39.20 1.28 0.49 43.64 11.31 0.86 52.64 1.28

B17 (9,20) 1 0.04 9.82 42.06 0.55 220.47 0.84 0.11 8.80 44.80 0.55 228.22 0.84
3 0.13 7.01 39.32 0.56 204.10 0.67 0.20 16.08 44.82 0.56 188.51 0.67
5 0.57 6.32 33.91 0.62 186.02 0.68 0.29 13.87 45.44 0.57 169.32 0.68
10 0.25 15.25 33.06 0.66 214.30 0.96 0.28 4.69 45.34 0.59 186.90 0.96

B18 (9,25) 1 0.00 45.28 12.98 0.78 158.12 0.78 0.00 44.64 14.78 0.72 200.06 0.78
3 0.24 34.22 13.33 0.71 178.78 0.80 0.43 35.12 12.70 0.80 228.81 0.80
5 0.03 33.45 16.84 0.68 167.18 0.92 0.11 45.52 12.41 0.69 244.27 0.92
10 0.15 45.24 15.98 0.75 157.24 1.08 0.06 40.49 28.64 0.69 175.83 1.08

B19 (9,30) 1 0.03 42.40 0.77 0.77 134.87 1.18 0.04 47.03 0.59 0.78 142.30 1.18
3 0.44 43.16 0.89 0.74 143.19 1.06 0.25 45.49 1.11 0.79 123.20 1.06
5 0.11 42.03 1.22 0.74 115.09 1.45 0.10 39.37 0.64 0.75 122.89 1.45
10 0.35 23.60 2.79 0.86 123.19 1.57 0.11 38.27 2.10 0.77 109.46 1.57

B20 (10,20) 1 0.01 24.28 2.19 0.58 135.01 0.65 0.04 24.88 2.01 0.57 150.63 0.65
3 0.23 23.92 9.23 0.54 156.90 0.69 0.19 24.32 2.95 0.55 165.59 0.69
5 0.35 23.60 9.64 0.59 134.63 0.70 0.28 24.63 7.31 0.60 144.17 0.70
10 0.19 22.88 2.24 0.63 118.57 0.89 0.29 25.04 2.62 0.65 130.06 0.89

B21 (10,25) 1 0.00 47.80 115.53 0.61 246.99 1.02 0.00 35.73 131.34 0.62 205.23 1.02
3 0.02 46.10 127.92 0.61 215.16 1.12 0.04 45.53 151.11 0.60 237.05 1.12
5 0.04 42.90 107.31 0.68 252.52 1.05 0.09 45.24 153.95 0.60 177.75 1.05
10 0.26 36.21 109.13 0.75 178.67 1.44 0.24 42.55 183.06 0.72 243.54 1.44

B22 (10,30) 1 0.00 62.66 13.94 1.12 205.34 1.09 0.00 81.07 15.82 0.95 158.65 1.09
3 0.03 122.41 13.92 1.02 137.33 1.06 0.33 79.10 31.12 0.99 150.42 1.06
5 0.09 70.16 11.64 1.13 147.51 1.23 0.04 86.41 13.43 1.07 156.84 1.23
10 0.31 56.70 19.67 1.09 183.74 1.36 0.38 67.46 10.02 1.06 177.48 1.36

B23 (10,40) 1 0.10 456.79 3.54 1.10 38.53 1.40 0.06 321.95 2.08 1.16 34.11 1.40
3 0.18 296.80 2.08 1.20 38.00 1.37 0.21 418.63 2.79 1.15 36.06 1.37
5 0.15 432.46 2.59 1.24 29.16 1.49 0.14 547.25 2.80 1.19 35.61 1.49
10 0.33 369.49 2.21 1.34 31.96 1.81 0.49 319.49 3.15 1.23 37.22 1.81

B24 (10,50) 1 0.17 1964.71 10.03 1.68 53.50 2.54 0.03 1357.01 8.91 1.63 53.16 2.54
3 0.16 1676.72 8.91 1.68 63.20 2.62 0.15 1626.71 9.73 1.64 54.25 2.62
5 0.22 1537.81 10.12 1.74 58.06 2.81 0.27 1691.68 7.83 1.60 61.16 2.81
10 0.43 1417.33 9.82 1.87 60.08 3.60 0.17 1689.67 9.43 1.86 67.56 3.60

Average 0.25 110.60 11.67 0.75 91.20 0.98 0.29 108.96 13.81 0.74 91.16 0.98



Discretization based heuristics for the capacitated multi-facility Weber problem with convex polyhedral. . . 39

structure of Table 4 is similar to Table 2 and Ta-
ble 3. We have imposed an additional CPU time
limit of 3600 seconds for large instances. The DB-
I heuristic outperforms the others in 26 (28) out
of 72 cases for random (regular) test instances.
However, the efficiency of the DB-I heuristic sig-
nificantly diminishes on large instances. Only in-
stances B6 with 5 facilities and 100 customers can
be solved within CPU time limits. Moreover, the
DB-I heuristic can not produce a solution for 20
out of 72 cases that correspond to the instances
with 25 facilities and 500 customers for both ran-
dom and regular instances. On the other hand,
our findings are outstanding for the DB-II heuris-
tic on large instances. The DB-II heuristic yields
the best outcome on 46 (42) out of 72 cases for
large random (regular) test instances. Clearly, the
computational requirements of the DB-II heuris-
tic is quite reasonable for large instances when
compared to the DB-I heuristic. Lastly, we have
observed that the DB-III heuristic yields supe-
rior results in 2 out of 72 cases on regular in-
stances. The DB-III performs even faster than
the DB-II heuristic. Therefore, it can be used
as a compromise for larger instances where both
DB-I and DB-II heuristics require prohibitive so-
lution times. Finally, we should point on the DB-
III heuristic performs almost twice faster than the
DB-II heuristic does on large instances in average.

6. Conclusion

In this work, we have focused on the capaci-
tated multi-facility Weber problem with polyhe-
dral barriers (CMWP-B). We have suggested a
mathematical formulation for the CMWP-B and
its discrete equivalent that is a MILP problem.
Discretization based heuristic procedures for the
CMWP-B have been proposed. We have carried
out extensive computational experiments on ran-
domly generated test instances that are based on
standard CMWP instances. The proposed meth-
ods compute upper bounds for the optimal objec-
tive value of the CMWP-B.

The first discretization based heuristic solves the
mixed integer linear programming formulation us-
ing the customer locations as the set of candidate
facility locations. Its efficiency is improved by us-
ing a Lagrangean relaxation scheme and subgra-
dient algorithm that resulted in the second dis-
cretization based heuristic. Lastly, the third dis-
cretization based heuristic employs a tabu search
algorithm using a neighborhood search over cus-
tomer locations. Among the discretization based

heuristics, the first one yields the highest accu-
racy. However, its performance is limited with rel-
atively small instances. As a remedy, we have ap-
plied a Lagrangean relaxation scheme within the
second discretization based heuristic which con-
stitutes a compromise between accuracy and effi-
ciency. The performance of the third discretiza-
tion based heuristic is usually poor, however, its
performance is promising for large instances. Im-
plementing exact solution procedures can be a
good direction of research for the CMWP-B in the
future. Efforts to provide an effective branch and
bound algorithm is of high importance for this
type of location-allocation type problems. Last
but not least, a probabilistic extension of the
CMWP-B, where the customer locations and/or
their demand quantities are stochastic, is a worth-
while open research area.
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Table 4. The performance of the DB heuristics over large sized random and regular CMWP-B
instances based on Boyacı [48] instances.

Instance Random CMWP-B Instances Regular CMWP-B Instances
Name Size DB-I DB-II DB-III DB-I DB-II DB-III

(I, J) P % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU % Dev. CPU
B6 (5,100a) 1 0.03 1828.94 1.03 2.28 7.22 3.74 0.07 1871.62 0.66 2.17 5.85 3.74

3 0.20 1886.21 1.55 2.46 7.08 3.80 0.08 2014.49 1.27 2.19 9.48 3.80
5 0.13 1547.83 1.25 2.41 7.19 3.32 0.15 2198.07 0.83 2.63 7.13 3.32
10 0.29 1639.21 1.35 2.72 6.67 3.93 0.31 2301.38 0.97 2.57 8.93 3.93

B7 (5,250) 1 1.75 3630.16 6.74 13.46 8.05 5.48 1.21 3626.48 6.01 14.43 7.72 5.48
3 1.01 3630.67 6.08 14.20 7.37 6.20 1.19 3625.06 5.72 14.10 7.36 6.20
5 1.39 3628.52 5.06 13.38 7.23 6.14 1.06 3638.15 7.14 14.19 6.95 6.14
10 2.01 3626.56 7.27 14.89 7.07 6.72 0.99 3624.78 6.36 13.86 7.29 6.72

B25 (10,100) 1 1.82 3699.10 3.88 5.46 24.44 4.56 1.89 3602.56 4.57 4.91 22.57 4.56
3 1.52 3615.53 3.67 4.81 21.93 4.12 1.89 3604.93 2.92 5.18 24.27 4.12
5 1.12 3657.24 4.34 5.22 23.86 4.33 1.59 3649.64 2.35 5.41 24.04 4.33
10 2.89 3521.21 4.40 5.48 24.32 5.11 2.50 3605.03 4.17 4.97 23.01 5.11

B26 (20,40) 1 9.72 3639.06 56.09 1.86 239.90 3.45 8.50 3625.53 48.80 1.85 236.09 3.45
3 7.01 3632.89 64.83 1.76 281.70 3.36 10.09 3633.84 63.08 1.95 242.18 3.36
5 11.61 3631.01 58.21 1.96 231.54 3.49 10.98 3624.91 56.91 2.00 254.30 3.49

10 10.59 3622.99 62.21 2.23 236.63 4.27 8.53 3643.25 52.23 2.28 246.29 4.27
B27 (20,50) 1 8.43 3619.96 77.15 2.45 144.96 4.36 7.56 3622.60 80.12 2.44 157.92 4.36

3 6.70 3625.67 86.18 2.39 142.29 4.27 8.36 3621.60 89.58 2.32 153.58 4.27
5 8.87 3633.69 68.75 2.51 153.49 5.09 12.48 3641.95 90.35 2.54 150.77 5.09
10 11.43 3624.86 96.97 2.79 150.03 5.42 9.01 3630.88 83.07 2.95 167.62 5.42

B28 (20,250) 1 11.10 3670.45 17.38 55.72 26.30 35.27 10.41 3669.79 15.64 57.16 25.29 35.27
3 18.03 3722.43 16.26 55.57 25.51 37.97 12.32 3636.56 20.10 52.61 26.26 37.97
5 11.89 3698.75 18.52 58.54 25.84 39.17 11.90 3664.88 17.01 55.20 25.24 39.17

10 17.40 3784.30 16.69 57.62 27.21 43.92 10.96 3640.60 20.02 54.30 26.56 43.92
B29 (25,250a) 1 23.68 3792.63 22.23 72.10 39.07 37.96 22.35 3835.17 20.47 67.38 37.49 37.96

3 24.00 3803.01 21.17 66.36 34.41 44.34 27.05 3786.01 20.52 70.57 34.44 44.34
5 25.23 3879.52 22.64 68.93 34.98 50.14 24.81 3800.52 22.33 69.41 35.26 50.14
10 23.71 3999.63 20.30 73.25 35.46 48.43 23.48 3784.19 22.37 73.74 36.97 48.43

B30 (25,250b) 1 9.63 3812.81 9.28 71.35 21.36 48.12 13.71 3796.26 8.84 73.82 20.61 48.12
3 11.03 3804.33 9.37 74.53 19.70 51.78 11.60 3790.43 9.17 65.78 18.27 51.78
5 13.04 3805.01 10.92 72.72 21.19 55.35 12.35 3802.08 9.00 66.38 17.56 55.35
10 12.04 3799.99 10.39 71.40 18.94 60.52 10.97 3800.07 10.52 72.73 19.11 60.52

B31 (25,250c) 1 10.84 3769.46 9.10 68.75 14.92 65.95 10.17 3770.65 9.13 68.55 18.49 65.95
3 11.17 3769.92 8.33 66.51 17.49 61.66 8.15 3767.76 8.02 65.22 15.87 61.66
5 12.66 3777.18 9.00 69.42 15.22 72.64 11.44 3787.90 8.70 68.70 17.15 72.64
10 9.70 3778.33 5.97 71.59 17.97 65.99 8.98 3771.89 7.36 70.61 14.40 65.99

B32 (25,250d) 1 22.66 3758.52 14.04 68.08 21.65 60.69 25.28 3761.29 12.91 72.25 23.98 60.69
3 20.44 3764.54 13.32 69.92 24.45 54.80 22.35 3771.12 11.92 75.27 25.50 54.80
5 21.90 3765.79 12.00 67.80 21.19 64.30 24.40 3748.71 14.67 74.33 23.63 64.30
10 24.61 3761.55 13.47 73.74 23.38 70.62 23.64 3768.80 13.36 72.50 24.48 70.62

B33 (25,250e) 1 13.72 3931.19 6.89 77.40 17.43 59.38 16.66 3847.32 5.55 68.52 15.59 59.38
3 13.80 3788.08 5.00 71.64 15.62 66.10 12.74 3862.72 5.58 72.49 17.48 66.10
5 13.32 3782.14 5.68 72.93 16.13 64.92 12.21 3938.20 5.38 73.00 17.25 64.92
10 12.46 3796.71 5.95 72.69 19.59 68.20 15.89 4070.35 4.81 75.19 15.81 68.20

B34 (25,500a) 1 N/A N/A 5.78 323.61 9.26 155.23 N/A N/A 5.24 328.38 8.71 155.23
3 N/A N/A 5.16 337.02 6.55 162.01 N/A N/A 5.70 309.09 5.61 162.01
5 N/A N/A 4.85 324.65 5.48 167.10 N/A N/A 4.87 309.49 5.14 167.10
10 N/A N/A 5.07 339.89 5.70 182.96 N/A N/A 5.30 323.41 4.86 182.96

B35 (25,500b) 1 N/A N/A 2.20 334.21 12.95 92.05 N/A N/A 2.76 318.95 12.32 92.05
3 N/A N/A 1.64 329.23 13.67 104.66 N/A N/A 3.61 336.81 13.52 104.66
5 N/A N/A 3.04 322.77 13.66 96.81 N/A N/A 2.84 346.44 13.63 96.81
10 N/A N/A 3.82 340.62 13.14 119.04 N/A N/A 2.48 330.88 12.51 119.04

B36 (25,500c) 1 N/A N/A 8.97 303.48 10.47 123.60 N/A N/A 8.44 318.49 11.78 123.60
3 N/A N/A 7.29 310.64 12.65 114.78 N/A N/A 8.55 314.52 10.74 114.78
5 N/A N/A 7.19 318.15 10.96 126.00 N/A N/A 7.16 324.89 13.20 126.00
10 N/A N/A 7.31 315.51 13.52 129.35 N/A N/A 8.13 311.83 10.78 129.35

B37 (25,500d) 1 N/A N/A 2.78 319.46 7.40 161.42 N/A N/A 3.23 332.95 7.74 161.42
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5 32.11 4638.97 27.47 133.93 75.84 73.29 33.33 5049.48 29.48 146.09 77.99 73.29
10 32.43 3728.11 30.00 148.43 73.74 95.08 35.92 4329.07 28.14 140.66 75.60 95.08

Average 13.17a 3652.10a 18.22 122.66 47.52 63.44 13.25a 3708.13a 18.19 122.99 47.94 63.44
aThese average values are calculated excluding unavailable values shown as N/A
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M. Hakan Akyüz received a PhD degree from the
Department of Industrial Engineering at Boğaziçi Uni-
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1. Introduction

Thermally coupled magneto-hydrodynamics has
many applications including in electromagnetic
pumping design [35], electromagnetic filtration
[4], contact-less electromagnetic stirring [32] and
damping convective flow in metal-like melt [34].
Magnetohydrodynamics in general has broad
applications including fusion [19], underwater
propulsion [18], nuclear reactors [13], metallurgy
[1, 2, 11, 31] and astrophysics [30]. In all of these
applications, qualitative and quantitative under-
standing of the dynamics is important to achieve
optimal operating conditions. This has led to
considerable research efforts over the past three
decades into the development of theoretical, see
e.g [16, 24, 26, 27, 29] and efficient and accurate
computational techniques, see e.g. [8,9,20,21] for
MHD equations. Majority of the numerical anal-
ysis work done on the equations has been for
steady state equations. In [17, 23, 25, 33], time
stepping schemes for unsteady MHD equations

have been analyzed. However, these work consider
MHD equations where thermal effects are negli-
gible. Thermally coupled MHD equations model
a complex flow phenomena which is in general
three dimensional, highly nonlinear and repre-
sents multi-physics.

In this work, we propose and analyze a de-
coupled time stepping scheme for the thermally
coupled MHD equations. It uses a semi-implicit
Crank-Nicolson scheme, which combines an im-
plicit treatment of the second derivative terms,
a semi-implicit second order extrapolation of the
nonlinear convective terms and an explicit treat-
ment of the temperature coupling term in the
Navier-Stokes equations. The proposed scheme
solves the MHD equations and the heat equation
separately in each time step (without iteration)
allowing the possibility of optimizing the subprob-
lem’s respective physics. We show unconditional
stability of the scheme and provide a complete er-
ror analysis for fully discrete scheme using finite
element spatial discretization.
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The remaining of the paper is organized as fol-
lows: The continuum problem and some prelimi-
naries are presented in Section 2. In Section 3, we
present the decoupled time-stepping scheme and
analyze its stability, accuracy and convergence.
Finally, we present a numerical example that il-
lustrates our theoretical results.

2. Continuum problem and

preliminaries

To begin with,we present some notations and ba-
sic results that will be used throughout the article.

2.1. Continuum problem

The non-dimensional Boussinesq equations de-
scribing thermally coupled MHD equations are
(see for e.g. [15])





∂u

∂t
− Prθ∆u+ (u · ∇)u+ Prθ∇p

− S(∇×B)×B = PrθRaθi3 + f1 ,

∂B
∂t + PrB∇× (∇×B)

− ∇× (u×B) = 0 ,

∂θ
∂t − ∆θ + u · ∇θ = f2 ,

∇ · u = 0 ,

∇ ·B = 0 ,

(1)

in (0, T ], where T denotes time and Ω ⊂ RI d(d =
2, 3) a bounded region with Lipschitz-continuous
boundary Γ. Moreover the different fields ap-
pearing in the equations are u(x, t) the fluid
velocity, B(x, t) the magnetic field, θ the tem-
perature, p(x, t) the pressure, f the source and
i3 the unit basis vector. The non-dimensional
numbers that appear in the MHD equations are
S := PrBPrθH

2, the Hartman number H, the
Rayleigh number Ra, the thermal Prandtl num-
ber Prθ and the magnetic Prandtl number PrB.
The MHD system we consider is supplemented
with the initial conditions

u(x, 0) = u0(x) , θ(x, 0) = θ0(x) and

B(x, 0) = B0(x) in Ω ,
(2)

along with the boundary conditions





u|Γ = g with
∫
Γ g · n ds = 0 ,

θ|Γ = q̃ ,

B · n|Γ = q with
∫
Γ q ds = 0 ,

P rB (∇×B)× n|Γ
− (u×B)× n|Γ = k

with k · n = 0 ,
∫
Γ k ds = 0 .

(3)

2.2. Function spaces

For a Banach space X, we denote by Lp(0, T ;X)
the time-space function space endowed with the

norm ‖w‖Lp(0,T ;X) :=
(∫ T

0 ‖w‖pX dt
)1/p

if 1 ≤
p <∞ and ess supt∈[0,T ] ‖w‖X if p = ∞ .

We will often use the abbreviated notation
Lp(X) := Lp(0, T ;X) for convenience. The
symbol C([0, T ];X) denotes the set of contin-
uous functions u : [0, T ] → X endowed with
the norm ‖u‖C(0,T ;X) := max0≤t≤T ‖u(t)‖X .

For any integer k ≥ 1, let W k,p(Ω) be the
Sobolev space of functions in Lp(Ω) with deriva-
tives up-to the kth order endowed with the

norm ‖φ‖m,p :=


 ∑

|α|≤m

∫

Ω
|∂αxφ(x)|pdx




1

p

where

∂αxφ(x) :=
∂|α|

∂
α1
x1

···∂αd
xd

φ(x) , α := (α1, · · · , αd), αi ≥

0, |α| :=
d∑

i=1

αi .

We denote by Hk(Ω) the space W k,2(Ω), when
p = 2, and drop the subscripts p(= 2) in referring
to the norm in Hk(Ω). Moreover, we will use the
following simplified norm notations:

‖u‖ := ‖u‖L2(Ω) and ‖u‖∞ := ‖u‖L∞(Ω) .

For g ∈ H
1

2 (Γ) satisfying
∫
Γ g · n ds = 0

and q ∈ H
1

2 (Γ) satisfying
∫
Γ q ds = 0, define

H1
n,q(Ω) := {v ∈ H1(Ω) : v · n|Γ = q } ,

Vg := {v ∈ H1(Ω) : v|Γ = g , ∇·v = 0 } and
H1

q̃ (Ω) := {θ ∈ H1(Ω) : θ|Γ = q̃ } .

We write V = V0, H
1
n(Ω) = H1

n,0(Ω) and V :=

{v ∈ H1(Ω) : ∇ · v = 0 in Ω }. We in-
troduce the time discrete space lp(Z) associated
with Lp(0, T ;Z); lp(Z) is the space of Z-valued
sequences w := {wn;n = 1, . . . , N} with norm
‖ · ‖lp(Z) defined by
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‖w‖lp(Z) :=





(∆t
N∑

n=1

‖wn‖pZ)1/p if 1 ≤ p <∞

max
1≤n≤N

‖wn‖Z if p = ∞ .

For later purposes, we recall the inequality

λm‖B‖21 ≤ ‖∇·B‖2+‖∇×B‖2 ∀B ∈ H1
n(Ω) , (4)

the Poincaré inequality

‖v‖2 ≤ λp‖∇v‖2 ∀v ∈ H1
0(Ω) ,

the Gagliardo-Nirenberg interpolation inequality
[3]

‖u‖q ≤ C‖∇u‖λp‖u‖1−λ
r ∀u ∈ W1,p(Ω) ∩ Lr(Ω)

for 0 ≤ λ ≤ 1 and 1
q = λ(1p − 1

d) + (1 − λ)1r and

the Agmon’s inequality

‖u‖∞ ≤ C‖u‖
1

2

1 ‖u‖
1

2

2 ∀u ∈ H2(Ω) ∩H1
0(Ω) .

We define the explicitly skew-symmetrized trilin-
ear forms

c1(u,v,w) := 1
2

∫
Ω [(u · ∇)v ·w − (u · ∇)w · v] dΩ ,

=
∫
Ω

[
(u · ∇)v ·w + 1

2(∇ · u)v ·w
]
dΩ ,

for all u,v,w ∈ H1(Ω) with (u ·n)v ·w = 0 on Γ
and

c2(u, θ, ψ) := 1
2

∫
Ω [(u · ∇)θ ψ − (u · ∇)ψ θ] dΩ ,

=
∫
Ω

[
(u · ∇)θ ψ + 1

2(∇ · u)ψ θ
]
dΩ ,

for all u ∈ H1(Ω), θ, ψ ∈ H1(Ω) with (u ·n)θ ψ =
0 on Γ.

Moreover, we define the bilinear forms

b(v, r) := −
∫

Ω
Prθ r∇ · v dΩ ,

e(θ,v) := PrθRa

∫

Ω
θi3 · v dΩ ,

and the trilinear form

d(B,C,v) :=

∫

Ω
B× (∇×C) · v dΩ .

Notice that the trilinear form d(·, ·, ·) is skew-
symmetric with respect to the first and last ar-
guments, i.e., d(B,C,v) = −d(v,C,B).

We end this section with a result regarding the ex-
istence and uniqueness of solutions to the initial-
boundary value problem (1)-(3) whose proof can
be furnished by using Galerkin approximations,
a-priori estimates and compactness methods.

Proposition 1. Assume that the given func-
tions f , g, k, q, q̃, u0 and B0 satisfy
f1 ∈ L2(0, T ;H−1(Ω)), f2 ∈ L2(0, T ;H−1(Ω)),

g ∈ H1(0, T ;H
1

2 (Γ)), k ∈ L2(0, T ;H− 1

2 (Γ)) ,

q ∈ H1(0, T ;H
1

2 (Γ)) , q̃ ∈ H1(0, T ;H
1

2 (Γ)),∫
Γ g · n ds = 0 ,

∫
Γ q ds = 0, k · n|Γ =

0 , u0 ∈ Vg(·,0) , B0 ∈ H1
n,q(·,0)(Ω) and

θ0 ∈ H1q̂(·, 0)(Ω). Then, the problem (1)-
(3) has at least one solution (u, p, θ,B) such
that u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Vg),
θ ∈ L2(0, T ;H1

q̃ (Ω)) ∩ L∞(0, T ;L2(Ω)), B ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

n,q(Ω)) and p ∈
L2(0, T ;L2

0(Ω)) . In two-spatial dimension (d =
2), these solutions are unique.

2.3. Properties of finite element spaces

and projections

In order to keep the exposition simple, we re-
strict our attention to convex polyhedral domains.
Let Th be a family of subdivisions (e.g. triangula-
tion) of Ω ⊂ Rd satisfying Ω = ∪K∈ThK so that
diameter(K) ≤ h and any two closed elementsK1

and K2 ∈ Th are either disjoint or share exactly
one face, side or vertex. Suppose further that Th is
a shape regular and quasi-uniform triangulation.
That is, there exists a constant C > 0 such that
the ratio between the diameter hK of an element
K ∈ Th and the diameter of the largest ball con-
tained in K is bounded uniformly by C, and hK is
comparable with the mesh size h = maxK∈Th hK
for all K ∈ Th . For example, Th consists of trian-
gles for d = 2 or tetrahedra for d = 3 that are non-
degenerate as h → 0. We choose families of finite
dimensional spaces Xh ⊂ H1(Ω), Yh ⊂ H1

n(Ω),
Zh ⊂ H1(Ω) and Qh ⊂ L2(Ω), parameterized by
a parameter h such that 0 < h < 1. Let gh, qh
and q̃h be approximations of g, q and q̃, respec-
tively, such that there exists vh ∈ Xh, Ch ∈ Yh

and satisfying vh|Γ = gh , Ch · n|Γ = qh and
θh|Γ = q̃h . We then define Xh,gh := Xh ∩ H1

gh ,
Yh,qh := {Ch ∈ Yh(Ω) : Ch · n|Γ = qh },
Zh,q̃h := Zh ∩ H1

q̃h and Qh := Qh ∩ L2
0(Ω) . We

also define the discretely divergence free space is
given by

Vh,gh := {vh ∈ Xh,gh : (∇ · vh, rh) = 0∀rh ∈ Qh}.
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We set Vh := Vh,0, Yh := Yh,0, Zh := Zh,0 and
Xh = Xh,0 .

We make the following assumptions on the finite
dimensional subspaces Xh,Yh,Zh and Qh:

Assumption A1.

We have the approximation properties: there ex-
ists an integer k and a constant C, independent
of h, v, B, θ and r, such that

inf
vh∈Xh

[‖v − vh‖+ h‖∇(v − vh)‖] ≤ Chℓ+1‖v‖ℓ+1

inf
Bh∈Yh

[‖B−Bh‖+h‖∇(B−Bh)‖] ≤ Chℓ+1‖B‖ℓ+1

inf
θh∈Zh

[‖θ − θh‖+ h‖∇(θ − θh)‖] ≤ Chℓ+1‖θ‖ℓ+1

and
inf

rh∈Qh

‖r − rh‖ ≤ Chℓ‖r‖ℓ

for all v ∈ Hℓ+1(Ω) ,B ∈ Hℓ+1(Ω) , θ ∈ Hℓ+1(Ω) ,
and r ∈ Hℓ(Ω) 1 ≤ ℓ ≤ k .

Assumption A2. (Discrete inf-sup condition)
For every rh ∈ Qh, there exists a nonzero func-
tion vh ∈ Xh and β > 0 such that

|(rh,∇ · vh)| ≥ β‖∇vh‖‖rh‖ ,

with an inf-sup constant β > 0 that is indepen-
dent of the mesh size h.

Assumption A3. For any integers l and m
(0 ≤ l ≤ m ≤ 1) and any real numbers p and
q (1 ≤ p ≤ q ≤ ∞) it holds that

‖ψh‖m,q ≤ chl−m+d(1/q−1/p)‖ψh‖l,p ∀ψh ∈ Xh .

There are many conforming finite element spaces
satisfying the assumptions (A1)-(A3). One may
choose, for example, the Taylor-Hood element
pair for the velocity and pressure (i.e, piecewise
quadratic polynomial for velocity and piecewise
linear polynomial for pressure), and piecewise
quadratic polynomials for the magnetic field and
temperature. Then, hypothesis (A1)-(A3) hold
with k = 2.

We define Stokes, Maxwell and Ritz projections as
follows: Given (u, p) ∈ H1(Ω)×L2

0(Ω), θ ∈ H1(Ω)
and B ∈ H1(Ω), we define the Stokes projection

(P s
hu, P

s
hp) ∈ Xh,gh × Qh as the solution of the

problem

Prθ(∇(u− P s
hu),∇vh) + b(vh, (p− P s

hp))

= 0 ∀vh ∈ Xh ,

b(u− P s
hu, rh) = 0 ∀rh ∈ Qh ,

(5)

the Maxwell projection Pm
h B ∈ Yh,qh as the so-

lution of the problem

(∇× (B − Pm
h B),∇× φh)

+ (∇ · (B− Pm
h B),∇ · φh)

= 0 ∀φh ∈ Yh ,

(6)

and the Ritz projection P r
hθ ∈ Zh,q̃h as the solu-

tion of the problem

(∇(θ − P r
hθ),∇ψh) = 0 ∀ψh ∈ Zh , (7)

We have the following convergence and bounded-
ness results for these projections.

Lemma 1. Suppose that assumptions (A1)-(A2)
hold with a positive integer k, and that (u, p) ∈
Hk+1 × (L2

0(Ω) ∩Hk(Ω)), θ ∈ Hk+1(Ω) and B ∈
Hk+1(Ω). Then, for any h ∈ (0, h0] the Stokes
projection (P s

hu, P
s
hp) of (u, p) satisfies

‖u− P s
hu‖1 + ‖p− P s

hp‖ ≤ chk(‖u‖k+1 + ‖p‖k) ,
(8)

the Maxwell projection Pm
h B of B satisfies

‖B− Pm
h B‖1 ≤ chk‖B‖k+1 , (9)

and the Ritz projection P r
hθ of θ satisfies

‖θ − P r
hθ‖1 ≤ chk‖θ‖k+1 . (10)

Moreover, suppose that assumption (A3) holds.
Then, P s

hu, P
m
h B and P r

hθ satisfy

‖P s
hu‖∞ + ‖P s

hu‖1,3 ≤ c(‖u‖2 + ‖p‖1) , (11)

‖Pm
h B‖∞ + ‖Pm

h B‖1,3 ≤ c‖B‖2 , (12)

and

‖P r
hθ‖∞ + ‖P r

hθ‖1,3 ≤ c‖θ‖2 . (13)
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Proof. The proof of (8)-(10) follows by the regu-
larity properties of the Stokes, Maxwell and Ritz
projections and by duality argument. In order to
prove (11)-(13), we first notice that Gagliardo-
Nirenberg’s inequality yields

‖φ‖0,∞ + ‖φ‖1,3 ≤ C‖φ‖1/21 ‖φ‖1/22 .

Therefore the approximation properties (8)-(1)
together with Agmon’s inequality yield the de-
sired result. �

Let ∆t denote the step size for t so that tn =
n∆t, n = 0, 1, 2, . . . , N . For notational conve-

nience, we denote φn := φ(tn), D(φn) := φn+1−φn

∆t ,

φn+1/2 := φn+1 + φn and I(φn+1/2) := φn +
1
2φ

n−1 − 1
2φ

n−2, [5, 14].

Lemma 2. If φ(t) is smooth enough, then

(i)‖φn+1/2 − φ(tn+1/2)‖2k
≤ (∆t)3

48

∫ tn+1

tn
‖∂2t φ‖2k dt ,

(ii)‖∂tφ(tn+1/2) − D(φ(tn))‖2

≤ (∆t)3

1280

∫ tn+1

tn
‖∂3t φ(t)‖2 dt ,

(iii)‖I(φ(tn+1/2)) − φ(tn+1/2)‖2Hk

≤ c(∆t)3/2
∫ tn+1

tn
‖∂2t φ(t)‖2k dt.

Moreover, let P s
hu be the Stokes projection of u,

Pm
h B the Maxwell projection of B and P r

hθ the
Ritz projection of θ. If assumptions (A1)-(A2)
hold with a positive integer k, then

(iv)‖D(u(tn+1) − P s
hu(tn+1))‖

≤ chk√
∆t

‖(∂tu, ∂tp)‖L2(tn,tn+1;Hk+1×Hk) ,

(v)‖D(B(tn+1) − Pm
h B(tn+1))‖

≤ chk√
∆t

‖∂tB‖L2(tn,tn+1;Hk+1) ,

(vi)‖D(θ(tn+1) − P r
hθ(tn+1))‖

≤ chk√
∆t

‖∂tθ‖L2(tn,tn+1;Hk+1) .

Proof. The proof of (i)-(iii) follows by Taylor
expansion with integral remainder whereas the
proof of (iv)-(vi) follows as a consequence of
Lemma 1. �

We will need the following well known discrete
Grönwall lemma.

Lemma 3. (Discrete Grönwall lemma) Let
d, ∆t, {an}n≥0, {bn}n≥0, {cn}n≥0, and {dn}n≥0

be nonnegative numbers such that

am +∆t
m∑

n=1

bn ≤ ∆t
m−1∑

n=0

andn +∆t
m−1∑

n=0

cn + d ,

for m ≥ 1 . Then we have

am +∆t
m∑

n=1

bn ≤ exp(∆t
m−1∑

n=0

dn)(∆t
m−1∑

n=0

cn + d)

for m ≥ 1 .

A proof of this result can be found, for e.g, in [12].

3. Decoupled Crank-Nicolson

time-stepping scheme

We discretize the system (1) by Crank-Nicholson
scheme in time and Galerkin finite element in
space. The time discretization combines an im-
plicit treatment of the second derivative terms, a
semi-implicit second-order extrapolation for the
nonlinear convective terms and explicit treatment
of the temperature coupling term in the Navier-
Stokes equations.

Algorithm 1. Given (ui
h,B

i
h, p

i
h, θ

i
h) ∈ Xh,gi

h
×

Yh,qi
h

× Qh × Zh,q̃i
h
, i = 0, 1, find

{(un
h,B

n
h, p

n
h, θ

n
h) ∈ Xh,gn

h
× Yh,qn

h
× Qh × Zh,q̃i

h

such that





(Dun
h,vh) + Prθ(∇u

n+1/2
h ,∇vh)

+ c1(I(un+1/2
h ),u

n+1/2
h ,vh)

+ b(vh, p
n+1/2
h )

+ Sd(I(Bn+1/2
h ),B

n+1/2
h ,vh)

= e(I(θn+1/2
h ),vh)

+ (f
n+1/2
1 ,vh) ∀vh ∈ Xh ,

b(u
n+1/2
h , rh) = 0 ∀rh ∈ Qh ,

(DBn
h,φh) + PrB[(∇×B

n+1/2
h ,∇× φh)

+ (∇ ·Bn+1/2
h ,∇ · φh)]

+ d(u
n+1/2
h ,φh, I(Bn+1/2

h ))

= (kn+1/2,φh)Γ ∀φh ∈ Yh ,

(Dθnh , ψh) + (∇θn+1/2
h ,∇ψh)

+ c2(I(un+1/2
h ), θ

n+1/2
h , ψh)

= (f
n+1/2
2 , ψh) ∀ψh ∈ Zh ,

(14)

for n = 1, . . . , N , where u
n+1/2
h , B

n+1/2
h , θ

n+1/2
h

and p
n+1/2
h are the intermediate variables defined

by u
n+1/2
h := un+1

h + un
h, B

n+1/2
h := Bn+1

h + Bn
h,

θ
n+1/2
h := θn+1

h + θnh and p
n+1/2
h := pn+1

h + pnh,
respectively.
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3.1. Stability analysis

In this section, we demonstrate the unconditional
energy stability of the decoupled scheme proposed
in Section 2. We first recall a few basic facts and
some notation that are needed below. Let us de-
fine the discrete trace spaces of Xh, Yh and Zh

by

Λh(Γ) := {gh ∈ H
1

2 (Γ) : there exists

vh ∈ Xh such that λh|∂K∩Γ

= vh|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅} ,

Λ̂h(Γ) := {qh ∈ H
1

2 (Γ) : there exists

Ch ∈ Yh such that qh|∂K∩Γ

= Ch · n|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅}

and

Λ̃h(Γ) := {q̃h ∈ H
1

2 (Γ) : there exists

φh ∈ Zh such that q̃h|∂K∩Γ

= φh|∂K∩Γ ∀ K ∈ Th
and ∂K ∩ Γ 6= ∅} .

