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 Teaching Learning Based Optimization (TLBO) is one of the non-traditional 

techniques to simulate natural phenomena into a numerical algorithm. TLBO 

mimics teaching learning process occurring between a teacher and students in a 

classroom. A parameter named as teaching factor, TF, seems to be the only 

tuning parameter in TLBO. Although the value of the teaching factor, TF, is 

determined by an equation, the value of 1 or 2 has been used by the researchers 

for TF. This study intends to explore the effect of the variation of teaching factor 

TF on the performances of TLBO. This effect is demonstrated in solving 

structural optimization problems including truss and frame structures under the 

stress and displacement constraints. The results indicate that the variation of TF 

in the TLBO process does not change the results obtained at the end of the 

optimization procedure when the computational cost of TLBO is ignored. 
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1. Introduction 

Optimization tools emerged as obtaining the optimum 

solution of optimization problems try to maximize or 

minimize a real function within a domain which 

contains the acceptable values of variables while some 

restrictions are to be satisfied. Among the 

optimization tools developed and used for the solution 

of optimization problems, the recent novel and 

innovative meta-heuristic search techniques emerged 

use nature as a source of inspiration to establish a 

numerical search algorithm for solving complex 

engineering problems and they do not suffer the 

discrepancies of mathematical programming based 

optimum design methods [1]. Although genetic 

algorithms (GAs) based on the principle of survival of 

the fittest as a computational procedure [2-7] seems to 

be commonly employed to obtain the optimum 

solution of structural design problems, many meta-

heuristic optimization tools occurred in recent years, 

which were developed inspiring the different process 

and phenomena from the nature. The optimization 

algorithms such as ant colony optimization (ACO) 

working on the behavior of an ant, particle swarm 

optimization (PSO) implementing the foraging 

behavior of a bird for searching food, artificial bee 

colony (ABC) using the foraging behavior of a honey 

bee, harmony search (HS) working on the principle of 

music improvisation in music player, charged system 

search (CSS) implementing the Coulomb and Gauss’s 

law of electrostatics in physics, and imperialist 

competitive algorithm (ICA) using a socio-politically 

motivated strategy might be stated as the new 

generation meta-heuristic techniques, mine blast 

algorithm (MBA) simulating the mine bomb 

explosion, water cycle algorithm (WCA) 

implementing the main steps of the hydrologic cycle, 

water wave optimization (WWO) working on the 

principle of wave motion in recent years, which have 

been developed mimicking the principles of different 

natural phenomena and have been effectively 

employed to attain the optimum solution of structural 

design problems [1, 8-19]. Moreover, the improved 

form of these algorithms proposed to enhance 

performance and ability of those can also be found in 

the literature [20-22]. On the other hand, the 

emergence of new computational techniques that are 

based on the simulation of paradigms found in nature 

has still continued due to its ability of solving 

different optimization problems because of their very 

suitability and effectiveness in finding the solution of 
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structural optimization problems. 

One of the meta-heuristic techniques offered from 

inspiring the natural phenomena is the so-called 

Teaching-Learning Based Optimization (TLBO). 

TLBO was developed by [23] as a new optimization 

method, which mimics teaching-learning process in a 

class between the teacher and the students (learners). 

[23] tested the TLBO algorithm on constrained 

benchmark test functions with different 

characteristics, benchmark mechanical design 

problems and mechanical design optimization 

problems taken from the literature. After that, some 

optimization problems related with the distinct 

discipline and features were investigated using the 

standard TLBO algorithm and the enhancement 

version of its [24-30]. The numerical results presented 

in the corresponding researches proved exploration 

and exploitation capacities of TLBO on different kind 

of optimization problems in comparison to other 

metaheuristics algorithms used in these optimization 

cases. 

TLBO algorithm contains two main phases known as 

Teaching phase and Learning phase and it does not 

need any control parameters values to start its 

searching process. The teaching factor TF placed in the 

Teaching Phase seems the only tuning parameter 

although yet TF was decided with the help of TF = 

round[1 + rand (0,1) {2-1}] in [23]. However, the 

value TF was taken as 1 or 2 in the studies conducted 

using TLBO in contrast to the equation given in [26]. 

For example, [30], [31], and [24] were adopted it as 2 

through the TLBO process while [28] taken as [0, 1]. 

Therefore this study intends to explore the effect of 

the variation of teaching factor TF on the performances 

of TLBO. This effect is demonstrated solving 

structural optimization problems including truss and 

frame structures under the stress and displacement 

constraints. 

2. Optimization problems 

A general mathematical statement for the constrained 

optimization problem is defined in [32] as follows. In 
nR  find the design variables x={x1, x2, ..., xn}T 

minimizing an objective function and satisfying the 

constraints:. 
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In Eq. (1), gi(x) and hj(x) represent the inequality and 

equality constraints, xl and xu are the vectors showing 

the lower and upper limit for the design variables, 

respectively. Since the design variables of the 

optimization problem are discrete xl is equal to 1 

whereas xu is the maximum section number 

considered for design variables. Therefore, the 

optimization problem turns finding a vector of integer 

values x corresponding to the sequence numbers of 

steel sections in a given list to create a vector of cross-

sectional areas A={A1,A2,..,AM}T for M members of the 

structure. Such that, the objective function f taken as 

weight of the structural system is minimized 

depending on A. 

∑=
=

M

i
ii ALf

1
ρ                           (2) 

In Eq. (2), M is the number of elements in the 

structural system. Li and Ai are the length, and the 

cross-section area of i-th element respectively, ρ is the 

density of the material. 

As the meta-heuristic methods are suitable for the 

unconstrained optimization problems, the constrained 

optimization problem is converted to the 

unconstrained one via penalty functions based on the 

measurement of violation. A penalty functional is 

added to the objective function to define the fitness 

value of an infeasible element. The objective function 

for the design problem incorporating penalty function 

as well can be expressed as follows; 

( ) ffW penalty+= 1min                  (3) 

In Eq. (3), W is called the penalized objective function 

and shows a relative measure of the performance of 

the solution, fpenalty is the penalty function, and f is 

objective function as in Eq. (2). All penalty functions 

are based on the violation of the constraints, and 

usually the degree of penalty for a given solution is 

adjusted through some coefficients placed in the 

penalty function. The penalty function taken from [8] 

as given below is used in the current work. 
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      (4) 

In Eq. (4), C is the total value of displacement and 

stress violations, ε=penalty function exponent, and m1 

is number of the total constraints considered as the 

displacement and/or the stress constraints, gi(x). 

3. Teaching-learning based optimization (TLBO) 

TLBO simulates the effect of influence of a teacher on 

learners (students) which is taken as the source of its 

inspiration. In accordance with this purpose, the 

method imitates the set of possible solution 

alternatives of the problem as teacher-student group in 

a class which struggles to increase the level of the 

class by attaining the new information on a subject 

under the existing conditions. It is intended in this 

simulation that the students in a class increase and 

move their knowledge level on a subject taught by the 

teacher towards his or her own level. 

A computational procedure by imitating the above 

teaching-learning process that occurs between the 

teacher and the students in a class is developed by [23] 
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and aforementioned process called TLBO consists of 

two parts; i) “Teaching Phase”, and ii) “Learning 

Phase”. In teaching phase, the teacher, who is the most 

knowledgeable person in a social group and is 

expected to disseminate information to other learners, 

is determined whereas in the learning phase, it is 

provided for the students to acquire new information 

through the interactions among the learners. As in 

other meta-heuristic algorithms inspiring from the 

nature, TLBO is also a population based method. 

Each student in a class represents a possible solution, 

the different subjects offered to learn to students is 

analogous to different design variables, the students’ 

result obtained through the exam demonstrates the 

fitness of solution, the teacher is taken as the best 

solution achieved so far, and finally whole class is 

considered as the population in TLBO. After this 

association, the step-wise procedure for the 

implementation of TLBO is as follows. 

3.1. Initialize the optimization problems 

The parameters required by the optimization algorithm 

to be used in solving the structural design problems 

are defined in this step. These are number of 

population (np), maximum number of cycles (Cmax), 

number of design variables (nd), lower and upper 

limits of design variables (xl and xu), objective 

function (f(x)) and so on, which are selected 

depending on the type of problem.  

3.2. Initialize the population and evaluate the 

solution 

The population is randomly generated according to the 

parameters described in the previous step as follows.  

1,1 1, 1 1, 1

,1 1, 1 ,

( )

( )

nd nd

np np nd np nd np

x x x W x

pop

x x x W x



 

 
 

  
  

  (5) 

In Eq. (5), each row shows a possible solution (xi={xi,1 

… xi,nd-1  xi,nd}  i=1, …, np), W(x1,..,np) represents the 

value of the penalized objective function for the 

evaluation of the potential solutions through Eq. (3), 

and pop demonstrates the population. 

3.3. Teaching phase 

The solution with a minimum value of the penalized 

objective function in the population is determined at 

this stage of TLBO ( min(W(x1,..,np)) ). Since this 

individual is the best of the population it is taken into 

account as a teacher in the teaching-learning process 

(xteacher=x=min(W(x)). Then, the other students in the 

current population are modified in the neighborhood 

of the teacher by the hope that the level of students 

will be updated to the level of the teacher. This 

modification is carried out by using the following 

equations. 

* ( )i teacher F meanx x r x T x                 (6a) 

In Eq. (6a), x* shows the renewed form of xi by Eq. 