Moreover, we define

Λh,0(Γ) := {λh ∈ Λh(Γ) :

∫

Γ
λh · n ds = 0 }

and

Λ̂h,0(Γ) := {λh ∈ Λ̂h(Γ) :

∫

Γ
λh ds = 0 } .

Then there exists a discrete extension operator
Eh : Λh,0(Γ) → Vh such that Eh(gh)|Γ = gh and
‖Eh(gh)‖1 ≤ C‖gh‖1/2,Γ , see [10, 28] . Similarly,

we can define discrete extension operators Êh and

Ẽh such that Êh(qh)·n|Γ = qh and Ẽh(q̃h)|Γ = q̃h .

In order to prove, we first define suitable bound-

ary extensions. Let (Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h)) ∈

Vh,gh × Yh,qn
h

× Zh,q̃n
h

be the extension of

(gn
h , q

n
h , q̃

n
h) for each n ≥ 0. Set ζnh = un

h −
Eh(g

n
h),ξ

n
h = Bn

h − Êh(q
n
h) and χ

n
h = θnh − Ẽh(q̃

n
h)

so that (ζnh, ξ
n
h, χ

n
h) ∈ Vh ×Yh × Zh.

We make the following assumptions about the ex-

tension operators Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h) .

Assumption A4.

The extension operators satisfy

(i) |c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ δ(‖∇ζ
n−1/2
h ‖+ ‖∇ζ

n−3/2
h ‖)‖∇ζ

n+1/2
h ‖

and

|d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))|
≤ δ∗(‖∇ × ξ

n−1/2
h ‖+ ‖∇ × ξ

n−3/2
h ‖)

‖∇ × ξ
n+1/2
h ‖ ,

(ii) |Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h )), ζ

n+1/2
h )|

≤ δ∗∗(‖∇ × ξ
n−1/2
h ‖+ ‖∇ × ξ

n−3/2
h ‖)

‖∇ζ
n+1/2
h ‖ ,

(iii) |c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )|

≤ δ∗∗∗(‖∇ζ
n−1/2
h ‖+ ‖∇ζ

n−3/2
h ‖)

‖∇χn+1/2
h ‖ .

Theorem 1. Suppose assumption (A4) holds
and let {(gn

h , q
n
h , q̃

n
h)}Nn=0 satisfies (gh, qh, q̃h) ∈

l4(Λh,0(Γ)) × l4(Λ̂h,0(Γ)) × l4(Λ̃h,0(Γ)) and

(Dgh,Dqh,Dq̃h) ∈ l2(Λh,0(Γ)) × l2(Λ̂h,0(Γ)) ×
l2(Λ̃h,0(Γ)), and let f1 ∈ l2(H−1(Ω)) , f2 ∈
l2(H−1(Ω)) and k ∈ l2(H−1/2(Γ)). Suppose
that (ui

h,B
i
h, θ

i
h) ∈ Vh,gi

h
× Yh,qi

h
× Zh,q̃i

h
for

i = 0, 1 are such that ‖u2
h‖2 +∆t

1∑

i=0

‖ui+1/2
h ‖21 <

∞, ‖B2
h‖2 + ∆t

1∑

i=0

‖Bi+1/2
h ‖21 < ∞ and

‖θ2h‖2 + ∆t
1∑

i=0

‖θi+1/2
h ‖21 < ∞ as h,∆t → 0 .

Then the solutions (un
h,B

n
h, θ

n
h) of (14) sat-

isfies ‖uh‖l∞(L2(Ω)) + ‖∇uh‖l2(L2(Ω)) < M1 ,
‖Bh‖l∞(L2(Ω)) + ‖∇Bh‖l2(L2(Ω)) < M2 and
‖θh‖l∞(L2(Ω)) + ‖∇θh‖l2(L2(Ω)) < M3 , for some
constants M1,M2,M3 > 0.

Proof. Substituting un
h = ζnh+Eh(g

n
h), θ

n
h = χn

h+

Ẽh(q̃
n
h) and Bn

h = ξnh+ Êh(q
n
h) into (14), then set-

ting (vh,φh, ψh) = (ζ
n+1/2
h , ξ

n+1/2
h , χ

n+1/2
h ) and

using the skew-symmetry of c1(·, ·, ·) and c2(·, ·, ·),
we obtain
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



(Dζnh , ζ
n+1/2
h ) + Prθ‖∇ζ

n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ (f
n+1/2
1 , ζ

n+1/2
h )− (DEh(g

n
h), ζ

n+1/2
h )

+ e(I(χn+1/2
h ), ζ

n+1/2
h )

− Prθ(∇Eh(g
n+1/2
h ),∇ζ

n+1/2
h )

+ e(I(Ẽh(q̃
n+1/2
h )), ζ

n+1/2
h )

− c1(I(Eh(g
n+1/2
h )), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I((Êh(q
n+1/2
h )), Êh(q

n+1/2
h )), ζ

n+1/2
h )

− c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h )), ζ

n+1/2
h )

=:
∑9

i=1A
n
i

(Dξnh , ξ
n+1/2
h ) + PrB[‖∇ × ξ

n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ (kn+1/2, ξ
n+1/2
h )Γ − (DÊh(q

n
h), ξ

n+1/2
h )

− PrB(∇× Êh(q
n+1/2
h ),∇× ξ

n+1/2
h )

− PrB(∇ · Êh(q
n+1/2
h ),∇ · ξn+1/2

h )

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(Êh(q

n+1/2
h )))

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))

(Dχn
h , χ

n+1/2
h ) + ‖∇χn+1/2

h ‖2 ≤ (f
n+1/2
2 , χ

n+1/2
h )

− (DẼh(q̃
n
h), χ

n+1/2
h )

− (∇Ẽh(q̃
n+1/2
h ),∇χn+1/2

h )

− c2(I(Eh(g
n+1/2
h )), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )

− c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h ) .

(15)

Let us next bound each term on the right-hand
side of (15)1 except the last two. The first five
terms can be estimated using Cauchy/Duality
and Young’s inequalities to obtain

|
5∑

i=1

An
i | ≤ C[‖fn+1/2

1 ‖2−1 + ‖∇Eh(g
n+1/2
h )‖2

+ ‖I(Ẽh(q̃
n+1/2
h ))‖2 + ‖DEh(g

n
h)‖2−1]

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2 + 9

2Prθ
‖I(χn+1/2

h )‖2 .

We estimate An
6 and An

7 using Hölder’s,
Gagliardo-Nirenberg and Young’s inequalities as
follows

|An
6 | = |c1(I(Eh(g

n+1/2
h )), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ C‖I(Eh(g
n+1/2
h ))‖L4(Ω)[

‖∇Eh(g
n+1/2
h )‖‖ζn+1/2

h ‖L4(Ω)

+ ‖∇ζ
n+1/2
h ‖‖Eh(g

n+1/2
h )‖L4(Ω)

]

≤ C‖I(Eh(g
n+1/2
h ))‖1‖Eh(g

n+1/2
h )‖1

‖∇ζ
n+1/2
h ‖

≤ C
2∑

i=0

‖Eh(g
n−i+1/2
h )‖41

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2

and

|An
7 | = |Sd(I(Êh(q

n+1/2
h )), Êh(q

n+1/2
h )), ζ

n+1/2
h )|

≤ C‖I(Êh(q
n+1/2
h ))‖L4(Ω)

‖∇ × Êh(q
n+1/2
h ))‖‖ζn+1/2

h ‖L4(Ω)

≤ C
2∑

i=0

‖Êh(q
n−i+1/2
h )‖41

+ Prθ
18 ‖∇ζ

n+1/2
h ‖2 .

Collecting these estimates in (15)1, we obtain

(Dζnh , ζ
n+1/2
h ) + 11Prθ

18 ‖∇ζ
n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ C[‖fn+1/2
1 ‖2−1 + ‖DEh(g

n
h)‖2−1

+ ‖gn+1/2
h ‖21

2
,Γ
+

2∑

i=1

‖q̃n−i+1/2
h ‖21

2
,Γ

+
2∑

i=0

(‖qn−i+1/2
h ‖41

2
,Γ
+ ‖gn−i+1/2

h ‖41
2
,Γ
)]

+
9

2Prθ
‖I(χn+1/2

h )‖2

− c1(I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )

− Sd(I(ξn+1/2
h ), Êh(q

n+1/2
h ), ζ

n+1/2
h ) .

(16)

We employ similar arguments to bound the terms
on the right-hand-side of (15)2 and (15)3 to obtain
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(Dξnh , ξ
n+1/2
h ) + PrB

2 [‖∇ × ξ
n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ C[‖kn+1/2‖2− 1

2
,Γ

+ ‖qn+1/2
h ‖21

2
,Γ
+ ‖DÊh(q

n
h)‖2−1

+ ‖gn+1/2
h ‖41

2
,Γ
+

2∑

i=1

‖qn−i+1/2
h ‖41

2
,Γ
]

− d(Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))
(17)

and

(Dχn
h , χ

n+1/2
h ) + 1

2‖∇χ
n+1/2
h ‖2 ≤ C[‖fn+1/2

2 ‖2−1

+ ‖DẼh(q̃
n
h)‖2−1

+ ‖q̃n+1/2
h ‖21

2
,Γ
+ ‖q̃n+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖gn−i+1/2
h ‖41

2
,Γ
]

− c2(I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h ) .

(18)

Finally we estimate the last terms in (16)-(18)
using assumption (A4) and Young’s inequality to
obtain

|c1 ( I(ζn+1/2
h ), Eh(g

n+1/2
h ), ζ

n+1/2
h )|

≤ Prθ
18 ‖∇ζnh‖2

+ Prθ
9 (‖∇ζ

n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2)

|d( Eh(g
n+1/2
h ), ξ

n+1/2
h , I(ξn+1/2

h ))|
≤ PrB

8 ‖∇ × ξ
n+1/2
h ‖2

+ PrB
16 (‖∇ × ξ

n−3/2
h ‖2 + ‖∇ × ξ

n−1/2
h ‖2)

|Sd( I(ξnh), Êh(q
n+1/2
h )), ζ

n+1/2
h )|

≤ Prθ
18 ‖∇ × ζ

n+1/2
h ‖2

+ PrBS
9 (‖∇ × ξ

n−3/2
h ‖2 + ‖∇ × ξ

n−1/2
h ‖2)

|c2 ( I(ζn+1/2
h ), Ẽh(q̃

n+1/2
h ), χ

n+1/2
h )|

≤ 1
18‖∇χ

n+1/2
h ‖2

+
Pr2

θ

9ǫ (‖∇ζ
n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2) ,

(19)

where ǫ is a suitably chosen positive constant.
Employing these estimates in (16)-(18), we obtain

(Dζnh , ζ
n+1/2
h ) + Prθ

2 ‖∇ζ
n+1/2
h ‖2

+ Sd(I(Bn+1/2
h ), ξ

n+1/2
h , ζ

n+1/2
h )

≤ C[‖fn+1/2
1 ‖2−1

+ ‖DEh(g
n
h)‖2−1 + ‖gn+1/2

h ‖21
2
,Γ

+
2∑

i=0

(‖qn−i
h ‖41

2
,Γ
+ ‖gn−i

h ‖41
2
,Γ
)]

+
9

2Prθ
‖I(χn+1/2

h )‖2

+
∑2

i=1 ‖q̃
n−i+1/2
h ‖21

2
,Γ

+ Prθ
9 (‖ζn−3/2

h ‖21 + ‖ζn−1/2
h ‖21)

+ PrBS
9 (‖ξn−3/2

h ‖21 + (‖ξn−1/2
h ‖21) ,

(Dξnh , ξ
n+1/2
h ) + 5PrB

8 [‖∇ × ξ
n+1/2
h ‖2

+ ‖∇ · ξn+1/2
h ‖2]

+ d(ζ
n+1/2
h , ξ

n+1/2
h , I(Bn+1/2

h ))

≤ C[‖kn+1/2‖2− 1

2
,Γ
+ ‖qn+1/2

h ‖21
2
,Γ

+ ‖DÊh(q
n
h)‖2−1 + ‖gn+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖qn−i+1/2
h ‖41

2
,Γ
] +

PrB
16

(‖ξn−3/2
h ‖21

+ ‖ξn−1/2
h ‖21)

(Dχn
h , χ

n+1/2
h ) + 4

9‖∇χ
n+1/2
h ‖2 ≤ C[‖fn+1/2

2 ‖2−1

+ ‖DẼh(q̃
n
h)‖2−1

+ ‖q̃n+1/2
h ‖21

2
,Γ
+ ‖q̃n+1/2

h ‖41
2
,Γ

+
2∑

i=1

‖gn−i+1/2
h ‖41

2
,Γ
)]

+
Pr2

θ

9ǫ (‖∇ζ
n−3/2
h ‖2 + ‖∇ζ

n−1/2
h ‖2) .

(20)

Now summing each of the inequalities in (20) from
n = 2 to m, using the skew symmetry of d(·, ·, ·)
and the telescoping property, we obtain that
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[‖ζmh ‖2 + S‖ξmh ‖2 + ‖χm
h ‖2]

+ ∆tPrθ

m∑

n=2

‖∇ζ
n+1/2
h ‖2

+ 7∆tPrBSλm
∑m

n=2 ‖ξ
n+1/2
h ‖21

+ ∆t
∑m

n=2 ‖∇χ
n+1/2
h ‖2 ≤M ,

(21)

for some constant M > 0 by the as-
sumptions. The required stability bound fol-
lows by setting (ζnh, ξ

n
h, χ

n
h) = (un

h,B
n
h, θ

n
h) −

(Eh(g
n
h), Êh(q

n
h), Ẽh(q̃

n
h)) and applying triangle

inequality. �

3.2. Error analysis

In this section we discuss the accuracy and conver-
gence of the decoupled Crank-Nicolson scheme.
In the subsequent analysis, we will assume the
boundary data is independent of time for simplic-
ity.

Theorem 2. Suppose that the assumption (A1)-
(A3) hold with a positive number h0 and a positive
integer k, that the solution (u,B, p, θ) of (1)-(3)
satisfy u ∈ C([0, T ];Vg) ∩ H1(0, T ;Hk+1(Ω)) ∩
H3(0, T ;L2(Ω)) , B ∈ C([0, T ];H1

n,q) ∩
H1(0, T ;Hk+1(Ω)) ∩ H3(0, T ;L2(Ω)) , θ ∈
C([0, T ];H1

n,q̂)∩H1(0, T ;Hk+1(Ω))∩H3(0, T ;L2(Ω)) ,

p ∈ C([0, T ];L2
0(Ω) ∩ Hk(Ω)) and that the ini-

tial conditions (ui
h,B

i
h, θ

i
h) , i = 0, 1 satisfy∑1

i=0 ‖ui
h−u(ti)‖+S‖Bi

h−B(ti)‖+‖θih−θ(ti)‖ ≤
chk . Then, for any h ∈ (0, h0] the approximate
solutions (uh,Bh, θh) of (14) satisfy the following
error estimates

‖u− uh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk) ,

‖B−Bh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk)

and

‖θ − θh‖l∞(L2(Ω))∩l2(H1(Ω)) ≤ C(∆t2 + hk) .

for some constant C independent of the mesh size
h and time step ∆t.

Proof. Let (P s
hu(tn), P

s
hp(tn)) be the Stokes pro-

jection of (u(tn), p(tn)), let Pm
h B(tn) be the

Maxwell projection of B(tn) and let P r
hθ(tn) be

the Ritz projection of θ(tn). Let (e
n
1h, e

n
2h, e

n
3h, e

n
4h)

be the errors defined by en1h := un
h −

P s
hu(tn) , en2h := pnh − P s

hp(tn) , en3h := Bn
h −

Pm
h B(tn) and e

n
4h := θnh − P r

hθ(tn) . We first sub-
tract (1) from (14) and obtain

(Dun
h − ∂tu(tn+1/2),vh) + Prθ(∇u

n+1/2
h ,∇vh)

+ b(vh, p
n+1/2
h ) =< ℵn

h,vh >

+ Prθ(∇u(tn+1/2),∇vh)

+ b(vh, p(tn+1/2) ,

0 = b(u
n+1/2
h − u(tn+1/2), rh) ,

(DB
n+1/2
h − ∂tB(tn+1/2), φh)

+ PrB[(∇×B
n+1/2
h ,∇× φh)

+ (∇ ·Bn+1/2
h ,∇ · φh)]

= PrB[(∇×B(tn+1/2),∇× φh)

+ (∇ ·B(tn+1/2),∇ · φh)]

+ < ℵ̂n
h,φh > ,

(Dθnh − ∂tθ(tn+1/2), ψh) + (∇θn+1/2
h ,∇ψh)

= < ℵ̃n
h, ψh > +(∇θ(tn+1/2),∇ψh)

for all vh ∈ Xh , rh ∈ Qh, φh ∈ Yh, ψh ∈ Zh, at

each time step n, where ℵn
h, ℵ̂n

h and ℵ̃n
h are defined

by

< ℵn
h,vh > := c1(u(tn+1/2),u(tn+1/2),vh)

− c1(I(un+1/2
h ),u

n+1/2
h ,vh)

+ e(I(θn+1/2
h )− θ(tn+1/2),vh)

+ S d(B(tn+1/2),B(tn+1/2),vh)

− S d(I(Bn+1/2
h ),B

n+1/2
h ,vh) ,

< ℵ̂n
h,φh > := d(u(tn+1/2),φh,B(tn+1/2))

− d(u
n+1/2
h ,φh, I(Bn+1/2

h ))

and

< ℵ̃n
h, ψh > := c2(u(tn+1/2), θ(tn+1/2), ψh)

− c2(I(un+1/2
h ), θ

n+1/2
h , ψh) .

Using the definition of Stokes, Maxwell and Ritz
projections, we obtain the basic error equations
of the method
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(Den1h , vh) + Prθ(∇e
n+1/2
1h ,∇vh)

+ b(vh, e
n+1/2
2h ) =< ℵn

h,vh >

+ (∂tu(tn+1/2)−DP s
hu(tn),vh)

b(e
n+1/2
1h , rh) = 0

(Den3h , φh) + PrB[(∇× e
n+1/2
3h ,∇× φh)

+ (∇ · en+1/2
3h ,∇ · φh)]

= (∂tB(tn+1/2)−DPm
h B(tn),φh)

+ < ℵ̂n
h,φh >

(Den4h , ψh) + (∇en+1/2
4h ,∇ψh) =< ℵ̃n

h, ψh >

+ (∂tθ(tn+1/2)−DP r
hθ(tn), ψh) ,

(22)

for all vh ∈ Xh , rh ∈ Qh, φh ∈ Yh, ψh ∈ Zh,.
We next split the nonlinear terms < ℵn

h,vh >,

< ℵ̂n
h,φh > and < ℵ̃n

h, ψh > on the right-hand
side of (22) into several terms as follows:

<ℵ̂n
h,φh >

=d((u(tn+1/2)− P s
hu(tn+1/2)),φh,B(tn+1/2))

+d(P s
hu(tn+1/2),φh,B(tn+1/2)− I(B(tn+1/2)))

+d(P s
hu(tn+1/2),φh, I(B(tn+1/2)

−Pm
h B(tn+1/2)))

−d(P s
hu(tn+1/2)),φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(Pm

h B(tn+1/2)))

=:
∑4

i=1 < ℵ̂n
i ,∇× φh >

−d(en+1/2
1h ,φh, I(en+1/2

3h ))

−d(en+1/2
1h ,φh, I(Pm

h B(tn+1/2))) ,

<ℵ̃n
h, ψh >

=c2(u(tn+1/2), θ(tn+1/2)− P r
hθ(tn+1/2), ψh)

+c2(u(tn+1/2)− I(u(tn+1/2))

, P r
hθ(tn+1/2), ψh)

+c2(I(u(tn+1/2))− I(P s
hu(tn+1/2))

, P r
hθ(tn+1/2), ψh)

−c2(I(en+1/2
1h ), P r

hθ(tn+1/2), ψh)

−c2(I(en+1/2
1h ), e

n+1/2
4h , ψh)

−c2(I(P s
hu(tn+1/2)), e

n+1/2
4h , ψh)

=:
∑6

i=1 < ℵ̃n
i , ψh >

and

< ℵn
h,vh >

=c1(u(tn+1/2),u(tn+1/2)− P s
hu(tn+1/2),vh)

+c1(u(tn+1/2)− I(u(tn+1/2)), P
s
hu(tn+1/2),vh)

+c1(I(u(tn+1/2))− I(P s
hu(tn+1/2), P

s
hu(tn+1/2),vh)

−c1(I(en+1/2
1h ), P s

hu(tn+1/2),vh)

−c1(I(P s
h(u(tn+1/2))), e

n+1/2
1h ,vh)

−c1(I(en+1/2
1h ), e

n+1/2
1h ,vh)

+S(B(tn+1/2)× (∇× (B(tn+1/2)

−Pm
h B(tn+1/2))),vh)

+S((B(tn+1/2)− I(B(tn+1/2)))

×(∇× Pm
h B(tn+1/2)),vh)

+S(I(B(tn+1/2)− Pm
h B(tn+1/2))

×(∇× Pm
h B(tn+1/2)),vh)

−S(I(en+1/2
3h )× (∇× Pm

h B(tn+1/2)),vh)

+e(I(en+1/2
4h ),vh)

+e(I(P r
hθ(tn+1/2)− θ(tn+1/2)),vh)

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h ),vh)

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ),vh)

=:
∑12

i=1 < ℵn
i ,vh >

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ),vh)

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h ),vh) .

Notice < ℵn
5 , e

n+1/2
1h >=< ℵn

6 , e
n+1/2
1h >=<

ℵ̃n
5 , e

n+1/2
4h >=< ℵ̃n

6 , e
n+1/2
4h >= 0 due to skew-

symmetry of tri-linear forms c1(·, ·, ·) and c2(·, ·, ·),
respectively. Therefore, setting vh = e

n+1/2
1h ,φh =

e
n+1/2
3h , ψh = e

n+1/2
4h into (22) we can write it as
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



(Den1h, e
n+1/2
1h ) + Prθ‖∇e

n+1/2
1h ‖2

=(∂tu(tn+1/2)−DP s
hu(tn), e

n+1/2
1h )

+
∑4

i=1 < ℵn
i , e

n+1/2
1h >

+
∑12

i=7 < ℵn
i , e

n+1/2
1h >

−S(I(en+1/2
3h )× (∇× e

n+1/2
3h ), e

n+1/2
1h )

−S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h )

, ‖en+1/2
1h ) ,

(Den3h, e
n+1/2
3h ) + PrB[‖∇ × e

n+1/2
3h ‖2

+‖∇ · en+1/2
3h ‖2]

=(∂tB(tn+1/2)−DPm
h Bn, e

n+1/2
3h )

+
∑4

i=1 < ℵ̂n
h, e

n+1/2
3h > ,

+(e
n+1/2
1h × I(en+1/2

3h ),∇× e
n+1/2
3h )

+(e
n+1/2
1h × I(Pm

h B(tn+1/2))

, ∇× e
n+1/2
3h ) ,

(Den4h, e
n+1/2
4h ) + ‖∇en+1/2

4h ‖2

=
∑4

i=1 < ℵ̃n
h, e

n+1/2
4h >

+(∂tθ(tn+1/2)−DP r
hθ(tn), e

n+1/2
4h ) .

(23)

By Cauchy-Schwarz inequality, triangle inequality
and Lemma 2, we have

( ∂tu(tn+1/2)−DP s
hu(tn), e

n+1/2
1h )

≤ C
{
(∆t)3/2‖∂3t u‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖(∂tu, ∂tp)‖L2(tn,tn+1;(Hk+1×Hk)(Ω)

}

· ‖en+1/2
1h ‖ ,

(24)

( ∂tB(tn+1/2)−DPm
h B(tn), e

n+1/2
3h )

≤ C
{
(∆t)3/2‖∂3tB‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖∂tB‖L2(tn,tn+1;Hk+1(Ω))

}
‖en+1/2

3h ‖
(25)

and

( ∂tθ(tn+1/2)−DP r
hθ(tn), e

n+1/2
4h )

≤ C
{
(∆t)3/2‖∂3t θ‖L2(tn,tn+1;L2(Ω))

+ hk√
∆t

‖∂tθ‖L2(tn,tn+1;Hk+1(Ω))

}
‖en+1/2

4h ‖ .
(26)

Using Hölders inequality, Gagliardo-Nirenberg in-
equality and Lemma 1, we obtain

| < ℵn
1 , e

n+1/2
1h > |

≤ c∗‖u(tn+1/2)‖1‖u(tn+1/2)− P s
hu(tn+1/2)‖1

·‖ en+1/2
1h ‖1

≤ c∗hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)‖en+1/2
1h ‖ ,

| < ℵn
2 , e

n+1/2
1h > |

≤ c∗‖u(tn+1/2)− I(u(tn+1/2))‖
·(‖∇P s

hu(tn+1/2)‖L3

+ ‖P s
hu(tn+1/2)‖∞)‖en+1/2

1h ‖1
≤ c∗(∆t)3/2‖∂2t u‖L2(tn,tn+1;L2(Ω))‖en+1/2

1h ‖1 ,

| < ℵn
3 , e

n+1/2
1h > |

≤ c∗‖I(u(tn+1/2))− I(P s
hu(tn+1/2))‖1

·(‖P s
hu(tn+1/2)‖∞

+ ‖∇P s
hu(tn+1/2)‖L3)‖en+1/2

1h ‖
≤ c∗hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)‖en+1/2

1h ‖ ,

| < ℵn
4 , e

n+1/2
1h > |

≤ c∗‖I(en+1/2
1h )‖

· (‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖en+1/2
1h ‖1

≤ c∗(‖en1h‖+ ‖en−1
1h ‖)‖en+1/2

1h ‖1 .

We estimate ℵn
7 − ℵn

12 using Hölders inequality,
Gagliardo-Nirenberg inequality and Lemma 1 as
follows

| < ℵn
7 , e

n+1/2
1h > |

= |S(B(tn+1/2)

× (∇× (B(tn+1/2 − Pm
h B(tn+1/2))), e

n+1/2
1h )|

≤ C‖B(tn+1/2)‖∞
· ‖B(tn+1/2)− Pm

h B(tn+1/2)‖1‖en+1/2
1h ‖

≤ c hk‖B‖C([tn,tn+1];Hk+1))‖en+1/2
1h ‖ ,
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| < ℵn
8 , e

n+1/2
1h > |

= |S((B(tn+1/2)− I(B(tn+1/2)))

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖B(tn+1/2 − I(B(tn+1/2))‖
· ‖∇ × Pm

h B(tn+1/2)‖L3‖en+1/2
1h ‖1

≤ c∗(∆t)3/2‖∂2tB(tn+1/2)‖L2(tn,tn+1;L2(Ω))

· ‖en+1/2
1h ‖1 ,

| < ℵn
9 , e

n+1/2
1h > |

= |S(I(B(tn+1/2)− Pm
h B(tn+1/2))

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖

· |∇ × Pm
h B(tn+1/2)‖L3‖en+1/2

1h ‖1
≤ chk‖B(tn+1/2)‖C([tn,tn+1];Hk+1))

· ‖en+1/2
1h ‖1 ,

| < ℵn
10, e

n+1/2
1h > |

= |S(I(en+1/2
3h )

× (∇× Pm
h B(tn+1/2)), e

n+1/2
1h )|

≤ C‖∇Pm
h B(tn+1/2)‖L3

· ‖I(en+1/2
3h )‖‖en+1/2

1h ‖1 ,

| < ℵn
11, e

n+1/2
1h > | ≤ C‖I(en+1/2

4h )‖‖en+1/2
1h ‖ ,

and

| < ℵn
12, e

n+1/2
1h > | ≤ C‖I(P r

hθ(tn+1/2)− θ(tn+1/2))‖
· ‖en+1/2

1h ‖ .

Thus, we have

4∑

i=1

| < ℵn
i , e

n+1/2
1h > |+

12∑

i=7

| < ℵn
i , e

n+1/2
1h > |

≤ c{hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

+ hk‖θ‖C([tn,tn+1];Hk+1)

+ (∆t)3/2‖(∂2t u, ∂2tB)‖L2(tn,tn+1;L2(Ω))

+ ‖hkB‖C([tn,tn+1];Hk+1×Hk)

+ ‖en1h‖+ ‖en−1
1h ‖

+ ‖en3h‖+ ‖en−1
3h ‖+ ‖en4h‖+ ‖en−1

4h ‖}
· ‖en+1/2

1h ‖1 .
(27)

We can estimate ℵ̂n
1 − ℵ̂n

4 similarly using Hölders
inequality, Gagliardo-Nirenberg inequality and
Lemma 1-2 as follows

| < ℵ̂n
1 , e

n+1/2
3h > |

≤ c‖u(tn+1/2)− P s
hu(tn+1/2)‖

· ‖B(tn+1/2)‖∞‖∇ × e
n+1/2
3h ‖

≤ chk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

· ‖∇ × e
n+1/2
3h ‖ ,

| < ℵ̂n
2 , e

n+1/2
3h > |

≤ c‖P s
hu(tn+1/2)‖∞

· ‖B(tn+1/2)− IB(tn+1/2)‖
· ‖∇ × e

n+1/2
3h ‖

≤ c{(∆t)3/2‖∂2tB‖L2(tn,tn+1;L2(Ω))

· ‖∇ × e
n+1/2
3h ‖

| < ℵ̂n
3 , e

n+1/2
3h > |

≤ c‖P s
hu(tn+1/2)‖∞

· ‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖

· ‖∇ × e
n+1/2
3h ‖

≤ chk‖B‖C([tn,tn+1];Hk+1)‖∇ × e
n+1/2
3h ‖

| < ℵ̂n
4 , e

n+1/2
3h > |

≤ c‖I(en+1/2
3h )‖‖P s

hu(tn+1/2)‖∞‖∇ × e
n+1/2
3h )‖ .

Therefore, we have
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4∑

i=1

| ℵ̂n
i , e

n+1/2
3h > |

≤ c{(∆t)3/2‖∂2tB‖L2(tn,tn+1;L2(Ω))

+ hk‖(u, p)‖C([tn,tn+1];Hk+1×Hk)

+ hk‖B‖C([tn,tn+1];Hk+1)‖

+ ‖en3h‖+ ‖en−1
3h ‖}‖∇ × e

n+1/2
3h ‖

(28)

Estimating ℵ̃n
1 − ℵ̃n

4 similarly, we obtain

4∑

i=1

| < ℵ̃n
i , e

n+1/2
4h > |

≤ c{(∆t)3/2‖∂2t u‖L2(tn,tn+1;L2(Ω))

+ hk‖(u, p, θ)‖C([tn,tn+1];Hk+1×Hk×Hk+1)

+ ‖en1h‖+ ‖en−1
1h ‖}‖∇e

n+1/2
4h ‖

(29)

Employing (24)-(29) into (23) and using Young’s
inequality, we obtain





(D(en1h) , e
n+1/2
1h ) + Prθ

4 ‖∇e
n+1/2
1h ‖2

≤ Υn
1 + c

{
‖en1h‖2 + ‖en−1

1h ‖2

+ ‖en3h‖2 + ‖en−1
3h ‖2 + ‖en4h‖2

+ ‖en−1
4h ‖2

}

− S(I(en+1/2
3h )× (∇× e

n+1/2
3h ), e

n+1/2
1h )

− S(I(Pm
h B(tn+1/2))× (∇× e

n+1/2
3h )

, e
n+1/2
1h )

(D(en3h) , e
n+1/2
3h ) + PrB

4 [‖∇ × e
n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2] ≤ Υn

2

+ c
{
‖en3h‖2 + ‖en−1

3h ‖2
}

+ (e
n+1/2
1h × I(en+1/2

3h ), (∇× e
n+1/2
3h ))

+ (e
n+1/2
1h × I(Pm

h B(tn+1/2)),∇× e
n+1/2
3h ) ,

(D(en4h) , e
n+1/2
4h ) + ‖∇en+1/2

4h ‖2 ≤ Υn
3

+ c
{
‖en1h‖2 + ‖en−1

1h ‖2
}
,

(30)

where

Υn
1 := c

{
(∆t)3‖∂3t u‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ (∆t)3‖(∂2t u, ∂2tB)‖2L2(tn,tn+1;L2(Ω))

+ h2k‖B‖2C([tn,tn+1];Hk+1)

}

Υn
2 := c

{
(∆t)3‖∂3tB‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖∂tB‖2
L2(tn,tn+1;Hk+1)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;L2(Ω))

+ h2k‖B‖2C([tn,tn+1];Hk+1)
} ,

Υn
3 := c

{
(∆t)3‖∂3t θ‖L2(tn−1,tn+1;L2(Ω))

+ h2k

∆t ‖∂tθ‖L2(tn,tn+1;Hk+1)

+ h2k‖(u, p, θ)‖C([tn,tn+1];Hk+1×Hk×Hk+1)

+ (∆t)3‖∂2t u‖2L2(tn,tn+1;L2(Ω)) } .

We next add the three equations in (30) and use
the identity (A×B,∇×C) = (B× (∇×C),A)
to obtain

(D(en1h) , e
n+1/2
1h ) + S(D(en3h), e

n+1/2
3h )

+ (D(en4h), e
n+1/2
4h )

+ S PrB
4 [‖∇ × e

n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2] + Prθ

4 ‖∇e
n+1/2
1h ‖2

+ ‖∇en+1/2
4h ‖2

≤ c[‖en−1
3h ‖2 + ‖en3h‖2 + ‖en−1

1h ‖2

+ ‖en1h‖2 + ‖en−1
4h ‖2 + ‖en4h‖2]

+ Υn ,
(31)

where
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Υn :=
∑3

i=1Υ
n
i

= c
[
(∆t)3‖(∂3t u, ∂3tB, ∂3t θ)‖2L2(tn,tn+1;L2(Ω))

+ (∆t)3‖(∂2t u, ∂2tB)‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tB, ∂tθ, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p, θ)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1 ] .

From the assumptions on the solution (u, p,B, θ)
it holds that

∆t
N∑

n=1

Υn ≤ c((∆t)4 + h2k) . (32)

Therefore summing (31) from n = 1 to m and the
discrete Grönwall inequality (Lemma 3), we have
that

[‖em1h‖2 + S‖em3h‖2 + ‖em4h‖2]

+ Prθ∆t
m∑

n=1

‖∇e
n+1/2
1h ‖2

+ ∆t
m∑

n=1

‖∇en+1/2
4h ‖2

+ S PrB∆t

m∑

n=1

[‖∇ × e
n+1/2
3h ‖2

+ ‖∇ · en+1/2
3h ‖2]

≤ c((∆t)4 + h2k) .

(33)

The required error estimate now follows from (33)
and triangle inequality. �

Theorem 3. Under the assumptions in Theorem
2, the approximate pressure ph of (14) satisfies

‖p− ph‖l2(L2(Ω)) ≤
c√
∆t

(∆t2 + hk) ,

for some constant c independent of mesh size h
and time step ∆t.

Proof. From (22)1 and the inf-sup condition it
holds that

‖en+1/2
2h ‖ ≤ 1

β sup
vh∈Xh

b(vh, e
n+1/2
2h )

‖vh‖1

≤ 1
β sup

vh∈Xh

1

‖vh‖1
{−(Den1h,vh)

− Prθ(∇e
n+1/2
1h ,∇vh)

+ (∂tu(tn+1/2)−DP s
hu(tn),vh)

+ < ℵn
h,vh >

≤ c
{
‖Den1h‖+ ‖∇e

n+1/2
1h ‖

+ ‖∂tu(tn+1/2)−DP s
hu(tn)‖Xh

∗

+
∑12

i=1 ‖ℵn
i ‖Xh

∗

+ ‖I(en+1/2
3h )× (∇× e

n+1/2
3h )‖Xh

∗

+ ‖I(Pm
h B(tn+1/2))

× (∇× e
n+1/2
3h )‖Xh

∗

}
.

(34)

We start estimating ‖ℵn
5‖Xh

∗ , ‖ℵn
6‖Xh

∗ ,

‖I(en+1/2
3h )×(∇×e

n+1/2
3h )‖Xh

∗ and ‖I(Pm
h B(tn+1/2))×

(∇ × e
n+1/2
3h )‖Xh

∗ below. First, by Hölder’s and
Gagliardo-Nirenberg inequalities, we obtain

| < ℵn
5 ,vh > | ≤ c(‖I(P s

h(u(tn+1/2))‖∞
+ ‖∇(I(P s

h(u(tn+1/2)))‖L3)

· ‖en+1/2
1h ‖‖vh‖1

and

| < I(Pm
h (B(tn+1/2))× (∇× e

n+1/2
3h ),vh > |

≤ C‖I(Pm
h (B(tn+1/2))‖∞‖∇ × e

n+1/2
3h ‖‖vh‖ .

Before estimating the other two terms, notice that
by the inverse estimate (Assumption (A3)) and
(33), we obtain

‖en+1/2
1h ‖1 ≤ c∗min{h−1‖en+1/2

1h ‖, ‖en+1/2
1h ‖1}

≤ cmin{h−1(∆t2 + hk)

, (∆t)−1(∆t2 + hk)}
≤ c .

(35)

Similarly, we can show

‖∇ × e
n+1/2
3h ‖ ≤ c . (36)

Therefore, by Hölder’s, Gagliardo-Nirenberg in-
equalities and (35)-(36), we obtain
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| < ℵn
6 ,vh > | ≤ c‖I(en+1/2

1h )‖1‖en+1/2
1h ‖1

· ‖vh‖1
≤ c∗‖I(en+1/2

1h )‖1‖vh‖1

and

< I(en+1/2
3h ) × (∇× e

n+1/2
3h ),vh >

≤ c‖I(en+1/2
3h )‖1‖∇ × e

n+1/2
3h ‖

· ‖vh‖1
≤ c‖I(en+1/2

3h )‖1‖vh‖1 .

Estimating other terms in (34) as we did in the
proof of Theorem 2, we obtain

‖en+1/2
2h ‖ ≤ c

{
‖Den1h‖+ ‖∇e

n+1/2
1h ‖

+ ‖∇ × e
n+1/2
3h ‖+ ‖I(en+1/2

1h )‖
+ ‖I(en+1/2

1h )‖1 + ‖I(en+1/2
3h )‖1

+ ‖I(en+1/2
4h )‖+ ‖en+1/2

1h ‖

+ (∆t)3/2 + hk + hk√
∆t
.
}

(37)

The required error estimate now follows from last
inequality by using Theorem 2 and triangle in-
equality. �

The error estimate for the pressure in the previous
theorem can be improved under stronger regular-
ity properties of the solution. To this end, we next
derive optimal order error estimates for the time
derivatives of velocity, magnetic field and temper-
ature.

Corollary 1. Suppose the assumptions of
Theorem 2 hold. Moreover, assume u,B ∈
H2(0, T ;H1(Ω)) and θ ∈ H2(0, T ;H1(Ω)).
In addition, assume the initial conditions
(ui

h,B
i
h, θ

i
h) , i = 0, 1 satisfy

∑1
i=0 ‖u(ti) − ui

h‖1 ,∑1
i=0 ‖B(ti) − Bi

h‖1 ,
∑1

i=0 ‖θ(ti) − θih‖1 ≤ chk

and b(ui
h, rh) = 0 , ∀rh ∈ Qh . Then for any

h ∈ (0, h0] the approximate velocity un
h, magnetic

field Bn
h and temperature θnh satisfy

‖∂tu−Duh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

‖∂tB−DBh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

and

‖∂tθ −Dθh‖l2(L2(Ω)) ≤ c(∆t2 + hk) ,

for some constant c independent of the mesh size
h and time step ∆t Moreover, we have

‖u− uh‖l∞(H1(Ω)) ≤ c(∆t2 + hk) ,

‖θ − θh‖l∞(H1(Ω)) ≤ c(∆t2 + hk) ,

and

‖B−Bh‖l∞(H1(Ω)) ≤ c(∆t2 + hk)

for some constant c independent of the mesh size
h and time step ∆t.

Proof. Putting vh = D(en1h), φh = D(en3h), ψh =
D(en4h) into (22) and splitting the nonlinear terms
as in the proof of Theorem 2, we obtain





‖ D(en1h)‖2 + PrθD(‖∇en1h‖2)
= (∂tu(tn+1/2)−D(P s

hu(tn)),D(en1h))

=
∑14

i=1 < ℵn
i ,D(en1h) > ,

‖ D(en3h)‖2 + PrB[D(‖∇ × en3h‖2)
+ D(‖∇ · en3h‖2)]
= (∂tB(tn+1/2)−D(Pm

h B(tn)),D(en3h))

+
∑6

i=1 < ℵ̂n
i ,D(en3h > ,

‖ D(en4h)‖2 +D(‖∇en4h)‖2)
= (∂tθ(tn+1/2)−D(P r

hθ(tn)),D(en4h))

+
∑6

i=1 < ℵ̃n
i ,D(en4h) > .

(38)

Let us start estimating < ℵn
i ,D(en1h) > for

i = 1, . . . , 14. First using Hölder’s inequality and
Gagliardo-Nirenberg inequality, we obtain

| < ℵn
1 ,D(en1h) > |

≤ c(‖u(tn+1/2)‖∞ + ‖∇u(tn+1/2)‖L3)

· ‖u(tn+1/2)− P s
hu(tn+1/2)‖1‖D(en1h)‖ ,

| < ℵn
2 ,D(en1h) > |

≤ c‖u(tn+1/2)− I(u(tn+1/2))‖1
· (‖P s

hu(tn+1/2)‖∞ + ‖∇P s
hu(tn+1/2)‖L3)

· ‖D(en1h)‖ ,
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| < ℵn
3 ,D(en1h) > |

≤ c(‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖I(u(tn+1/2)− P s
hu(tn+1/2))‖1‖D(en1h)‖ ,

| < ℵn
4 ,D(en1h) > |

≤ c(‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3)

· ‖I(en+1/2
1h )‖1‖D(en1h)‖ ,

and

| < ℵn
5 ,D(en1h) > |

≤ c(‖I(P s
hu(tn+1/2))‖∞ + ‖∇I(P s

hu(tn+1/2))‖L3)

· ‖en+1/2
1h ‖1‖D(en1h)‖ .

From the inverse inequality (Assumption (A3))
and Gagliardo-Nirenberg inequality, it follows
that

‖φh‖∞ + ‖∇φh‖L3(Ω) ≤ ch−
d
6 ‖φh‖1 ∀φh ∈ Xh .

(39)

Using (39), we estimate < ℵn
6 ,D(en1h) > as below

| < ℵn
6 ,D(en1h) > |

≤ [‖I(en+1/2
1h )‖∞ + ‖∇I(en+1/2

1h )‖L3 ]

· ‖en+1/2
1h ‖1‖D(en1h)‖

≤ c∗‖en+1/2
1h ‖1‖I(en+1/2

1h )‖1h−
d
6

· ‖D(en1h)‖ .

(40)

Alternatively, we can estimate < ℵn
6 ,D(en1h) > as

follows

| < ℵn
6 ,D(en1h) > |

= | 1
2∆tc1(I(e

n+1/2
1h ), en1h, e

n−1
1h )|

+ | 1
2∆tc1(I(e

n+1/2
1h ), en−1

1h , en1h)|
≤ c∗

∆t‖I(e
n+1/2
1h )‖1‖en1h‖1‖en−1

1h ‖1 .

(41)

Combining (40) and (41), we have

| < ℵn
6 ,D(en1h) > | ≤ cγn‖I(en+1/2

1h )‖1[‖D(en1h)‖
+ ‖en−1

1h ‖1] ,
(42)

where

γn := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
1h ‖1 . (43)

Estimating other terms as before, we obtain

| < ℵn
7 ,D(en1h) > |

≤ c‖B(tn+1/2)‖∞‖B(tn+1/2)− Pm
h B(tn+1/2)‖1

· ‖D(en1h)‖ ,

| < ℵn
8 ,D(en1h) > |

≤ c‖B(tn+1/2)− I(B)(tn+1/2)‖1
· ‖∇ × Pm

h B(tn+1/2)‖L3(Ω)‖D(en1h)‖ ,

| < ℵn
9 ,D(en1h) > |

≤ c‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖1

· ‖∇ × Pm
h B‖L3(Ω)‖D(en1h)‖ ,

| < ℵn
10,D(en1h) > |

≤ c‖I(en+1/2
3h )‖1‖∇ × Pm

h B(tn+1/2)‖L3(Ω)

· ‖D(en1h)‖ ,

| < ℵn
11,D(en1h) > | ≤ c‖I(en+1/2

4h )‖‖D(en1h)‖ ,

| < ℵn
12,D(en1h) > |

≤ C‖I(P r
hθ(tn+1/2)− θ(tn+1/2))‖

· ‖D(en1h)‖ ,

| < ℵn
13,D(en1h) > | ≤ c‖I(Pm

h B)‖∞
· ‖∇ × e

n+1/2
3h ‖‖D(en1h)‖ .

Estimating as we did with < ℵn
6 ,D(en1h) >, we get

| < ℵn
14,D(en1h) > | ≤ cγ̂n‖I(en+1/2

3h )‖1
· [‖D(en1h)‖
+

∑1
i=0 ‖en−i

1h ‖1] ,

where

γ̂n := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
3h ‖1 .

Let us next start estimating ℵ̂1 − ℵ̂6. First, we
rewrite them using integration by parts formula
and then we estimate them using Hölder’s in-
equality and Gagliardo-Nirenberg inequality
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| < ℵ̂n
1 ,∇×D(en3h) > |

≤ c[‖B(tn+1/2)‖∞ + ‖∇ ×B(tn+1/2)‖L3 ]

· ‖u(tn+1/2)− P s
h(u(tn+1/2))‖1‖D(en3h)‖ ,

| < ℵ̂n
2 ,∇×D(en3h) > |

≤ c[‖P s
hu(tn+1/2)‖∞ + ‖∇P s

h(u(tn+1/2))‖L3(Ω)]

· ‖B(tn+1/2)− I(B(tn+1/2))‖1
· ‖D(en3h)‖ ,

| < ℵ̂n
3 ,∇×D(en3h) > |

≤ c[‖P s
hu‖∞ + ‖∇P s

h(u(tn+1/2)‖L3(Ω)]

· ‖I(B(tn+1/2)− Pm
h B(tn+1/2))‖1‖D(en3h)‖ ,

| < ℵ̂n
4 ,∇×D(en3h) > |

≤ c[‖P s
hu(tn+1/2)‖∞ + ‖∇P s

hu(tn+1/2)‖L3(Ω)]

· ‖I(en+1/2
3h )‖1‖D(en3h)‖ ,

| < ℵ̂n
6 ,∇×D(en3h) > |

≤ c[‖I(Pm
h B(tn+1/2))‖∞

+ ‖∇I(Pm
h B(tn+1/2))‖L3(Ω)]

· ‖en+1/2
1h ‖1‖D(en3h)‖ .

Estimating as we did with < ℵn
14,D(en1h) >, we

get

| < ℵ̂n
5 ,∇×D(en3h) > |

≤ cγn‖I(en+1/2
3h )‖1[‖D(en3h)‖

+
∑1

i=0 ‖en−i
3h ‖1] ,

where γn is defined as in (43). Finally, we estimate

ℵ̃1 − ℵ̃6 as follows

| < ℵ̃n
1 ,D(en4h) > |

≤ c(‖u(tn+1/2)‖∞ + ‖∇ × u(tn+1/2)‖L3)

· ‖θ(tn+1/2)− P r
h(θ(tn+1/2))‖1‖D(en4h)‖ ,

| < ℵ̃n
2 ,D(en4h) > |

≤ c(‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

h(θ(tn+1/2))‖L3(Ω))

· ‖u(tn+1/2)− I(u(tn+1/2))‖1‖D(en4h)‖ ,

| < ℵ̃n
3 ,D(en3h) > |

≤ c‖I((u(tn+1/2)− P s
h(u(tn+1/2))‖1

· (‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

h(θ(tn+1/2))‖L3(Ω))

· ‖D(en4h)‖ ,

| < ℵ̃n
4 ,D(en4h) > |

≤ c(‖P r
hθ(tn+1/2)‖∞ + ‖∇P r

hθ(tn+1/2)‖L3(Ω))

· ‖Ien+1/2
1h ‖1‖D(en4h)‖ ,

| < ℵ̃n
6 ,D(en4h) > |

≤ c[‖I(P s
hu(tn+1/2))‖∞

+ ‖∇I(P s
hu(tn+1/2))‖L3(Ω)]

· ‖en+1/2
4h ‖1‖D(en4h)‖ .

Estimating as we did with < ℵn
14,D(en1h) >, we

get

| < ℵ̃n
5 ,D(en4h) > |

≤ cγ̃n‖I(en+1/2
1h )‖1[‖D(en4h)‖

+ ‖en−1
4h ‖1] ,

where γ̃n := min{h− d
6 , (∆t)−

1

2 }‖en+1/2
4h ‖1 . Em-

ploying these estimates in (38), we can write it
as





1
2‖D(en1h)‖2 + Prθ

2 D(‖∇en1h‖2)
≤ c(γ2n‖I(e

n+1/2
1h )‖21

+ γ̂2n‖I(e
n+1/2
3h )‖21

+ αn),

1
2‖D(en3h)‖2 + PrB

2 [D(‖∇ × en3h‖2)
+ D(‖∇ · en3h‖2)]
≤ c

{
α̂n + γ2n‖I(en3h)‖21

}
,

1
2‖D(en4h)‖2 + 1

2D(‖∇en4h‖2)
≤ c

{
α̃n + γ̃2n‖I(en1h)‖21

}
,
(44)

where
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αn := (∆t)3‖∂3t u‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖(∂tu, ∂tp)‖2L2(tn,tn+1;Hk+1×Hk)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1)

+ h2k‖θ‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;H1(Ω))

+ (∆t)3‖∂2t u‖2L2(tn,tn+1;H1(Ω))

+
∑1

i=0[‖en−i
1h ‖21 + ‖en−i

4h ‖21] + ‖en+1/2
3h ‖21

+ ‖en+1/2
1h ‖21 ,

α̂n := (∆t)3‖∂3tB‖2L2(tn,tn+1;L2(Ω))

+ h2k

∆t ‖∂tB‖2
L2(tn,tn+1;Hk+1)

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+ h2k‖B‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2tB‖2L2(tn,tn+1;H1(Ω))

+
∑2

i=0[‖en−i
1h ‖21 + ‖en−i

3h ‖21] ,

α̃n := h2k‖θ‖2C([tn,tn+1];Hk+1)

+ (∆t)3‖∂2t θ‖2L2(tn,tn+1;H1(Ω))

+ h2k

∆t ‖∂tθ‖2L2(tn,tn+1;Hk+1)

+ (∆t)3‖∂3t θ‖2L2(tn,tn+1;L2(Ω))

+ h2k‖(u, p)‖2C([tn,tn+1];Hk+1×Hk)

+
∑1

i=0 ‖en−i
1h ‖21 + ‖en+1/2

4h ‖21 .

Notice that by (33) and (43), we have that

∆t
N∑

i=1

γ2i ≤min{h− d
3 , (∆t)−2}∆t

N∑

i=1

‖ei1h‖21

≤ cmin{h− d
3 , (∆t)−2}(h2k + (∆t)4)

≤ cmin{h2k− d
3 + (∆t)2}

≤ c .
(45)

Similarly, we can show that

∆t
N∑

i=1

γ̂2i ≤ c and ∆t
N∑

i=1

γ̃2i ≤ c . (46)

Using the regularity properties of the solution
(u, p, θ) and (33), we obtain

∆t
∑N

i=1 αi , ∆t
∑N

i=1 α̂i and

∆t
∑N

i=1 α̃i ≤ c((∆t)4 + h2k) .
(47)

Summing (44) from n = 1 to m and the assump-
tions about initial conditions (ui

h,B
i
h, θ

i
h), i =

0, 1, we obtain





‖∇em1h‖2 + 2
Prθ

∆t
∑m

i=1 ‖D(en1h)‖2

≤ c
{

4
Prθ

∆t
∑m

i=1 γ
2
i ‖I(ei1h)‖21

+ 4
Prθ

∆t
∑m

i=1 γ̂
2
i ‖I(ei3h)‖21

+ (∆t)4 + h2k
}
,

‖∇ × em3h‖2 + ‖∇ · em3h‖2

+ 2
PrB

∆t
∑m

i=1 ‖D(en3h)‖2

≤ c
{

4
Prθ

∆t
∑m

i=1 γ
2
i ‖I(ei3h)‖21

+ (∆t)4 + h2k
}
,

‖∇em4h‖2 + 2∆t
∑m

i=1 ‖D(en4h)‖2

≤ c
{
4∆t

∑m
i=1 γ̃

2
i ‖I(ei1h)‖21

+ (∆t)4 + h2k
}
.

(48)

The required results now follows from (45), (46)
and (48). �

Corollary 2. Suppose the assumptions of Corol-
lary 3.3 hold. Then the approximate pressure

p
n+1/2
h in (14) satisfies

‖p− ph‖l2(L2(Ω)) ≤ c(∆t2 + hk) .

Proof. We provide only a sketch of the proof of
this Corollary as it is similar to the proof of The-
orem 2. It follows from (3.35) that

∆t‖Den1h‖2 ≤ c((∆t)4 + h2k) . (49)

Therefore using (49) in (37), we obtain the re-
quired estimate. �

4. Numerical results

In this section, we present a numerical example
to illustrate the theoretical results of the previ-
ous section. We set Ω := (0, 1)× (0, 1) and choose
the standard piecewise quadratic finite space for
approximating the magnetic field and tempera-
ture. We also choose the Taylor-Hood element
pair, i.e., continuous piecewise-quadratic and con-
tinuous piecewise linear finite element space for
the fluid velocity and pressure approximations,
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respectively. Uniform triangular meshes are cre-
ated by first dividing the rectangular domain Ω
into identical small squares and then dividing each
square into two triangles. We set the exact solu-
tions to

u = ((y + y2)e−t, (x+ x2)e−t)

B = ((sin(y) + y)e−t, (sin(x) + x2)e−t)

p = (x+ y)e−t

θ = (1 + xy)e−t .

The right-hand side data in the MHD system, ini-
tial conditions and boundary conditions are then
chosen correspondingly. For simplicity, we set the
parameters Prθ, S, PrB, Ra equal to 1.0. In or-
der to determine the order of convergence α with
respect to the time step ∆t, we fix the spatial
spacing h and use the following approximation

α ≈ log2
‖vh,∆t(x, tN )− vh,∆t

2

(x, tN )‖
‖vh,∆t

2

(x, tN )− vh,∆t
4

(x, tN )‖ . (50)

A set of values of α are listed in Table 4.1 with
a fixed spacing h = 1/32 and varying time step
∆t = 1/20, 1/40, 1/80, 1/160, 1/320, which clearly
suggest the concerned orders of convergence in
time are all O(∆t2) for the decoupled scheme.
Thus, the numerical experiments clearly suggest
that the orders of convergence in time in error es-
timates in Theorem 2 for the L2− norm of u, B
and θ are optimal.

Table 1. Convergence order of

O(∆t
α) of the partitioned

scheme at time tN = 1.0, with
the fixed spacing h = 1

32

∆t ‖u(tn)− un
h‖ Order

1/20 4.13475× 10−5 -
1/40 1.0724423× 10−5 1.9469
/80 0.2699941× 10−5 1.9899
1/160 0.0675874× 10−5 1.9981
1/320 0.0169062× 10−5 1.9992

∆t ‖B(tn)−Bn
h‖ Order

1/20 3.92644× 10−5 -
1/40 0.9977026× 10−5 1.97654
/80 0.2512598× 10−5 1.98943
1/160 0.0630024× 10−5 1.9957
1/320 0.0157597× 10−5 1.99916

∆t ‖θ(tn)− θnh‖ Order

1/20 3.659835× 10−5 -
1/40 0.9312186× 10−5 1.9745867
/80 0.2344775× 10−5 1.98967

1/160 0.0588082× 10−5 1.99536
1/320 0.0147111× 10−5 1.99911
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Özkan Güner*
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1. Introduction

Fractional differential equations (FDEs) are the
generalized form of classical differential equations
of integer order. Researchers especially in applied
mathematician and physicist became highly inter-
ested in obtaining exact solutions for nonlinear
FDEs in recent decades. Nonlinear FDEs are fre-
quently used to describe many problems of phys-
ical phenomena that may arise in various fields
such as biology, physics, chemistry, engineering,
heat transfer, applied mathematics, control the-
ory, mechanics, signal processing, seismic wave
analysis, finance, and many other fractional dy-
namical systems [1-3].

In the past several decades, new exact solutions
may help to find new phenomena. So, vari-
ety of powerful analytical and numerical meth-
ods for solving differential equations of fractional
order have been suggested such as the adomian

decomposition method, the homotopy perturba-
tion method, the variational iteration method,
the finite difference method, the differential trans-
form method, homotopy perturbation method,
the homotopy analysis method, the sub-equation
method, the first integral method, the (G’/G)-
expansion method, the modified trial equation
method, the functional variable method, the exp-
function method, the simplest equation method,
the exponential rational function method, ansatz
method and others [4-31].

To solve mathematical problems, the transforms
are an important methods. A variety of use-
ful transforms for solving different problems ap-
peared in the literature, such as the traveling wave
transform, the Fourier transform and the others
[32-41]. Recently, Li and He [42] suggested a frac-
tional complex transform to convert FDEs into
ordinary differential equations (ODEs).
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There are different kinds of fractional derivative
operators. The most famous one is the Caputo
definition that the function should be differen-
tiable [43]. Recently, Jumarie derived defini-
tions for the fractional derivative called modified
Riemann–Liouville, which are suitable for contin-
uous and non-differentiable functions. The order
α of Jumarie’s derivative is defined by [44]:

Dα
wf(w) =

{

1
Γ(1−α)

d
dw

∫ w

0
(f(θ)−f(0))
(w−θ)α dθ, 0 < α < 1

(f (ρ)(w))(α−ρ), ρ ≤ α < ρ+ 1, ρ ≥ 1.

(1)

Some properties of the fractional modified RL de-
rivative are [45]

Dα
ww

r =
Γ(1 + r)

Γ(1 + r − α)
wr−α, (2)

Dα
w(c) = 0, (3)

Dα
w{af(w)+bg(w)} = aDα

wf(w)+bDα
wg(w), (4)

where a, b and c are constants.

We take into consideration the following general
nonlinear FDE of the type

H(u,Dα
t u,D

β
xu,D

2α
t u,Dα

t D
β
xu,D

2β
x u, ...) = 0,

(5)

where 0 < α, β < 1, H is a polynomial of u, u
is an unknown function and Dα partial fractional
derivatives of u.

The traveling wave variable

u(x, t) = U(θ),

θ =
εxα

Γ(1 + α)
− τtα

Γ(1 + α)
,

(6)

where τ 6= 0 and ε 6= 0 are constants. Applying
the fractional chain rule

Dα
t u = σt

dU

dξ
Dα

t θ

Dα
xu = σx

dU

dξ
Dα

xθ
(7)

where σt and σx are called the sigma indexes
[46,28] and we can choose σt = σx = L, where
L is a constant.

When we substitute, (6) with (2) and (7) into (5),
we can get Eq.(5) in the following NODE;

Ψ(U,U
′

, U ′′, U ′′′, ..., U (n), ...) = 0, (8)

where U (n) is the nth derivative of U with respect
to θ.

2. Description of the ansatz method for

solving FDEs

For bright solitons, the starting hypothesis is in
the form [47,48]

u(x, t) = A sechp θ (9)

and

θ =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
(10)

where A, k and c are nonzero constants. From the
ansatz given above with two equalities, it is pos-
sible to obtain necessary derivatives. Then, the
obtained derivatives are substituted in the Eq.(5)
and we collect all terms with the same order of
necessary terms. Then by equating each coeffi-
cient of the resulting polynomial to zero, we ob-
tain a set of algebraic equations for; A, k and c.
Finally solving the system of equations we can get
exact solution of Eq.(5) [49-52].

2.1. Applications of the proposed method

Example 1: The space-time fractional RLW
equation has the form [53]

Dα
t u+ vDα

xu+ auDα
xu− τDα

t D
2α
x u = 0, (11)

where α describing the order of the fractional
derivatives 0 < α ≤ 1 and v, a and τ are all con-
stants that describe the behavior of the undular
bore [54]. The RLW equation is modeled to gov-
ern a large number of physical phenomena such
as nonlinear transverse waves in shallow water,
ion acoustic and magneto hydrodynamic waves in
plasma and phonon packets in nonlinear crystals.
Eq.(11) was first put forward as a model for small
amplitude long waves on the surface of water in
channel by Peregine [55], and later by Benjamin
et al. [56]. This equation is considered as an
alternative to the KdV equation. Abdel-Salam
and Hassan solved Eq.(11) by the fractional auxil-
iary sub-equation expansion method [53]. Abdel-
Salam and Yousif, have obtained abundant types
of exact analytical solutions including general-
ized trigonometric and hyperbolic functions solu-
tions of this equation with the fractional Riccati
expansion method in [57]. Analytical solutions
of fractional RLW equation is very low. When
α = 1, equation (11) is called the RLW equation.
Conversely, many researchers focus on numerical
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methods to obtain approximate solutions of RLW
equation. For example, Esen and Kutluay solved
the equation by a lumped Galerkin method in
[58]. Dag et al. have applied least square qua-
dratic B-spline and cubic B-spline finite element
method to obtain new analytical solutions of RLW
equation in [59,60]. Saka et al. [61,62] solved this
equation by quintic B-spline collocation and B-
spline collocation algorithms methods. In [63],
the variational iteration method successfully ap-
plied to finding the solution of the RLW equation
by Yusufoglu and Bekir.

In order to solve Eq.(11), we use the traveling
wave transformation

u(x, t) = U(θ),

θ =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
,

(12)

where k 6= 0 and c 6= 0 are constants. When we
substitute (12) with (2) and (6) into (11) and by
integrating once and setting the constants of in-
tegration to be zero, the Eq. (11) can carry to an
ODE

(kv − c)U + ak
2 U2 + τck2L2U ′′ = 0, (13)

where U ′ = dU
dθ

. The solitary wave ansatz for the
bright soliton solution, the hypothesis is (9) and
(10). From (9) and (10), it is possible to get

d2U(θ)

dθ2
= Ap2 sechp θ−Ap(p+1) sechp+2 θ, (14)

and

U2(θ) = A2 sech2p θ. (15)

Thus, substituting the ansatz (14) and (15) into
Eq.(13), yields to

(kv − c)A sechp θ +
ak

2
A2 sech2p θ

+ τck2L2Ap2 sechp θ

− τck2L2Ap(p+ 1) sechp+2 θ = 0. (16)

Now, from (16), equating the exponents p+2 and
2p leads to

p = 2. (17)

From (16), setting the coefficients of sechp+2 θ and
sech2p θ terms to zero, we get

ak

2
A2 − τck2L2Ap(p+ 1) = 0, (18)

by use (17) and after some calculations, we have

A =
12τkcL2

a
, a 6= 0. (19)

We find, from setting the coefficients of sechp θ
terms in Eq.(16) to zero

(kv − c)A+ τck2L2Ap2 = 0, (20)

also we obtain

c =
vk

1− 4τk2L2
. (21)

From (21) it is important to note that

4τk2L2 6= 1. (22)

Thus finally, bright soliton solution of (11) is given
by:

u(x, t) = 12τkcL2

a
×

sech2
(

kxα

Γ(1+α) −
vktα

(1−4τk2L2)Γ(1+α)

)

.

(23)

Example 2: Secondly, we consider the follow-
ing the space-time fractional coupled Nizhnik-
Novikov-Veselov (NNV) equation [64]

Dα
t u−AD3α

x u−BD3α
y u+ 3AuDα

xv
+3AvDα

xu+ 3BuDα
yw + 3BwDα

y u = 0,
Dα

xu−Dα
y v = 0,

Dα
y u−Dα

xw = 0,
(24)

where 0 < α ≤ 1, A and B are given constants
satisfying A+B 6= 0, and u, v and w are the func-
tions of (x, y, t).Yan has found three types of trav-
elling wave solutions of equation (24) by using the
fractional sub-equation method [64]. The (2+1)-
dimensional NNV equation is an isotropic exten-
sion of the well-known (1+1)-dimensional KdV
equation. In recent years, NNV equation have
been studied several areas of physics including
condense matter physics, optics, fluid mechanics,
and plasma physics when α → 1 [65-67]. Darvishi
et al. have applied exp-function method to obtain
exact traveling wave solutions of classical NNV
equation in [68]. Deng solved the equation by
use of the extended hyperbolic function method in
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[69]. In [70], Wazwaz et al. have investigated the
bright soliton solutions with wave ansatz method.

For our goal, we present the following transfor-
mation

u(x, y, t) = U(θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

v(x, y, t) = V (θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

w(x, y, t) = W (θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

(25)

where k 6= 0, m 6= 0 and n 6= 0 are constants.

Then by using of Eq. (25) with (2) and (7),
Eq.(24) can be turned into an ODEs and by inte-
grating once and setting the constants of integra-
tion to be zero, we obtain

(Ak3L2 +Bm3L2)U ′′ − 3kA(UV )
−3mB(UW ) + nU = 0,

kU −mV = 0,
mU − kW = 0,

(26)

where U ′ = dU
dθ

and V ′ = dV
dθ

. In order the start
off with the solution hypothesis, the following
ansatsz is assumed

u(x, y, t) = λ1 sech
p θ, (27)

and

v(x, y, t) = λ2 sech
s θ, (28)

and

w(x, y, t) = λ3 sech
r θ, (29)

where

θ =
kxα

Γ(1 + α)
+

myα

Γ(1 + α)
− ntα

Γ(1 + α)
. (30)

Here in (27)-(30), λ1, λ2, λ3, k and m are the
free parameters of the solitons and n is the ve-
locity of the soliton. The exponents p, s and r
are unknown values will be find later. Now, from
(27)-(29) and (30) it is possible to obtain

(Ak3L2 +Bm3L2)λ1p
2 sechp θ

− (Ak3L2 +Bm3L2)λ1p(p+ 1) sechp+2 θ

− 3kAλ1λ2 sech
p+s θ − 3mBλ1λ3 sech

p+r θ

+ nλ1 sech
p θ = 0, (31)

and

kλ1 sech
p θ −mλ2 sech

s θ = 0, (32)

and

mλ1 sech
p θ − kλ3 sech

r θ = 0. (33)

Now from (32) and (33) equating the exponents
of sech θ functions we have p = s = r. In (32) we
obtain,

λ2 =
kλ1

m
. (34)

Similarly in (34) that gives

λ3 =
mλ1

k
. (35)

Now, equating the exponents of sechp+2 θ or
sechp+s θ and sechp+r θ functions in (31) with
p = s = r, one gets

p+ 2 = p+ s = p+ r, (36)

so that

p = s = r = 2. (37)

Setting the coefficients of sechp+2 θ in (31), to zero
gives

(Ak3L2 +Bm3L2)λ1p(p+ 1) + 3kAλ1λ2

+ 3mBλ1λ3 = 0, (38)

using Eqs. (34), (35), p = 2 and some calculations

λ1 = −2kmL2. (39)

Again from (31), setting the coefficients of sechp θ
terms to zero one obtains,

(Ak3L2 +Bm3L2)λ1p
2 + nλ1 = 0, (40)

which gives

n = −4L2(Ak3 +Bm3). (41)

Lastly, the bright soliton solution for space-time
fractional coupled NNV equation is given by
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u(x, y, t) = λ1 sech
2 θ, (42)

and

v(x, y, t) = λ2 sech
2 θ, (43)

and

w(x, y, t) = λ3 sech
2 θ, (44)

where the velocity of the solitons n is given in
(41), free parameters λ1, λ2 and λ3 are given by
(39), (34) and (35) respectively.

3. Description of the
(

G′

G

)

expansion

method for solving FDEs

Suppose that the solution of ODE (8) can be ex-
pressed by a polynomial in (G′/G) as:

U =
z
∑

i=0

ai

(

G′

G

)i

, az 6= 0, (45)

where G = G(ξ) satisfies the second order LODE
in the form [71]

d2G (ξ)

dξ2
+ λ

dG (ξ)

dξ
+ µG (ξ) = 0, (46)

where a1, ..., az, λ and µ are constants will be de-
termined later, z is the positive integer which can
be determined by the homogeneous balance with
the highest order derivatives and highest order
nonlinear appearing in ODE (8). When we sub-
stitute (45) into (8) and use Eq.(46), we collect
all terms with the same order of (G′/G) together.
When we equate all coefficient of this polynomial
to zero, it gives us a set of algebraic equations for
a1, ..., az, λ, τ, ε and µ by using Maple. Then
substituting a1, ..., az, λ, µ, ε, τ and general so-
lutions of Eq. (46) into (8) we can get a variety
of exact solutions of the FDEs (5).

3.1. Applications of the proposed method

Example 1:

In order to solve Eq.(11) by the (G′/G)−expansion
method, we use the traveling wave transformation
(12) and with a similar approach in section 2, we
get

(kv − c)U + ak
2 U2 + τck2L2U ′′ + ξ0 = 0, (47)

where ”U ′” = dU
dξ

and ξ0 is an integral constant.

Balancing U ′′ with U2 in (47) gives

2z = z + 2,
z = 2.

(48)

Assume that it is possible to express solution of

(47) by a polynomial in
(

G′

G

)

as:

U(ξ) = a0 + a1

(

G′

G

)

+ a2

(

G′

G

)2
, a2 6= 0.

(49)

By using Eq.(46), from Eq.(49) we have

U ′′(ξ) = 6a2

(

G′

G

)4

+ (2a1 + 10a2λ)

(

G′

G

)3

+ (8a2µ+ 3a1λ+ 4a2λ
2)

(

G′

G

)2

+ (6a2λµ+ 2a1µ+ a1λ
2)

(

G′

G

)

+ 2a2µ
2 + a1λµ. (50)

When we substitute Eqs.(49) and (50) into

Eq.(47), collecting the coefficients of
(

G′

G

)i

(i =

0, ..., 4) and set them to zero we get a system. The
solutions of this algebraic equations can be done
by Maple which gives

a0 =
c−vk−τck2L2λ2

−8τck2L2µ
ak

,

a1 = −12λτckL2

a
,

a2 = −12τckL2

a
,

ξ0 =
c2k4τ2L4(8λ2µ−16µ2

−λ4)+c2−2vkc+v2k2

2ak .

(51)

where λ and µ are arbitrary constants. By using
Eq.(51), expression (49) can be written as

U(ξ) = c−vk−τck2L2λ2
−8τck2L2µ

ak

−12λτckL2

a

(

G′

G

)

− 12τckL2

a

(

G′

G

)2
.