(6a), r is a random number varying [0,1], TF is a 

teaching factor being either 1 or 2, which is again a 

heuristic step and decided randomly with equal 

probability as TF = round[1 + rand (0,1) {2-1}] ( in 

[23]), and xmean symbolizes the mean of the 

population, which is calculated with column-wise 

manner as follows. 

[ ]
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In Eq. (6b), i=1,…,np, j=1,…,nd, np and nd are the 

number of solutions and the design variables. As a 

results of these operations, xi is taken as x* if the 

obtained x* produces a better value of W(.) than xi. 

Otherwise, xi is retained. 

3.4. Learning phase 

After the teacher transfers him or her own knowledge 

to the students by Eq. (6a), the teaching-learning 

process continues in the form of interaction among 

students. At this stage of the TLBO algorithm, a 

student learns new information by interacting with 

other students who have more knowledge than him or 

her. The modification formula representing the 

learning phase can be expressed as: 

*

1:

randomlyselect ,

if ( ) < ( )

= -

else

= -

end if

= +

end for

i j

i j

j i

i

for i np

j j i

f x f x

difference x x

difference x x

x x r difference







                    (6c) 

where, x* and xi are the new and existing solution of i, 

xj is the any solution that is different from xi. If the 

solution gained new information with help of Eq. (6c), 

x*, produces better penalized objective function value 

than xi change xi to x*, otherwise preserve xi. 

At the end of the learning phase, a cycle (iteration) is 

completed for the TLBO and the steps in section 3.3 

and 3.4 continues until a termination criterion is 

satisfied, which is adopted as a pre-determined 

maximum number of cycles (Cmax) in the current 

work. The vector x* obtained with application of both 

Eqs. (6a) and (6c) may contain any design variable 

being less than xl or bigger than xu due to addition and 

subtraction in the corresponding expressions. In such a 

case, a controlling procedure should be performed for 

x* so as not to encounter any abnormal ending in the 

algorithm. Therefore, it is ensured that any design 

variable in x* must not be bigger than xu and less than 
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xl and if any design variable of x* is less than xl or 

bigger than xu it is taken into account as xl or xu, 

respectively. 

The flowchart of TLBO developed in the light of 

information given above is demonstrated in Figure 1. 

4. Design examples 

The design process, that is explained with the 

implementation steps given above, of a Teaching 

Learning Based Optimization (TLBO) technique is 

properly applied to the example designs such as 52 bar 

truss, 3-bay 15-story frame, and 582 bar space truss in 

order to exhibit the effecting of varying the value of 

TF on the performance of TLBO algorithm. In the 

design examples examined, the design variables taken 

into consideration as the cross-sectional area of the 

members that make up the structural systems are 

discrete. In other words, they are represented by the 

section numbers considered for design variables. 

The inequalities shown as follows are kept in mind as 

constraints in the current work for the examples 

1 1 1( ) 1.0 0 1,...,a
k

u
g x k c

u
           (7a) 

2 2 2( ) 1.0 0 1,...,a
kg x k c




           (7b) 

where, Eq. (7a) and (7b) demonstrate the 

displacements and stresses constraints, respectively. u 

displacement of joint, and ua is its upper bound. σ is 

stress in a member . σa is the allowable stresses for the 

tension and compression members, respectively. c1 

and c2 are number of restricted displacements and 

stresses. 

The optimizations process performed using TLBO for 

the structure systems examined in this study is 

repeated 20 times by the different populations which 

are generated independently and randomly at every 

turn. The best (lightest) one of the 20 runs is 

propounded as the result of the related examples. 

The algorithm and finite element analysis program are 

coded in Matlab software and implemented on PC 

with Intel Core i5 2.70 GHz processor and 8 GB RAM 

memory. 

4.1. 52 bar truss 

A 52 bar plane truss shown in Figure 2 is studied as 

the first example for demonstrating how to vary the 

solution process of TLBO depending on the value of 

TF. It is subjected to single-load case given in Table 1. 

The truss was optimized by [33] using GA, by [34] 

using GA with adaptive manner penalty function, and 

by [35] using rank-based ant system that is a variant of 

the ACO. Moreover the same example was solved by 

[36] using MBA and [37] using IMBA.  

 

Figure 1. Flowchart diagram for TLBO. 
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Figure 2. 52 bar planar truss. 

 

The young modulus, E, is 207 GPa, the density, ρ, is 

7860 kg/m3, and the allowable stresses are 180 MPa in 

tension and compression. Constraints are imposed on 

member stresses. Members of the truss are divided 

into 12 groups and the cross-sectional areas are to be 

selected from a list with 64 sections presented in 

Table 2.  

As mentioned previously, in contrast to [30], [31], 

[24], and [28] in the current work, to show the 

dependence of the TLBO on the value of TF each 

design example examined in this study is optimized 

taking the value of TF as 1, 2 and round[1 + rand (0,1) 

{2-1}], respectively. 

The results obtained by the TLBO as well as those 

from the references cited above are summarized in 

Table 3. The iteration histories of TLBO process are 

shown in Figure 3. Figure 3 shows the variations of 

the penalized objective function during the solution 

process conducting with TLBO. Figure 3a illustrates 

this variation for the population size (pop) adopted as 

50 and a maximum number of cycles(Cmax) taken as 

150, 100, and 80 respectively. 

Table 1. Load case for the 52 bar truss. 

Note Fx (kN) Fy (kN) 

17 100.0 200.0 

18 100.0 200.0 

19 100.0 200.0 

20 100.0 200.0 
 

However, Figures 3b and 3c demonstrate the same 

variation through the solution process for pop=40 and 

pop=30, respectively. Each solution process depicted 

in Figures 3b and 3c is repeated with different Cmax 

taken as 150, 100, and 80 respectively while the 

population size remains the same. 

It is noticed that for TF = round[1 + rand (0,1) {2-1}], 

the results remain the same for pop=30, 40, and 50 

when Cmax=150  and 100 as well as for being TF=1. In 

case of Cmax=80, the results are also same both TF = 

round[1 + rand (0,1) {2-1}] and TF=1 when pop=40 

and  pop=50. It is observed that TLBO does not 

produce the same results for TF=2 when Cmax=100 and 

80, and pop= 30, 40, and 50. 

It might be concluded from the observations that 

TLBO is capable of finding the same results if the 

parameters of Cmax and pop are rationally selected for 

the problem under investigation. In addition, it is 

worthy said that compared with TF=2 the results 

obtained with TF=1 and TF = round[1 + rand (0,1) {2-

1}] are not more sensitive the changes in the 

population size and the maximum number of cycles. 

Table 2. Cross-sectional areas for the 52 bar truss. 

Section 

no 

Area 

(mm2) 

Section 

no 

Area 

(mm2) 

1 71.613 33 2477.414 

2 90.968 34 2496.769 

3 126.450 35 2503.221 

4 161.290 36 2696.769 

5 198.064 37 2722.575 

6 252.258 38 2896.768 

7 285.161 39 2961.284 

8 363.225 40 3096.768 

9 388.386 41 3206.445 

10 494.193 42 3303.219 

11 506.451 43 3703.218 

12 641.289 44 4658.055 

13 645.160 45 5141.925 

14 792.256 46 5503.215 

15 816.773 47 5999.988 

16 940.000 48 6999.986 

17 1008.385 49 7419.340 

18 1045.159 50 8709.660 

19 1161.288 51 8967.724 

20 1283.868 52 9161.272 

21 1374.191 53 9999.978 

22 1535.481 54 10322.560 

23 1690.319 55 10903.204 

24 1696.771 56 12129.008 

25 1858.061 57 12838.684 

26 1890.319 58 14193.520 

27 1993.544 59 14774.164 

28 2019.351 60 15806.420 

29 2180.641 61 17096.740 

30 2238.705 62 18064.480 

31 2290.318 63 19354.800 

32 2341.931 64 21612.860 

 

 

 1  2  3  4 

 5  6  7  8 

 9  10  11  12 

 13  14  15  16 

 17  18  19  20 

2 m 2 m 2 m 

3 m 

3 m 

3 m 

3 m 

 2  1  4  3 

 5  6  7  8  9  10 

 11  12  13 

 14  17 

 18  23 

 24  25  26 

 27  30 

 31  36 

 37  38  39 

 40  43 

 44  49 

 50  51  52 



Sizing optimization of skeletal structures using teaching-learning based optimization                    135 

 

  

Table 3. Design results for the 52 bar truss. 

Group no Members GA [33] GA [34] ACO [35] MBA [36] IMBA [37] 
TLBO 

This study 

1 1, 2, 3, 4 44 44 44 44 44 44 

2 5, 6,…,10 19 19 19 19 19 19 

3 11, 12, 13 13 10 11 10 10 11 

4 14,…,17 42 42 42 42 42 42 

5 18,…,23 18 16 16 16 16 16 

6 24, 25, 26 10 12 11 10 10 11 

7 27,…,30 33 30 30 30 30 30 

8 31,…,36 18 17 17 17 17 17 

9 37, 38, 39 7 8 9 10 10 9 

10 40,…,43 24 20 20 20 20 20 

11 44,…,49 18 19 19 19 19 19 

12 50, 51, 52 12 10 11 10 10 11 

Best (kg) 1970.142 1903.366 1899.350 1902.605 1902.605 1899.350 

Evaluations+ 60000 17500 17500 5450 4750 6440 

+ shows the maximum numbers of structural analysis to obtain the optimal design presented in Table 

 

 

 

 

 

 

 

 

 

(a)  Variation of objective function for  pop = 50. 