(52)

When we substitute general solutions of Eq. (46)
into Eq.(52) we have below travelling wave solu-
tions of the equation as follows:

When λ2 − 4µ > 0,
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U1(ξ) =
c−vk+2τck2L2(λ2

−4µ)
ak

− 3τck2L2(λ2
−4µ)

ak
×

(

C1 sinh
1
2

√
λ2

−4µξ+C2 cosh
1
2

√
λ2

−4µξ

C1 cosh
1
2

√
λ2

−4µξ+C2 sinh
1
2

√
λ2

−4µξ

)2

,

(53)

where ξ = kxα

Γ(1+α) −
ctα

Γ(1+α) .

When λ2 − 4µ < 0,

U2(ξ) =
c−vk+2τck2L2(λ2

−4µ)
ak

+ 3τck2L2(λ2
−4µ)

ak
(

−C1 sin
1
2

√
4µ−λ2ξ+C2 cos

1
2

√
4µ−λ2ξ

C1 cos
1
2

√
4µ−λ2ξ+C2 sin

1
2

√
4µ−λ2ξ

)2

,

(54)

where ξ = kxα

Γ(1+α) −
ctα

Γ(1+α) .

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0,
then U1 and U2 become

u1(x, t) =
c−vk+2τck2L2λ2

ak

+ 3τckL2λ2

a
sech2

(

λkxα

2Γ(1+α) −
λctα

2Γ(1+α)

)

. (55)

When λ2 − 4µ = 0, we obtain rational function
solution of Eq. (45)

u2(x, t) =
c−vk
ak

−12τckL2

a

(

C1

C1

(

kxα
−ctα

Γ(1+α)

)

+C2

)2

.

(56)

Example 2:

Similarly, in order to solve Eq. (24) by the pro-
posed method, suppose that the solutions of the
Eq. (26) can be expressed by a polynomial in
(

G′

G

)

as follows:

U(ξ) =
z
∑

i=0

ai

(

G′

G

)i

, az 6= 0, (57)

V (ξ) =
r
∑

i=0

bi

(

G′

G

)i

, br 6= 0, (58)

W (ξ) =

p
∑

i=0

ci

(

G′

G

)i

, cp 6= 0. (59)

By the same procedure as illustrated in example
1, the homogeneous balance between highest or-
der derivatives and non-linear terms in (26) we
get positive integers z = 2, r = 2 and p = 2.
Consequently, we have:

U(ξ) = a0 + a1

(

G′

G

)

+ a2

(

G′

G

)2

, a2 6= 0, (60)

V (ξ) = b0 + b1

(

G′

G

)

+ b2

(

G′

G

)2

, b2 6= 0, (61)

W (ξ) = c0 + c1

(

G′

G

)

+ c2

(

G′

G

)2

, c2 6= 0. (62)

When we substitute Eqs. (50), (60)-(62) into

Eq.(26), collecting the coefficients of
(

G′

G

)i

(i =

0, ..., 3) and apply the same procedure of example
1, we have

Case 1:

a0 = a2µ, a1 = a2λ, a2 = a2,

b0 =
a2
2
µ

2m2L2 , b1 =
a2
2
λ

2m2L2 , b2 =
a2
2

2m2L2 ,

c0 = 2m2L2µ, c1 = 2m2L2λ, c2 = 2m2L2,

k = a2
2mL2 , n =

(4µ−λ2)(Aa3
2
+8Bm6L6)

8m3L4 ,
(63)

where λ and µ are arbitrary constants. Substi-
tuting Eq. (63) into Eqs.(60)-(62) yields

U(ξ) = a2µ+ a2λ

(

G′

G

)

+ a2

(

G′

G

)2

, (64)

V (ξ) =
a22µ

2m2L2
+

a22λ

2m2L2

(

G′

G

)

+
a22

2m2L2

(

G′

G

)2

,

(65)

W (ξ) = 2m2L2µ+2m2L2λ

(

G′

G

)

+2m2L2

(

G′

G

)2

(66)

Then, when we substitute general solutions of
Eq.(46) into Eqs.(64)-(66), we have two types of
solutions of the Eqs.(24) as follows:

When λ2 − 4µ > 0,
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U1(ξ) =
a2
(

4µ− λ2
)

4

(

1− Ω2
1

)

, (67)

V1(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1− Ω2
1

)

, (68)

W1(ξ) =
m2L2

(

4µ− λ2
)

2

(

1− Ω2
1

)

(69)

where

Ω1 =
K1 sinh

1
2

√
λ2

−4µξ+K2 cosh
1
2

√
λ2

−4µξ

K1 cosh
1
2

√
λ2

−4µξ+K2 sinh
1
2

√
λ2

−4µξ
,

ξ = a2x
α

2mL2Γ(1+α)
+ myα

Γ(1+α) −
(4µ−λ2)(Aa3

2
+8Bm6L6)tα

8m3L4Γ(1+α)

When λ2 − 4µ < 0,

U2(ξ) =
a2
(

4µ− λ2
)

4

(

1 + Ω2
2

)

, (70)

V2(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1 + Ω2
2

)

, (71)

W2(ξ) =
m2L2

(

4µ− λ2
)

2

(

1 + Ω2
2

)

(72)

where

Ω2 =
−K1 sin

1
2

√
4µ−λ2ξ+K2 cos

1
2

√
4µ−λ2ξ

K1 cos
1
2

√
4µ−λ2ξ+K2 sin

1
2

√
4µ−λ2ξ

In particular, if K1 6= 0, K2 = 0, µ = 0 then
U1(ξ), V1(ξ) and W1(ξ) become

u1(x, y, t) = −λ2a2
4

sech2 (Φ) , (73)

v1(x, y, t) = − λ2a22
8m2L2

sech2 (Φ) , (74)

w1(x, y, t) = −λ2m2L2

2
sech2 (Φ) , (75)

where

Φ = λa2x
α

4mL2Γ(1+α)
+ λmyα

2Γ(1+α) +
λ3(Aa3

2
+8Bm6L6)tα

16m3L4Γ(1+α)

Also if K1 6= 0, K2 = 0, µ = 0 then U2(ξ),
V2(ξ) and W2(ξ) become, u1(x, y, t), v1(x, y, t)
and w1(x, y, t).

Case 2:

a0 =
a2(2µ+λ2)

6 , a1 = a2λ, a2 = a2,

b0 =
a2
2
(2µ+λ2)
12m2L2 , b1 =

a2
2
λ

2m2L2 , b2 =
a2
2

2m2L2 ,

c0 =
2m2L2µ+m2L2λ2

3 , c1 = 2m2L2λ, c2 = 2m2L2,

k = a2
2mL2 , n =

(4µ−λ2)(Aa3
2
+8Bm6L6)

8m3L4 ,
(76)

where λ and µ are arbitrary constants. Substi-
tuting Eq.(76) into Eqs.(60)-(62), yields

U(ξ) = a2(2µ+λ2)
6 + a2λ

(

G′

G

)

+ a2

(

G′

G

)2
, (77)

V (ξ) =
a2
2

2m2L2

(

(2µ+λ2)
6 + λ

(

G′

G

)

+
(

G′

G

)2
)

,

(78)

W (ξ) = m2L2

(

2µ+λ2

3 + 2λ
(

G′

G

)

+ 2
(

G′

G

)2
)

.

(79)

When we substitute general solutions of Eq.(46)
into Eqs.(77)-(79), we deduce the following trav-
eling wave solutions:

When λ2 − 4µ > 0,

U3(ξ) =
a2
(

4µ− λ2
)

4

(

1

3
− Ω2

1

)

, (80)

V3(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1

3
− Ω2

1

)

, (81)

W3(ξ) =
m2L2

(

4µ− λ2
)

2

(

1

3
− Ω2

1

)

. (82)

When λ2 − 4µ < 0,

U4(ξ) =
a2
(

4µ− λ2
)

4

(

1

3
+ Ω2

2

)

, (83)

V4(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1

3
+ Ω2

2

)

, (84)

W4(ξ) =
m2L2

(

4µ− λ2
)

2

(

1

3
+ Ω2

2

)

. (85)
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In particular, if K1 6= 0, K2 = 0, µ = 0 then
U3(ξ), V3(ξ) and W3(ξ) become

u2(x, y, t) = −λ2a2
4

(

1

3
− tanh2 (Φ)

)

, (86)

v2(x, y, t) = − a2
2
λ2

8m2L2

(

1

3
− tanh2 (Φ)

)

, (87)

w2(x, y, t) = −m2L2λ2

2

(

1

3
− tanh2 (Φ)

)

. (88)

Also if K1 6= 0, K2 = 0, µ = 0 then U4(ξ),
V4(ξ) and W4(ξ) become, u2(x, y, t), v2(x, y, t)
and w2(x, y, t).

4. Conclusion

The ansatz and the (G′/G) expansion methods
are used in this article to obtain some new ex-
act solutions of the fractional regularized long-
wave equation and the fractional coupled Nizhnik-
Novikov-Veselov equation. The (G′/G) expansion
method is more effective and more general than
the ansatz method because it gives exact solutions
in more general forms. These methods are quite
proficient methods for obtaining new exact solu-
tions of FDEs. The obtained solutions are new
and the methods can be extended to solve prob-
lems of nonlinear FDEs arising in the theory of
solitons and other areas. To our knowledge, these
new solutions have not been reported in former
literature.
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 Process planning, scheduling and due-date assignment are three important 

manufacturing functions in our life. They all try to get local optima and there can 

be an enormous loss in overall performance value if they are handled separately. 

That is why they should be handled concurrently. Although integrated process 

planning and scheduling with due date assignment problem is not addressed much 

in the literature, there are numerous works on integrated process planning and 

scheduling and many works on scheduling with due date assignment. Most of the 

works in the literature assign common due date for the jobs waiting and due dates 

are determined without taking into account of the weights of the customers. Here 

process planning function is integrated with weighted shortest processing times 

(WSPT) scheduling and weighted slack (WSLK) due date assignment. In this 

study unique due dates are given to each customer and important customers get 

closer due dates. Integration of these three functions is tested for different levels 

of integration with genetic algorithms, evolutionary strategies, hybrid genetic 

algorithms, hybrid evolutionary strategies and random search techniques. Best 

combinations are found as full integration with genetic search and hybrid genetic 

search. Integration of these three functions provided substantial improvements in 

global performance. 
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1. Introduction 

Traditionally process planning, scheduling and due 

date assignment are treated sequentially and separately. 

Independently predetermined process planning, 

scheduling and due date assignment can cause poor 

global performance and can be a poor input to the 

downstream functions. For example, independently 

predetermined process plans can be poor input to 

scheduling. Process planners can select same desired 

machines repeatedly, thus some machines may be 

starving. In this case, these plans may not be followed 

at the shop floor level. Independently predetermined 

scheduling without taking into consideration the due 

dates, may worsen global performance. As we may 

unnecessarily increase earliness and tardiness of some 

jobs. Independently given due dates can be unrealistic 

for the shop floor. They may be determined either too 

early or too late in which can worsen the production 

performance because of unnecessary tardiness, 

earliness or due dates.  

Meanwhile, we should consider the importance of each 

customer because we may unnecessarily give very 

close due dates for the unimportant customer and give 

far due dates for very important customers. This 

situation may cause poor performance.  

If we look at the literature we can find numerous works 

on integrated process planning and scheduling (IPPS) 

and scheduling with due date assignment (SWDDA). 

But if we search for works on integrated process 

planning, scheduling and due date assignment 

(IPPSDDA), only a few studies were found in the 

literature. 

Merely scheduling part of the problem already belongs 

to the class of NP-hard problems, that is why heuristic 

solutions are required to solve the problem. We cannot 

find the optimum solution to the problem in a 

reasonable amount of time when it gets larger. That is 

why heuristic methods are used to solve this problem. 

When we integrate three functions, the problem 

becomes even more complex. For this reason, we 

applied genetic algorithms, evolutionary strategies and 

random search in the solution of the integrated 

http://www.ams.org/msc/msc2010.html
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problem.  

As we integrate more functions together overall 

solution becomes better and to prove this claim we 

integrated each function step by step. Finally, we 

integrated weighted shortest processing times (WSPT) 

scheduling with weighted slack (WSLK) due date 

assignment and process plan selection. We used WSPT 

because it is a popular dispatching rule that schedules 

shorter and important jobs first. Similarly, WSLK is a 

common due date assignment technique which adds 

slack to the processing times. In addition, we took into 

account weight of each job so that close due dates are 

given for important jobs and scheduled first and far due 

dates are given for unimportant jobs and scheduled 

later. 

We used genetic algorithms (GA), hybrid genetic 

algorithms (R-GA), evolutionary strategies (ES), 

hybrid evolutionary strategies (R-ES), random search 

(RS) and ordinary solutions (OS) in the solution of the 

integrated problem. Problem is represented using 

chromosomes and first two genes are used for due date 

assignment and dispatching rules respectively. 

Remaining genes represents the selected route of jobs. 

Since the problem is NP-Hard, we used pure and hybrid 

metaheuristics in the solution. We also compared 

search results with ordinary solutions which are the 

initial results. We tried to prove the importance of 

search techniques and inferiority of initial random 

solutions. We also tried to observe superiority of 

directed genetic or evolutionary searches over 

undirected random search. Meanwhile, we tried to 

observe the power of hybrid searches which use 

random search initially and turn into directed search at 

the following iterations. 

Let us give definitions of each function one by one; 

Society of Manufacturing Engineers has defined 

process planning as the systematic determination of the 

methods by which a product is to be manufactured 

economically and competitively. Zhang and Mallur 

defined production scheduling as a resource allocator, 

which considers timing information while allocating 

resources to the tasks [1]. Pinedo and Chao [2] defined 

scheduling as a proper allocation of resources that 

enables the company to optimize its objectives and 

achieve its goal. They also defined the job shop-

scheduling environment as; n jobs to be processed on 

m machines to process these jobs. Each job processed 

in predetermined routes, visiting a number of machines. 

Job shop problems are seen in industries where orders 

have specified characteristics and order sizes are 

relatively small. According to Gordon et al. [3] “The 

scheduling problems involving due dates are of 

permanent interest. In a traditional production 

environment, a job is expected to be completed before 

its due date. In a just-in-time environment, a job is 

expected to be completed exactly at its due date.” 

There was a tremendous development in hardware, 

software and algorithm. With these developments, it 

became possible to solve problems which could not be 

solved earlier. After recent developments in computers, 

it is easier to prepare process plans using Computer 

Aided Process Planning (CAPP). As we mentioned 

earlier, these three functions effect each other and 

upstream decisions effect downstream functions and 

thus overall performance is affected. Poorly prepared 

process plans may cause unbalanced machine loading 

and reduce shop floor efficiency. Sometimes poorly 

prepared process plans are not followed on the shop 

floor. Since its easier to prepare process plans using 

CAPP, we may prepare alternative process plans and 

we can select among alternatives to balance workload 

at the shop floor. In case of contingencies such as 

machine breakdowns we can redirect jobs at the shop 

floor. This increases shop floor utilization and helps to 

balance it. 

Customers are not equally important so we had better 

give close due dates to important customers and 

relatively far due dates to less important customers. The 

weighted due date assignment is not mentioned in IPPS 

and SWDDA problems in the literature. Besides 

assigning closer due dates for important customers we 

should also schedule important customers earlier as we 

did in this study. The problem should be solved in a 

reasonable amount of time, thus some powerful 

heuristics should be used. GA, R-GA, ES, R-ES and RS 

metaheuristics are utilized in this study.  

After representing the problem as a chromosome we 

gave a higher probability of selection for dominant 

genes which are due date assignment and dispatching 

genes. Because these genes greatly affect the 

performance measure compared to any job route.  

In the literature some works tried to minimize tardiness, 

some tried to minimize tardiness and earliness, some 

minimized maximum absolute lateness, and some 

minimized number of tardy jobs. Unlike these works, 

we tried to minimize the sum of weighted tardiness, 

earliness and due date related costs in this study.  

Customers do not want long due dates, and far due dates 

can cause customer losses or price discounts and 

increase production costs. That is why we did not want 

to give far due dates unnecessarily, especially for the 

important customers. Conventionally tardiness is not 

desired. On the other hand in just-in-time (JIT) 

environment earliness is also undesired. Earliness 

means stock holding, spoilage, and some other 

earliness related costs. Tardiness means loss of 

customer goodwill, loss of customer permanently or 

may be a discount on the price. Thus we did not want 

any of these costs at our performance measure. Of 

course, we penalized these cost terms according to the 

weight of each job. 

In this study, we did not want to give far due dates 

unnecessarily especially for important customers. We 

also wanted to give reasonable due dates so that we can 

keep our promises and reduce tardiness and earliness. 

We wanted jobs to be completed as close as possible to 

given reasonable due dates and tardiness is penalized 

more compared to earliness. 
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2. Literature survey 

There are numerous works on IPPS and SWDDA or 

SWDWA problems in the literature. But there are only 

a few works on IPPSDDA problem. Demir and Taskin 

[4] worked on this problem for a Ph.D. thesis. Later 

Ceven and Demir [5] studied the benefit of integrating 

due date assignment with IPPS problem in a Master of 

Science thesis. Later Demir et al. [6] worked on the 

integration of process planning and due date 

assignment with ATC (Apparent Tardiness Cost) 

dispatching. Demir et al. [7] studied the integration of 

process planning and scheduling with SLK (Slack) due 

date assignment. In these studies unique due dates are 

determined for every customer. 

Job shop scheduling with alternative process plans is 

integrated with due date determination. Concerning this 

research, we integrated WSPT dispatching with WSLK 

due date determination where alternative process plans 

are possible. As a distinct approach weighted SLK due 

date assignment method is used where weights of each 

customer are taken into account while determining 

unique due dates for each customer in this study. 

Important customers are given relatively closer due 

dates contrary to the relatively less important 

customers.  

If we look at SWDDA problems we see that most of the 

works are done on common due date assignment. Parts 

of a product which are waiting to be assembled should 

be ready at the same time. But in this study, as 

mentioned above each customer has its own due dates. 

Since job shop scheduling belongs to the NP-hard 

problem class, integrated problems are even harder to 

solve. For example, if we look at IPPS problems, exact 

solutions are only possible for very small problems. 

That is why genetic algorithms and its variants are more 

applicable for job shop scheduling problems or IPPS 

problems as they are utilized in this study. Zhu [8] and 

Wang and Li [9] used genetic algorithms and its 

variants in job shop scheduling. 

“If we look at the literature we see that its hard to solve 

integrated problems. Some solutions are only possible 

for small problems. For IPPS in the literature, people 

use genetic algorithms, evolutionary algorithms or 

agent-based approach for integration, or they 

decompose problems because of the complexity of the 

problem. They decompose problems into loading and 

scheduling subproblems. They use mixed integer 

programming at the loading part and heuristics at the 

scheduling part” Demir et al. [7]. 

If we look at the early works on IPPS problem, we can 

see the following literature on this problem; Nasr and 

Elsayed [10], Hutchinson et al. [11], Chen and 

Khoshnevis [12], Zhang and Mallur [1], Brandimarte 

[13], Morad and Zalzala [14]. After these studies more 

works are done on IPPS such as: Ming and Mak [15], 

Tan and Khoshnevis [16], Kim et al. [17], Kumar and 

Rajotia [18], Lim and Zhang [19], Tan and Khoshnevis 

[20], Kumar and Rajotia [21], Moon et al. [22], Guo et 

al. [23], Leung et al. [24], Phanden et al. [25], Petrovic 

et al. [26],  Zhang et al. [27],  and Zhang and Wong 

[28]. 

Scheduling with due date assignment is also popular 

research topic which is extensively studied in the 

literature. Gordon et al. [3] presented a good literature 

survey and it will be useful to see this work before 

studying SWDDA problem. When we look at works on 

this problem most of them assigned unweighted due 

dates.  

In this study, weighted due dates are assigned. 

Relatively important customers get closer due dates 

which greatly improve performance measure. At the 

IPPS and SWDDA problem some works penalize 

tardiness, some of them punish number of tardy jobs 

and some penalize both earliness and tardiness. In this 

study, we penalized all of the weighted due dates, 

weighted tardiness and weighted earliness cost. We 

give relatively close due dates for important customers 

and use WSLK as due date assignment and we schedule 

important customers first and used WSPT dispatching 

rule, so we save a lot from weighted due date related 

costs, weighted tardiness and earliness costs.   

In the literature, we can observe works in two groups 

according to the number of machines. Single machine 

scheduling with due date assignment (SMSWDDA) 

and Multi-machine scheduling with due date 

assignment (MMSWDDA). Many works are on single 

machine problem and many of them on the multi-

machine problem. At the former case, jobs are tried to 

be scheduled before a single machine and better due 

dates are tried to be found. At the latter case, jobs are 

tried to be scheduled on multiple machines and tried to 

be assigned better due dates.  In our study, we have n 

jobs to be scheduled on m machines and each job will 

be given a unique due date according to processing 

time, the importance of the customer and given slack. 

If we list some literature on SMSWDDA problem we 

can find following works; Panwalkar [29], Biskup and 

Jahnke [30], Cheng et al. [31], Cheng et al. [32], Lin et 

al. [33], Ying [34], Xia et al. [35], Gordon and 

Strusevich [36],  and Li et al. [37]. 

When we list researchers on MMSWDDA problem we 

can give following works on this problem; 

Adamopolous and Pappis [38], Cheng and Kovalyov 

[39], Birman and Mosheiov[40] and Lauff and Werner 

[41]. Additionally following works can be given for 

SWDDA problem; Allaoua and Osmane [42], Yang et 

al. [43], Tuong and Soukhal [44], Li et al. [45], Li et al. 

[37], Vinod and Sridharan [46], Li et al. [47], Zhang 

and Wu [48], Yin et al. [49], Iranpoor et al. [50] Yin et 

al. [51], Shabtay [52], and Koulamas [53]. 

If we look at recent works we can see numerous works 

on scheduling with due window assignment (SWDWA) 

instead of SWDDA. In this studies, due windows are 

tried to be determined instead of a single point due date. 

The objective is to find better due windows with better 

starting point in time and length of windows. Jobs 

completed within due windows cause no cost and jobs 

completed out of windows cause tardiness or earliness 
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costs. We can list works on this problem as; Mosheiov 

and Sarig [54], Cheng et al. [55], Zhao and Tang [56], 

Janiak et al. [57], Wang et al. [58], Ji et al. [59], Ji et al. 

[60] Yang et al. [61] and Liu et al. [62]. 

3. Problem studied 

We studied IPPSDDA problem with different levels of 

integration. Alternative process plans,  WSPT and 

service in random order (SIRO) dispatching rules and 

WSLK and Random (RDM) due date assignment rules 

are handled concurrently. 

Four shop floors are studied. There are five alternative 

routes in relatively small shop floors. However, there 

are three alternative routes in relatively large shop 

floors. Because number of routes increases complexity 

and it takes more time to solve the problem. The 

number of alternative routes is limited to three in order 

to find a good solution in a reasonable amount of time. 

Initially, SIRO dispatching rule and RDM due date 

assignment rule are used to represent unintegrated 

combination of the problem. RDM due date assignment 

is used to represent external due date assignment. 

WSLK is used to represent internal due date 

assignment. At the previous case, we try to optimize 

performance measure in case of given external due 

date. But at the second case, we assign due dates 

internally and we try to find best due dates which are 

the most suitable for us and optimize performance 

measure. 

After unintegrated combination, we integrated WSPT 

scheduling with process plan selection. Here, due date 

assignment is still unintegrated and randomly 

determined. Later we tested the combination where due 

date assignment is integrated with process plan 

selection but here scheduling is unintegrated and jobs 

are scheduled according to SIRO. Finally, we 

integrated three functions and tested fully integrated 

combination. 

As it is mentioned earlier, we have four shop floors. For 

example, at the smallest shop floor, we have 25 jobs 

and 5 machines. Each job has 5 alternative routes and 

there are 10 operations at each route. At the largest shop 

floor, there are 175 jobs and 35 machines. Each job has 

3 alternative routes with 10 operations each. Processing 

times are determined as ⌊(12+z*6)⌋ randomly. Here z is 

standard normal numbers and practically processing 

time of each operation changes in between 1 and 30 

minutes.  

Operations are assigned to machines randomly in each 

shop floor. Characteristics of each shop floor are as 

given in Table 1. 

In this study, we assumed that shop floor works one 

shift that is 8 hours per day. So a shift makes 8*60=480 

minutes. As a performance measure, we assumed sum 

of weighted tardiness, earliness and due dates. All 

terms are punished linearly according to weights of 

customers. We also assumed fixed cost if there is 

tardiness or earliness. 

Table 1. Shop floors. 

Shop floor 
SF1 

25x5x5 

SF2 

75x15x5 

SF3 

125x25x3 

SF4 

175x35x3 

# of machines 5 15 25 35 

# of Jobs 25 75 125 175 

# of Routes 5 5 3 3 

Processing 

Times 
⌊(12 + z ∗ 6)⌋ 

# of op. per job 10 

 

Due dates are punished proportionally to the weight of 

the job and length of the due date. Due date length is 

multiplied with 8. Earliness is punished with 5 unit 

fixed cost and proportionally with multiplier 4 and 

multiplied with the weight of job. Tardiness is punished 

more compared to other terms. Because it is the most 

undesired component. Tardiness is punished with 10 

unit fixed cost and proportionally with multiplier 12 

and finally multiplied with the weight of job. 

Punishment functions are given below where D is used 

for the due date of job j, E is used for earliness of job j 

and T is used for the tardiness of job j. PD is the penalty 

of due-date of job j, PE is the penalty of earliness and 

PT is the penalty of the tardiness of job j. Penalty (j) is 

the total penalty of job j and total penalty is the ultimate 

value that we want, which shows total punishment for 

all of the jobs; 

PD(j) =  weight (j) ∗  8 ∗ (
D

480
) (1) 

PE(j) =  weight (j) ∗  (5 +  4 ∗ (
E

480
)) (2) 

PT(j) =  weight (j) ∗ (10 +  12 ∗ (
T

480
)) (3) 

Penalty(j) =  PD(j) +  PE(j) +  PT(j) (4) 

Total Penalty = ∑ Penalty(j)
j

 (5) 

4. Used techniques 

We used five search techniques in this study. These 

techniques are GA, R-GA, ES, R-ES and RS. Results 

of searches are compared with OS and RS results to 

find out the power of directed and hybrid searches over 

undirected (random) search and over OS results. 

Solution techniques are explained as follows: 

Genetic Algorithm (GA): One of the most powerful 

search technique in this study was genetic search. For 

each shop floor, we applied given number of genetic 

iterations. Two genetic operators which are crossover 

and mutation are used in genetic iterations. There are 

three populations used in this study. First is the main 

population, second is used for crossover population and 

the last is used as mutation population. We have 10 

chromosomes in the main population and we produce 8 

chromosomes using previous main population by using 

crossover operator for crossover population. Again by 



Integrated process planning, WSPT scheduling and WSLK due-date assignment using genetic algorithms… 77 

using previous main population we produce 5 more 

chromosomes by using mutation operator to get 

mutation population. According to the literature, the 

crossover is expected to be more powerful compared to 

the mutation operator. But as number of pairs of 

chromosomes selected for crossover and number of 

chromosomes selected for mutation increase, the time 

required to solve the problem also increases. On the one 

hand selecting chromosomes with better performance 

for crossover and mutation operators with higher 

probability improves the performance measure better 

and on the other hand, marginal improvement in 

selecting chromosomes with worse performance is poor 

compared the former case. So it is better to apply 

crossover with a higher rate and select better 

chromosomes with higher probability and not to select 

all of the chromosomes to reduce the time required to 

solve the problem. That’s why we selected four pairs of 

chromosomes for crossover and selected five 

chromosomes for mutation.  Using three populations 

which are previous main population, new crossover 

population and new mutation population we determine 

next main population and this makes one genetic 

iteration. Out of 23 chromosomes from three 

populations, we select best 10 chromosomes for next 

step main population. This search is also called directed 

search since updated best population is used to 

determine next step main population at every iteration. 

Evolutionary Strategies (ES): In Germany, two 

students of Technical University of Berlin developed 

ES, while solving their optimization problem [63], [64]. 

Unlike GA, ES uses only mutation operator. To be fair 

in comparison in GA, R-GA, ES, R-ES and RS we use 

the same number of iterations and at every iteration, we 

produce 13 new solutions and we use same amount of 

new solutions. 

Random Search (RS):  We produce 13 brand new 

solutions in every iteration. To be fair amongst 

methods, we used the same number of iterations and the 

same amount of chromosomes at each iteration in all 

searches. 

Hybrid Genetic Algorithms (R-GA): Initially random 

iterations are applied. Later iterations are turned into 

genetic iterations. It is very useful to apply random 

search in the beginning since it scans solution space 

faster and better. Afterwards, it becomes very poor to 

continue with random search and at this point, it is 

better to use a powerful directed search technique. For 

instance, if we produce a random number between 1 

and 1000, the expected value becomes 500 where the 

marginal gain is 500. On the other hand, if we produce 

two random numbers and take their maximum then 

expected value of this maximum is 667 so marginal 

gain sharply reduced to 167. Furthermore, if we 

produce three random numbers and take the maximum 

of these three numbers then expected value becomes 

750 and marginal gain further reduced 83. If we sort 

marginal gains in descending order; 500, 167, 83 are 

the marginal benefits of initial random iterations, 

respectively. So as its explained above initial random 

iterations are very useful but later it becomes drastically 

poor to apply. 

Hybrid Evolutionary Strategies (R-ES): Initially 

random iterations are applied and later iterations are 

turned into evolutionary iterations in this search. 

Iterations parameters for all search techniques are 

summarized in Table 4. 

Ordinary Solution (OS): For every shop floor, we 

used only randomly produced chromosomes in the 

beginning as OS to represent how poor an ordinary 

solution can be.  

CPU times required for pure and hybrid metaheuristics 

are given in Section 6. 

If n is the number of jobs then we have n+2 genes at 

each chromosome. The first gene represents due date 

assignment methods and second gene is used for 

dispatching rules. Remaining genes are used to 

represent selected route of each job. In the relatively 

small shop floors, jobs can have 1 route out of 5 

alternatives and at the relatively large shop floors, jobs 

have 3 alternative routes. A sample chromosome is 

given in Figure 1. 

One thing we applied in this study is dominant genes. 

First and second genes affect results much more 

compared to other genes which are the route of jobs. 

For this reason, while applying GA, R-GA, ES, R-ES 

and RS first two genes are selected with a higher 

probability of crossover or mutation in GA and ES 

using dominant genes with higher probability improved 

efficiency of the solution techniques. 

 
Figure 1. Sample chromosome. 

Due dates are assigned using mainly two different type 

of rules. The first rule is weighted due date assignment 

rule WSLK which represents internal due date 

assignment and considers weights of each customer 

while assigning due dates. The second rule is RDM due 

date assignment rule that assigns due dates randomly 

which represents external due date assignment. With 

the constants used first gene takes one of four values. 

These rules are explained below in Table 2 and in 

Appendix A. 

Table 2. Due-date assignment rules. 

Method Constant qx Rule no: 

WSLK qx = q1,q2,q3 1,2,3 

RDM  4 

Two different methods were used in order to dispatch. 

One is WSPT dispatching which schedules jobs 

according to the weights of the customers and 

processing times of the jobs. The other rule is SIRO 
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which schedules jobs in random order. Dispatching 

rules are given and explained in Table 3 and in 

Appendix B. 

Table 3. Dispatching rules. 

Method Rule no 

WSPT 1 

SIRO 2 

Table 4. Iteration numbers for pure and hybrid searches. 

 ES 
R-ES  

Hybrid 
RS GA 

R-GA  

Hybrid 

Shop 

Floor 

ES 

Iter# 

Random 

Iter# 

ES 

Iter# 

Random 

Iter# 

GA 

Iter# 

Random 

Iter# 

GA 

Iter# 

1 200 20 180 200 200 20 180 

2 150 15 135 150 150 15 135 

3 100 10 90 100 100 10 90 

4 50 5 45 50 50 5 45 

5. Solutions compared 

SIRO-RDM (OS, RS, ES, R-ES, GA, R-GA): This is 

an unintegrated combination of the problem. Jobs are 

scheduled in random order and due dates are 

determined randomly. Random due date assignment 

represents exogenous due dates where we have no 

control over it.  

WSPT-RDM (OS, RS, ES, R-ES, GA, R-GA): In this 

combination, a powerful dispatching rule WSPT is 

integrated with process planning, but due dates are still 

determined randomly. Here substantial improvement is 

obtained. 

SIRO-WSLK (OS, RS, ES, R-ES, GA, R-GA): In 

this combination, this time WSLK due date assignment 

is integrated with process plan selection but this time 

dispatching is made in random order. Although this 

integration provides substantial improvement, 

unfortunately, SIRO dispatching sharply deteriorates 

the performance measure. 

WSPT-WSLK (OS, RS, ES, R-ES, GA, R-GA): With 

this combination, we integrated process plan selection, 

scheduling and due-date assignment by using WSPT 

dispatching and WSLK due date assignment rules. This 

is the highest integration level. 

All twenty-four solutions mentioned above are 

compared with one another. Different level of 

integrations are tested and searches are compared with 

each other and with ordinary solutions. Higher 

integration levels are found better and best results are 

obtained where three functions are integrated. Results 

are presented in Section 6 experiments and results 

section and conclusions are made in the final section. 

6. Experiments and results 

We coded the problem using C++ syntax. This program 

can perform genetic, evolutionary or random iterations 

while searching for better solutions, assign due dates 

and schedule jobs and evaluate performance measure 

for every given solution. At the first gene of the 

chromosomes, two rules which are WSLK and RDM 

rules are used and with the different constants used the 

first gene can take one of four values. At the second 

gene, two dispatching rules which are WSPT and SIRO 

rules are used. This gene can take one of two values. 

Remaining genes take values according to the selected 

route among given alternatives.  

We ran the program using a laptop with 2.4 GHz 

processor with Intel i7 processor and 16 GB Ram with 

Borland C++ 5.02 compiler.  

CPU times of the problems are given in Table 5. Since 

searches take time, CPU times for searches are given 

except ordinary solutions which require a negligible 

amount of time.   

For different shop floors, given number of iterations are 

applied. At GA we applied genetic iterations which 

uses crossover and mutation operators. At the ES we 

applied only mutation operator. Since these are directed 

searches we use updated best solutions to generate new 

generations. On the other hand, RS is undirected search 

and we produce brand new random solutions at every 

iteration. We apply 200, 150, 100 and 50 iterations for 

each of the shop floors respectively. 

If we look at Table 5 for shop floor 1, iterations took 

around 20 seconds approximately. For the second shop 

floor, it took approximately 200 seconds. At the third 

shop floor, it took in between 200 and 300 seconds. 

Finally, for the largest shop floor, 50 iterations took 

approximately 300 seconds. 

First of all, we tested unintegrated solutions and we 

tested SIRO-RDM combination. Later, we integrated 

WSPT rule with process plan selection and we tested 

WSPT-RDM combinations. After that, we tested 

integration of WSLK rule with process planning. We 

tested SIRO-WSLK combinations. Finally, we 

integrated all three functions and this is the full 

integration and we tested WSPT-WSLK combinations. 

These solutions are explained in Section 5.  

Four shop floors are tested for mentioned twenty-four 

types of solutions. For smallest shop floor we applied 

200 genetic, evolutionary or random iterations. 

Iteration parameters can be found in Table 4. CPU 

times required to solve the shop floors for each search 

technique is given in Table 5. Smallest shop floor 

results are tabulated in Table 5 and illustrated in Figure 

2. Results show that searches are found very useful and 

directed search outperformed undirected search. 

Furthermore higher integration is found better and fully 

integrated combinations are found the best. R-GA 

method gave the best result. 

Similar results are obtained for the second shop floor. 

At this shop floor, we applied 150 genetic, evolutionary 

or random iterations and CPU times are given in Table 

5. Results are listed in Table 5 and illustrated in Figure 

3. Integrating functions are found to be useful. As 

integration level increases solutions become better and 

highest integration level with genetic search gave the 

best results. Directed searches outperformed undirected 
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search. 

Table 5. Comparison of twenty-four solutions for each shop floor.

Level of 

Integration 

(Combination) 

Method 

Shop Floor 1 Shop Floor 2 Shop Floor 3 Shop Floor 4 

Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU 

SIRO-RDM 

OS 293 293 293 0 906 906 906 0 1413 1413 1413 0 2020 2020 2020 0 

ES 256 260 263 19 826 838 844 217 1315 1323 1329 277 1860 1871 1879 295 

R-ES 248 252 255 20 827 835 839 216 1322 1325 1327 277 1861 1875 1885 298 

GA 248 251 253 19 841 847 849 217 1309 1319 1323 274 1833 1872 1879 297 

R-GA 254 257 259 19 823 831 833 217 1303 1309 1314 274 1871 1882 1890 298 

RS 268 273 275 19 853 864 870 222 1355 1372 1378 286 1908 1925 1934 303 

WSPT-RDM 

OS 231 231 231 0 730 730 730 0 1153 1153 1153 0 1691 1691 1691 0 

ES 210 212 212 40 666 672 673 212 1084 1089 1092 274 1554 1560 1563 293 

R-ES 211 212 212 34 675 679 682 215 1086 1094 1096 275 1560 1567 1572 299 

GA 213 213 214 21 678 679 679 207 1101 1102 1103 274 1564 1564 1564 299 

R-GA 208 209 209 20 686 687 687 206 1102 1104 1106 271 1542 1543 1544 298 

RS 218 221 222 21 701 707 710 215 1124 1133 1140 284 1589 1600 1606 314 

SIRO-WSLK 

OS 322 322 322 0 982 982 982 0 1467 1467 1467 0 2104 2104 2104 0 

ES 256 271 275 23 853 858 862 230 1260 1267 1272 288 1770 1794 1807 305 

R-ES 258 265 268 24 851 860 866 229 1249 1269 1275 291 1785 1807 1821 303 

GA 260 264 267 23 845 850 854 226 1222 1252 1262 307 1770 1783 1792 302 

R-GA 255 266 269 22 846 853 857 225 1255 1264 1270 295 1782 1789 1795 305 

RS 267 279 283 22 868 884 890 230 1284 1294 1304 311 1790 1812 1825 307 

WSPT-WSLK 

OS 247 247 247 0 766 766 766 0 1120 1120 1120 0 1621 1621 1621 0 

ES 189 191 192 22 604 617 620 219 931 933 935 233 1363 1368 1373 306 

R-ES 189 192 193 22 621 626 630 231 937 942 945 228 1360 1371 1377 310 

GA 192 193 194 22 601 603 605 213 926 928 930 228 1351 1356 1359 308 

R-GA 187 191 193 22 619 621 622 219 931 932 933 235 1347 1350 1353 308 

RS 199 202 204 22 629 641 649 224 954 966 972 313 1379 1388 1392 309 
 

 
Figure 2. First shop floor results.  

Figure 3. Second shop floor results.  

Figure 4. Third shop floor results. 

Figure 5. Fourth shop floor results. 

At the third shop floor, GA gave the best result. At this 

shop floor, we applied 100 iterations and results are 

summarized in Table 5 and in Figure 4. Directed 

searches outperformed undirected search. 

Last shop floor was the biggest shop floor. We applied 

50 iterations to find a good solution in a reasonable 

amount of time.  According to the results listed in Table 

5 and illustrated in Figure 5, highest integration level 

with R-GA is found best. According to the results, 

higher integration level gave better solutions. R-GA 
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outperformed all other searches. 

If we consider all level of integrations and compare 24 

combinations for each shop floor then there are 16 best 

results. 8 of these best results are obtained through GA 

and 7 of them is obtained through R-GA search and 

once we obtained the best result by using ES search. 

These results can be seen in Table 5. 

7. Discussions and conclusion 

In this study, we tested different integration level of 

process planning, weighted scheduling and weighted 

due date assignment. We used WSPT rule for weighted 

scheduling as it is a powerful dispatching rule. We 

applied WSLK rule as due date assignment rule. We 

considered weights of the jobs because they provide 

substantial improvements in the performance measure 

which is the sum of weighted tardiness, earliness and 

due date related costs. We tested different search 

techniques which are GA, R-GA, ES, R-ES and RS. We 

compared search techniques with each other and with 

OS results for different level of integrations. 

In the beginning of the study, we tested unintegrated 

solutions and we solved the problem according to 

SIRO-RDM combinations. Later we integrated WSPT 

scheduling with process plan selection but due dates are 

still determined randomly. We solved the problem for 

WSPT-RDM combinations at this level. After that, we 

integrated WSLK due date assignment with process 

plan selection. Scheduling is performed in random 

order and we used SIRO dispatching rule. We tested 

here SIRO-WSLK combinations. Although WSLK 

due-date assignment is very useful, SIRO dispatching 

severely deteriorates the performance measure, that is 

why this is not as good as other integration levels. At 

the end, we integrated three functions which are process 

planning, scheduling and due date assignment. We used 

WSLK due date assignment rule at the first gene of the 

chromosomes and used WSPT dispatching rule at the 

second gene of the chromosomes and tried to find better 

routes at the remaining genes of the chromosomes. We 

used dominant genes at the chromosomes because first 

two genes are much more important compared to the 

routes of each job. We tested here WSPT-WSLK 

combinations. Full integration with GA and R-GA 

techniques are found the best in these four shop floors. 

Again full integration is always found better compared 

to the intermediate levels. GA and R-GA searches 

outperformed other searches and directed searches are 

always performed better compared to the undirected 

search. While GA search gave the best results for eight 

times, compared to R-GA search which gave the best 

solutions for seven times. ES search gave the best 

solution only once among all other search techniques. 

As a conclusion, we can see that integration level is 

very important and highest integration level gives the 

best results. According to the results, we can also say 

that weighted scheduling and weighted due date 

assignment also improves global performance which is 

the sum of weighted tardiness, earliness and due date 

costs.  

Traditionally three functions that we integrated are 

performed separately which leads to poor global 

performance and greatly affects the performance 

measure. In this competitive environment, we should 

utilize every way that makes us more competitive, 

reduces our costs and increases our profits. The 

performance measure is greatly reduced by higher 

integration level, with weighted scheduling, weighted 

due date assignment and with a better search technique. 

If these three functions are performed sequentially, they 

give poor inputs for other functions. For example, 

independently prepared process plans can be poor input 

for scheduling and can cause unbalanced machine loads 

and can reduce shop floor performance. Furthermore, 

these plans may not be followed at the shop floor level 

at all as they are not realistic. Independently prepared 

scheduling without considering due dates may cause 

much more cost at performance measure. 

Independently given due dates can cause worse 

performance measure and poorly given due dates 

makes it harder to keep our promises.  

To sum up, this study has shown that higher integration 

gives better performance measure and we should use 

highest integration level. WSPT is a strong dispatching 

rule that takes into account of weights of each 

customer, and WSLK is a strong due date assignment 

rule that considers the importance of each customer. 

Alternative process plans help us to improve 

scheduling and due date assignment performance so we 

get much better global performance. Thus it is very 

useful to implement WSLK rule while assigning due 

dates and we should give closer due dates for more 

important customers and relatively far due dates for 

relatively less important customers. We should also 

schedule jobs that have both shorter processing times 

and belong to important customers earlier than the other 

jobs.  

In terms of solution techniques, directed searches are 

always better than undirected search. GA and R-GA 

techniques were found best and hybrid techniques are 

found promising. 

 

Appendix A: Due-date assignment rules  

WSLK (Weighted Slack)  Due = TPT + qx * k 

(According to weights)  qx = q1,q2 or q3    

q1=0.5*Pav,  q2=Pav, q3=1.5*Pav 

RDM (Random due-date assignment)  Due = N ~ 

(3*Pav,(Pavg )2)       

TPT: Total processing time 

Pavg: Mean processing time of all job waiting 

 

Appendix B: Dispatching rules 

WSPT: Weighted shortest processing time first 

SIRO (Service in Random order): A job among 

waiting jobs is selected randomly to be processed. 
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 This paper concerns with the optimal state derivative feedback LQR controller 

design for vibration control of an offshore steel jacket platform having active tuned 

mass damper against the wave induced disturbances. Considering that the state 

derivative signals such as acceleration and velocity are easier to measure rather 

than the state variables such as displacement, state derivative feedback control 

strategy is proposed to obtain practically applicable and easily realizable synthesis 

method. On the basis of convex optimization approach, state derivative feedback 

LQR controller design is formulated in Linear Matrix Inequalities (LMIs) form to 

get an optimal feasible solution set. Finally, an offshore steel jacket platform 

subject to nonlinear self excited wave force is used to illustrate the effectiveness 

of the proposed approach through simulations. The results show that proposed 

state derivative LQR controller is very effective in reducing vibration amplitudes 

of each floor of modeled offshore steel jacket platform and achieves compitable 

control performance to classical LQR controller design.  
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1. Introduction 

The offshore steel jacket platforms play an important 

role in the oil exploration and drilling operation in the 

oceans [1]. As it is well known that offshore steel jacket 

paltforms are exposed to the various disturbances such 

as strong winds, ocean waves, earthquakes which are 

caused the structural vibrations and makes them very 

vulnerable and unsafe [2], [3]. Therefore, vibration 

control of offshore steel jacket platforms subject to 

environmental disturbances and working conditions 

has been receving a great deal of interest for the last two 

decades, and a lot of research effort has been devoted 

to the development of advanced control algorithms.  

Abdel-Rohman has modeled a realistic offshore steal 

jacket platform using finite elements method to control 

the structural vibrations against wave loads [1]. Multi-

loop feedback controller design has been developed in 

Terro [2] et al., for nonlinear wave excited steel jacket 

platforms. Wu et al. have dealt with the non-fragile 

state feedback H∞ control problem to attenuate 

vibrations of steel-jacket platform subject to regular 

wave disturbance [4]. Mei et al. have proposed the 

design of a fuzzy H∞ controller for active vibration 

control of an offshore platform with parameter 

uncertainties [5]. Sliding mode H∞ vibration control 

problem has been considered in Zhang et al [6], for 

offshore steal jacket platform having nonlinear self 

excited wave forces and external disturbances. Li et al., 

have applied state feedback H2 controller in reducing 

the effect of wave laoding on offshore platform [7]. 

State feedback stabilization control problem for 

offshore steel jacket platforms having actuator delay 

has been considered in Zhang et al [8]. They have 

assumed that all the state variables of the offshore 

platform are available for measurement. Zhang and 

Han have applied network based modelling and active 

vibration control for offshore steel jacket platform 

having tuned mass damper. 

As it can be observed from the summarised literature, 

papers that address the state feedback vibration control 

problem of offshore steel jacket platforms are quite a 

few. As it is well known that state feedback controller 

assumes that all the state variables are available for 

measurement which are displacement and velocities in 

active structural control problem. However, 

displacement signals are not possible to be obtained 

accurately by integration, since the accelerometers are 

noisy and contain dc offset in low frequency region.

http://orcid.org/0000-0002-8372-0593
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 Therefore, a pure integrator is not practical and should 

be combined with a high-pass-filter (HPF) to remove 

the integrator drift. An HPF with sufficiently large time 

constant, results  in a phase error. It is apparently seen 

that considerable amount of effort is required to 

accurately integrate acceleration signals. In addition, 

computation accuracy will gradually decrease by 

getting displacement from acceleration with double 

step integration process [10]. In the light of 

aforementioned considerations, state derivative 

feedback controller design strategy is a promising 

active structural controller approach in the following 

aspects. Firstly, only a single step integration is needed 

to obtain velocity for accelerometer outputs. Note that 

accelerometers are one of the most common sensors in 

active structural control problems. Secondly, closed 

loop system order has not been increased, since the 

state derivative feedback controllers are static and 

memoryless with no additional state variables. This 

situation motivates us with the fact that there exist still 

more room obtaining practically applicable optimal 

state derivative feedback LQR controller synthesis to 

attenuate the vibrations of offshore platforms. 

Moreover, to the best of authors’ knowledge it can be 

seen that there is no result has been given in the 

literature on the active vibration control of offshore 

steel jacket platform by the use of state derivative 

feedback approach, so far.   

In this study, because of the state derivative signals are 

easier to measure, an LMI based optimal state 

derivative LQR controller is developed to control of the 

offshore steel jacket platform having nonlinear wave 

disturbances. In controller design, first, stability and 

solvability conditions of an optimal state derivative 

feedback LQR controller is presented in LMI form and 

minimization of quadratic cost function is ensured by 

the use of convex optimization techniques. Then, in 

order to compare the proposed method, well known 

classical LQR controller is designed. Last, numerical 

simulations studies have been conducted to illustrate 

the effectiveness of the propsed control staregy. The 

main importance of this study is to develop an easily 

realizable synthesis method to obtain practically 

applicable optimal state derivative LQR controller 

achieves comparable performance improvement with 

the conventional state feedback LQR controller. 

Rest of papers organized as follows. Mathematical 

model of the realistic offshore steel jacket platform and 

formulations of nonlinear Morison Equations based 

wave force are given in Section 2. The design of 

proposed state derivative feedback LQR controller are 

presented in Section 3. Simulation resulst with 

discussions are given in Section 4. Finally, Section 5 

concludes the paper.  

Notation: The notation to be used in the paper is fairly 

standard.   stands for the set of real numbers, 
nn

is the set of n×n dimensional real matrices. ‘diag’ 

denotes the diagonal matrices. The identity and null 

matrices are denoted by I and 0, respectively. 

)0,(0 X denotes that X  is a positive definite 

(positive semi-definite, negative definite) matrix. The 

notation ‘*’ denotes off-diagonal block completion of a 

symmetric matrix. Finally, diag{M1,…,Mn} stands for 

a diagonal matrix with elements M1,…,Mnappearing on 

its diagonal. 

2. Mathematical modeling of offshore steel jacket 

platform 

In this section, a realistic offshore steel jacket platform 

model that includes an Active Tuned Mass Damper 

(ATMD) is used for controller design as shown in 

Figure 1 [2]. In this model, ATMD is used as an active 

control mechanism to supress structural vibrations, 

which is installed on the top floor of the offshore steel 

jacket platform. 

The equations of the motion of the considered offshore 

steel jacket platform have been formulated in [2], [8], 

by the use of first two dominant vibration modes of the 

system as, 
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Here, z1(t) and  z2(t) are the generalized coordinates, 

which represent the first and second vibration modes of 

modeled offshore steel jacket platform, respectively. ω1 

and ω2are the natural frequencies of the first and second 

modes of vibration, repectively. ξ1 and ξ2 are damping 

ratios of the first and second modes of vibration, 

respectively; ϕ1 andϕ2 are the first and second mode 

shapes, respectively. zT(t) represents the horizontal 

displacement of ATMD, ξT and ωT are the damping 

ratio and natural frequency of ATMD, respectively. mT, 
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CT and KT are mass, damping and stiffness of ATMD, 

respectively. f1, f2, f3 and f4 are the nonlinear wave force 

and u(t) represents the active control force. 

 

Figure 1. A simplified offshore steel jacket platform having 

ATMD [2]. 

 

The state variables and exogenous input can be defined 

as follow: 
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By the use of (4) and (5), the equaitionsc of motion (1), 

(2) and (3) can be rewritten into state space form as, 
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   ,a a TTT 2641
2

63 2,    

  .a ,a TTT  266
2

65   

mn
uB  is the control input matrix which is 

given by 
T

T

u
m

B 









1
000 21           (8) 

and pn
wB  is the disturbance input matrix 

which is given by 

.
001000

000010
T











w
B                         (9) 

2.1. Disturbance model 

As it is well known that offshore platforms are exposed 

to the nonlinear self-excited wave forces. In this study, 

a nonlinear Morison equation is used to calculate 

horizontal wave force [2]. Let us consider a joint point 

p on the platform. Unidirectional plane wave forces 

exerted on this point can be obtained as 

.1

2

1

pxpI

pxpI

'
px

'
pxpDp

UBCρ

aBρC

UUAρCF







              (10) 

Here, Fp is the wave force vector, Ap is the lumped area 

at point p, Upx is horizontal velocity of water, Uˈpx is 

horizontal velocity of point p, the difference Uˈpx=Upx-

U̇px is the relative velocity of water with respect to point 

p. CD and CI are drag and inertia coefficients, relatively, 

apx is horizontal acceleration of wave on point p, Bp is 

lumped volume on p, ρ water density, and Üpx is 

horizantal acceleration of point p. Velocity and 

acceleration of a horizontal advancing wave are related 

to wave characteristics and properties of motion area of 

the wave.  

At point p, the horizontal velocity is given as, 

.)cos( px

p

wopppx U
h

Y
UtkxEU     (11) 

The horizontal acceleration is expressed as, 

)sin( tkxEa
pppx

                 (12) 

where, 

)sinh(2

)cosh(

kh

kYH
E

p

p


                 (13) 

xp and Yp are the location of point p with respect to a 

fixed coordinate axes reference, hence Yp is the height 

of point p from seabed, h is water depth, Ω is the 

frequency of the water, H is the height of water, λ is the 

wavelength, k=2π/λ is wave number and Uow is the 

current velocity of the water surface. The 

aforementioned self excited hydrodynamic forces f1, f2, 

f3 and f4 can be computed by the use of Equations (10)-

(13). 
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3. Optimal state derivative feedback LQR 

controller design 

In the last decade, the state derivative feedback has 

been extensively studied. Design of a full state 

derivative feedback control with state derivative 

estimator for acceleration feedback has been presented 

by Kwak et al. [9]. Abdelaziz and Valasek have 

developed a procedure to design state derivative 

feedback controller for pole placement of single input 

single output linear systems [10]. Then, design of 

robust pole placement and optimal regulator problems 

with state derivative feedback has been presented in 

[11], [12]. Linear Matrix Inequalities (LMIs) based 

solvability conditions for state derivative feedback has 

been firstly designed by Assunçao et al. [13]. Faria et 

al. have extended the problem with regional pole 

placement [14]. L2 gain state derivative feedback 

controller design has been formulated via LMIs by 

Sever and Yazici [15].The proposed L2 gain state 

derivative feedback control approach has been 

extended with robustness against polytopic type 

uncertainties [16]. Despite the fact that LMI based 

solutions of classical LQR approach is widely used in 

the literature [17], [18], [19], design of a state 

derivative feedback LQR via LMIs has not been 

considered so far as provided in this paper. 

In this section, first an optimal state derivative feedback 

LQR controller synthesis is presented. Then, to 

compare the proposed state derivative feedback LQR 

controller, design of a classical LQR controller 

synthesis is provided. 

Consider the linear time-invariant system described by 

)()()( tButAxtx                   (14) 

where ntx )(  is the state vector and 
mtu )( is 

thecontrol input vector. Our goal is to find an optimal 

state derivative feedback control in the form of 

)()( txKtu                        (15) 

where 
nmK  is a controller gain matrix. The 

closed-loop system is written in the reciprocal state 

space framework [9] by replacing the (15) into (14) as 

follows. 

   )()( 1 txBKIAtx                 (16) 

The quadratic cost function is given by 

.)()()()(
0

TT




 dttRututxQtxJ           (17) 

here, 
nnQ  and 

mmR   are the performance 

weight matrices. The following theorem presents a LMI 

based method to design optimal state derivative 

feedback LQR controller. 

Theorem. For a given values of Q and R, asymptotic 

stability of the reciprocal state space closed-loop 

system (16) is ensured with a minimum value of the 

quadratic cost function (17), if there exists a solution 

for the following optimization problem 

min tr(M), s.t. (18) and (19) 

0
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  (18) 
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



S

IM
                          (19) 

Then, the optimal control law can be calculated as 

)()()( 1 txWStxKtu  . 

Proof. By substituting the (15) into (17), the cost 

function is turned into 

  .)()(

0




 dttxRKKQtxJ TT
             (20) 

Suppose that a positive definite matrix P exists which 

satisfies the equation (21) [20] 

    .)()()()( tPxtx
dt

d
txRKKQtx TTT  (21) 

By integrating the (21) 

)0()0()()(

)()(

T

0

PxxPxx

tPxtxJ

T

T






          (22) 

is obtained. Under the assumption of the closed-loop 

system (16) is asymptotically stable, the cost function 

converges to the 

).0()0( PxxJ T                        (23) 

Hence, the equation (21) can be rewritten as follows 

 
 .)()()()(

)()(

txPtxtPxtx

txRKKQtx

TT

TT




               (24) 

By using the closed-loop system (16) in reciprocal state 

space framework, (24) is converted to 

 
 

 
.)()(

)()(

1

tx
PABKI

BKIPA
tx

txRKKQtx

TT

T

TT


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














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

            (25) 

Design of an optimal state derivative feedback 

controller problem can be cast to the matrix inequality 

constraint problem by change of variables. Let us 

define a new variable Y=YT>P. Then, substituting Y 

into (25) allows us to write 

.0TTTT

1T1









QRKKYABK

BKYAYAYA
   (26) 

By applying the Schur complement formula [21], (26) 

is congruent to 
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(27) is not in the LMI form yet due to the multiplication 

of decision variables Y and K. Pre and post multiply the 

(27) by ),,( IISdiag  where 
1 YSS T
 and (18) 

is obtained. Here, W=KS is a modest variable change 

operation. Recall that the quadratic cost function (23) 

has to be minimized by optimal state derivative 

feedback control law (15). Then, a new decision 

variable 
ccM   is introduced to set an upper bound 

on the cost as follows: 

.0
*











S

IM
YM                   (28) 

In the light of the results obtained above, the proof is 

completed.  

3.1. Classical LQR controller design 

In order to compare the effectiveness of the proposed 

state derivative feedback LQR controller, a classical 

LQR controller has been designed in this subsection. 

As it is well known that LQR control problem is to find 

an optimal state feedback control law that minimized 

the quadratic cost function with the solution of 

following Algebraic Riccati Equation [22], 

0T1T   SBSBRQSASA .             (29) 

Then, the classical state feedback control law can be 

obtained as 

)()()( T1 tSxBRtxKtu
cc

 .            (30) 

4. Numerical examples 

In this section, extensive numbers of simulations are 

carried out to verify the effectiveness and applicability 

of the proposed controller to a offshore steel jacket 

platform subject to nonlinear wave disturbance. The 

parameters of the considered offshore steel jacket 

platform having ATMD are taken from [2], [23] and 

listed in Table 1. In addition, non-linear self excited 

wave force w(x,t) have been computed as Appendix A 

in [2]. All the simulations and computations are 

employed using Matlab with Simulink. 

The matrices Aand Bu of the modeled offshore steel 

jacket platform can be written by the use of these 

system parameters as 
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010

A

 



 .00213.0000344628.0

0003445.00

T


uB
 

 

Table 1. Parameter values of considered offshore steel 

jacket platform. 

Parameter Value 

Wave Height  (H) 12.19 m 

Wave Length (λ)
 

182.88 m 

Depth of Water (h) 76.2 m 

Current Velocity (Uow) 0.122m/s 

Wave Frequency (ω) 1.8 rad/s 

Natural Frequency (ω1) 1.818 rad/s 

Natural Frequency (ω2) 10.8683 rad/s 

Damping Ratio (ξ1) 0.005 

First Mode Shape(ϕ1) -0.003445 

Second Mode Shape (ϕ2) 0.00344628 

Damping Ratio (ξ2) 0.005 

Natural Frequency of 

ATMD (ωT) 

1.8180 rad/s 

Mass of ATMD (mT) 469.4836 kg 

Stiffness of ATMD (KT) 1551.5 

Damping of ATMD (CT) 256 

Damping Ratio (ξT) 0.15 

 

The performance weight matrices which are used in 

controller design are 

.001.0

),500,500,500,500,500,500(





R

diagQ
  (31) 

In the light of Theorem, in order to minimize the 

quadratic cost given by (31), proposed controller is 

designed. For the solution of the resulting 

LMIs,Yalmip parser and Sedumi solver are used [24], 

[25].Thus, the optimal state derivative feedback LQR 

control law is computed as 


 ).(4837.10639.20110.0

1116.03589.01282.110

)()(

3

tx

txKtu







  (32) 

For brevity from this point onwards we will henceforth 

denote this controller as SDFLQR. 
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In addition to compare the performance of the proposed 

controller, the classical LQR controller has been 

designed for given system (14) with the performance 

weighting matrices (31). The resulted classical LQR 

control law can be obtained as 


 ).(5248.11532.06227.0

9085.22053.03936.110

)()(

3

tx

txKtu cc







    (33) 

For brevity from this point onwards we will henceforth 

denote this controller as LQR. The displacement 

responses of the first, second and third floors of the 

offshore steel jacket platform are shown in Figure 2, 

Figure 3 and Figure 4, repectively for the controlled and 

uncontrolled cases against the nonlinear wave forces. 

 

Figure 2. Controlled and uncontrolled displacemet time 

responses of first floor of offshore steel jacket platform. 

 

 
Figure 3. Controlled and uncontrolled displacemet time 

responses of second floor of offshore steel jacket platform. 

 

As shown in Figure 2, Figure3 and Figure 4, vibration 

amplitudes of each floor of the offshore steel jacket 

platform are suppressed successfully by the use of 

SDFLQR and classical LQR. On the other hand Figure 

5 demonstrates the cahange in control inputs for 

SDFLQR and classical LQR. 

When the response plots of the offshore steel jacket 

platform with uncontrolled and controlled cases are 

compared,SDFLQR and classical LQR have very close 

vibration suppression performance. On the other hand, 

by taking into account that the state derivative signals 

are much available to obtain good accuracy, proposed 

SDFLQR is very promising solution for active 

vibration control of offshore steel jacket platform 

having nonlinear self excited wave induced 

disturbances. 

 
Figure 4. Controlled and uncontrolled displacemet time 

responses of the third floor of offshore steel jacket platform. 

 

 

Figure 5. Time history of the applied control force for 

SDFLQR and LQR. 

 

In this section, the root mean square (RMS) value, 

which is statistic measure of the magnitude of varying 

quantity, is employed to investigate the active vibration 

control performance. RMS analysis method is very 

useful to evaluate active control performance when the 

variants are positive and negative [26]. The 

corresponding RMS values of displacement responses 

of each floor of the considered offshore steel jacket 

platform and applied control forces are compared for 

the both controlled and uncontrolled cases in Table 2 

for nonlinear wave disturbance input. 

Remark: As can be observed from Table 2, proposed 

SDFLQR achieves compitable control performance to 

classical LQR control method. Note that the system 

response and the control effort is not equally invloved 

in the quadratic cost functions of both LQR and 

SDFLQR. The control input is weighted with a state 

derivative vector as ẋ(t) for SDFLQR and weighted 
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with a state vector as x(t) for LQR. Therefore, similar 

choice of Q and R, results dissimilar performance 

objectives for SDFLQR and LQR. In the light of 

aforementioned discussions, it is natural to have 

slighlty different vibration attenuation levels. It is 

noteworthy that previously applied control approaches 

in the literature are applied state feedback to actively 

control the steel jacket platform vibrations [4], [5], [6], 

[7] and [8]. Accessing the displacement information 

from accelerometer outputs by a double integration, is 

required to realize state feedback control law.  

Considering that state derivative signals are much 

available to obtain good accuracy, proposed SDFLQR 

design process provides more practically applicable 

and easily realizable synthesis method and has a great 

potential for active vibration control of offshore steel 

jacket platform. 

 

Table 2. Comparison of RMS values of displacement 

responses of each floor of the offshore steel jacket platform 

and applied control forces for the both controlled and 

uncontrolled cases. 

 

5. Conclusion 

This paper presents an approach for designing state 

derivative feedback LQR controller to attenuate the 

vibration occurred in offshore steel jacket platform 

against the nonlinear wave forces. In controller design, 

the solvability conditions of the proposed control 

strategy is presented as LMI constraints on the basis of 

convex optimization approach. The main importance of 

this study is to devoloped an easily realizable synthesis 

method to obtain practically applicable optimal state 

derivative LQR controller which provides satisfactory 

control performance. In order to demonstare the 

effectiveness of the approach, performance of the 

proposed controller is examined in disturbance 

attenuation of nonlinear wave force excitations, in an 

offshore steel jacket paltform having ATMD. 

Simulation results indicate that the proposed control 

technique is all effective in reducing vibration 

amplitudes of each floor and guarantees the closed-loop 

stability. Vibration attenuation performance of the 

proposed controller can be improved by employing 

pole location constraints via LMI regions and H2/H∞ 

norm conditions. Finally, to cope with the practical 

problems such as parametric uncertainties and actuator 

imperfections, expanding the proposed method with the 

robustness against actuator delay and uncertain 

parameters might be a significant direction for future 

work. 
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weight (one weight) if all the nonzero codewords have the same weight. It is
well known that constant weight or one weight codes have many important
applications. In this paper, we study the structure of one weight Z2Z2[u]-
linear and cyclic codes. We classify one weight Z2Z2[u]-cyclic codes and also
give some illustrative examples.
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1. Introduction

In algebraic coding theory, the most important
class of codes is the family of linear codes. A lin-
ear code of length n is a subspace C of a vector
space Fn

q where Fq is a finite field of size q. When
q = 2 then we have linear codes over F2 which are
called binary codes. Binary linear codes have very
special and important place all among the finite
field codes because of their easy implementations
and applications. Beginning with a remarkable
paper by Hammons et al. [1], interest of codes
over variety of rings have been increased. Such
studies motivate the researchers to work on dif-
ferent rings even over other structural algebras
such as groups or modules. A Z4-submodule of
Z
n
4 is called a quaternary linear code. The struc-

ture of binary linear codes and quaternary lin-
ear codes have been studied in details for the last
two decades. The reader can see some of them
in [2–4]. In 2010, Borges et al. introduced a
new class of error correcting codes over the ring

Z
α
2 ×Z

β
4 called additive codes that generalizes the

class of binary linear codes and the class of qua-
ternary linear codes in [5]. A Z2Z4-additive code

C is defined to be a subgroup of Zα
2 × Z

β
4 where

α+2β = n. If β = 0 then Z2Z4-additive codes are
just binary linear codes, and if α = 0, then Z2Z4-
additive codes are the quaternary linear codes
over Z4. Z2Z4-additive codes have been general-
ized to Z2Z2s-additive codes in 2013 by Aydogdu
and Siap in [6], and recently this generalization
has been extended to ZprZps-additive codes, for a
prime p, by the same authors in [7]. Later, cyclic

codes over Zα
2 ×Z

β
4 have been introduced in [8] in

2014 and more recently, in [9], one weight codes
over such a mixed alphabet have been studied.
A code C is said to be one weight code if all the
nonzero codewords in C have the same Hamming
weight where the Hamming weight of any string
is the number of symbols that are different from
the zero symbol of the alphabet used. In [10],
Carlet determined one weight linear codes over
Z4 and in [11], Wood studied linear one weight
codes over Zm. Constant weight codes are very
useful in a variety of applications such as data
storage, fault-tolerant circuit design and comput-
ing, pattern generation for circuit testing, identi-
fication coding, and optical overlay networks [12].
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Moreover, the reader can find the other applica-
tions of constant weight codes; determining the
zero error decision feedback capacity of discrete
memoryless channels in [13], multiple access com-
munications and spherical codes for modulation
in [14, 15], DNA codes in [16, 17], powerline com-
munications and frequency hopping in [18].

Another important ring of four elements other
than the ring Z4, is the ring Z2 + uZ2 = R =
{0, 1, u, 1 + u} where u2 = 0. For some of the
works done in this direction we refer the reader
to [19–21]. It has been shown that linear and
cyclic codes over this ring have advantages com-
pared to the ring Z4. For an example; the finite
field GF (2) is a subring of the ring R. So factor-
ization over GF (2) is still valid over the ring R.
The Gray image of any linear code over R is al-
ways a binary linear code which is not always the
case for Z4.

In this work, we are interested in studying one
weight codes over Z

r
2 × (Z2 + uZ2)

s = Z
r
2 × Rs.

This family of codes are special subsets of Zr
2×Rs

which their all nonzero codewords have the same
weight. Since the structure of one weight binary
linear codes were well classified by Bonisoli [22],
we conclude some results that coincides with the
results in [22] for Z2Z2[u]-linear codes, and we
classify cyclic codes over Zr

2×Rs and also we give
some one weight linear and cyclic code examples.
Furthermore, we look at the Gray (binary) im-
ages of one weight cyclic codes over Zr

2 × Rs and
we determine their parameters.

2. Preliminaries

Let R = Z2 + uZ2 = {0, 1, u, 1 + u} be the four-
element ring with u2 = 0. It is easily seen that
the ring Z2 is a subring of the ring R. Then let us
define the set

Z2Z2[u] = {(a, b) | a ∈ Z2 and b ∈ R} .

But we have a problem here, because the set
Z2Z2[u] is not well-defined with respect to the
usual multiplication by u ∈ R. So, we must de-
fine a new method of multiplication on Z2Z2[u]
to make this set as an R-module. Now define the
mapping

η : R → Z2

η (p+ uq) = p.

which means; η(0) = 0, η(1) = 1, η(u) = 0
and η(1 + u) = 1. It can be easily shown that η
is a ring homomorphism. Furthermore, for any

element e ∈ R, we can also define a scalar multi-
plication on Z2Z2[u] as follows.

e (a, b) = (η(e)a, eb) .

This multiplication can be extended to Zr
2×Rs for

e ∈ R and v = (a0, a1, ..., ar−1,b0, b1, ..., bs−1) ∈
Z
r
2 ×Rs as,

ev = (η(e)a0, η(e)a1, ..., η(e)ar−1,eb0, eb1, ..., ebs−1) .

Lemma 1. Z
r
2 × Rs is an R−module under the

multiplication defined above.

Definition 1. A non-empty subset C of Zr
2 × Rs

is called a Z2Z2[u]-linear code if it is an R-
submodule of Zr

2 ×Rs.

Now, take any element a ∈ R, then there exist
unique p, q ∈ Z2 such that a = p+ uq. Also note
that the ring R is isomorphic to Z

2
2 as an addi-

tive group. Therefore, any Z2Z2[u]−linear code
C is isomorphic to an abelian group of the form
Z
k0+k2
2 ×Z

2k1
2 , where k0, k2 and k1 are nonnegative

integers. Now define the following sets.

CF
s = 〈{(a, b) ∈ Z

r
2 ×Rs | b free over Rs}〉

where if 〈b〉 = Rs then b is called free over Rs.

C0 = 〈{(a, ub) ∈ Z
r
2 ×Rs | a 6= 0}〉 ⊆ C\CF

s

C1 = 〈{(a, ub) ∈ Z
r
2 ×Rs | a = 0}〉 ⊆ C\CF

s .

Therefore, denote the dimension of C0, C1 and CF
s

as k0, k2 and k1 respectively. Under these pa-
rameters, we say that such a Z2Z2[u]-linear code
C is of type (r, s; k0, k1, k2). Z2Z2[u]-linear codes
can be considered as binary codes under a special
Gray map. For (x, y) ∈ Z

r
2 × Rs, where (x, y) =

(x0, x1, . . . , xr−1, y0, y1, . . . , ys−1) and yi = pi+uqi
the Gray map is defined as follows.

Φ : Zr
2 ×Rs → Z

n
2

Φ (x0, . . . xr−1, p0 + uq0, . . . ps−1 + uqs−1)

= (x0, . . . xr−1, q0, . . . , qs−1, p0 + q0, . . . , ps−1 + qs−1) ,

(1)

where n = r + 2s.

The Hamming distance between two strings x and
y of the same length over a finite alphabet Σ de-
noted by d(x, y) is defined as the number of posi-
tions at which these two strings differ. The Ham-
ming weight of a string x over an alphabet Σ is
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defined as the number of its nonzero symbols in
the string. More formally, the Hamming weight
of a string is wt(x) = |{i : xi 6= 0}|. Also note
that wt(x− y) = d(x, y).

The minimum distance of a linear code C, denoted
by d(C) is defined by

d(C) = min{d(c1, c2) : c1, c2 ∈ C, c1 6= c2}.