 

 

 

 

 

 

 

 

 

 
(b)  Variation of objective function for  pop = 40. 

 

 

 

 

 

 

 

 

 

 
(c)  Variation of objective function for  pop = 30. 

Figure 3. Histories of TLBO process of 52-bar truss example. 
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The TLBO algorithm produces identical design to the 

design reported by [35]. However, TLBO algorithm 

uses 80 generations with a population size 40 resulting 

in 6440 truss analyses to converge to a solution and 

the required truss analyses to converge to a solution 

for the TLBO algorithm is more less than 60000, 

17500, and 17500 analyses required by GA [33, 34] 

and ACO [35], respectively. However, [36] and [37] 

reported the required truss analyses number as 5450 

and 4750 to acquire the optimal solutions using MBA 

and IMBA respectively. Studying the figures given by 

[36] and [37], it can be stated that maximum number 

of iteration was set as 500 in their algorithms. Since 

the results did not change around 100 iterations, it 

seems that the reported analyses numbers were 

calculated considering this iteration number in 

contrast to maximum number of iteration adopted as 

500. Keeping this in mind, TLBO find the results 

presented in Table 3 at 55th iteration(see last graphic 

illustrated in Figure 3b). In this case, TLBO requires 

4440 truss analyses to produce the optimal results. 

Although both ACO and TLBO reach the same 

solution the design slightly violates stress constraints 

(0.012%). In the optimization application taken from 

the literature, certain results that violate the constraints 

less than the level of 0.1% might sometimes be 

encountered. The rationale of this might be 

meaningful due to the results from the point of view of 

engineering. 

Statistical optimization result of TLBO algorithm is 

presented in Table 4. 

Table 4. Load case for the 52 bar truss. 

Exp. 

Best 

optimized 

weight / 

volume 

Average 

optimized 

weight / 

volume 

Worst 

optimized 

weight / 

volume 

Standard 

deviation 

on weight 

/ volume 

Exp1 
1899.350 

(kg) 

1904.430 

(kg) 

1920.396 

(kg) 

6.705     

(kg) 

Exp2 
402.94 

(kN) 

408.44  

(kN) 

412.13  

(kN) 

3.99      

(kN) 

Exp3 
20.304  

(m3) 

21.073  

(m3) 

24.104  

(m3) 

1.143    

(m3) 

Note: Exp1= 52 bar truss; Exp1= 3 bay-15 story frame;  

Exp3= 582 bar truss tower 

4.2. Three-bay 15 story frame 

Figure 4 shows configuration of three-bay 15-story 

frame consisting of 105 members and its node, 

element numbering patterns and the loading. The 

material properties are a modulus of elasticity of 

E=200 GPa and a yield stress of fy=248.2 MPa. The 

frame is designed following the AISC-LRFD 

specification [38] and uses a displacement constraint 

(the sway of the top story < 23.5 cm). The effective 

length factors, Kx, of the members are calculated as Kx 

 0 for a sway-permitted frame and the out-of-plane 

effective length factor Ky is considered as 1.0. All 

columns are considered as non-braced along their 

lengths and the non-braced length for each beam 

member is specified as one-fifth of the span length. 

 

 

Figure 4. Topology of the 3-bay 15-story frame. 
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The optimum design of the frame is obtained after 

9030 analyses by using the TLBO, having the 

minimum weight of 402.94 kN. The optimum design 

for ICA [14] has the weight of 417.466 kN. Table 5 

summarizes the optimal designs for ICA and TLBO. 

The ICA could find the result after 6000 analyses. The 

results obtained by TLBO is nearly 3.5% lighter than 

the that of the ICA [14]. 

As aforementioned, to investigate the effect of TF on 

the results to be obtained, the total number of cycles 

required for TLBO process is varied by taking the 

different the population size (pop) and by considering 

distinct TF value, i.e.  TF=1, TF=2, and TF= round[1 + 

rand (0,1) {2-1}]. 

The results reported here correspond to the best 

having the least weight and they are obtained when the 

following parameter values are taken into 

consideration in TLBO process; pop=30, Cmax = 150, 

TF=1 and TF= round[1 + rand (0,1) {2-1}]. However 

when TF=2, to reach the results presented in the last 

column of Table 5 TLBO requires more cycles. Figure 

5 shows the histories of the best solutions obtained for 

all cases, which are performed using different values 

of pop, TF and Cmax in order to shorten the 

computational cost of TLBO process and to 

demonstrate the effect of TF. 

Table 5. Design results for the three-bay 15-story frame. 

Grp. 

No 
Members 

ICA 

[14] 

TLBO 

This 

study 

TLBO 

This 

study 

1 
column 1-

3S, E 
W24×117 W24×117 W12×106 

2 
column 1-

3S, I 
W21×147 W36×160 W27×161 

3 
column 4-

6S, E 
W27×84 W14×82 W24×87 

4 
column 4-

6S, I 
W27×114 W30×116 W21×111 

5 
column 7-

9S, E 
W14×74 W21×68 W12×65 

6 
column 7-

9S, I 
W18×86 W30×90 W16×89 

7 
column 

10-12S, E 
W12×96 W12×50 W10×49 

8 
column 

10-12S, I 
W24×68 W12×65 W12×65 

9 
column 

13-15S, E 
W10×39 W12×30 W8×31 

10 
column 

13-15S, I 
W12×40 W12×40 W16×40 

11 beams W21×44 W21×44 W21×44 

Best (kN) 417.466 408.03 402.94 

Evaluations+ 6000 6030 9030 
+ shows the maximum numbers of structural analysis to 

obtain the optimal design presented in Table 

Note: Grp = Group; S = Story; E = Exterior column; I = 

Interior column. 

 

It might be realized from Figure 5 that although the 

design achieved by TLBO for all cases has the same 

weight of frame, to achieve the results obtained when  

 
(a) Variation of objective function for pop=40. 

 

 
(b) Variation of objective function for TF =2. 

 

 
(c) Variation of objective function for pop=30. 

 

 
(d) Variation of objective function for pop=30. 

Figure 5. Histories of TLBO process of three-bay 15-

story frame example. 

 

pop=30, Cmax=150, TF=1, and TF= round[1 + rand 

(0,1) {2-1}] the maximum number of cycles should be 

increased from 150 to 200 when the teaching factor is 

considered as 2 (see Figure 5b). 

Moreover, if the required frame analyses to reach the 

best design was adopted 6,000 as well as in the ICA 
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[14] TLBO would produce a frame having a weight of 

408.03 kN, which is 2.26% lighter than that of the 

ICA (see Figure 5d). This indicates that even though 

varying the TF in TLBO process results in different 

computational cost, the results remain the same or 

closely the same with small differences. 

The global sway at the top story is 13.61 cm, which is 

less than the maximum sway. The maximum value for 

the stress ratio is equal to 99.60%.  Also, the 

maximum drift story is equal to 1.11 cm. Statistical 

optimization result of TLBO algorithm for this 

example is presented in Table 4. 

4.3. 582 bar space truss 

The geometry and group numbering of a 582 bar space 

tower, previously studied by [39] using Particle 

Swarm Optimization (PSO), is given in Figure 6. The 

structural members of the space tower are linked 

together into 32 groups. The modulus of elasticity, the 

material density of all members and yield stress are 

29000 ksi, 0.2836 lb/in.3 and 36 ksi, respectively. The 

maximum displacement of all the nodes is not allowed 

to exceed 8 cm (3.15 in.) for all directions. A single 

loading condition is considered to be applied such that 

the lateral loads of 5 kN (1.12 kips) are applied to all 

nodes in both x and y-directions, and vertical loads of 

-30 kN (−6.74 kips) are applied, respectively, to all 

nodes in the upper and lower parts of the tower in z 

direction. A discrete set of 140 W-shape steel profiles 

given in Table 6 is used to size the design variables. In 

association with [39], cross-sectional areas of 140 W-

shape steel profiles vary between 6.16 in.2 (39.74 cm2) 

and 215.0 in.2 (1387.09 cm2). 

According to ASD-AISC the maximum slenderness 

ratio of i-th member is limited to 300 and 200 for 

tension and compression, respectively (

i i i i allowedK L r   , in here Ki is the effective 

length factor which was taken to be 1, Li is the length 

and ri is minimum radii of gyration). The stress and 

stability limitations of the members also are imposed 

according to the provisions of ASD-AISC. 

Table 7 lists the designs developed by the PSO [39], 

the DHPSACO [40] and the IMBA [37]. The TLBO 

algorithm needs 30050 truss analyses to converge to a 

solution, while the 50000 analyses are required by 

PSO [39]. However, studying [39], it can be observed 

that the results are obtained within 17500 structural 

analyses although optimization process that ends up 

50000 analyses. This case is also the same for the 

structural analyses number reported by other 

researchers. For instance, for this example, even 

though [37] finished the optimization process at the 

end of the 350 iterations they presented the structural 

analyses as 15100. This analyses number indicates the 

obtaining the reported volume firstly. Therefore, the 

structural analyses number reported as 15550 (155 

iteraton) in the current work although TLBO process 

runs until 300 iterations. Figure 7 shows the 

convergence histories for the optimum designs 

obtained by the TLBO algorithm, which is utilized 

with pop=50, TF =1, TF =2 and TF = round[1 + rand 

(0,1) {2-1}] in order to demonstrate the effect of TF. 

 

 

Figure 6. The 582-bar space tower truss. 
 

 
Figure 7. Histories of TLBO process of 582 bar space 

truss example (pop=50). 
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Studying on Figure 7 and ignoring the computational 

cost of TLBO process, it is worthy to state that 

varying the value of teaching factor, i.e. TF=1, TF=2, 

and TF= round[1 + rand (0,1) {2-1}], does not affect 

the results obtained by the TLBO. Statistical 

optimization result of TLBO algorithm is presented in 

Table 4. 

5. Conclusion 

Three design examples consisting of two trusses and 

one frame are considered to illustrate the effect of 

teaching factor TF on the optimal design for all 

examples. The comparisons of the numerical results 

obtained by the TLBO with TF=1, TF=2, and TF= 

round[1 + rand (0,1) {2-1}] and those obtained by 

other optimization methods based on the meta-

heuristic concepts are presented to show the capability 

of the TLBO algorithm in finding good results. 

Simulations show that reaching the optimum designs 

by TLBO is insensitive to the parameter of TF and 

TLBO produces the same results for all case of TF 

when the computational cost of TLBO and the number 

Table 7. Design results for the 582 bar sapce tower truss. 

Elm. 

grp. 

PSO 

[39] 

DHPSACO 

[40] 

IMBA 

[37] 

TLBO 

This 

study 

1 W8×21 W8×24 W8×21 W8×21 

2 W12×79 W12×72 W24×76 W24×84 

3 W8×24 W8 × 28 W8 × 21 W8 × 21 

4 W10×60 W12×58 W12×65 W24×62 

5 W8×24 W8×24 W8×21 W8×21 

6 W8×21 W8×24 W8×21 W8×21 

7 W8×48 W10×49 W10×54 W16×57 

8 W8×24 W8×24 W8×21 W8×21 

9 W8×21 W8×24 W8×21 W8×21 

10 W10×45 W12×40 W12×50 W12×53 

11 W8×24 W12×30 W8×21 W8×21 

12 W10×68 W12×72 W10×68 W10×77 

13 W14×74 W18×76 W24×76 W21×83 

14 W8×48 W10×49 W14×53 W21×57 

15 W18×76 W14×82 W12×79 W18×76 

16 W8×31 W8×31 W8 × 21 W8 × 21 

17 W8×21 W14×61 W12×65 W10×22 

18 W16×67 W8×24 W8×21 W18×55 

19 W8×24 W8×21 W8×21 W8×21 

20 W8×21 W12×40 W12×45 W8×21 

21 W8×40 W8×24 W8×21 W14×30 

22 W8×24 W14 × 22 W8 × 21 W8 × 21 

23 W8×21 W8×31 W16×26 W8 × 21 

24 W10×22 W8×28 W8×21 W8×21 

25 W8×24 W8×21 W8×21 W8×21 

26 W8×21 W8×21 W8×21 W8 × 21 

27 W8×21 W8 × 24 W8 × 21 W10×22 

28 W8×24 W8 × 28 W8 × 21 W8×21 

29 W8×21 W16×36 W8×21 W8×21 

30 W8×21 W8×24 W8×21 W8×31 

31 W8×24 W8×21 W8×21 W8×21 

32 W8×24 W8×24 W8×21 W12×22 

Vol. 22.3958 22.0607 20.0688 20.304 

Eval+. 17500 17500 15300 15550 

Note: Vol.= Volume (m3); Eval.= Evaluations 

+ shows the maximum numbers of structural analysis to 

Table 6. Profile list for the 582 bar space tower. 

W-shape profile list * 

W27 x 178 W21 x 122 W18 x 50 W14 x 455 

W27 x 161 W21 x 111 W18 x 46 W14 x 426 

W27 x 146 W21 x 101 W18 x 40 W14 x 398 

W27 x 114 W21 x 93 W18 x 35 W14 x 370 

W27 x 102 W21 x 83 W16 x 100 W14 x 342 

W27 x 94 W21 x 73 W16 x 89 W14 x 311 

W27 x 84 W21 x 68 W16 x 77 W14 x 283 

W24 x 162 W21 x 62 W16 x 67 W14 x 257 

W24 x 146 W21 x 57 W16 x 57 W14 x 233 

W24 x 131 W21 x 50 W16 x 50 W14 x 211 

W24 x 117 W21 x 44 W16 x 45 W14 x 193 

W24 x 104 W18 x 119 W16 x 40 W14 x 176 

W24 x 94 W18 x 106 W16 x 36 W14 x 159 

W24 x 84 W18 x 97 W16 x 31 W14 x 145 

W24 x 76 W18 x 86 W16 x 26 W14 x 132 

W24 x 68 W18 x 76 W14 x 730 W14 x 120 

W24 x 62 W18 x 71 W14 x 665 W14 x 109 

W24 x 55 W18 x 65 W14 x 605 W14 x 99 

W21 x 147 W18 x 60 W14 x 550 W14 x 90 

W21 x 132 W18 x 55 W14 x 500 W14 x 82 

W14 x 74 W12 x 230 W12 x 50 W10 x 45 

W14 x 68 W12 x 210 W12 x 45 W10 x 39 

W14 x 61 W12 x 190 W12 x 40 W10 x 33 

W14 x 53 W12 x 170 W12 x 35 W10 x 30 

W14 x 48 W12 x 152 W12 x 30 W10 x 26 

W14 x 43 W12 x 136 W12 x 26 W10 x 22 

W14 x 38 W12 x 120 W12 x 22 W8 x 67 

W14 x 34 W12 x 106 W10 x 112 W8 x 58 

W14 x 30 W12 x 96 W10 x 100 W8 x 48 

W14 x 26 W12 x 87 W10 x 88 W8 x 40 

W14 x 22 W12 x 79 W10 x 77 W8 x 35 

W12 x 336 W12 x 72 W10 x 68 W8 x 31 

W12 x 305 W12 x 65 W10 x 60 W8 x 28 

W12 x 279 W12 x 58 W10 x 54 W8 x 24 

W12 x 252 W12 x 53 W10 x 49 W8 x 21 
* the corresponding profile list was taken from Sadollah et 

al. [37] 
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obtain the optimal design presented in Table 

analyses required to obtain the best design are 

ignored. Comparisons of the numerical results 

obtained by TLBO with those by other optimization 

methods are performed to demonstrate the efficiency 

of the TLBO algorithm in terms of reaching the best 

designs. Consequently, it is useful to express that TF=1 

and TF= round[1 + rand (0,1) {2-1}] would be more 

suitable when it is intended to find good results in a 

less number of iterations. 
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1. Introduction 

Feedforward compensator designs are used for the 

disturbance rejection or the reference-tracking problem 

where the external disturbances are measurable or 

predictable since the designed feedforward element 

produces an additional control signal according to the 

measured disturbance values. The disturbance 

compensator or controller designs to attenuate 

disturbances are applied to the many chemical and 

process systems [1-5]. For instance, in [5], a general 

structure is presented for single-input-single output 

(SISO) process system. The disturbance 

compensator/controller designs are used together with 

a feedback controller [2,3,6-8]. This is why, the 

feedback controller provides the stability of the system 

and the disturbance compensator/controller does not 

affect the stability. In these designs, there are two 

approaches. The first one: both of these are 

simultaneously designed as in [1]. The second one: 

previously the feedback controller is obtained, and then 

the disturbance compensator/controller is obtained as in 

[9,10]. In the literature, feedforward designs are 

proposed by using different approaches for the linear 

time invariant systems. In view of literature, there are a 

few studies based on H∞ approach. The forefront ones 

among the studies are as in [3,9-12]. In [3], H∞ dynamic 

feedforward design is tackled with obtaining the system 

inverse. In [9], a dynamic controller is obtained for 

linear parameter varying (LPV) systems. In [10], a 

static feedforward controller is proposed for LPV 

systems while there is a feedback controller. In [11], a 

reduced order H∞ controller is designed against the 

disturbances for active vibration system. In [12], the 

feedforward designs are obtained with mixed-

sensitivity based on inverse of system.  

A vehicle suspension system comprises of the springs, 

damper and linkages that link its wheels to a vehicle. Its 

essential role is to reduce the vertical acceleration 

conveyed to the vehicle body. Because, this affects the 

passenger comfort. The vehicle suspension is generally 

designed to satisfy three requirements, which are road 

handling, passenger comfort and load carrying. The 

suspension system must provide the road handling, load 

carrying and the passenger comfort, which is provided 

by an efficient isolation of passengers from the road 

disturbances. The parameters of a passive suspension 

consisting of springs and dampers are mostly constant, 

which are chosen to achieve a specific performance 

level by considering the road handling, ride comfort 

and load carrying. Therefore, especially the 

performances are unchangeable during driving. As for 

an ASS, it can affect the performances of the road 

handling and ride comfort by introducing energy by 

adding an actuator to the system. In view of many road 

https://doi.org/10.11121/ijocta.01.2017.00458
http://www.ams.org/msc/msc2010.html
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inputs or the unevenness of road, the performance of 

passive suspension is not adequate in contrast to ASS. 

Thus, the control of ASS is a challenging research topic 

for the automotive applications in the literature such as 

[13-15]. In [13], a robust control is made for a quarter-

car ASS against the variations on the vehicle body by 

designing a sliding mode controller with the algebraic 

estimator for the vehicle body mass. In [14], a fuzzy 

logic controller is designed to get the desired ride 

performance under different road profiles 

corresponding with the quarter-car ASS model. In [15], 

the control of an electromagnetic ASS with high 

bandwidth is tackled for a quarter car model. In [16], an 

adaptive control for vibration rejection is presented in 

the case of unknown narrow band disturbances in ASS. 