The Lee distance for the codes over R is the Lee
weight of their differences where the Lee weights
of the elements of R are defined as wtL(0) =
0, wtL(1) = 1, wtL(u) = 2 and wtL(1 + u) = 1.
The Gray map defined above is a distance pre-
serving map which transforms the Lee distance in
Z
r
2 × Rs to the Hamming distance in Z

n
2 . Fur-

thermore, for any Z2Z2[u]-linear code C, we have
that Φ (C) is a binary linear code as well. This
property is not valid for the Z2Z4-additive codes.
And also, we define

wt(v) = wtH(v1) + wtL(v2),

where v = (v1, v2), wtH(v1) is the Hamming
of weight of v1 and wtL(v2) is the Lee weight
of v2. If C is a Z2Z2[u]-linear code of type
(r, s; k0, k1, k2) then the binary image C = Φ(C)
is a binary linear code of length n = r + 2s
and size 2n. It is also called a Z2Z2[u]-linear
code. Now, let v = (a0, . . . , ar−1, b0, . . . , bs−1) ,
w = (d0, . . . , dr−1, e0, . . . , es−1) ∈ Z

r
2 × Rs be any

two elements. Then we can define the inner prod-
uct as

〈v, w〉 =



u
r−1∑

i=0

aidi +
s−1∑

j=0

bjej



 ∈ Z2 + uZ2.

According to this inner product, the dual linear
code C⊥ of a Z2Z2[u]-linear code C is also defined
in a usual way,

C⊥ = {w ∈ Z
r
2 ×Rs| 〈v, w〉 = 0 for all v ∈ C} .

Hence, if C is a Z2Z2[u]-linear code, then C⊥ is
also a Z2Z2[u]-linear code.

The standard forms of generator and parity-check
matrices of a Z2Z2[u]-linear code C are given as
follows.

Theorem 1. [23] Let C be a Z2Z2[u]-linear code
of type (r, s; k0, k1, k2). Then the standard forms
of the generator and the parity-check matrices of
C are:

G =





Ik0 A1 0 0 uT
0 S Ik1 A B1 + uB2

0 0 0 uIk2 uD





H =





−At
1 Ir−k0 −uSt 0 0

−T t 0 −(B1 + uB2)
t +DtAt −Dt Is−k1−k2

0 0 −uAt uIk2 0





where A, A1, B1, B2, D, S and T are matrices
over Z2.

Therefore, we can conclude the following corol-
lary.

Corollary 1. If C is a Z2Z2[u]-linear code
of type (r, s; k0, k1, k2) then C⊥ is of type
(r, s; r − k0, s− k1 − k2, k2).

The weight enumerator of any Z2Z2[u]-linear code
C of type (r, s; k0, k1, k2) is defined as

WC(x, y) =
∑

c∈C

xn−wt(c)ywt(c)

where, n = r + 2s. Moreover, the MacWilliams
relations for codes over Z2Z2[u] can be given as
follows.

Theorem 2. [23] Let C be a Z2Z2[u]−linear
code. The relation between the weight enumera-
tors of C and its dual is

WC⊥ (x, y) =
1

|C|
WC (x+ y, x− y) .

We have given some information about the gen-
eral concept of codes over Z

r
2 × (Z2 + uZ2)

s. To
make reader understanding the paper easily we
give the following example.

Example 1. Let C be a linear code over Z
3
2 ×

(Z2 + uZ2)
4 with the following generator matrix.





1 1 0 0 u u u
0 1 1 1 1 + u u 0
0 1 0 u u u 0



 .

We will find the standard form of the generator
matrix of C and then using this standard form, we
find the generator matrix of the linear dual code
C⊥ and also we determine the types of both C and
its dual.

Now, applying elementary row operations to above
generator matrix, we have the standard form as
follows.

G =





1 0 0 0 u 0 u
0 1 0 0 0 u 0
0 0 1 1 1 + u 0 0



 .
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Since, G is in the standard form we can write this
matrix as

G =





1 0 0 0 u 0 u
0 1 0 0 0 u 0

0 0 1 1 1 + u 0 0





=

[
Ik0 A1 0 uT

0 S Ik1 B1 + uB2

]

.

Hence, with the help of Theorem 1 the parity-
check matrix of C is

H =







0 0 1 u 0 0 0
1 0 0 1 + u 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1






.

Therefore,

• C is of type (3, 4; 2, 1, 0) and has 2241 = 16
codewords.

• C⊥ is of type (3, 4; 1, 3, 0) and has 2143 =
128 codewords.

• C = {(0, 0, 0, |0, 0, 0, 0), (1, 0, 0, |0, u, 0, u),
(0, 1, 0, |0, 0, u, 0), (0, 0, 1, |1, ū, 0, 0),
(0, 0, 0, |u, u, 0, 0), (0, 0, 1, |ū, 1, 0, 0),
(1, 1, 0, |0, u, u, u), (1, 0, 1, |1, 1, 0, u),
(0, 1, 1, |1, ū, u, 0), (1, 1, 1, |1, 1, u, u),
(1, 0, 0, |u, 0, 0, u), (0, 1, 0, |u, u, u, 0),
(1, 1, 0, |u, 0, u, u), (1, 0, 1, |ū, ū, 0, u),
(0, 1, 1, |ū, 1, u, 0), (1, 1, 1, |ū, ū, u, u)},
where ū = 1+u.

• WC(x, y) = x11 + 3x8y3 + x7y4 + 2x6y5 +
4x5y6 + x4y7 + 2x3y8 + 2x2y9.

• WC⊥(x, y) = 1
|C|WC(x + y, x − y) = x11 +

6x9y2+8x8y3+16x7y4+32x6y5+26x5y6+
24x4y7 + 15x3y8.

• The Gray image Φ(C) of C is a [11, 4, 3]
binary linear code.

• Φ(C⊥) is a [11, 7, 2] binary linear code.

3. The Structure of One Weight

Z2Z2[u]-linear Codes

In this part of the paper, we study the struc-
ture of one weight codes over Zr

2 × Rs. Since the
binary(Gray) images of Z2Z2[u]-linear codes are
always linear, our results about the one weight
Z2Z2[u]-linear codes will coincide with the results
of the paper [22]. So, in this section of the paper
we will prepare for Section 4 and also we give some
fundamental definitions and illustrative examples
of one weight Z2Z2[u]-linear codes.

Definition 2. Let C be a Z2Z2[u]-linear code. C
is called a one (constant) weight code if all of its
nonzero codewords have the same weight. Fur-
thermore, if such weight is m then C is called a
code with weight m.

Definition 3. Let c1, c2, e1, e2 be any four dis-
tinct codewords of a Z2Z2[u]-linear code C. If the
distance between c1 and e1 is equal to the distance
between c2 and e2, that is, d(c1, e1) = d(c2, e2),
then C is said to be equidistant.

Theorem 3. [22] Let C be a [n, k] linear code
over Fq with all nonzero codewords of the same
weight. Assume that C is nonzero and no column
of a generator matrix is identically zero. Then C
is equivalent to the λ-fold replication of a simplex
(i.e., dual of the Hamming) code.

Corollary 2. Let C be an equidistant Z2Z2[u]-
linear code with distance m. Then C is a one
weight code with weight m. Moreover, the binary
image Φ(C) of C is also a one weight code with
weight m.

Example 2. It is worth to note that the
dual of a one weight code is not necessarily
a one weight code. Let C be a Z2Z2[u]-linear
code of type (2, 2; 0, 1, 0) with C = 〈(1, 1|1 +
u, 1 + u)〉. Then C = {(0, 0|0, 0), (1, 1|1 +
u, 1 + u), (1, 1|1, 1), (0, 0|u, u)} and C is a one
weight code with weight m = 4. On the
other hand, the dual code C⊥ is generated
by 〈(1, 0|u, 0), (0, 1|u, 0), (0, 0|1, 1)〉 and of type
(2, 2; 2, 1, 0). But d(C⊥) = 2 and C⊥ is not a one
weight code.

Remark 1. The dual code for length greater than
3 is never a one weight code.

Example 3. Let C be a Z2Z2[u]-linear code
with the standard form of the generator ma-

trix

[
1 0 1 0 u
0 1 1 1 1 + u

]

, then C is of type

(3, 2; 1, 1, 0) and one weight code with weight 4.
Furthermore, Φ(C) is a binary linear code with
parameters [7, 3, 4]. Here, note that the binary
image of C is the binary simplex code of length 7,
which is the dual of the [7, 4, 3] Hamming code.

Now, we give a theorem which gives a construc-
tion of one weight codes over Zr

2 ×Rs.

Corollary 3. Let C be a one weight Z2Z2[u]-
linear code of type (r, s; k0, k1, k2) and weight m.
Then, a one weight code of type (γr, γs; k0, k1, k2)
with weight γm exists, where γ is a positive inte-
ger.

Definition 4. Let C be a Z2Z2[u]-linear code. Let
Cr (respectively Cs) be the punctured code of C by
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deleting the coordinates outside r (respectively s).
If C = Cr × Cs then C is called separable.

Corollary 4. There do not exist separable one
weight Z2Z2[u]-linear codes.

Proof. Since Φ(Cr × Cs) = Φ(Cr) × Φ(Cs), the
proof is obvious. �

Corollary 5. If C is a Z2Z2[u]-linear code of
type (r, s; k0, k1, k2) with no all zero columns in
the generator matrix of C. Then the sum of the

weights of all codewords of C is equal to |C|
2 (r+2s).

Proof. From [22], since the sums of the weights
of a binary linear code [n, k] is n2k−1, the sum of
the all codewords of C is

∑

c∈C

wt(c) = r
|C|

2
+ s|C| =

|C|

2
(r + 2s).

�

Corollary 6. Let C be a one weight Z2Z2[u]-
linear code of type (r, s; k0, k1, k2) and weight m.
If there is no zero columns in the generator ma-
trix of C, then;

i) m = α 2(k0+2k1+k2)−1 where α is a
positive integer satisfying (r + 2s) =
α
(
2k0+2k1+k2 − 1

)
. In addition, if m is

an odd integer, then r is also odd and
C = 〈(1 · · · 1

︸ ︷︷ ︸

r times

|u · · ·u
︸ ︷︷ ︸

s times

)〉.

ii) d(C⊥) ≥ 2. Also, d(C⊥) ≥ 3 if and only if
α = 1.

iii) for α = 1, if |C| ≥ 4 then d(C⊥) = 3.

We have known from the above corollary that
if C is a one weight Z2Z2[u]-linear code of type
(r, s; k0, k1, k2) and weight m then there is a posi-

tive integer α such that m = α 2(k0+2k1+k2)−1, so
the minimum distance for a one weight Z2Z2[u]-
linear code must be even. In the following, we
characterize the structure of Z2Z2[u]-linear codes.

Theorem 4. Let C be a one weight Z2Z2[u]-linear
code over Z

r
2 × Rs with generator matrix G and

weight m.

i) If v = (a|b) is an any row of G, where
a = (a0, . . . , ar−1) ∈ Z

r
2 and b =

(b0, . . . , bs−1) ∈ Rs, then the number of
units(1 or 1 + u) in b is either zero or m

2 .
ii) If v = (a|b) and w = (c|d) are two distinct

rows of G, where b and d are free over Rs,
then the coordinate positions where b has
units (1 or 1 + u) are the same that the
coordinate positions where d has units.

iii) If v = (a|b) and w = (c|d) are two distinct
rows of G, where b and d are free over Rs,
then |{j : bj = dj = 1 or 1 + u}| = |{j :
bj = 1, dj = 1+u or bj = 1+u, dj = 1}| =
m

4 .

Proof. i) The weight of v = (a|b) is wt(v) =
wtH(a) + wtL(b) = m. Since C is linear
uv = (0|ub) is also in C then, if ub = 0
then b does not contain units. If ub 6= 0,
then wt(v) = m = 0 + wtL(ub) and there-
fore, wtL(ub) = 2|{j : bj = 1 or 1 + u}| =
m. Hence, the number of units in b is m

2 .
ii) Multiplying v and w by u we have, uv =

(0|ub) and uw = (0|ud). If v and w
have units in the same coordinate posi-
tions then we get uv + uw = 0. So, as-
sume that they have some units in differ-
ent coordinates. Since C is a one weight
code with weight m, if uv + uw 6= 0 then
the number of coordinates where b and d
have units in different places must be m

2 .
To obtain this, the number of coordinates
where {bj = 1 = dj} and {bj = 1 + u =
dj} has to be m

2 , and in all other coordi-
nates where {bj = 1 or 1 + u} we need
{dj = 0 or u}, and also in all other co-
ordinates where {bj = 0 or u} we need
{dj = 1 or 1+u}. Hence, consider the vec-
tor v+(1+u)w. This vector has the same
weight as v + w in the first r coordinates
but for the last s coordinates, it has u′s
in the coordinates where {bj = 1 = dj}
and {bj = 1 + u = dj}, so its weight is
greater than m. This contradiction gives
the result.

iii) Let x = v+w and y = v+(1+u)w be two
vectors in C. The binary parts of these two
vectors are the same, and for the coordi-
nates over Rs we know from ii) that v and
w have units in the same coordinate po-
sitions, and for the all other coordinates
in Rs, the values of x and y are the same.
Therefore, the sum of the weights of the
units in v must be same in x and y. So,
they also have the same number of coor-
dinates with u. But this is only possible
if |{j : bj = dj = 1 or 1 + u}| = |{j :
bj = 1, dj = 1 + u or bj = 1 + u, dj = 1}|.
We also know from i) that the number of
units in v is m

2 , so we have the result.

�

Theorem 5. Let C be a one weight code of type
(r, s; k0, k1, k2). Then k1 ≤ 1 and C has the fol-
lowing standard form of the generator matrices.
If k1 = 0 then
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G =

[
Ik0 A1 0 uT
0 0 uIk2 uD

]

.

If k1 = 1 then

G =





Ik0 A1 0 0 uT
0 s 1 a b1 + ub2
0 0 0 uIk2 uD





where s, a, b1, b2 are vectors over Z2.

Proof. From Theorem 4 i), we know that any two
distinct free vectors have their units in the same
coordinate positions. So, if we add the first free
row of the generator matrix to the other rows,
we have only one free row in the generator ma-
trix. Hence, k1 ≤ 1 and considering this and us-
ing the standard form of the generator matrix for
a Z2Z2[u]-linear code C given in Theorem 1, we
have the result. �

4. One Weight Z2Z2[u]-cyclic Codes

In this section, we study the structure of one
weight Z2Z2[u]-cyclic codes. At the beginning,
we give some fundamental definitions and theo-
rems about Z2Z2[u]-cyclic codes. This informa-
tion about Z2Z2[u]-cyclic codes was given in [24],
with details.

Definition 5. An R-submodule C of Z
r
2 × Rs

is called a Z2Z2[u]-cyclic code if for any code-
word v = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) ∈ C,
its cyclic shift

T (v) = (ar−1, a0, . . . , ar−2, bs−1, b0, . . . , bs−2)

is also in C.

Any codeword c = (a0, a1, . . . , ar−1, b0, b1, . . .
, bs−1) ∈ Z

r
2 ×Rs can be identified with a module

element such that

c(x) = (a0 + a1x+ . . .+ ar−1x
r−1, b0 + b1x

+ . . .+ bs−1x
s−1)

= (a(x), b(x))

in Rr,s = Z2[x]/ (x
r − 1) × R[x]/ (xs − 1) . This

identification gives a one-to-one correspondence
between elements in Z

r
2×Rs and elements in Rr,s.

Theorem 6. [24] Let C be a Z2Z2[u]-cyclic
code in Rr,s. Then we can identify C uniquely
as C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉, where
f(x)| (xr − 1) ( mod 2), and a(x)|g(x)| (xs − 1)
(mod 2) , and l(x) is a binary polyno-
mial satisfying deg(l(x)) < deg(f(x)),

f(x)|

(
xs − 1

a(x)

)

l(x) (mod 2) and f(x) 6=
(
xs − 1

a(x)

)

l(x) (mod 2).

Considering the theorem above, the type of C =
〈(f(x), 0) , (l(x), g(x) + ua(x))〉 can be written in
terms of the degrees of the polynomials f(x), a(x)
and g(x). Let t1 = deg f(x), t2 = deg g(x) and
t3 = deg a(x). Then C is of type ( [24])

(r, s; r − t4, s− t2, t2 + t4 − t1 − t3)

where d1(x) = gcd

(

f(x),
xs − 1

g(x)
l(x)

)

and t4 =

deg d1(x).

Corollary 7. If C is a one weight cyclic code gen-
erated by (l(x), g(x) + ua(x)) ∈ Rr,s with weight
m then m = 2s.

Proof. We know from Theorem 5 that if C is
a one weight Z2Z2[u]-linear code then k1, which
generates the free part of the code, is less than
or equal to 1. So, in the case where C is cyclic,
it means that s − t2 ≤ 1, where t2 = deg g(x).
Therefore we have deg g(x) = s− 1 and the poly-
nomial g(x) + ua(x) generates the vector with all
unit entries and length s. If we multiply the whole
vector (length= r+s) by u, then we have a vector
with all entries 0 in the first r coordinates and all
coordinates u in the last s coordinates. So the
weight of this vector is 2s. Hence the weight of C
must be 2s. �

Theorem 7. [24] Let C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉
be a cyclic code in Rr,s where f(x), l(x), g(x) and
a(x) are as in Theorem 6 and f(x)hf (x) = xr−1,
g(x)hg(x) = xs − 1, g(x) = a(x)b(x).

Let

S1 =

deg(hf )−1
⋃

i=0

{
xi ∗ (f(x), 0)

}
,

S2 =

deg(hg)−1
⋃

i=0

{
xi ∗ (l(x), g(x) + ua(x))

}

and

S3 =

deg(b)−1
⋃

i=0

{
xi ∗ (hg(x)l(x), uhg(x)a(x))

}
.

Then S = S1 ∪S2 ∪S3 forms a minimal spanning
set for C as an R-module.
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Let C = 〈(f(x), 0) , (l(x), g(x) + ua(x))〉 be a
one weight cyclic code in Rr,s. Consider the
codewords (v, 0) ∈ 〈(f(x), 0)〉 and (w1, w2) ∈
〈(l(x), g(x) + ua(x))〉. Since C is a one weight
code, wt(v, 0) = wt(w1, w2). Further, since C is
an R-submodule, u(w1, w2) = (0, uw2) ∈ C and
wt(v, 0) = wt(0, uw2). Moreover, (v, uw2) ∈ C
because of the linearity of C. But it is clear
that wt(v, uw2) 6= wt(v, 0) and wt(v, uw2) 6=
wt(0, uw2). Hence, 〈(f(x), 0)〉 can not generate
a one weight code.

Now, let us suppose that C = 〈(l(x), g(x) + ua(x))〉
is a one weight cyclic code in Rr,s. We know from
Corollary 7 that deg g(x) = s−1, m = 2s and g(x)
generates a vector of length s with all unit en-
tries. Therefore, l(x) also must generate a vector
over Z2 with weight s. Hence, to generate such
a cyclic one weight code we have two different
cases; r = s and r > s.

If r = s then, to generate a vector with
weight s, the degree of l(x) must be s − 1.
So, (l(x), g(x) + ua(x)) generates the codeword
(1 · · · 1
︸ ︷︷ ︸

length s

|unit · · ·unit
︸ ︷︷ ︸

length s

).

Further, if we multiply (l(x), g(x) + ua(x)) by
hg(x) we get (hg(x)l(x), uhg(x)a(x)) and it gen-
erates codewords of order 2. Since r = s and the
degrees of the polynomials l(x) and g(x) are s−1
we have hg = x + 1 and hg(x)l(x) = 0. Hence,
uhg(x)a(x) must generate a vector with weight 2s,
i.e, hg(x)a(x) must generate a vector of length s
with all unit entries. This means that

hg(x)a(x) =
xs − 1

(x+ 1)

⇒ (x+ 1)a(x) =
xs − 1

(x+ 1)

a(x) =
xs − 1

(x+ 1)2
.

Hence we get a(x) = xs−1
(x+1)2

. But, since we al-

ways assume that s is an odd integer, a(x) is not
a factor of (xs − 1) and this contradicts with the
assumption a(x)|(xs − 1). So, we can not allow
ua(x)hg(x) to generate a vector, i.e, we must al-
ways choose a(x) = g(x) to obtain ua(x)hg(x) =
0. So in the case where C is a one weight cyclic
code generated by (l(x), g(x) + ua(x)) in Rr=s,s,
we only have C is a Z2Z2[u]-cyclic code of type
(s, s; 0, 1, 0) with weight m = 2s.

In the second case we have r > s. We know that
C is a one weight cyclic code with weight m = 2s
and g(x) = xs−1

x+1 generates a vector with exactly

s nonzero and all unit entries. Let v = (v1, v2)

be a codeword of C such that v1 =< l(x) > and
v2 =< g(x) + ua(x) >. We can write v as

(a0a1 · · · ak−1ak
︸ ︷︷ ︸

s nonzero entries

|unit · · ·unit
︸ ︷︷ ︸

length s

)

where ai ∈ Z2, k ∈ Z. Since C is an R-submodule
we can multiply v by u, then we have

(00 · · · 0
︸ ︷︷ ︸

length r

| u · · ·u
︸ ︷︷ ︸

length s

).

Let w = (w1, w2) be another codeword of C gen-
erated by (hg(x)l(x), ua(x)hg(x)). Since C is a
one weight code of weight 2s, we can write w =
( b0b1b2 · · · bt−1bt

︸ ︷︷ ︸

2s− 2p nonzero entries

|u0uu0 · · ·uu0u
︸ ︷︷ ︸

p nonzero entries

), bi ∈ Z2, t ∈

Z. Since w+uv must be a codeword in C, we have

w + uv = ( b0b1b2 · · · bt−1bt
︸ ︷︷ ︸

2s− 2p nonzero entries

| 0u00u · · · 00u0
︸ ︷︷ ︸

s− p nonzero entries

).

Therefore, wt (w + uv) = 2s − 2p + 2s − 2p =
4s − 4p and since C is a one weight code with
m = 2s,

4s− 4p = 2s =⇒ 2s = 4p =⇒ s = 2p.

But this contradicts with our assumption, that is,
s is an odd integer. Consequently, for r > s and
g(x) 6= 0 there is no one weight Z2Z2[u]-cyclic
code. Under the light of all this discussion, we
can give the following proved theorem.

Theorem 8. Let C be a Z2Z2[u]-cyclic code
in Rr=s,s generated by (l(x), g(x) + ua(x)) with
deg l(x) = deg a(x) = deg g(x) = s − 1. Then
C is a one weight cyclic code of type (r, s; 0, 1, 0)
with weight m = 2s. Furthermore, there do not ex-
ist any other one weight Z2Z2[u]-cyclic code with
g(x) 6= 0.

Example 4. Let C = 〈(l(x), g(x) + ua(x))〉 be a
cyclic code in R7,7 with l(x) = g(x) = a(x) =
(
1 + x+ x3

) (
1 + x2 + x3

)
= 1 + x + x2 + x3 +

x4 + x5 + x6. Hence, C is a one weight code with
weight m = 14 and the following generator matrix,

(
1 1 1 1 1 1 1 1 + u 1 + u 1 + u 1 + u 1 + u 1 + u 1 + u

)
.

Furthermore, the dual cyclic code C⊥ has the fol-
lowing generator matrix
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






















0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 + u
0 0 0 0 0 0 1 1 + u 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 + u 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 + u 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 + u 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 + u 0 0
1 1 1 1 1 1 1 u u u u u u u
























.

It is obvious from this matrix that C⊥ is not a one
weight code. However, it is a Z2Z2[u]-cyclic code
of type (7, 7; 7, 6, 0) and its image under the Gray
map is a binary cyclic code with the parameters
[21, 19, 2].

5. Examples of One Weight

Z2Z2[u]-cyclic Codes

In this part of the paper, we give some examples of
one weight Z2Z2[u]-cyclic codes. Furthermore, we
look at their binary images under the Gray map
that we defined in (1). Actually, according to the
results of [22], any binary linear one (constant)
weight code with no zero column is equivalent to
a λ-fold replication of a simplex code. Hence, the
examples of one weight Z2Z2[u]-cyclic codes that
will be given in this section are all λ-fold replica-
tion of simplex code Sk. Therefore, any such code
has length n = λ2k − 1, dimension k and weight
(or minimum distance) d = λ2k−1. It is also well-
known that a binary simplex code is cyclic in the
usual sense.

If the minimum distance of any code C get the
possible maximum value according to its length
and dimension, then C is called optimal (distance-
optimal) or good parameter code. For an exam-
ple, the binary image of a dual code in Example 4
has the parameters [21, 19, 2] which are optimal.
Let C be a Z2Z2[u]-linear code with minimum dis-
tance d = 2t + 1, then we say C is a t-error cor-
recting code. Since, the Gray map preserves the
distances, Φ(C) is also a t-error correcting code of
length r+2s over Z2. Since, |Φ(C)| = |C|, we can
write a sphere packing bound for a Z2Z2[u]-linear
code C. With the help of usual sphere packing
bound in Z2,

|Φ(C)|
t∑

j=0

(
r + 2s

j

)

≤ |2r+2s|,

we have

|C|

t∑

j=0

(
r + 2s

j

)

≤ |2r+2s| = |Zr
2 ×Rs|.

If C attains the sphere packing bound above then
it is called a perfect code. Let C be a Z2Z2[u]-linear
code of type (3, 2; 2, 1, 0) with standard form of
the generator matrix

G =





1 0 1 0 u
0 1 0 0 u
0 0 1 1 1 + u



 .

It is easy to check that C attains the sphere pack-
ing bound, so C is a perfect code. Moreover, the
dual code C⊥ of C is generated by the matrix

H =

(
1 0 1 u 0
1 1 0 1 + u 1

)

(2)

and C⊥ is a one weight Z2Z2[u]-linear code with
weight m = 4.

Plotkin bound for a code over Fn
q with the mini-

mum distance d is given by,

1. If d =
(

1− 1
q

)

n, then |C| ≤ 2qn.

2. If d >
(

1− 1
q

)

n, then |C| ≤ qd
qd−(q−1)n .

If C ⊆ Fn
q attains the Plotkin bound then C

is also an equidistant code [25]. Since any one
weight binary linear code is a λ-fold replica-
tion of a simplex code and have the parame-
ters [λ(2k − 1), k, λ(2k−1)], a binary image of any
one weight Z2Z2[u]-cyclic code always meet the
Plotkin bound.

Finally, we will give the following examples of one
weight Z2Z2[u]-cyclic codes. We also determine
the parameters of the binary images of these one
weight cyclic codes. Further we list some of them
in Table 1.

Example 5. Let C be a Z2Z2[u]-cyclic code in
R15,15 generated by (l(x), g(x) + ua(x)) where

l(x) = 1 + x3 + x4 + x6 + x8 + x9 + x10 + x11,

g(x) = x15 − 1,

a(x) = 1 + x3 + x4 + x6 + x8 + x9 + x10 + x11.

Then C is a one weight code with weight m = 24
and following generator matrix







1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 u 0 0 u u 0 u 0 u u u u






.
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Furthermore, the binary image Φ(C) of C is a
[45, 4, 24] code, which is a binary optimal code
[26]. Also, it is important to note that Φ(C) is a
3-fold replication of the simplex code S4 of length
15.

Example 6. The Z2Z2[u]-cyclic code C =
〈(l(x), g(x) + ua(x))〉 in R9,9 is a one weight code
with m = 18, where l(x) = g(x) = a(x) =
1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8. C has
the generator matrix of the form,

(
1 1 1 1 1 1 1 1 1 ū ū ū ū ū ū ū ū ū

)

where ū = 1+u. The Gray image of C is a 9-fold
replication of the simplex code S2 of length 3 with
the optimal parameters [27, 2, 18].

Example 7. Let C = 〈(l(x), g(x) + ua(x))〉,
l(x) = a(x) = 1 + x + x2 + x4, g(x) = x7 − 1,
be a cyclic code in R7,7. Then the generator ma-
trix of C is





1 1 1 0 1 0 0 u u u 0 u 0 0
0 1 1 1 0 1 0 0 u u u 0 u 0
0 0 1 1 1 0 1 0 0 u u u 0 u



 .

C is a one weight code with m = 12 and Φ(C) is a
3-fold replication of the simplex code S3 of length
7 with the parameters [21, 3, 12].

6. Conclusion

In this paper, we study the one weight linear and
cyclic codes over Zr

2 × (Z2 + uZ2)
s where u2 = 0.

We also classify one weight Z2Z2[u]-cyclic codes
and present some illustrative examples. We fur-
ther list some binary linear codes with their pa-
rameters which are derived from the Gray images
of one weight Z2Z2[u]-cyclic codes.
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1. Introduction

Dynamic economic theory has been developed via
the use of optimal control problems, especially in
the context of optimal growth models with infi-
nite planning horizons. On one hand, from the
pure economic perspective, optimal growth mod-
els serve as one of the best tools in explaining
the capital accumulation. On the other hand,
from the mathematical viewpoint, optimal growth
problem itself can be identified as an interesting
dynamic optimization problem. Therefore, while
the assumptions of the model describe and shape
the economic framework, they also determine the
layers of the mathematical difficulty of the prob-
lem. Several approaches have been developed in
the literature to solve the optimal growth prob-
lem. In some of these approaches, one needs to
make several strong assumptions in order to ad-
dress seemingly technically difficult problems. In
other approaches, in order to understand the eco-
nomic implications if a certain assumption fails
to hold, one looks for a new mathematical frame-
work.

This paper provides a comprehensive review of
four distinct approaches in solving discrete time
infinite horizon optimal growth problem: (i) pass-
ing to the limit approach; (ii) dynamic program-
ming, (iii) Lagrange multiplier method for infinite
horizon and (iv) Pontryagin’s approach. It is im-
portant to note that these distinct approaches in-
volve different mathematical arguments. In each
approach covered in this paper, we attempt to
provide the difficulties in obtaining the solution
and outline the possible ways to avoid these dif-
ficulties. We also provide a comparative discus-
sion about the assumptions of the optimal growth
model. Furthermore, we review the different tech-
niques through some relevant examples.

In this paper, we consider an economy that faces a
resource allocation problem. The main elements
of the given economic model are initial endow-
ment, production function and the preferences.
In this economy, we suppose that there are in-
finite periods and there exists a single household
(or consumer) who consumes a single good at each
period. A simple production function is assumed
where the good is produced from one input, that
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is capital. The output is either consumed or saved
as capital to the next period. The consumption or
saving decision with respect to budget constraint
is the only allocation decision that the economy
must make. The output is consumed with respect
to the preferences of the consumer which are rep-
resented by a utility function. The intertemporal
utility is defined as the discounted sum of the sin-
gle period utilities where the discount factor is
between 0 and 1 which reflects the property of
additive separability. We then suppose that the
discrete time infinite horizon additively separable
optimal growth model involves a benevolent social
planner who maximizes the intertemporal utility
subject to the constraints of production possibil-
ities and consumption-saving activity.

Based upon the earlier literature, the approach of
passing to the limit has been the first one that
is utilized in solving the above mentioned prob-
lem. It is natural to start with the finite horizon
leading to a finite dimensional constrained opti-
mization problem. Here, we should first address
the following question: is the limit of the finite
horizon problem the unique solution to the in-
finite horizon problem? To this end, one should
note in such a case that we typically face the diffi-
culty in establishing the legitimacy of interchang-
ing the maximum operator and the limit operator.
Therefore, for the most of the relevant cases, the
answer is negative to the above question.

Dynamic programming has been another impor-
tant approach that is widely used in solving this
type of economic optimization problem. It basi-
cally reformulates the actual problem by break-
ing into sub-decision problems. In doing this,
optimum decisions are derived sequentially which
leads to a sequence of value functions. This well
known method was first studied by R. Bellman
in 1957, in [1]. Later, this technique has been
applied to dynamic models in economics with
a principal reference being Stokey, Lucas and
Prescott (1989) ( [2]). Dating from Lucas and
Stokey (1984) ( [3]) and [2], important contribu-
tions have been made in the literature to apply
dynamic programming techniques to analyze infi-
nite horizon optimal growth problems in different
models generating more general results. Le Van
and Morhaim (2002) ( [4]) provides a unified ap-
proach covering bounded and unbounded returns,
and Kamihigashi (2014) ( [5]) is a resource for a
summary of the results in the literature for deal-
ing with unbounded cases, to be a generalization
of [2] without making topological assumptions in

the additive separable case. For a generalization
to models with non-additive and recursive prefer-
ences via aggregating function (aggregator) (that
include additive separable models), one can refer
to [2], for dynamics to [3] and for recent general
settings and results dealing with bounded and un-
bounded returns to Bich et al.(2017) ( [6]).

Although, dynamic programming is a very effi-
cient way in order to solve the infinite horizon
optimal growth problem, there has been a ten-
dency in the literature to return back to Lagrange
multipliers method. However, under such a case,
Lagrange multipliers would belong to an infinite
dimensional decision space. Thus, the question
becomes whether it is possible to derive the suf-
ficient conditions for a Karush-Kuhn-Tucker type
theorem to hold in the infinite case. This question
has been studied in the literature since Bewley
(1972) ( [7]) for the general case. Dechert (1982)
( [8]) provides an explanation of the structure of
the problem in details for the Banach spaces in
general. To this end, he uses the functional anal-
ysis not only to tackle this problem, but also to
demonstrate the sources of the difficulty in switch-
ing from a finite problem to an infinite dimen-
sional problem. Multiplier sequence has a nice
representation if the space is reflexive and the gen-
eralization can be done without facing any prob-
lem. The question becomes: what if the space is
non-reflexive such as ℓ1? In fact, multipliers lie in
ℓ1 in the optimal growth problem.1 [8] shows that
the existence of these multipliers is guaranteed
only by the Axiom of Choice. There may be no
other constructive way to calculate these multipli-
ers. Le Van and Saglam (2004) ( [9]) extends the
work [8] to the set-up where objective and con-
straint functions do not need to be real-valued in
order to cover the cases where Inada type con-
ditions are assumed. [9] also discusses some other
interesting applications of this method in econom-
ics.

In the classical optimal growth model, when writ-
ten as an equivalent minimization program, the
objective and the constraint functions are scalar
valued and supposed to be convex. There have
been some works in the existing literature relax-
ing the assumption of convexity in order to ob-
tain results in non-convex cases. As an example,
Rustichini (1998) ( [10]) studied the general opti-
mization problem using non-convex models. The
questions of whether the separating vectors do ex-
ist and they can be represented by a sequence of
real numbers in infinite dimensional spaces have

1Here, we denote by ℓ1 the space of real sequences a = (at)t such that
∑

∞

t=0
|at| is convergent in R. Note that endowed

with the norm ||a||1 =
∑

∞

t=0
|at|, ℓ

1 is Banach but not reflexive since (ℓ1)′ = ℓ∞ but (ℓ∞)
′

6= ℓ1. Here, we denote by ℓ∞

the space of bounded sequences a = (at) such that supt |at| ≤ ∞.
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been addressed in [10]. Moreover, vector opti-
mization problems on Banach spaces without con-
vexity assumptions have also been considered in
Dutta and Tammer (2006) ( [11]). Here, it is
important to note that an additional assumption
stating that the objective function is locally Lips-
chitz was necessary in [11]. However, in this con-
text, using the approach of Pontryagin’s principle,
Blot and Chebbi (2000) ( [12]), Blot and Hayek
(2008) ( [13]), Blot and Hayek (2014) ( [14]) and
Blot et al. (2015) ( [?]) give useful results without
restrictive assumptions. [13], [14] and [?] consider
dynamic systems which are governed by differ-
ence equations and difference inequations respec-
tively. In all of these cited works, a vector val-
ued problem is considered, that is, the states and
the controls are vector valued. Moreover, these
works use weaker convexity assumptions than the
usual ones to obtain strong Pontryagin’s princi-
ples and they provide weak Pontryagin’s princi-
ples without convexity conditions. The solution
approach in [12] is based on using reductions to
finite horizon problems. However in [13], [14]
and [?], the authors consider the problem in the
space of bounded sequences, which allows them to
use functional analyctic approach which is based
on the use of abstract results of the optimization
theory and optimal control problems in ordered
Banach spaces. In the spirit of the Karush-Kuhn-
Tucker theorem, they establish the necessary and
sufficient conditions in the form of weak Pontrya-
gin’s principles. This result can be used for differ-
ent kinds of optimal control problems that can be
found in economics, optimal management of re-
newable resources, sustainable development the-
ory and game theory.