In [17], the finite-time tracking control with a 

disturbance compensator is tackled against the external 

disturbance for ASS. In [18], H∞ gain-scheduled 

controller  is proposed via convex optimization by 

using only frequency-domain data. In [19], an output-

feedback H∞ control is proposed for half-vehicle ASS 

under time-varying input delay. In [20], H∞ and H2 

optimal control are designed to minimize vehicle 

vibrations and to improve the comfort of passenger 

exposed to road disturbances for an ASS model. In [21], 

a static output-feedback controller is designed for a half 

car ASS with limited information structure to 

simultaneously improve the ride comfort and stability. 

In [22], the H∞ control is designed via dynamic-output 

feedback approach for active seat suspension systems. 

In [23], a mathematical model and H∞ control are 

proposed to improve the ride comfort with road 

handling for an ASS which is subjected to different 

road profiles. In [24], a feedback controller with 

feedforward controller is proposed to attenuate 

vibration for discrete-time ASS. 

In this paper, a new simultaneous design of static 

optimal disturbance compensator and static feedback 

controller is proposed to minimize the road 

disturbances on the quarter-car ASS. The proposed 

design is based on H∞ control technique via linear 

matrix inequality. The road handling and passenger 

comfort are improved by adding extra signal to 

feedback control input thanks to the disturbance 

compensator.  

2. Problem formulation and disturbance 

compensator design 

In this section, the control problem is formulated. Eq. 

(1) defines linear time-invariant generalized system G 

which is generally used H∞ controller design, where 

𝑢(𝑡) ∈ ℛ𝑛𝑢 is the controller signal, 𝑥(𝑡) ∈ ℛ𝑛𝑥 are 

state variables, 𝑧(𝑡) ∈ ℛ𝑛𝑧 are controlled outputs, 

𝑦(𝑡) ∈ ℛ𝑛𝑦 are the measured outputs, 𝜔(𝑡) ∈ ℛ𝑛𝜔 are 

the disturbance signals.  

       

       

   

1 2

1 2

x t Ax t B t B u t

z t Cx t D t D u t

y t x t





  

  



 
 

(1) 

 

The closed-loop state space model from 𝜔(𝑡)to 𝑧(𝑡) 
becomes as in Eq. (2) when the controller is realized 

with 𝑢(𝑡) for Eq. (1). 

     

     

cl cl

cl cl

x t A x t B t

z t C x t D t





 

 
 (2) 

Figure 1 shows the block diagram of the ASS coupled 

with the proposed design, where Kff shows disturbance 

compensator matrix, Kfb shows feedback controller, uff 

shows the produced control signal of feedforward path, 

ufb shows the produced control signal of feedback path, 

u shows the total applied control signals to the system 

and 𝜔 shows the road disturbance signal to the system. 

In Section 3, the suspension system is modelled as in 

Eq. (1). 

Active Suspension 
System

+

ω 

Kfb

Kff

uff

ufb

u
z

x

 
Figure 1. The disturbance compensator and feedback 

control system 

As in Figure 1, the control system contains active 

suspension model, disturbance compensator and 

feedback components. The proposed disturbance 

compensator generates a feedforward signal in addition 

to feedback signal. Thus, ASS provides better 

performance during online operation against the road 

disturbance predictable or measurable.  

The proposed feedforward matrix Kff and feedback 

matrix Kfb, which have static structure, are 

simultaneously designed by using H∞ control technique 

based on linear matrix inequality. Accordingly, Lemma 

1 is known as bounded real lemma in the literature, and 

it is commonly used for H∞ control design. 

Lemma 1. Let    
1

cl cl cl clG s C sI A B D


    be 

transfer matrix of the closed loop system Eq. (2). If and 

only if
2 - 0T

cl clI D D .  G s 


and the following 

states are equivalent. 

a. If there exists a positive symmetric matrix 

n nP  , the following inequality holds.  

     
-1

2 -

0 

T

T
T T T T T
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B P D C I D D B P D C
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b. If there exists a positive symmetric matrix 

n nP  ,  the linear matrix inequality (3) holds.  

0

T T

cl cl cl cl

T T

cl cl

cl cl

A P PA PB C

B P I D

C D I





 
 

 
  

 
 

(3) 

 

Proof. See [25]. 

In the literature, the matrix inequality in the Theorem 1 

based on Lemma 1 is commonly used for the static state 

feedback H∞ controller. 

Theorem 1. If there exist a symmetric positive Q in (4) 

and a matrix R, there exists a static feedback controller 

𝑢(𝑡) = 𝐾𝑥(𝑡), which stabilizes the system in Eq. 

(1).Thus, the optimal H∞ controller is obtained from 

𝐾 = 𝑅𝑄−1. 

2 2 1 2

1 1

2 1

0

T T T T T T

T T

AQ QA B R R B B QC R D

B I D

CQ D R D I





    
 

 
   

 

 

(4) 

 

Proof.  See [25]. 

Remark 1. As in the theorem, the present form is 

already appropriate in order to optimize the effects of 

the disturbances  t  to the outputs  z t  for the 

system in (1). However, it is known that the feedback 

controller is here designed by considering potential 

disturbances. However, in the design of this paper, the 

proposed disturbance compensator works at 

minimizing their effects on the outputs according to the 

online measured or estimated disturbances by including 

an additional control signal on the feedback controller. 

In addition, disturbance compensator together is  

simultaneously designed with feedback controller for 

the disturbance rejection. Theorem 2 presents the 

proposed disturbance compensator and feedback 

controller design of the problem in Figure 1.  

Theorem 2: If there exist a symmetric positive Y in (5) 

and a matrix F, there exists a static feedback controller 

𝑢𝑓𝑏(𝑡) = 𝐾𝑓𝑏𝑥(𝑡), which stabilizes the system in Eq. 

(1), and a static disturbance compensator 𝑢𝑓𝑓(𝑡) =

𝐾𝑓𝑓𝜔(𝑡), which attenuates the disturbances. In this 

case, the optimal H∞ controller and disturbance 

compensator are computed by (6).  

 2 1 2 2

1 2

2 2

2
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1
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(6) 

 

Proof. Considering the control system in Figure 1, the 

controller signal is as in Eq.  (7). 

 
 

 ff fb

t
u t K K

x t

 
    

 

 
 

(7) 

 

If Eq. (7)is substituted into (1), the closed loop system 

from 𝜔(𝑡) to 𝑧(𝑡)in Eq. (2) becomes as in Eq. (8). 

 

 

 

 
2 1 2

2 1 2

fb ff

fb ff
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C D
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
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(8) 

 

The state space matrices are as in (9) according to Eq. 

(8). 

2 1 2

2 1 2

,  
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fb ff
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(9) 

 

When the obtained closed loop matrices are substituted 

into (3) in Lemma 1, the matrix inequality (10) is 

obtained.  

 

1

2 1 2

2

2 * *

*

*

0

fb

T T T

f

T

ff

f
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(10) 

 

Nevertheless, the inequality is not linear due to the 

products of unknown matrices. In order to linearize, it 

is pre- and post-multiplied with the matrix in (11) and 

its transpose respectively, and so the linear matrix 

inequality (5)is acquired. 

1 0 0

0 0

0 0

P

I

I

 
 
 
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 

 
 

(11) 

 

The definitions of variables are as in Eq. (12) with 

regard to the linear matrix inequality (5). 

1 1,   ,   fb F ffY P F K Y K K     
 

(12) 

 

3. Quarter car active suspension system model 

Figure 2 shows a quarter car ASS model which is one 

fourth of full vehicle model (one wheel system), where 

m1 is one fourth of vehicle body mass (sprung mass), 

m2 is suspension mass (usprung mass - tire and axles), 

k1 is suspension spring constant, k2 is spring constant of 

wheel and tire, b1 is suspension damping constant, b2 is 

damping constant of wheel and tire, u is generating 

external force. The tire is modelled as a linear spring 

having a stiffness constant k2. The suspension system 

consists of a passive spring k1 and a damper b1 in 

parallel with an active control element actuator 

generating a force u. These passive elements assure a 

minimum standard of safety and performance, whereas 

the active one is designed to improve the safety and 

performance. Hence, the model is a quarter car ASS 

model where an actuator generating the control force u 

is included to the passive one in order to improve the 



The road disturbance attenuation for quarter car active suspension system…                         145 

 
safety and comfort performance for different road 

disturbances. 

m1

(Sprung Mass)

m2

(Unsprung Mass)

k2 b2

k1 b1

ω 

y2

y1

u

 
Figure 2. The quarter car ASS 

The differential equations are obtained as in (13) by 

using Newton’s law according to Figure 2.  
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The state space model is needed for the controller 

design. Accordingly, if the states x are defined as 

2 3 2 41 1 21 1 1  , , ,  x y x y x y y x y y       and we 

define integral action state 15 2x y y  , the state 

space model is obtained as in (14) where the state space 

matrices are as in (15) and (16).  
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4. Simulation results 

The simulation results are acquired via Matlab with 

Yalmip parser [26] and Sedumi solver [27]. Figure 3 

shows the simulation block diagram for the system. In 

addition, the ASS parameters are as in Table 1for the 

simulation.  
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Table 1. ASS parameters. 

parameter value unit 

m1 320 kg 

m2 45 kg 

k1 27000 N/m 

k2 211180 N/m 

b1 935 N.s/m 

b2 20 N.s/m 

In this case, the obtained state space matrices are as in 

(17).  
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In addition, the obtained classic H∞ controller matrix is 

K=[207.34  -514.74  4448.6  933.5 -0.0081947] 

whereas the proposed controller matrix with 

compensator is K=[212.26  -508.11 4450  933.9 -

0.0078739  -574.68]. 

 
Figure 3. The simulation block diagram for the control of 

quarter-car ASS 

The road disturbance is given in Figure 4. According to 

the simulation, the results are as in Figure 5-8. Figure 5 

shows the vehicle body displacements, Figure 6 shows 

the wheel deflections, Figure 7 shows the car body 

accelerations, Figure 8 shows the applied control 

forces.  

 
Figure 4. The road disturbance 

 
Figure 5. The vehicle body displacement  

 

 
Figure 6. The wheel deflection 
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Figure 7. The car body acceleration 

 
Figure 8. The control force 

As shown in Figure 5, the peak vehicle displacement is 

nearly 3.8 cm when the classic H∞ controller is applied 

to the system. However, the value is nearly -1.5 cm for 

the proposed design and so the proposed design has a 

better response.In addition, the vehicle displacement 

negatively changes since the control force generating 

by adding the feedforward one to the feedback control 

force is negative as shown in Figure 8. The wheel 

deflections, which directly affect the road safety, are 

almost same for both control designs as shown in 

Figure 6. In view of the vehicle body accelerations, 

which directly affect the passenger comfort, the 

proposed design is quite successful as shown in Figure 

7. The peak value for classic one is nearly 4.1 whereas 

the value for the proposed one is nearly -1.5, and so the 

system becomes more comfortable by the proposed 

design. The applied total control force of the proposed 

disturbance compensator controller is as shown in 

Figure 8 in order to acquire the successes. Hence, the 

proposed approach has better results than the classic 

one for the ASS control system in point of the road 

comfort. 

5. Conclusion 

This paper shows that a new static disturbance rejection 

design for the ASS of quarter vehicle model. The 

disturbance compensator and state feedback controller 

are simultaneously designed for the disturbance 

rejection with respect to passenger comfort. The 

proposed design is based on optimal H∞ control method 

via linear matrix inequality. The simulations have 

shown that the proposed design has better performance 

according to classic state feedback H∞ control against 

the road disturbance with regard to the passenger 

comfort. In addition, the design can be used for other 

dynamic systems, which are multi-input-multi output. 
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 In this study, five different cities were selected from the five climatic 

zones according to Turkish standard TS 825, and insulation thicknesses of 

exterior walls of sample buildings were calculated by using optimization. 

Vertical perforated bricks with density of 550 kg/m3 and 1000 

kg/m3werechosen within the study content. Glass wool, expanded 

polystyrene (XPS), extruded polystyrene (EPS) were considered as 

insulation materials. Additionally, natural gas, coal, fuel oil and LPG were 

utilized as fuel for heating process while electricity was used for cooling.  

Life cycle cost (LCC) analysis and degree-day method were the 

approaches for optimum insulation thickness calculations. As a result, in 

case of usage vertical perforated bricks with density of 550 kg/m3 and 

1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm) 

in the optimum insulation thickness calculations under different insulation 

materials.  Minimum optimum insulation thickness was calculated in case 

XPS was preferred as insulation material, and the maximum one was 

calculated in case of using glass wool. 
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1. Introduction 

Heat insulation is the most important pillar of the 

developed policies about the concept of energy 

efficiency all over the world. The fact that the housing 

and building sector in Turkey consumes about 30-35% 

of the total energy and has a great saving potency 

increased the interest in the sectoral manner [1]. 

In heat insulation applications, energy loss and air 

pollution can be reduced by increasing the thickness of 

insulation material. However, it may be neither 

economical nor practical to use increasingly large 

amounts of insulation so as to achieve energy savings. 

A balance should be established between the insulation 

investment and the savings to be provided from the 

insulated building. The best insulation thickness is 

considered as mentioned balance. The insulation 

thickness, which provides the minimum insulation and 

operating costs for a given economic lifetime is called 

the optimal insulation thickness [2]. 

When the studies existed in the literature were 

examined, the optimum insulation thickness was 

calculated for the exterior walls of the building. To 

realize it, fuels such as natural gas, coal, fuel-oil, LPG, 

electricity and a wide range of insulating materials are 

used. Optimization calculations are made using the 

degree-day method and lifecycle cost analysis (LCC) 

for heating, cooling and both heating and cooling of 

buildings [1,3-8]. On the other hand, in some studies, 

the degree-day method and the economic model of P1-

P2 were used as the optimization method [9-14]. In the 

study of Ucar [15], the optimum insulation thickness 

was found using exergoeconomic analysis considering 

the condensation of the insulation in the outer walls. In 

four climate characteristics dominated in four cities of 

Turkey, optimum insulation thicknesses were 

performed. Polystyrene is considered as insulation and 

coal as fuel. Nyers et al. [16] analyzed the optimum 

energy-economical thickness of the thermal insulation 

layers for the exterior walls of the building. The 

economic model is composed of energy and economic 

sections. The economic part of the model includes 

algebraic equations, investment, savings and usage 

periods. In the study of Kaynakli [17], heating and 

cooling degree-days, building life, inflation and interest 

rate, insulation material price, fuel price, external wall 

resistance, thermal conductivity value of insulating 

https://doi.org/10.11121/ijocta.01.2017.00462
mailto:okan@balikesir.edu.tr
http://www.ams.org/msc/msc2010.html
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material, heating and cooling system efficiencies and 

solar radiation parameters were examined for optimum 

insulation thickness. 

The purpose of this study is to calculate the insulation 

thicknessesby using optimization in the outer walls of 

sample buildings with different mass for five different 

cities in five climatic zones according to Turkish 

Standard TS 825. For different mass, vertical 

perforated brick with a thermal conductivity value of 

0.32 W/m.K with a density of 550 kg/m3, and a thermal 

conductivity value of 0.45 W/m.K with a density of 

1000 kg/m3 are considered. Optimum insulation 

thickness is the value that makes the total costs 

minimum for heating, cooling and heating+cooling. 

Glass wool, expanded polystyrene (XPS), extruded 

polystyrene (EPS) are considered as insulation 

materials. Also natural gas, coal, fuel oil, LPG are used 

as fuel for heating process while electricity is used for 

cooling. Lifecycle cost (LCC) analysis and degree-day 

method are used for optimum insulation thickness 

calculations. For optimum insulation thickness 

calculations, only heating case, only cooling case and 

both heatingplus cooling cases are considered. 

 

2. Material and method 

 

2.1. Total cost for heating, cooling and heating + 

cooling 

Heat loss per unit area of the exterior wall of a building 

is computed as follows: 

       

)( di TTUq                              (1) 

 

Annual heat loss per unit area based upon degree-day 

concept is computed by the following equation. 

 

UDDq ..86400                         (2) 

 

The total heat transfer coefficient for the wall is given 

by Equation 3, while the total thermal resistance for the 

uninsulated wall is determined according to Rt, w and 

the total heat transfer coefficient of the wall is obtained 

through Equation 4. 
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Here, Ri and Ro are internal and external thermal 

resistances. x is the insulation thickness. k is the 

thermal conductivity coefficient of the insulation 

material. 

Heating fuel cost is computed as follows: 
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Total heating cost; the addition of insulation cost and 

the cost of fuel is: 
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If the derivation of the total heating cost equations 

(insulation thickness) x is equal to zero, the optimum 

insulation thickness equation is obtained for the heating 

given below. 
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Cooling fuel cost is: 
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Total cooling cost; the addition of insulation cost and 

the fuel cost is: 
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If the derivative of total cooling cost equations 

(insulation thickness) x is equal to zero, the optimum 

insulation thickness equation for cooling given below 

is obtained. 
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The total fuel cost for heating + cooling is the sum of 

heating and cooling fuel costs: 
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Total cost is the sum of heating and cooling costs and insulation cost. 
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If the derivative of the total cost equation (insulation 

thickness) x is equal to zero, the optimum insulation 

thickness equation is obtained for heating pluscooling 

that is given below [1,3,7,10,12,13,17,18].   

Here, Hu is the lower temperature value, η is heating 

system efficiency, COP is cooling performance value, 

k is insulation material heat conductivity coefficient, Cf 

is fuel price, Ce is electricity price, Cins is insulation 

material price, HDD and CDD are heating and cooling 

degree-day values, respectively. 

LCC analysis is performed for optimum insulation 

thickness calculation.The total heating cost is evaluated 

by the present worth factor (PWF) for the N year 

lifetime [8]. The present worth factor is calculated as 

follows [8,19]; 

 

N

N

rr

r
PWF

)1.(

1)1(




                     (14) 

If i> g; then the actual interest rate is, 

g

gi
r






1
                            (15) 

If i<g then; 

i

ig
r






1
                            (16) 

If i=g then; 

i

N
PWF




1
                       (17) 

 

2.2. Values used in calculations 

The outer wall structures and heat transfer coefficients 

are given in Table 1. Table 2 shows heating and cooling 

degree-day values for cities in five different climatic 

regions. The basic temperature was selected to be 19.5 
0C for heating and 22 0C for cooling.Table 3 shows 

fuels used for heating. The electricity price and cooling 

performance value (COP) value used for cooling are 

shown in Table 4. The insulation materials and 

properties used on the outer walls were given in Table 

5. In addition, financial values including inflation and 

interest rates were  given in Table 6. 