In this paper, besides studying the two classical
approaches (passing to limit approach and dy-
namic programming) including very recent exten-
sions and developments, we aim to apply the most
recent two functional analytic approaches for solv-
ing optimal growth problem: Lagrange multiplier
method for infinite horizon and the approach of
weak Pontryagin’s principle. Lagrange multiplier
method for infinite horizon is due to [8] and based
on extending Lagrange multiplier method to in-
finite dimensional space. In some sense, this ap-
proach can be seen as an extension of the passing
to the limit approach and also serves as an alter-
native method to the dynamic programming. We
give sufficient conditions on the objective and con-
straint functions under which the Lagrange mul-
tiplier can be represented by a ℓ1 sequence. We
assume Inada conditions as in [9]. In economics,

Lagrange multiplier method has been the key tool
for obtaining the solution in optimization prob-
lems in economics and Lagrange multipliers pro-
vide meaningful insights in the economic models.
Therefore, it is useful not only for providing solu-
tion to the problem but also analyzing the nature
of the solution. The idea of the approach of weak
Pontryagin’s principle is to transform the optimal
control problem into a dynamical system. A solu-
tion to the discrete time optimal growth problem
is given as a special case of the results obtained
in [14]. The result is useful as the assumptions
are easy to check. To compare these two func-
tional analytic approaches, we have to note that
in Lagrange multiplier method we need the con-
cavity assumptions of one period utility and the
production functions but one can avoid convex-
ity conditions to obtain weak Pontryagin’s prin-
ciple. Furthermore, in the approach of Pontrya-
gin’s principle vector states and vector controls
are used hence encompasses in this sense also the
Lagrange multiplier method.

The rest of the paper is organized as follows. In
Section 2, we describe the set-up of the optimal
growth problem. Section 3 gives the mathemati-
cal background of the classical approaches for the
optimal growth problem together with the recent
developments. Then, in Section 4, the functional
analytic approach is studied. Section 5 concludes.

2. One-sector optimal growth model:

set-up

This section presents the set-up of deterministic
discrete time infinite horizon one-sector optimal
growth model. We consider an economy as a prob-
lem of resource allocation. The primitives of the
model are initial endowment, production function
and the preferences.

We consider an economy E of infinite periods from
time t = 0 to t = ∞. We suppose that there
is 1 unit of time each period. There is a single
household2 who consumes a single good at each
period. This good (output) is produced from one
input, capital. At time t = 0, the amount of cap-
ital is supposed to be k0 units. The output is
produced from capital by a production function
f : R+ → R+.

In each period t, we suppose the single good (out-
put) with quantity yt ∈ R+ which is produced
from one input: kt by a production function f
where yt = f(kt). The output is either consumed
as ct ≥ 0 or saved as capital to the next period

2The model assumes a representative household. It is justified if for example all the households are supposed to be
identical in the economy E .
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as kt+1 satisfying the following process being re-
peated until infinity:

ct + kt+1 ≤ yt = f(kt) with kt ≥ 0

The consumption level is determined according
to the unique consumer’s preferences which is de-
fined by a one period non-decreasing utility (re-
ward) function u : R+ → R. The intertemporal
utility is then defined as follows:

∞∑

t=0

βtu(ct)

where 0 < β < 1 is the discount factor.

2.1. Social planner’s problem

We first give some definitions in order to describe
the problem.

Definition 1. For any k0 > 0, when k =
(k1, k2, . . . kt, . . .) is such that 0 ≤ kt+1 ≤ f(kt)
for all t, we say that it is a feasible accumulation
path from k0.

Definition 2. A consumption sequence c =
(c0, c1, c2, . . . ct, . . .) is feasible from k0 > 0 if
there exists a sequence k ∈ Π(k0) that satisfies
0 ≤ ct ≤ f(kt)− kt+1 for all t.

Definition 3. The set of feasible allocation from
k0 is denoted by Π(k0). That is, Π(k0) :=
{(k, c) = (kt, ct)

∞
t=0 : ct + kt+1 − f(kt) ≤

0 for all t = 0 . . .}.

The objective of a benevolent social planner is to
maximize the utility of household by choosing the
feasible allocation (k, c), that is, subject to the
feasibility constraints with a given positive initial
capital. The problem can be written as follows:

(P )





max
∑∞

t=0 β
tu(ct)

s.t.
ct + kt+1 − f(kt) ≤ 0, ∀t ≥ 0
ct ≥ 0, ∀t ≥ 0
kt ≥ 0, ∀t ≥ 1
k0 > 0, given

The objective function states that social plan-
ner must only decide the consumption level at
each period in order to maximize the utility. The
constraints reflect that non-consumed, i.e., saved
amount of output will be added to the capital
of the next period and hence will determine the
future production levels. Furthermore, since the
temporal utility function ut is non-decreasing,
at optimum, output will not be wasted so that

the consumption at t will be equal to the dif-
ference of output and quantity saved, that is
ct = f(kt) − kt+1. Eliminating ct from the prob-

lem (P ) gives us a new formulation (P̃ ) :

(P̃ )





max{kt+1}∞t=0

∑∞
t=0 β

tu[f(kt)− kt+1]

s.t.
0 ≤ kt+1 ≤ f(kt), ∀t ≥ 0
k0 > 0, given

3. Classical approaches of solution

In this section, we discuss the two classical ap-
proaches of solution to the optimal growth prob-
lem, namely passing to the limit and dynamic
programming. We give their mathematical ar-
guments with respect to the assumptions of the
model and provide some examples.

3.1. Assumptions

In the following, we give a list of assumptions of
the model. In Section 3.2, the entire list will prove
to be useful, in Section 3.3, one may assume the
weaker versions of the ones in this list.

(EA) (Endowment Assumption) k0 > 0, given.

(Prod) (Production Assumption)

(1) f is stricly concave in R+,
(2) f is continuously differentiable in R+,
(3) f is strictly increasing,
(4) f(0) = 0, limk→0 f

′(k) = +∞ and
f ′(∞) < 1 (Inada conditions).

(Pref) (Preferences Assumption)

(1) u is bounded,
(2) u is stricly concave in R+,
(3) u is continuously differentiable in R+,
(4) u is strictly increasing,
(5) limc→0 u

′(c) = +∞ and limc→+∞ u′(c) =
0 (Inada conditions)

(6) u(c0, c1, . . .) =
∑∞

t=0 β
tu(ct) where 0 <

β < 1.

Remark 1. (1) Assumption (EA) is quite
standard. We assume that, at the begin-
ning, we have some positive capital.

(2) By the assumption Prod (1-3), we suppose
that the production function is strictly
concave, continuously differentiable in R+

and strictly increasing. These assump-
tions can be weakened to the degree that
one can overcome the mathematical dif-
ficulty. In assumption Prod (4), we as-
sume that the production function satis-
fies the asymptotic conditions, called also
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Inada conditions, which will guarantee the
existence of interior solutions for the op-
timization problem. Since limk→0 f

′(k) =
+∞ and f ′(∞) < 1, there is a maximum
feasible level of capital, which we can call
kmax. This condition is satisfied when for
example the production function is of so-
called Cobb-Douglas type, i.e. f(k) = Akα

with A constant in R+ and 0 < α < 1.
(3) By assumption Pref(1) , we assume that

the one period utility function is bounded.
Pref (2-4) are the analogous versions of
Prod (2-4). According to Pref (5)-Inada
conditions, the marginal utility of con-
sumption for a starving agent would be so
high and the marginal utility for a sati-
ated consumer would be so low. We as-
sume by Pref (6) that the preferences over
intertemporal consumption sequence take
the additively separable form.

3.2. Passing to the limit

We are interested in the infinite horizon case.
Nevertheless, it was logic to start with the finite
horizon. The approach of passing to the limit
has naturally been the first one for solving this
problem. The problem was then a finite dimen-
sional constrained optimization problem. In eco-
nomics, the method of Lagrange has been widely
applied for solving finite dimensional constrained
optimization problems. That is, under the as-
sumption of the model that we cited in Section
3.1, namely (EA), Prod(1-4) and Pref(1-6), there
exist Lagrange multipliers so that the solution to
the constrained maximization problem is also an
extreme value of the objective function of the so-
cial planner without constraints.

The set of sequences {kt+1}
T
t=0 satisfying the con-

straints of the problem is a closed, bounded3 and
convex subset of RT+1 and the objective func-
tion is continuous (as the sum of the continuous
functions) and strictly concave by the assump-
tions Pref(2) and Pref(3). Hence, there is exactly
one solution which is characterized by Karush-
Kuhn-Tucker conditions. By the Assumptions
f(0) = 0 in Prod(4) and u′(0) = ∞ in Pref(5),
it is clear that the constraints do not bind ex-
cept for kT+1 = 0. Thus, the solution satis-
fies the first order and the boundary conditions
for all t = 1, . . . T :

βf ′(kt)u
′[f(kt)− kt+1] = u′[f(kt−1)− kt] (1)

kT+1 = 0, k0 given. (2)

These conditions give us a 2nd order difference
equation in kt which has a 2-parameter family of
solutions but the one which satisfies the boundary
conditions is the unique solution.

Here, the question turns out to be whether the
limit of the finite horizon problem is the unique
solution to the infinite horizon problem. The an-
swer is positive for some parametric examples in
economics, for instance, as in the following exam-
ple. However, this method involves in general one
difficulty that to establish the legitimacy of in-
terchanging the operators max with limT→∞, to
guarantee that

max lim
T→∞

T∑

t=0

βtu(ct) = lim
T→∞

max
T∑

t=0

βtu(ct)

This difficulty is overcome if the uniform con-
vergence of the solution path is satisfied. How-
ever, this will bring restrictive assumptions on the
model. Instead, different approaches are devel-
oped by which not only the problem is solved but
also with weaker assumptions of the model.

Example 1. Consider a logarithmic utility func-
tion u(ct) = ln ct and Cobb-Douglas production
function: f(kt) = (kt)

α with 0 < α < 1. Thus,
the optimal growth problem will be:

(P̃ )





max{kt+1}∞t=0

∑∞
t=0 β

t ln[(kt)
α − kt+1]

s.t.
0 ≤ kt+1 ≤ (kt)

α, ∀t ≥ 0
k0 > 0, given

By the help of the above equations (1) and (2),
one can check that the unique solution to the cor-

responding problem (P̃ ) is:

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt for all t = 0, 1 . . . T

Passing to the limit, we find that kt+1 = αβkαt is
the unique solution for the infinite horizon prob-
lem.

Remark 2. Note that the assumption of bound-
edness of the utility function is not satisfied in the
previous example. Boundedness is needed in or-
der to guarantee the existence of optimal solution
though a solution can exist without it as in the
previous example.

3Showing that it is closed is straightforward as ct ∈ [0, f(kt)]. To show that it is bounded, we note that by the assumption,
Prod(4), there is a maximum feasible level of capital kmax.
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3.3. Dynamic programming

Dynamic programming has been another useful
approach for solving the optimal growth prob-
lem. [2] is the principal reference for the use of this
method in optimal growth problem. In this sec-
tion, after giving the idea of the approach and the
Principle of Optimality, we will give an overview
of the results in the literature according to the
assumptions of the model. The first three sub-
sections deal with the additively separable opti-
mal growth problem. Section 3.3.4 discusses non-
additive model.

The idea of dynamic programming is to divide
the problem up into separate sub-problems. The
first step is to define and solve the problem of the
initial period and then to proceed forward.

The problem at the initial period that the social
planner faces is to choose current period’s con-
sumption c0 and capital to begin with for the next
period k1. If we knew the preferences of planner
over (k1, c0), we could simply maximize the ap-
propriate function of (k1, c0) over the opportunity
set defined by the constraint:

ct + kt+1 − f(kt) ≤ 0, for all t ≥ 0.

Suppose that the above problem is solved for all
possible values of k0. Then, we could define a
function v : R+ → R by taking v(k0) to be the
value of the maximized objective function, for
each k0 ≥ 0:

max
{kt+1}∞t=0

∞∑

t=0

βtu[f(kt)− kt+1] (3)

such that

0 ≤ kt+1 ≤ f(kt), ∀t ≥ 0

k0 > 0, given

A function of this type is called a value function.

With v so defined, v(k1) would give the utility
from period 1 and that could be obtained with
k1. βv(k1) would be then the value of this utility
discounted back to period 0.

In terms of this value function v, the planner’s
problem in period t = 0 would be the following
optimal growth program:





maxk1,c0 [u(c0) + βv(k1)]
s.t.
c0 + k1 ≤ f(k0),
c0, k1 ≥ 0, k0 > 0 given.

v is unknown at this point. Thus, solving the
above program provides also v. That is, v must
satisfy:

v(k0) = max
0≤k1≤f(k0)

{u[f(k0)− k1] + βv(k1)}

Irrespective of the date, we can rewrite the prob-
lem of planner with current capital stock denoted
by z, y ∈ R+ as a functional equation (equation in
the unknown function of v):

v(z) = max
0≤y≤f(z)

{u[f(z)− y] + βv(y)} (4)

The study of dynamic optimization problems
through the analysis of such functional equation
is called dynamic programming.

We can view the above equation (4) (called also
Bellman equation) through a functional operator
(Bellman operator) :

(Tw)(z) = max
0≤y≤f(z)

{u[f(k)− y] + βw(y)}

solutions of (4) being fixed points of T .

The idea is then to study the link between the
value function of the optimal growth program
with the solutions of Bellman equation. That is,
to study the link between the value function of the
optimal growth program with the fixed points of
the Bellman operator. Thus, one has to verify the
following issues:

(i) (Existence) Existence of a fixed point of Bell-
man operator is obtained as the value function of
the optimal growth program is a fixed point of T .
v(z) (which is the unknown of the Bellman equa-
tion) satisfies (Tv)(z) = v(z). Existence is guar-
anteed by some sufficient conditions via a Banach-
type Fixed Point Theorem and Berge’s Maximum
Theorem.

(ii) (Uniqueness) Studying a fixed point of T al-
lows us to reach the value function of the opti-
mal growth program, if uniqueness of such a fixed
point is obtained, then the (unique) fixed point is
the value function.

(iii) (Reachability) Bellman operator gives an al-
gorithm to reach (under appropriate conditions)
the value function of the optimal growth program.
As in some problems the suitable starting points
to reach the value function must be restricted.
By means of iterating on the Bellman operator
will provide the convergence to this value func-
tion from any “initial suitable feasible guess”.

The following theorem gives the details of the
Bellman’s Principle of Optimality whose idea is
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given above and show that the dynamic program-
ming technique allows to recover the value func-
tion of the optimal growth problem.

Theorem 1. (Principle of Optimality) The so-
lution v to the Bellman equation (4) evaluated at
z = k0 gives the maximum in optimal growth pro-
gram (3) when the initial state is k0. Moreover a
sequence {kt+1}

∞
t=0 attains the maximum in (3) if

and only if it satisfies for all t ≥ 0:

v(kt) = u[f(kt)− kt+1] + βv(kt+1) (5)

The Principle of Optimality is verified under a se-
ries of topological assumptions for the bounded
case as well as for two important particular cases:
with bounded returns and with unbounded re-
turns (see Chapter 4 of [2]). The following sec-
tions give the versions of these results for our set-
ting.

3.3.1. Optimal growth with bounded utility

In this section, we consider the optimal growth
problem under the assumptions of the model
given in Section 3.1.

Theorem 2. Under the assumptions (EA),
Prod(1 − 4 ) and Pref (1 − 6 ),

(1) solutions to the functional equation (3)
and sequence plans (4) coincide exactly,

(2) the Bellman operator has a unique fixed
point in the space of bounded contionous
functions and this fixed point is the value
function v,

(3) value iteration converges uniformly to the
value function starting from any bounded
continuous function.

Proof. (3) As u is supposed to be bounded by the
assumption Pref(1) and 0 < β < 1 by Pref(6),
then Π(k0) 6= ∅ and limn→∞

∑n
t=0 β

tu[f(kt) −
kt+1] exists for all k0 ∈ R+. The maximum func-
tion v∗ is then bounded and satisfies:

v∗(k0) = max
k0∈Π(k0)

lim
n→∞

n∑

t=0

βtu[f(kt)− kt+1]

Thus, v∗(k0) is the maximum in (3). It is natural
to seek the solutions to (4) in bounded continu-
ous functions. Any bounded continuous solution
to (4) satisfies limn→∞ βnv(kn) = 0 then v = v∗.
Moreover, given a solution to (4), for any k0, a
sequence {k∗t } attains the maximum in (3) if and
only if it is generated by the following mechanism
where 0 ≤ kt+1 ≤ f(kt):

v(kt) = u(f(kt)− kt+1) + βv(kt)

(2) If we define,

(Tv)(z) = max
0≤y≤f(z)

{u[f(z)− y] + βv(y)},

instead of (4), we can write v = Tv. As the
feasibility condition is given as a closed interval
[0, f(z)] together with the convexity of R+ and
the boundedness and the continuity assumptions
given in Prod(1) and Pref(1-3), T has a unique
fixed point in the space of bounded continuous
functions. This fixed point is the value function
v∗.

(3) By the assumptions Prod(1-3), Pref(2-4), v
is stricly increasing, strictly concave and contin-
uously differentiable. If {vn} is a sequence of ap-
proximations defined by vn = Tnv0 with an ap-
propriate choice of bounded contionous starting
function v0, then this value iteration converges
uniformly to the value function v∗.

�

3.3.2. Optimal growth with bounded returns

This section deals with the optimal growth prob-
lem with bounded returns under the following list
of assumptions which is slightly weaker than the
list given in Section 3.1:

(EA) (Endowment Assumption) k0 > 0, given.

(P̃ rod) (Production Assumption)

(1) f is continuous,
(2) f is concave in R+,
(3) f is continuously differentiable in R+,
(4) f is strictly increasing,
(5) f(0) = 0, for some k̄ > 0: for all

0 ≤ k ≤ k̄ we have k ≤ f(k) ≤ k̄ and
for k > k̄ we have f(k) < k̄.

(P̃ ref) (Preferences Assumption)

(1) u is continuous,
(2) u is stricly concave in R+,
(3) u is continuously differentiable in R+,
(4) u is strictly increasing,
(5) limc→0 u

′(c) = +∞ and limc→+∞ u′(c) =
0 (Inada conditions)

(6) u(c0, c1, . . .) =
∑∞

t=0 β
tu(ct) where 0 <

β < 1.

Remark 3. We have to mention especially that
u is not supposed to be bounded. However, note

that under the assumptions P̃ ref(1 − 3) and

P̃ rod(1 − 3) the function G which is defined as
G(kt, kt+1) := u[f(kt) − kt+1] is bounded. Thus,
the case is called optimal growth with bounded re-
turns.
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Theorem 3. Under the assumptions (EA),

P̃rod(1 − 4 ) and P̃ref (1 − 6 ),

(1) solutions to the functional equation (3)
and sequence plans (4) coincide exactly,

(2) the Bellman operator has a unique fixed
point in the space of bounded contionous
functions and this fixed point is the value
function v,

(3) value iteration converges uniformly to the
value function starting from any bounded
continuous function.

Proof. (1) By Remark 3, G is bounded. Thus,
if B is a bound for G(z, y), then the maximum
function v∗ satisfies |v∗(z)| ≤ B

1−β
as

v∗(k0) = max
k0∈Π(k0)

lim
n→∞

n∑

t=0

βtu[f(kt)− kt+1]

Thus, v∗(k0) is the maximum in (3). Any
bounded continuous solution to (4) satisfies
limn→∞ βnv(kn) = 0 then v = v∗. Moreover,
given a solution to (4), for any k0, a sequence
{k∗t } attains the maximum in (3) if and only
if it is generated by the following mechanism
where 0 ≤ kt+1 ≤ f(kt):

v(kt) = u(f(kt)− kt+1) + βv(kt)

(2) and (3) here are essentially analogous ver-
sions of (2) and (3) in Theorem 2. It suffices to
remark that v is stricly increasing, strictly con-
cave and continuously differentiable as G(., y) is

so by means of the assumptions P̃ rod(2− 4) and

P̃ ref(2− 4).
�

3.3.3. Optimal growth with unbounded

returns

In economics, the utility function are often un-
bounded from above and/or below. In [2], this
case is partly considered and called optimal
growth with unbounded returns. That is, it is
the case where the maximum function v∗ satis-
fies the Bellman equation (4) but the following
boundedness assumption is not satisfied:

If limn→∞ βnv(kn) = 0 for all (k0, k1, . . .) ∈
Π(k0) then v = v∗.

In this case, the problem is that the functional
equation (4) would give many solutions. The suf-
ficient conditions for a solution to equation (4) to
be the maximum function v∗ are given in Theo-
rem 4.14 in [2]. The idea is to guess a solution
to the equation (4) and start with an appropriate
function v̂ that is an upper bound for v∗ and then

iterarate down to the fixed point of T . We will
discuss these sufficient conditions in the following
two examples which are used quite often in eco-
nomics. These examples will prove to be useful
for our comparative study. Nevertheless, in the
literature, there has been an extensive research
in order to give a general setting for dealing with
the unbounded case. One can refer to Le Van and
Morhaim (2002) ( [4]) which provides a unified ap-
proach covering bounded and unbounded utilities.
The recent reference Kamihigashi (2014) ( [5]) is
intended to be a resource for a summary of the
results in the literature for dealing with such un-
bounded cases, to be a generalization of [2] with-
out making topological assumptions. Unlike the
former ones, in [5], instead of a Banach-type Fixed
Point Theorem, Knaster-Tarski Fixed Point The-
orem is used to show the existence of a fixed point
of the Bellman operator.

Example 2. We consider the same problem of
Example 1 and we solve it by dynamic program-
ming. One can overcome the difficulty due to the
unboundedness of the utility by choosing a specific
functional form as an upper bound.

The problem corresponding to(4) is then:

v(z) = max
0≤y≤(zα)

{ln[(zα)− y] + βv(y)}

The sufficient condition of having a unique solu-
tion is to find a bound function v̂(z) for the max-
imum function v∗:

v∗(z) ≤
α ln k

(1− αβ)
, ∀z > 0

We may take v̂(z) = α ln z
(1−αβ)

With T defined as follows:

(Tw)(z) = max
0≤y≤zα

{ln[f(z)− y] + βw(y)}

By some calculations, one can show that the fol-
lowing v(z) is the fixed point of T :

v(z) =
1

β
[ln(1−αβ)+

αβ

1− αβ
ln(αβ)]+

αβ

1− αβ
ln z

so that the optimal sequence is generated as fol-
lows:

kt+1 = αβkαt for all t = 0, 1 . . .

Example 3. (Cake Eating Problem ) In this ex-
ample, suppose that one consumer has a cake of
a given initial size of k0. In each period, the con-
sumer eats some part of the cake with respect to
its preferences and save the remainder satisfying
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kt+1 = kt − ct for all t = 0, 1 . . .. Suppose that
the consumer’s preferences are represented by the
utility function u(ct) = ln ct. Hence, finding the
optimal path of consumption of the cake can be in-
terpreted as solving the following optimal growth
problem with linear production function f(z) = z
for all z ∈ R+:

(̃P )





max{kt+1}∞t=0

∑∞
t=0 β

t ln[kt − kt+1]

s.t.
0 ≤ kt+1 ≤ kt, ∀t ≥ 0
k0 > 0, given

We can solve (̃P ) by dynamic programming. We
choose here again a specific functional form as an
upper bound. We proceed as follows:

Since ln kt ≤ ln k0 for all t = 1, 2 . . ., we will have:

ln[kt − kt+1] ≤ ln kt ≤ ln k0 and

∞∑

t=0

βt ln[kt − kt+1] ≤
1

1− β
ln k0

Hence v∗(z) ≤ 1
1−β

ln k0 where v∗ is the supre-

mum function. Define v̂(z) = 1
1−β

ln k0.

With T defined by:

(Twn)(z) = max
0≤y≤z

{ln[z − y] + βwn(y)}

one has:

T v̂(z) = max
0≤y≤z

{ln[z − y] +
β

1− β
ln y}

The first order conditions of the right hand side of
the above equation gives us y = βz and therefore
we have:

T v̂(z) =
1

1− β
ln z + ln(1− β) + [

β

1− β
lnβ]

By the iteration, we will have:

Tnv̂(z) =
1

1− β
ln z+[ln(1−β)−

β

1− β
lnβ]

n∑

j=0

βj

Defining v(z) = limn T
nv̂(z), and taking the limit

of above equation will give us the fixed point of T ,
that is:

v(z) =
1

1− β
ln z +

1

1− β
[ln(1− β)−

β

1− β
lnβ]

Since Tv(z) = v(z) = max0≤y≤z{ln[z − y] +
βv(y)}, first order condition of the right hand side
of this equation gives us the following optimal se-
quence:

kt+1 = βkt for all t = 0, 1 . . .

3.3.4. Non-additive optimal growth problem

In this paper, we have so far considered an ad-
ditively separable model which is in fact satisfied

by the assumptions Pref(6) and P̃ ref(6). In this
section we will consider the non-additive model
via recursive preferences and aggregating func-
tions which are due to Lucas and Stokey (1984)
( [3]).

Definition 4. The utility function u is recur-
sive if u(c) = u(c0, c1, . . . , cn, . . .) is a function
A(c0, u(c1, . . . , cn, . . .)) of today’s consumption c0
and the intertemporal utility from tomorrow. The
function A aggregates the today’s consumption c0
and future utility into the current utility and is
called an aggregating function (aggregator).

Definition 5. The aggregating function A : R+×
R+ → R has the following properties:

(1) (AI) A is continuous,
(2) (AII) A(0, 0) = 0,
(3) (AIII) For any z ∈ R+, A(., z) is bounded,
(4) (AIV) |A(x, z) − A(x, z′)| ≤ β|z − z′| for

x, z, z′ ∈ R+ and 0 < β < 1,

The class of utility functions that are considered
are then defined by uA(c) = A[c0, u(c1, c2 . . .)].
The following theorem describes the source and
the properties of this class according to the aggre-
gating function. In such a model, dynamic pro-
gramming approach can be applied with recursive
preferences that have a contraction property.

Theorem 4. Let S be the vector space of all
bounded (with the norm ||u||∞ = supc∈ℓ∞

+
|u(c)|)

and continuous functions such that u : ℓ∞+ →
R. Let A satisfy AI,AII, AIII and AIV and
let TA be an operator defined as TA : S → S
and (TAu)(c)) = A[c0, u(c1, c2 . . .)] where c =
(c0, c1, c2 . . .) ∈ ℓ∞+ . Then, TA has a unique fixed
point uA in S. Moreover, if A is increasing and
concave then uA is increasing and concave.

Proof. By the definition of TA and by the prop-
erty (AIV ), TA is a contraction. Hence existence
of a unique fixed point holds by Banach Fixed
Point Theorem as S is complete. Moreover, A is
increasing as TA takes increasing functions to in-
creasing functions. TA is a contraction then TAu
is concave if u ∈ S is concave. Thus, the unique
fixed point uA is concave. �
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Remark 4. The above setting encompasses the
additive seperable model. That is, additive case
is a special case if we consider the aggregating
function A[c0, u(c1, c2 . . .)] = u(c0)+βu(c1, c2, . . .)
where 0 < β < 1.

Corollary 1. (Additive Recursive Preferences)
Let TA be an operator defined by T : S →
S and (Tu)(c) = A[c0, u(c1, c2 . . .)] = u(c0) +
βu(c1, c2, . . .) where c = (c0, c1, c2 . . .) ∈ ℓ∞+ .
Then,

(1) Any function u : ℓ∞+ → R satisfying
u(c) =

∑∞
t=0 β

tu(ct) where 0 < β < 1 is
bounded and continuous if u : R+ → R is
bounded and continuous.

(2) The function u ∈ S defined by u(c) =∑∞
t=0 β

tu(ct) is the unique fixed point of
TA.

4. Functional analytic approach

In this section, we give two different functional an-
alytic approaches to solve our particular problem
defined in Section 2. In Section 4.1, we apply the
main result of [8] tracking the lines of [9] which is
indeed the Lagrange multiplier method for opti-
mal growth. In Section 4.3 we apply the approach
of weak Pontryagin’s principle due to [14] to our
problem. We then compare these results with re-
spect to the assumptions of the model.

4.1. Lagrange multiplier method for

infinite dimensional space

The aim of this section is to set the optimal
growth problem (P ) given in Section 2 as a min-

imization problem (
˜̃
P ) and showing that all the

conditions of the Main Theorem in [8] are fulfilled

for the optimal growth problem (
˜̃
P ).

Set x = (k, c) ∈ ℓ∞×ℓ∞, F : ℓ∞×ℓ∞ → R∪{+∞}
and

F (x) = −
∞∑

t=0

βtu(ct)

Φt = (Φ1
t ,Φ

2
t ,Φ

3
t ) where

Φ1
t (x) = ct + kt+1 − f(kt), ∀t ≥ 0,

Φ2
t (x) = −ct, ∀t ≥ 0,

Φ3
t (x) = −kt+1, ∀t ≥ 0.

together with C = dom(F ) = ℓ∞+ × ℓ∞ and
Γ = dom(Φ) = ℓ∞ × ℓ∞+ and
C ∩ Γ = ℓ∞+ × ℓ∞+ .

Then (
˜̃
P ) will be:

(
˜̃
P )





minF (x)
s.t.
Φ(x) ≤ 0
x ∈ ℓ∞ × ℓ∞

Remark that with the above settings the problem

(
˜̃
P ) is equivalent to the optimal growth problem
(P ).

4.2. Assumptions

(
˜̃
(EA) (Endowment Assumption)

(1) k0 > 0, given,
(2) The allocations are denoted by x and x :=

(k, c) = ((kt)t, (ct)t) ∈ ℓ∞+ × ℓ∞+ .

(
˜̃
Prod) (Production Assumption)

(1) f is concave in R+,
(2) f is differentiable in R+,
(3) f is strictly increasing,
(4) f(0) = 0, 1 < f ′(0) ≤ +∞, f ′(∞) < 1.

And f(k) = −∞ if k < 0.

(
˜̃
Pref) (Preferences Assumption)

(1) u is concave in R+,
(2) u is strictly increasing in R+,
(3) u is differentiable in R+,
(4) u′(0) ≤ +∞ and u(c) = −∞ if c < 0,
(5) u(c0, c1, . . .) =

∑∞
t=0 β

tu(ct).

Remark 5. (1) We suppose bounded se-

quences of allocations by
˜̃

(AE)(2).
(2) One can mention that the above list is in-

deed weaker than the list in Section 3.1:
The boundedness of the utility function is
dropped. Neither utility nor the produc-
tion function are supposed to be stricly
concave. Instead, concavity and differen-
tiability will be adequate. However, we
make an asymptotic assumption of pro-
duction function which satisfies f ′(0) > 1.
This assumption will be essential for this
technique of Lagrange multipliers method
(see Example 5 in the following) while it
was not essential in the approach of dy-
namic programming (see also Example 2).

(3) By
˜̃

(Pref)(4) we assume additive separa-
ble utility, however we refer to [9] for the
extension to the recursive preferences.

Proposition 1. Under the Assumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref , if the sequence x = (k∗, c∗) ∈

ℓ∞ × ℓ∞ is optimal, then there exists λ ∈ ℓ1+ such
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that the following conditions hold:

∞∑

t=0

βtu(c∗t )−
∞∑

t=0

λ1
t (c

∗
t + k∗t+1 − f(k∗t )) +

∞∑

t=0

λ2
t c

∗
t

+
∑∞

t=0 λ
3
tk

∗
t

≥∑∞
t=0 β

tu(ct) −
∑∞

t=0 λ
1
t (ct + kt+1 − f(kt)) +∑∞

t=0 λ
2
t ct +

∑∞
t=0 λ

3
tkt (6)

λ1
t (c

∗
t + k∗t+1 − f(k∗t )) = 0, ∀t. (7)

λ2
t c

∗
t = 0, ∀t. (8)

λ3
tk

∗
t = 0, ∀t. (9)

Proof. Under the assumptions since u and f
are concave then F and Φ are convex. Since
f ′(0) > 1, for any k0 > 0, there exists k′ such that
0 < k′ + ǫ < f(k0) and 0 < k′ + ǫ < f(k′) with
ǫ > 0. Let k0 = (k0, k

′, k′, . . .), c0 = (ǫ, ǫ, ǫ, . . .)
and x0 = (k0, c0).. Note that suptΦt(c

0) < 0.
Thus Slater’s condition4 is satisfied. Under the
assumptions made above, in order to be able to
apply the result argued in [8] to the space ℓ1 one
needs a key result which is the following identifi-
cation:

(ℓ∞)
′

= ℓ1 ⊕ ℓs (Rudin (1973) in [16])

For each λ ∈ (ℓ∞)
′

+ we adopt the notation λ =
λ1+λs where λ1 ∈ ℓ1+ and λs ∈ ℓs+. The sufficient
conditions so that λs = 0 are given by two addi-
tional assumptions in [8]. These assumptions are
verified with above setting under the assumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref for our problem (see [9]).

Hence, the conditions of the Main Theorem in
[8] are fulfilled for the optimal growth problem.
There exists thus λ ∈ ℓ1+ such that for all x =
(k, c) ∈ ℓ∞ × ℓ∞, if x∗ = (k∗, c∗) is optimal, then

F (x) + λΦ(x) ≥ F (x∗) + λΦ(x∗)

and

λΦ(x∗) = 0

This leads us to the final result with the above set-
tings of Φ, F which establishes the extension of
Lagrange Multiplier Method with Karush-Kuhn-
Tucker conditions. �

Corollary 2. The Lagrange multipliers sequence
associated to this optimal growth problem is the
sequence {βtu′(c∗t )} and satisfies the so-called Eu-
ler equation:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

Corollary 3. Let the assumptions of the Proposi-
tion 1 be satisfied for an optimal growth problem.
Moreover, suppose that u is strictly concave and
continuously differentiable with u′(0) = +∞. If
x∗ = (c∗, k∗) is an optimal solution, then the se-
quence {βtu′(c∗t )} is in ℓ1+/{0}.

Let us consider the optimal growth problem with
logarithmic utility and Cobb-Douglas production
solved in Example 1 and in Example 2 by two dif-
ferent methods. The following example will be the
third way of having the solution and will directly
generate the Lagrange multipliers:

Example 4. The assumptions of the Corollary
3 are all satisfied, that is, u(ct) = ln ct, there-
fore it is strictly increasing, continuously differ-
entiable and u′(0) = +∞, we obtain the sequence
{βtu′(c∗t )} in ℓ1+/{0}:

As u′(0) = +∞, c∗t > 0 and k∗t > 0, by the equa-
tions (8) and (9), we have λ2

t = λ3
t = 0 for every

t. Let us define, ct = c∗t for every t, kt = k∗t for
every t 6= T and cT = c∗T + ǫ such that c∗T + ǫ > 0.

By means of equation (1), we will have:

βTu(c∗T )− λ1
T (c

∗
T ) ≥ βTu(c∗T + ǫ)− λ1

T (c
∗
T + ǫ)

For all ǫ sufficiently small, we have thus:

βTu′(c∗T )− λ1
T = 0

However, by Proposition 1, λ ∈ ℓ1+ which implies
{βtu′(c∗t )} ∈ ℓ1+/{0}.

For the particular case of this example λ1
T =

{βT

c∗
T
} ∈ ℓ1+.