 
Table 1. External wall building components andheat 

conduction coefficients [18]. 

Thickness Component Value 

 Ri (Internal film 

thermal resistance) 

0.130 

m2.K/W 

0.030 m 
Lime mortar-cement 

mortar internal plaster 

1.000  

W/m.K 

0.190 m 
Vertical Perforated 

Brick 

0.32 ve 0.45 

W/m.K 

x m 
Insulation kins 

W/m.K 

0.030 m 
Cement mortar outer 

plaster 

1.600  

W/m.K 

 Rd (External film 

thermal resistance) 

0.040 

m2.K/W 

 

In the study, the effect of using bricks of different 

density on the insulation thickness was investigated. In 

addition, it is suggested that heating and cooling 

periods should be considered together while insulating 

buildings are prevealing for hot climate zones. 

 

 
Table 2. Heating and Cooling Degree-days for different climate zones in cities [20]. 

Climate 

Zones 

City Heating 

Degree-

days 

Cooling 

Degree-

days 

Latitude Longitude Elevation 

(m) 

1 İzmir 1480 617 38.43 27.17 28.55 

2 Balıkesir 2312 369 39.65 27.87 147.00 

3 Konya 3162 275 37.87 32.48 1028.59 

4 Sivas 3643 171 39.75 37.02 1285.00 

5 Kars 4770 96 40.62 43.10 1775.00 
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Table 3. Fuels and properties[21]. 

Fuel Price Lower 

thermal 

value  

(Hu) 

Heating 

system 

efficiency(ηs) 

Natural 

Gas 

0.3601 

$/m3 

34.526 

106J/m3 
0.93 

Coal 0.2216 

$/kg 

29.295 

106J/kg 
0.65 

Fuel-oil 0.7340 

$/kg 

40.594 

106J/kg 
0.80 

LPG 1.6411 

$/kg 

46.453 

106J/kg 
0.90 

 
Table 4.Electricity price and cooling COP [9,22]. 

Parameter Value 

Price 

Cooling COP 

0.174 $/kWh 

2.5 

 

Table 5. Insulation materials and properties [3]. 

Insulation 

Materials 

k (W/m.K) Cins ($/m3) 

Glass wool 0.040 75 

Expanded 

polystyrene 

(EPS) 

0.039 120 

Ekstrüde 

polystyrene 

(XPS) 

0.031 180 

 
Table 6. Financial values [3]. 

Financial Values Value 

Interest rate, (i) % 8.25 

Inflation rate, (g) % 7.91 

Lifecycle time, N 10 yıl 

PWF 9.83 

 

3. Results 

In Figure 1, cost curves of optimum insulation 

thickness for a) heating period b) cooling period c) 

heating plus cooling period for Izmir city in case of 

vertical perforated brick with density of 550 kg/m3 and 

thermal conductivity of 0.32 W/m.K, glass wool as 

insulation material and natural gas as fuel usage. Figure 

2 shows the results of cost curves for optimum 

insulation thickness a) heating period b) cooling period 

c) heating plus cooling period for Kars city in case of 

vertical perforated brick with density of 1000 kg/m3 

and thermal conductivity of 0.45 W/m.K, XPS as 

insulation material, and coal as fuel usage. Table 7 

shows the optimum insulation thickness because of 

various fuel and insulation materials usage for vertical 

perforated brick with 550 kg/m3 density and 0.32 

W/m.K heat conduction in the heating period. Table 8 

represents the optimum insulation thickness due to 

various fuel and insulation materials usage for vertical 

perforated brick with 1000 kg/m3 density and 0.45 

W/m.K heat conduction in the heating period. In Table 

9, the optimum insulation thickness due to various fuel 

and insulation materials usage for vertical perforated 

brick with 550 kg/m3 density and 0.32 W/m.K heat 

conduction in the cooling period. In Table 10, the 

optimum insulation thickness due to various fuel and 

insulation materials usage for vertical perforated brick 

with 1000 kg/m3 density and 0.45 W/m.K heat 

conduction in the cooling period. Table 11 shows the 

optimum insulation thickness due to various fuel and 

insulation materials usage for vertical perforated brick 

with 550 kg/m3 density and 0.32  

W/m.K heat conduction in the heating+cooling period. 

Table 12 represents the optimum insulation thickness 

due to various fuel and insulation materials usage for 

vertical perforated brick with 1000 kg/m3 density and 

0.45 W/m.K heat conduction in the heating+cooling 

period. 

 

4. Discussion 

During the heating period, in case of vertical perforated 

brick with a density of 550 kg/m3 usage, the optimum 

insulation thickness range in different fuel and 

insulation materials are as follows; 0.024-0.130 m in 

Izmir, 0.036-0.170 m in Balıkesir, 0.047-0.221 m in 

Konya, 0.052-0.222 m in Sivas, and 0.063-0.259 m in 

Kars. On the other hand, these results during the 

cooling period are; 0.017-0.041 m in Izmir, 0.000-

0.024 m in Balıkesir, 0.000-0.017 m   Konya, while it 

was found that the optimum economic choice for Sivas 

and Kars was not to use insulation Besides, in the 

heating plus cooling period; results are found to be 

0.039-0.146 m in Izmir, 0.044-0.178 m observed in 

Balıkesir, 0.052-0.226 m observed in Konya, 0.055-

0.225 m in Sivas and 0.065-0.260 m observed in Kars. 

During the cooling period, in case of vertical perforated 

brick with a density of 1000 kg/m3 usage, the optimum 

insulation thickness range in different fuel and 

insulation materials are as follows; 0.029-0.136 m in 

Izmir , 0.042-0.177 m in Balıkesir, 0.052-0.228 m in 

Konya, 0.057-0.229 m in Sivas , 0.069 -0.266 m in 

Kars. In the cooling period, 0.022-0.048 m in Izmir, 

0.012-0.031 m in Balıkesir, 0.000-0.023 m in Konya  

and 0.000-0.013 m in Sivas and It was found that the 

optimum economic choice for Kars was not to use 

insulation. And finally, in the heating + cooling period, 

0.044-0.152 m in Izmir, 0.050-0.185 m in Balıkesir, 

0.057-0.233 m in Konya, 0.061-0.232 m in Sivas  and 

0.070-0.267 m in Kars. 

When vertical hole bricks are used in the external walls 

of the example building at 550 kg/m3 and 1000 kg/m3 

density, the lower optimum thickness of insulation is 

calculated at the low density brick refering 550 kg/m3 

for all provinces. 

In the literature studies, bricks of different density are 

used. In general, high-density bricks are used. This 

affects the insulation thickness. As shown in this study, 

when using low density bricks, the insulation thickness 

is lower. This is also very important factor in terms of 

cost and additional workmanship. 
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Figure 1.Cost curves of optimum insulation thickness for 

(a) heating period (b) cooling period (c) heating + cooling 

period for Izmir city in case of vertical perforated brick 

with density of 550 kg/m3 and thermal conductivity of 

0.32 W/m.K, glass wool as insulation material and 

natural gas as fuel usage. 
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Figure 2.  shows the results of cost curves for optimum 

insulation thickness (a) heating period (b) cooling period 

(c) heating + cooling period for Kars city in case of 

vertical perforated brick with density of 1000 kg/m3 and 

thermal conductivity of 0.45 W/m.K, XPS as insulation 

material, and coal as fuel usage. 
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Table 7. Optimum insulation thickness due to various fuel and insulation materials usage for vertical perforated brick with 550 kg/m3 density and  

0.32 W/m.K heat conduction in the heating period(m) 

 

 

 

City 

Fuel 

Natural Gas Coal Fuel-oil LPG 

Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS 

İzmir 0.054 0.036 0.024 0.056 0.037 0.025 0.091 0.064 0.045 0.130 0.095 0.067 

Balıkesir 0.076 0.053 0.036 0.078 0.054 0.038 0.121 0.088 0.062 0.170 0.127 0.090 

Konya 0.094 0.067 0.047 0.097 0.069 0.048 0.147 0.109 0.077 0.221 0.166 0.119 

Sivas 0.104 0.075 0.052 0.106 0.076 0.053 0.161 0.119 0.085 0.222 0.167 0.119 

Kars 0.123 0.090 0.063 0.126 0.092 0.065 0.188 0.141 0.100 0.259 0.196 0.140 

 

 
Table 8. Optimum insulation thickness due to various fuel and insulation materials usage for vertical perforated brick with 1000 kg/m3 density and  

0.45 W/m.K heat conduction in the heating period (m) 

 

 

City 

Fuel 

Natural Gas Coal Fuel-oil LPG 

Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS 

İzmir 0.061 0.043 0.029 0.063 0.044 0.030 0.097 0.071 0.050 0.136 0.102 0.072 

Balıkesir 0.083 0.060 0.042 0.085 0.062 0.043 0.128 0.095 0.067 0.177 0.133 0.095 

Konya 0.101 0.074 0.052 0.103 0.076 0.053 0.154 0.115 0.082 0.228 0.173 0.124 

Sivas 0.110 0.081 0.057 0.113 0.083 0.059 0.168 0.126 0.090 0.229 0.174 0.125 

Kars 0.130 0.097 0.069 0.133 0.099 0.070 0.195 0.148 0.106 0.266 0.202 0.146 

 