Remark 6. An alternative proof of obtaining
the sequence of {βtu′(c∗t )} in ℓ1+/{0} is due to
Dana and Le Van (2003) ( [17]). Under the as-

sumptions
˜̃
(EA),

˜̃
Prod and

˜̃
Pref , it is shown

in [17] that there exists a unique optimal sequence
x∗ = (c∗, k∗) verifying that c∗ > 0 and k∗ > 0.
Moreover the sequence k∗ is monotonic and x∗ =
(c∗, k∗) satisfies Euler equation which is used to
prove the existence of the sequence {βtu′(c∗t )} in
ℓ1+/{0}. This sequence is interpreted as the prices

4Slater’s condition which is a specific example of a constraint qualification states that the feasible region must have an
interior point.
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p∗ of the corresponding competitive equilibrium
(x∗, p∗) = (c∗, k∗, p∗) ∈ ℓ∞+ × ℓ∞+ × ℓ1+/{0}. The
assumption of f ′(0) > 1 (which is called as In-
teriority Assumption in [17]) is essential to have
multipliers in ℓ1+. Without this assumption, that
is if f ′(0) ≤ 1, the multipliers are not necessarily
in ℓ1+ as in the following example.

Example 5. Let us reconsider the Cake Eating
Problem. Remember that we consider a linear
production function f(z) = z for all z ∈ R+.
Hence f ′(0) = 1 and the condition f ′(0) > 1 is
not satisfied. Suppose that we have multipliers in
ℓ1+. By the help of the Inada conditions and Euler
equation we will have:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

equivalently

λt = βλt+1f
′(k∗t+1) for all t = 0, 1, . . .

Since f ′(k∗t+1) = f ′(0) = 1, λt+1 > λt for every t
which implies λt > λ0 = u′(c∗0) > 0 proving that
λt /∈ ℓ1+. A contradiction.

Hence, a solution cannot be given to the Cake Eat-
ing Problem by means of this approach.

4.3. Approach of Pontryagin’s principle

In this section, we apply Theorem 3.1 and The-
orem 5.1 of [15] 5 to our optimal growth prob-
lem defined by scalar state and control variables.
These theorems establish weak Pontryagin’s prin-
ciples as necessary and sufficient conditions of op-
timality. The idea of this approach is to trans-
form the optimal growth problem to a dynamical
system by the help of weak Pontryagin’s princi-
ples. This approach is also functional analytic
and based on the use of abstract results of opti-
mization theory in the space ℓ∞ in the spirit of
the Karush-Kuhn-Tucker theorem.

The aim of this section is to set the optimal
growth problem (P ) as an optimal control prob-

lem (̂P ) and to show that the necessary conditions
given by Theorem 3.1 of [15] and sufficient condi-
tions given by Theorem 5.1 of [15] are fulfilled for

(P̂ ).

Set x = (k, c) ∈ ℓ∞×ℓ∞ and g(kt, ct) := f(kt)−ct
for all t = 0, 1, . . . where kt ∈ R+ is the scalar
state variable and ct ∈ R+ is the scalar control
variable. The dynamic system is governed by the
following difference inequation (DI):

(DI) kt+1 ≤ g(kt, ct) for all t = 0, 1, . . .

Then (̂P ) will be:

(̂P )





max J(x) = J(k, c) :=
∑∞

t=0 β
tu(ct)

s.t.
kt+1 ≤ g(kt, ct)
k0 > 0 given, ct ≥ 0, kt ≥ 0

Remark that with the above settings two prob-

lems (̂P ) and (P ) are equivalent.

Note that the Pontryagin’s Hamiltonian function

associated to (̂P ) and the multipliers 1 and λ is
defined by Ht : R× R× R× R → R such that

Ht(kt, ct, 1, λ) := βtu(ct) + λg(kt, ct)

Proposition 2. Let the following assumptions be
satisfied:

(P̂ rod) (Production Assumption) f : R → R is
continuously differentiable,

(P̂ ref) (Preferences Assumption) u : R → R is
continuously differentiable.

If the feasible accumulation sequence x∗ = (k∗, c∗)

in intℓ∞+ ×intℓ∞+ is an optimal solution of (̂P ) then
it is a solution of the following system:

u′(ct) = βu′(ct+1)f
′(kt+1) for all t = 1, 2 . . .

(10)

f(kt) = ct + kt+1 for all t = 0, 1, 2 . . . . (11)

Conversly, under P̂ rod and P̂ ref , let the above
equations (10) and (11) be fulfilled for a feasi-
ble allocation x∗ = (k∗, c∗) in intℓ∞+ × intℓ∞+ .
Let there exist (λ∗

t ) ∈ ℓ1+ such that the Pontrya-

gin’s Hamiltonian function, associated to (P̂ ) and
the multipliers 1 and λ, Ht(kt, ct, 1, λ) is concave
with respect to (kt, ct) for all t = 0, . . .. Then

x∗ = (k∗, c∗) is an optimal solution of (P̂ ).

Proof. Since u is independent of kt and sup-
posed to be continuously differentiable and
since f is continuously differentiable then so is

g : R×R → R. Under the assumptions P̂ rod and

P̂ ref , the assumptions6 of Theorem 3.1 in [15] are
verifed, therefore, we can directly use its conclu-
sion. There exists then a sequence of multipliers
λ∗ ∈ ℓ1+ such that the following conditions, which

5These are also Theorem 3.3 and Theorem 3.8 of [14].
6Essentially the Assumption (H1) in [15]. Note that Assumption (H4) is always satisfied in our case since ∂g

∂c
(kt, ct) =

−1 6= 0 for all t = 0, 1 . . .
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are so-called Adjoint Equation (AE) , Weak Max-
imum Principle (WMP ) and Complementary
Slackness (CS), hold:

(AE) λ∗
t = ∇kHt(k

∗
t , c

∗
t , 1, λ

∗
t+1)

(WMP ) ∇∗
cHt(k

∗
t , c

∗
t , 1, λ

∗
t+1) = 0

(CS) λ∗
t+1(g(k

∗
t , c

∗
t )− k∗t+1) = 0

which imply respectively:

λ∗
t = λ∗

t+1.
∂g

∂k∗t
(k∗t , c

∗
t ) + βt.0 for all t = 1, 2, . . .

(12)

λ∗
t+1.

∂g

∂c∗t
(k∗t , c

∗
t ) + βtu′(c∗t ) = 0 for all t = 0, 1, . . .

(13)

λ∗
t+1(g(k

∗
t , c

∗
t )− k∗t+1) = 0 for all t = 0, 1, . . .

(14)

that give us the following system:

λ∗
t = λ∗

t+1f
′(k∗t ) for all t = 1, 2, . . . (15)

λ∗
t+1(−1)+ βtu′(c∗t ) = 0 for all t = 0, 1, . . . (16)

λ∗
t+1(f(k

∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .

(17)

From the equations (15) and (16), the system re-
duces to:

u′(c∗t ) = βu′(c∗t+1)f
′(k∗t+1) for all t = 0, 1, . . .

(18)

λ∗
t+1(f(k

∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .

(19)

Remark that the multipliers associated to this
problem are defined by λ∗

t+1 = βtu′(c∗t ) and sat-
isfy (18) which is Euler equation together with
(19).

Conversly, if the equations (18) and (19) are sat-
isfied, then setting λ∗

t+1 = βtu′(c∗t ), the assump-
tions of Theorem 5.1 of [15] are fulfilled. That is,
as λ∗

t+1(f(k
∗
t )− c∗t − k∗t+1) = 0 for all t = 0, 1, . . .,

f(k∗t ) − c∗t > k∗t+1 implies λ∗
t+1 = 0. Moreover,

since (λ∗
t ) ∈ ℓ1+ we have necessarily limt→∞ λ∗

t = 0
which is so-called Transversality Condition at in-
finity. Moreover, if the Pontryagin’s Hamiltonian
function Ht(k, c, 1, λt+1) = βtu(ct)+λt+1(f(kt)−

ct) is concave with respect to (kt, ct) then opti-
mality holds.

�

Remark 7. (1) Endowment Assumption and
Inada conditions are fulfilled by the state-
ment of the Proposition 2 as the sequence
x∗ = (k∗, c∗) is supposed to be a feasible
allocation sequence in intℓ∞+ × intℓ∞+ .

(2) The result is useful as the assumptions are
easy to check and one may avoid the con-
cavity assumptions of u and f . However
the concavity of the Hamiltonian is needed
for the sufficient conditions of the opti-
mality.

Example 6. A solution to the problem in Exam-
ple 1 can be given by the approach of Pontrya-
gin’s principle. u(ct) = ln ct, f(kt) = (kt)

α with
0 < α < 1 are continuously differentiable on R+.
A solution x∗ = (k∗, c∗) to this problem is then
equivalent to the solution of the following system
which holds by (18) and (19):

1

ct
= βα

1

ct+1
(kt+1)

α−1 for all t = 0, 1, . . .

(kt)
α − ct − kt+1 = 0 for all t = 0, 1, . . .

which generates the optimal sequence: k∗t+1 =
αβ(k∗t )

α for all t = 0, 1 . . . as in Example 1, Ex-
ample 2 and Example 4.

5. Conclusion

The optimal growth problem and its solution re-
quire advanced dynamic optimization techniques.
In this paper, we analyze four of them in a dis-
crete time infinite horizon framework. Besides
the two classical approaches, namely passing to
the limit approach and dynamic programming,
we study two functional analytic approaches. The
first of them serves as the extension of Lagrangian
method to infinite dimensional spaces by empha-
sizing the works [8] and [9]. The second one trans-
forms the optimal growth problem to a dynamical
system by the help of weak Pontryagin’s princi-
ples. While studying each of these approaches,
we discuss the potential difficulties in obtaining
the solution and point out possible ways to avoid
these difficulties. Under each case, we provide
a discussion about the assumptions of the model
and review the techniques through some relevant
examples.

Optimal growth model typically involves several
assumptions on both the production and con-
sumption sides (mainly on preferences). In gen-
eral, the analysis of the specific assumptions of
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a model in economic theory is crucial in order to
encompass the most interesting cases in the appli-
cations of the theoretical models. Some of these
assumptions are needed purely for the mathemat-
ical reasons, that is, in order to be able to solve
the optimization problem. Specifically, we always
need some restrictive assumptions on the objec-
tive and constraint functions such as concavity,
differentiability, monotonocity, boundedness and
asymptotic assumptions. Once these assumptions
are made and the mathematical framework is es-
tablished, the solution can be given. Then, from
the economic viewpoint, additional efforts are put
forward in weakening some of the restrictive as-
sumptions.

This paper provides a comparative analysis of dif-
ferent mathematical approaches based on a spe-
cific list of assumptions within the given economic
model. First, for the passing to the limit approach
to work in optimal growth model, we point out
that it is necessary to be able to interchange the
limit and maximum operators. This is satisfied
only if the solution path sequence is uniformly
convergent. Therefore, its economic applicabil-
ity is limited. Then, we study the dynamic pro-
gramming technique in the same context and find
that it leads to a solution that enables us to con-
sider a larger set of economic examples. To make
this point more clear, note that utility functions
are often assumed to be unbounded in economics
and thus the boundedness assumption needed in
the passing to the limit approach is too restrictive
while this assumption can be avoided in dynamic
programming. We overview important contribu-
tions in the literature to apply dynamic program-
ming techniques to analyze infinite horizon op-
timal growth problems with unbounded returns
and with non-additive and recursive preferences
via aggregating functions.

We finally show that a solution to the optimal
growth problem can be obtained under weaker as-
sumptions on production and preferences by the
two functional analytic approaches relative to the
previous two techniques. To be more specific, in
Lagrange multiplier method, unlike the classical
approaches, neither the utility nor the produc-
tion function is supposed to be stricly concave
and continuously differentiable. Instead, concav-
ity and differentiability are adequate. Here, we
should emphasize that an additional assumption
is made on the asymptotic behavior of the pro-
duction function which satisfies f ′(0) > 1. We
show that this assumption here is essential while
it is not essential in the approach of dynamic
programming. The approach of weak Pontrya-
gin’s principle is useful as the assumptions are

fewer and easy to check. To compare these two
functional analytic approaches, we have to note
that in Lagrange multiplier method we need the
concavity assumptions of u and f but in the ap-
proach of weak Pontryagin’s principle we do not
need. However, note that the concavity of the
Hamiltonian is needed for the sufficient condi-
tions of the optimality.

This paper, by its comparative set-up, can be seen
as a source for the researchers who intend to use
these approaches in similar types of accumulation
and growth problems.
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 Selection of the heating system is based on many characteristics from the 

customer side. Operating cost, comfort, ease of use and aesthetic of the systems 

are some of the most important ones of these characteristics. In this article, data 

is collected primarily for the implementation of quality house. With these data, 

customer requirements are listed and defined in terms of degree of importance 

from the customer side. Then, the relationship between customer requirements 

and technical requirements are described. Also, column weights are calculated 

according to the defined relations. Finally, the results obtained using a quality 

house is integrated with Analytic Hierarchy Process (AHP) methodology for 

system selection. Then results are interpreted. The main contribution of this 

paper is to determine the best heating system selection using the relationship 

between customer and technical requirements. To the authors’ knowledge, this 

will be the first study which uses the integrated QFD-AHP method for heating 

system selection.  
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1. Introduction and literature review 

The residence is a spatiality that has economic value, 

changing value, aesthetical value and usage value. The 

residence is a building or a part of building which 

meets the necessities of people which provides a 

group of people to live separately from the others and 

which has a unique door by opening towards directly 

to the street. 

During the all choices of MCDM (Multiple Criteria 

Decision Making) which aim to assist the decision 

maker in selection the best is implemented with the 

help of such methods as ELECTRE, TOPSIS, AHP, 

etc [1]. The Analytic Hierarchy Process is a 

methodology which is based on hierarchical structure 

of criteria, measurement and synthesis. AHP aims to 

help decision maker to get over the difficulties [2, 3]. 

Contrarily to other methods, AHP, given a number of 

functions, allows to specify the most desirable and 

objective value for each function. This occurs within a 

matrix of assessment in which the functions appear on 

both axes. The Quality Function Deployment (QFD)-

AHP is a very flexible method, and allows analyzing 

customer’s demands in an effective and objective 

manner. In particular, it permits to identify the 

customer’s proper needs and to focus on the technical 

activity about output [4]. 

In the literature, based on the Analytic Hierarchy 

Process (AHP), the solar water heating system was the 

most inexpensive type heater in domestic use [5]. In 

conclusion, it was found that the solar water heating 

system was the most desirable system to be used in 

Jordan. 

Nieminen and Huovila [6] described experiences of 

applying QFD in the decision making process in 

building design using the IEA (International Energy 

Agency) task with 23 criteria. Three case studies were 

shortly presented. The study [7] specified the 

fundamental requirements for a prioritization process. 

Where prioritization should take place during the 

requirements phase, and who should be involved in 

the prioritization process were studied. Current 

techniques such as AHP and QFD were analyzed to 

how well they satisfy the fundamental needs of a 

successful prioritization process. A framework was 

described that incorporates the many aspects of 

prioritizing requirements.  

The thesis of Alanne [8] i) identified the need of 

decision support in the commercialization of

http://www.ams.org/msc/msc2010.html
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 sustainable energy technologies in buildings, ii) 

characterized decision-making problems related to the 

above context, iii) developed and implemented a 

methodology to assess energy technologies for 

buildings, and iv) presented two fields of application 

where the above assessment is essential. Moreover, a 

multi-criteria portfolio model was applied to 

determine the most preferred retrofit measures in an 

apartment building. In their paper, Alanne et al. [9] 

considered the selection of a residential energy supply 

system as a multi-criteria decision-making (AHP) 

problem, which involved both financial and 

environmental issues. On the other hand, as an update 

of Huang et al.’s article, the study of Zhou et al. [10] 

gave the developments of DA (Decision Analysis) in 

E&E (Energy and Environmental modeling) in recent 

years. That survey showed the increased popularity of 

MCDM methods. Besides, the working paper of Nebel 

et al. [11] was an interim report from the Systems 

Research Work Plan - “Criteria Development and 

Embedding Systems”. Two systems were selected 

from a prioritized list of residential building systems 

obtained through a series of workshops and project 

team discussion meetings by AHP method. The aim of 

the work of De Felice and Petrillo [4] was to propose 

a new methodological approach about defining 

customer’s specifications through the instrument of an 

integrated QFD-AHD model. AHP was well designed 

for that because of its mathematically and rigorous 

process for prioritization and decision making. 

With this study, the hopes of people from heating 

systems which are used in the houses and which will 

be used at the future and the differences between these 

heating systems are emphasized. Customer demands 

are emphasized with the Quality Function Deployment 

(QFD) application and the technical requirements are 

listed and the comparison are made. And the technical 

necessaries are listed. AHP application is made by 

taking the results from Quality house application for 

system choosing. The alternatives are radiator, fan-

coil, air-condition and floor heating systems. When 

we investigate the researches about this topic, QFD-

AHP, a study that comprises all these four heating 

systems was not encountered. The provided results 

can be a numerically guide for the CIBSE Best 

Practice guide. 

In the sections that follow, we first present the heating 

systems in Section 2. We then define QFD and 

methodology in Section 3. A QFD development for 

heating systems is explained in Section 4. A 

description of AHP methodology is given in Section 

5. In Section 6, heating system selection using 

Analytic Hierarchy Process (AHP) is given. Finally, 

Section 7 concludes the paper and points future work.  

2. Heating systems and exports in Turkey 

A heating system is a mechanism for maintaining 

temperatures at an acceptable level; by using thermal 

energy within a home, office, or other dwelling. While 

considering about efficient energy rating, some factors 

are taken into consideration, such as thermal 

irregularities in building envelope, energy efficiency 

of the boilers, the distribution system and the 

performance of the control system [12]. The floor 

heating system has constituted the rate of 50% of the 

heating system in the recent days at Europe. The rest 

of the rate has been including radiator, convector and 

the others. 

Also, heating systems and equipments consist of 

burners, boilers, radiators, water heaters, 

dehumidifiers, electric and non-electric heaters, stoves 

and their equipments. In 2013, heating systems and 

equipments export of Turkey increased by 3,7% with 

respect to previous year and reached US$ 1,9 billion. 

According to data of 2013, in Turkey’s heating 

systems and equipments export, Iraq, United 

Kingdom, Germany, Azerbaijan, and Turkmenistan 

are the top five countries (Figure 1) [13]. 

Figure 1. Turkey heating systems and equipments export by country (thousand $) [13].
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2.1. Floor heating systems   

Simulation model of floor heating system is mainly 

introduced as heat transfers in pipe to indoor and also 

this usage of it is approved as the basic shape for 

characterization and dimension. Different types of 

floor heating system have been investigated and at this 

point it is considered to being of finited element 

models with respect to thermal properties and 

dynamical behavior. The classification of the thermal 

output to indoor has been established with the purpose 

of being able to designed and dimensioned such as 

system in EN1264. Various kinds of control strategies 

are investigated not to loss indoor heat and consume 

the energy. Various floor covering materials have 

been found to impact temperatures, reaction time and 

energy consumption [14]. The heating floor elements 

such as, water, coils, electric cables are placed into 

concrete layer in the floor [15]. 

2.2. Radiator heating systems     

As for radiator systems, the movement of the air 

heated by grazing the hot radiator surfaces towards the 

part of the room that is close to the ceiling and the 

presence of relatively cool air at the inferior half of the 

room which is the real usage capacity cannot be 

prevented. Because of this sufficiency of the heat 

diffusion at the horizontal and vertical sections in the 

room, the pleasant warmth on the floor surface and the 

thermal satisfaction of the person with the wall 

radiation effect in the floor heating, many practitioners 

confirm that the room temperatures anticipated in the 

planning of the floor heating need to be kept 1 – 2 ºC 

lower than the room temperatures given in the 

literature. Considering that a decrease of 1 ºC in the 

room temperature leads to a fuel economy of 7%, the 

superiority of the system on this matter can be 

emphasized. 

In the current survey, a high powered density radiator 

using for the hydronic central heating applications has 

been developed for utilizing heat pipes. A heat pipe is 

hermetically sealed a light-water tube which exists 

inside the heat pipe shell as vapor and liquid at 

equilibrium [16]. In order to release hot weather from 

the distribution system into the building to save indoor 

energy and temperature, the heat emitters are used. 

Heat emitters which are commonly used are radiators, 

under-floor heating, fan-coil units (FCU) and air-

handling units (AHU). This survey also showed that 

95% of radiators were controlled by using TRVs 

(thermostatic radiator valves) and revealed that more 

than 65% of TRVs were performing very poorly [12]. 

2.3. Fan coil heating systems   

First of all, fan coil system using is very useful and 

easy. Secondly, devices which could be hidden are 

comparatively aesthetic. Warming period is fastly 

reacting to the environment. Finally, system is 

relatively controllable. 

2.4. Air-condition heating systems 

Although the Turkish HVAC-R (heating, ventilating 

and air-conditioning & refrigeration) sector began to 

get organized in 1993, Turkey’s interest in the heating, 

ventilating, and air-conditioning sector dates back to 

the 1950’s. After that time, this industry has grown 

quickly both in terms of manufacturing and volume, 

expending its domestic and foreign markets. This 

growth has been expedited by a number of factors, 

including Turkey’s young population, the country’s 

steadily increasing GDP (gross domestic product), and 

the public’s growing demand for comfortable living 

standards [17]. 

The utilization of the system is very useful as fan coil 

heating systems. Also, system is fairly flexible due to 

the equipment could be camouflaged. The reaction of 

the system is very expeditious in terms of warm-up 

time. Besides, it can be simply controlled in terms of 

inspection. But, climate heating systems cannot be 

operating much more efficient in cold climate regions. 

3. QFD and QFD methodology 

Quality Function Deployment is a systematic 

approach to design based on a close awareness of 

customer desires, coupled with the integration of 

corporate functional groups. It consists in translating 

customer desires (for example, the ease of writing for 

a pen) into design characteristics (pen ink viscosity, 

pressure on ball-point) for each stage of the product 

development [18]. Figure 2 shows the quality house 

basic parts. Also, the main parts of a quality house 

matrix presented in Figure 3 is modeled. 

 

  Figure 2. Quality house basic parts. 

 

In this study, firstly the customer requirements were 

defined for quality house (QFD) application. Survey 

and double meetings were made when these 

requirements are defining. The quality house 

application was made with the data that was taken 

from surveys and AHP application in heating system 

selection was made in accordance with customer 

needs.  

Beginning with the initial matrix, commonly referred 

as quality house (Figure 3), the QFD methodology 

focuses on the most important product or service 

attributes or qualities. These are composed of 

customer wants, and musts. Firstly, customer requests 

and technical requirements are determined. Then the 

relation between the customer request and technical 

requirements and the relation between the technical 
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features are defined.  

Evaluation of customers and technical evaluation 

according to competition are found and according to 

the firm goals technical importance values and 

normalized technical importance values are calculated 

as detailed in Section 4. 

The methodology is summarized as shown in the 

Figure 4. 

4. A QFD development for heating systems 

The aim of this application is to see the applicability 

of QFD technique in the heating systems that based on 

customer expectations and customer satisfactions. 

4.1. Forming the customer data part of the QFD 

matrix 

4.1.1. Determining the customer demands 

Expectations and demands from the heating systems 

and the selection criteria for the heating systems are 

asked to the customers and technical requirements are 

determined as shown in Table 1. 

 

 
Figure 3. Quality house matrix basic parts. 

 

 
Figure 4. Methodology. 

 

4.2. Arranging the relation between customer 

demands and the technical requirements 

Customers’ views are scaled with 1-9 scale that 

demonstrates 1-the least important, 9-the most 

important. Also firm experts are evaluated radiator 

system and floor heating systems with 1-5 scale that 

demonstrates 1-the worst, 5-the best as shown in 

Figure 5. 

Table 1. Customer demands and the technical requirements 

for the heating systems. 

Customer Demands Technical Requirements 

To be comfortable Regular heat diffusion 

To work with low operating 

costs 

Heat insulation 

To be aesthetic Hidden devices and pipes 

To be easy to use Using thermostat 

To response quickly Ability to work in high-

temperatures 

To be responsive to the 
environment 

Low CO2 emission 

Not to dust Low temperature systems 

To be compatible with the 

renewable energy sources 

Ability to work with solar power 

To save energy High productive systems 

To be easy to control Using control equipment 

To have smart appearance Aesthetic devices 

To be hide out Hidden systems to the ceiling or to 

the ground 

Ability to work with the 
outer air 

Outer air temperature control 

Ability to control each room 

detached 

Thermostatic valves 

4.3. Correlations and calculating the column 

weights 

There can be positive or negative interactions between 

technical requirements that defined for covering the 

customer demands. Therefore “correlation matrix” is 

used for seeing these interactions.  

In this matrix each cell represents the correlation 

between two different technical requirements and the 

positive relation can be shown with ✓ and the 

negative relation can be shown with X. The most 

Data Obtaining 

 QFD Application 

AHP Application 

System Selection  

QFD Results  
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important advantage of correlation matrix is being an 

indicator of negative relations. Each of the negative 

relation must be inspected while developing the 

product. Therefore the changes are determined that 

can be done for reducing the effect of any negative 

correlation. After determining the development 

direction the column weights are calculated (strong, 

middle, and low relations have 9, 3, 1 weights, 

respectively).  

As an example, “to work with low operating costs” 

has 9 importance scales and has a strong relation with 

“heat insulation”. Technical importance=Importance 

scale x Relation weight =9 x 9 = 81. 

4.4. Analysis of the QFD matrix 

As seen on Figure 6, the customer demands for 

heating systems are evaluated and the most important 

results of the house of quality for heating systems are; 

to be comfortable (8), to work with low operating 

costs (9), not to dust (8), to save energy (9), to have 

smart appearance (8), ability to control each room 

detached (8). 

The analyzed firm in this study prefers mostly floor 

heating systems, therefore radiator systems are 

competitor for floor heating systems. But having 

regular heat diffusion, hidden devices and pipes and 

ability to work efficiently at low temperatures 

reinforce floor heating systems. Also ability to work 

efficiently at low temperatures causes to work with 

low operating costs, so one of the most important 

results for customer demands is satisfied. 

From the technical importance point of view, the most 

important point is “using thermostat and control 

equipment”. Therefore using these equipment causes 

to save energy, to be comfortable and ability to control 

the system according to the temperature of outer air. 

As a development direction point of view, buildings 

that save more energy can be made with increasing the 

thickness of the insulation. Low operating costs can be 

obtained with increasing the number of thermostat and 

control equipment. For the purpose of reducing CO2 

emission and being responsive to the environment, 

central boiler rooms must be enforced. 

The analysis of the QFD matrix is concluded with the 

interpretation of the technical importance and 

normalized technical importance values. Technical 

requirements that have the maximum technical 

importance values are respectively; 

• Using thermostat and control equipment 

• Low temperature systems 

• Hidden systems to the ceiling or to the 

ground 

• Ability to work with solar power 

• Hidden devices and pipes 

 

 

Figure 5. The relation between customer demands and the technical requirements. 
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Figure 6. The house of quality for heating systems. 

 

For the purpose of satisfying these technical 

requirements and customer demands, some heating 

systems alternatives will be evaluated and prioritized 

in the Section 6 using Analytic Hierarchy Process 

(AHP). Customer demands with high importance 

values will be the criteria for the heating system 

evaluation process. Therefore we will combine QFD 

with AHP. 

5. Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) is a multi-

criteria decision-making method that has been widely 

used since 1970s. It separates a problem into smaller 

pieces and examines the effect of these parts on each 

other. As a result of this process, the weight of parts 

and the importance order of parts are obtained. For 

this purpose, a benchmark scale was established that 

quantitatively assesses the effects of parts on each 

other. Parts of the problem are compared pair wise and 

effects of each part on the target are quantitatively 

obtained. The AHP method can be used in both social 

and physical areas to make measurement [19]. 

Steps of AHP is given below; 

1. Identification of the problem and determination of 

the desired information, 

2. Formation of the hierarchy of decision-making 

from top to bottom determination of the goal and 

criteria, 

3. Obtaining pair wise comparison matrix, 

4. Finding weights of criteria. 

There is a need for a scale to make comparisons. This 

scale shows how important an element is compared to 

the other element. The scale used in AHP can be seen 

in Table 2 [20]. 

Table 2. AHP Scale. 

Importance 

Values 

Value Definitions Explanation 

1 Both factors are 

equally important 

Both activities have an equal 

importance. 

3 Factor 1 is slightly 

more important than 

Factor 2 

Experience and judgment shows 

that Factor 1 is slightly more 

important than the other. 

5 Factor 1 is more 

important than 

Factor 2 

Experience and judgment shows 

that Factor 1 is more important 

than the other. 

7 Factor 1 is strongly 

more important than 

Factor 2 

Experience and judgment shows 

that Factor 1 is strongly more 

important than Factor 2. 

9 Factor 1 has absolute 
superiority over 

Factor 2 

Experience and judgment shows 
that Factor 1 is absolutely more 

important than the other. 

 

The mathematical realization of AHP will be 

explained in the following steps [21]. 

1. First, the problem and elements (criteria) to be 

decided are defined. Using these elements, a 

comparison matrix is constructed. The comparison 
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matrix for "n" elements contains "nxn" elements and 

the values on the diagonal (where i = j) are 1. 
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In the comparison matrix there is such relation, 

between the elements above the diagonal and the 

elements below the diagonal; 

ij

ji
k

k
1



                                                              (2) 

For example, if the third criterion more important than 

the second criterion, the value of element 23k  is 5 and 

32k  element has a value of 1/5. 

2. This matrix shows us the importance of each 

criterion, but does not allow us to see the weight of 

each criterion in total. We need to get the column 

vectors for this. Each element is divided by the sum of 

the values in its column, and if the value is substituted, 

n column vectors of n elements are obtained. 
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The above formula is used when the values of the 

column vector are calculated. 
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3. To create column matrix, n column vectors are are 

formed in a matrix. This matrix is as follows 
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4. Finally, using the S matrix, we need to obtain the 

weight vector to obtain the percentage of the 

elements. This is obtained by taking the arithmetic 

mean of the elements in the rows of the column 

matrix. 
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                                                                  (6) 

The sum of the elements of the weight vector is 1. The 

weight vector is as follows; 
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Consistency analysis is used to measure the 

consistency after weight results are found. This 

analysis shows whether there is an error in the work 

done or the result is consistent within itself. The 

following steps are taken to calculate the consistency 

rate [21, 22]. 

1. In order to calculate the consistency ratio, firstly 

the comparison matrix and the weight matrix are 

multiplied to obtain the T column vector. 
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2. After obtaining the T vector, basic value elements 

are obtained by dividing each element of the T vector 

by the weight vector A of the T vector. 

i
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   ni ,...,2,1                                             (9) 

3. The arithmetic mean of these elements gives the 

basic value of pair wise comparison of this problem . 

n

E
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i

i
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                                                           (10) 

4. After obtaining , consistent indicator Cl should be 

obtained. 
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n

n
CI



                                                         (11) 

5. The following formula is used to calculate the 

consistency ratio at the last step. 

RI

CI
CR 

                                                           (12) 

The result is consistent if the consistency ratio (CR) is 

less than 0.1. If it exceeds 0.1, either there is a mistake 

in applying the AHP, or the operation is inconsistent. 

In this study, AHP application was made using the 

Super Decisions software and the consistency ratio for 

all comparisons were found less than 0.1. 
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6. Heating system selection using Analytic 

Hierarchy Process (AHP) 

For selecting the best heating system alternative for 

indoor-use, according to the results of QFD, customer 

demands with high importance values are the criteria 

for AHP. These are operating costs, to be easy to use, 

appearance, comfort, and saving energy. Also, the 

alternatives for the selection process are floor heating 

systems, radiator, air-condition, and fan-coil. 

6.1. Comparing the alternatives 

After the purpose, criteria and alternatives have 

determined, binary comparisons have done with 3 

different experts from the sector and the academia. 

After all of binary comparisons have completed, the 

averages of their views are entered to Super Decisions 

software as shown in Table 3-8. After all of data have 

entered the program, lastly the result can be found as 

shown in Table 9. 

Table 3. Comparing the alternatives according to the 

“saving energy” criteria. 

  Radiator 

Fan-

Coil  

Floor 

Heating Air-Condition 

Radiator 1 1/3 1/4 3 

Fan-Coil  3 1 1/2 2 

Floor 

Heating 
6 4 1 5 

Air-

Condition 
1/3 1/4 1/5 1 

 

Table 4. Comparing the alternatives according to the 

“appearance” criteria. 

 

Radiator 

Fan-

Coil  

Floor 

Heating 

Air-

Condition 

Radiator 1 1/4 1/8 1/3 

Fan-Coil  4 1 1/6 2 

Floor 

Heating 
8 6 1 6 

Air-

Condition 
3 1/2 1/6 1 

 

Table 5. Comparing the alternatives according to the “to be 

easy to use” criteria. 

 
Radiator 

Fan-

Coil  

Floor 

Heating 

Air-

Condition 

Radiator 1 1/4 1/5 1/4 

Fan-Coil  4 1 1/3 2 

Floor 

Heating 
5 3 1 3 

Air-

Condition 
4 1/2 1/3 1 

 

Table 6. Comparing the alternatives according to the 

“operating costs” criteria. 

  Radiator 

Fan-

Coil  

Floor 

Heating 

Air-

Condition 

Radiator 1 1/3 1/5 2 

Fan-Coil  3 1 1/3 2 

Floor 

Heating 
5 3 1 4 

Air-

Condition 
1/2 1/2 1/4 1 

 

Table 7. Comparing the alternatives according to the 

“comfort” criteria. 

  Radiator 

Fan-

Coil  

Floor 

Heating 

Air-

Condition 

Radiator 1 1/4 1/6 1/3 

Fan-Coil  4 1 1/3 2 

Floor 

Heating 
6 3 1 5 

Air-

Condition 
3 1/2 1/5 1 

 

Table 8. Comparing the alternatives. 

 

Saving 
Energy 

Operating 
Costs 

Appeara
nce Comfort 

To Be 

Easy 
To Use 

Saving 

Energy 
1 2 3 3 4 

Operating 
Costs 

1/2 1 4 3 5 

Appearance 1/3 1/4 1 1/4 1/3 

Comfort 1/3 1/3 4 1 3 

To Be Easy 
To Use 

1/4 1/5 3 1/3 1 

 

Table 9. AHP results. 

Alternatives Total Normal Ideal Ranking 

Radiator 
0.0537 0.1075 0.2002 4 

fan-coil  
0.1214 0.2428 0.4521 2 

floor heating 
0.2685 0.5370 10.000 1 

air-condition 
0.0564 0.1128 0.2101 3 

 

As a result, according to the criteria and the 

evaluation, the most appropriate heating system is 

floor heating system (53.7%), then fan-coil (24.28%), 

air-condition (11.28%), and radiator (10.75%), 

respectively.  

7. Conclusion 

Heating systems directly affect customers’ comfort 

and life quality; therefore construction companies 

must pay attention to quality and market research. For 

this reason several techniques were developed for 

several purposes; using QFD methodology, customer 

demands are emphasized and the technical 

requirements are listed and the comparison can be 

made. Using the AHP methodology, the decision 

maker can make decisions according to the criteria 

and the alternatives. 

In this study, firstly QFD analysis has done for the 

heating systems and with this analysis, customer 

demands, technical requirements, correlation between 

them, and the technical importance have determined. 

For the purpose of satisfying these technical 

requirements and customer demands, some heating 

system alternatives have evaluated and prioritized 

using AHP. 

The general limitation of the proposed model is the 

costly and exhausting information requested from 

experts (approx. 105 pairwise comparisons per one 

expert). Other limitations of the model are the 
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preferences of the expert including uncertainty and 

conflicts and there is often needed more than one 

expert to make decisions. 

According to the results, the most appropriate heating 

system alternative is floor heating system (53.7%), 

then fan-coil (24.28%), air-condition (11.28%) and 

radiator (10.75%), respectively. Also we have to say 

that, this is the first paper in the literature that 

combines QFD with AHP methodology in the heating 

system sector. As a further research, we think to 

improve this study with fuzzy numbers and also we 

consider combining QFD with other selection 

methodologies, such as Analytic Network Process 

(ANP), TOPSIS and ELECTRE. Besides, we will 

compare the results that found in this paper. 
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