 
Table 9. Optimum insulation thickness due to electric and       Table 10. optimum insulation thickness due to electric and 

insulation materials usage for vertical perforated brick with       insulation materials usage for vertical perforated brick with 

550 kg/m3 density and 0.32 W/m.K heat conduction in the       1000 kg/m3 density and 0.45 W/m.K heat conduction in the 

cooling period (m)             cooling period (m) 

 

City Glass wool EPS XPS 

İzmir 0.048 0.032 0.022 

Balıkesir 0.031 0.019 0.012 

Konya 0.023 0.013 --- 

Sivas 0.013 --- --- 

Kars --- --- --- 

City Glass wool EPS XPS 

  İzmir 0.041 0.026 0.017 

Balıkesir 0.024 0.013 --- 

Konya 0.017 --- --- 

Sivas --- --- --- 

Kars --- --- --- 
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Table 11. Optimum iınsulation thickness due to various fuel and insulation materials usage for vertical perforated brick with 550 kg/m3 density and  

0.32 W/m.K heat conduction in the heating+cooling period (m) 

 

 

 

City 

Fuel 

Natural Gas+Electricity Coal+Electricity Fuel-oil+Electricity LPG+Electricity 

Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS 

İzmir 0.081 0.057 0.039 0.082 0.058 0.040 0.111 0.080 0.056 0.146 0.107 0.076 

Balıkesir 0.090 0.064 0.044 0.092 0.065 0.045 0.131 0.096 0.068 0.178 0.133 0.094 

Konya 0.103 0.074 0.052 0.106 0.076 0.053 0.153 0.114 0.081 0.226 0.170 0.122 

Sivas 0.109 0.078 0.055 0.111 0.081 0.057 0.164 0.122 0.087 0.225 0.169 0.121 

Kars 0.126 0.092 0.065 0.129 0.094 0.066 0.190 0.142 0.101 0.260 0.197 0.141 

 

 

 
Table 12. Optimum insulation thickness due to various fuel and insulation materials usage for vertical perforated brick with 1000 kg/m3 density and  

0.45 W/m.K heat conduction in the heating+cooling period (m) 

 

 

 

City 

Fuel 

Natural Gas+Electricity Coal+Electricity Fuel-oil+Electricity LPG+Electricity 

Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS Glass 

wool  

EPS XPS 

İzmir 0.084 0.064 0.044 0.089 0.065 0.045 0.118 0.086 0.062 0.152 0.114 0.081 

Balıkesir 0.097 0.071 0.050 0.099 0.072 0.051 0.138 0.103 0.073 0.185 0.139 0.100 

Konya 0.110 0.081 0.057 0.112 0.083 0.059 0.161 0.121 0.086 0.233 0.177 0.127 

Sivas 0.116 0.085 0.061 0.118 0.087 0.062 0.171 0.129 0.092 0.232 0.176 0.126 

Kars 0.133 0.099 0.070 0.136 0.101 0.072 0.197 0.149 0.107 0.267 0.203 0.147 
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In addition, the heating and cooling period must be 

considered together for some provinces when 

insulation is applied. In particular, the cooling period 

should be taken into account as well as heating for hot 

climates such as the first and second region. In cold 

climates such as the fourth and fifth region, only the 

heating period can be considered. For some provinces, 

faults can only be made in the insulation application by 

considering the heating period. 

 

5. Conclusion 

Vertical perforated bricks with a density of 550 kg/m3, 

a thermal conductivity of 0.32 W/m.K and vertical 

perforated bricks with a density of 1000 kg/m3 with 

thermal conductivity of 0.45 W/m.K are used for 

optimum insulation thickness calculations for different 

insulation materials, and a difference ranging from 

0.005 to 0.007 m (5-7 mm) is found. The optimum 

insulation thickness will be much larger in construction 

materials where the difference between the density and 

the thermal conductivity value is higher. 

The minimum optimum insulation thickness is 

calculated when natural gas and XPS are used, while 

the maximum optimum insulation thickness is found 

when LPG and glass wool are used in the period of 

heating+cooling and heating. In the cooling period, the 

optimum insulation thickness was found in case of 550 

kg/m3 density vertical perforated brick usage Izmir, 

Balikesir and Konya. In the case of using 1000 kg/m3 

density vertical perforated brick, the optimum 

insulation thickness was found for the cities of Izmir, 

Balıkesir, Konya and Sivas. The highest optimum 

insulation thickness was obtained from glass wool and 

the lowest from XPS. 

When utilizing low density bricks, the optimum 

insulation thickness is reduced. The labour cost 

increases when the density is increased. This also yields 

an increase in the cost of the building  due to the use of 

additional materials and component. In addition, 

production of CO2 and SO2 emissions due to building 

components will increase. As a result, it is 

recommended to use low density bricks in terms of both 

cost and production carbon emission release. 
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NOMENCLATURE 

HDD Heating degree-day Index  

CDD Cooling degree-day ins insulation 

x Insulation thickness (m) H heating 

k Insulation material heat conduction coefficient  

(W/m.K) 

C cooling 

η Heating system efficiency f fuel 

Hu Lower thermal value (J/m3) e electricity 

COP Cooling performance coefficient t,w Uninsulated wall 

C Price ($) f fuel 

XPS Extruded polystyrene t total 

EPS Expanded polystyrene t,H Heating, total 

PWF Present Worth Factor t,C Cooling, total 

i Interest rate w Wall 

g Inflation rate i internal 

R Thermal resistance  (m2.K/W) d external 

U Heat transfer coefficient (W/m2.K)   

T  Temperature (0C)   
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 The ongoing demand for smaller and lighter power supplies is driving the 

motivation to increase power density while maintaining a robust design 

compatible with international harmonic standards. Transformer design is a major 

challenge for low profile and high power density TV power cards. In addition to 

these, for electromagnetic interference standard and for providing efficient thermal 

management for heat emission, it is required to minimize EMI noise. In this study, 

by taking these stated criteria into consideration, a TV power card has been 

designed, which has 220W output power and can be used in low profile televisions. 

Proposed power card will meet desired critical parameters such as surface area and 

output power of the referenced card which has 13.5mm height, the heat, and power 

consumption at standby mode. Moreover, it is designed with 10mm height limit 

without any engraving on PCB in a way that it will meet International 

Electrotechnical Commission (IEC) current harmonic standard to which TVs are 

subjected. Experimental results demonstrate that the proposed power supply with 

10mm height has 34% higher power density with respect to its counterpart having 

13.5 mm height. 
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NOMENCLATURE 

Vg Switching component trigger voltage 

VDS Voltage stress on switching component 

Vo Voltage on output capacitor 

VSN Snubber circuit voltage 

IPRI Primary current 

ISEC Secondary current 

Iripple Ripple current 

PDP Plasma Display Panel 

LCD Liquid Crystal Display 

LED Light Emitting Diode 

ZVT Zero Voltage Transmission 

ZVS Zero Voltage Switching 

SMPS Switch Mode Power Supply 

 

 

PFC 

 

Power Factor Correction 

PCCM Pseudo Continuous Conduction Mode 

CrM Critical Conduction Mode 

ESR Equivalent Series Resistance 

CSD Current Source Driver 

PSU Power Supply Unit 

EMI Electromagnetic Interference 

PCM Printed Circuit Board 

DCM Discontinuous Conduction Mode 

IC Integrated Circuit 

FHA Fundamental Harmonic Approximation 

DC Direct Current 

AC Alternative Current 
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1. Introduction 

Emergence of plasma display panel (PDP), liquid 

crystal display (LCD) and light emitting diode (LED) 

technologies created important decrease in the 

dimension and weight of TVs. Orientation of customers 

to thinner and lighter TVs has led to the height 

limitation of power card design, which is one of the 

main constituents of low profile TVs. Different voltage 

levels are obtained as outputs in the power card of this 

kind of TVs. Power consumption standards which the 

developing technology reveals have made the usage of 

topologies having maximum efficiency obligatory in 

TV power cards [1-5].  

For middle level power applications, among various 

DC-DC converters developed so far, LLC resonant 

converters, has the advantages as the simplicity of 

circuit configurations and the acquisition of big voltage 

gains in narrow frequency interval when compared to 

the serial/parallel resonant converters. Due to the 

limitations of high current effects, output regulation 

and power density of traditional resonant converters, 

novel topologies and switching modes for the design of 

LLC resonant converters have been proposed in the 

literature [6-9]. 

The most challenging part of thin power card design 

with high power density is the transformer design. 

Design of converter using flat magnetic component is 

difficult because of the increase in the temperature of 

flat transformer at high switching frequencies. In [10], 

for decreasing the temperature of this transformer, a 

power module composed of two flat transformers is 

designed. In [11], to give high output power, a new 

LLC resonant converter with two transformers is 

presented. In this structure, to decrease imbalance in 

primary current, two transformers are applied to LLC 

converter with their primaries serially connected and 

secondaries parallelly connected to each other.  In [12], 

a new frequency controlled soft-switching resonant 

converter is proposed which has high power density, 

high efficiency, low switching losses and circuit 

components whose profile depth is decreased. In [13] a 

flyback converter with partial resonance was 

developed. In this type of converter, semi conductive 

power component’s transmission with zero voltage 

transmission (ZVT) and cut-off with zero voltage 

switching (ZVS) is provided. Two output LLC 

converter circuit [14] having 10mm profile depth 

consists of two transformers, which are serially 

connected in the primary side and parallelly connected 

in the secondary side.  Serial primary-parallel 

secondary connection type provides high power 

density; moreover, secondary leakage inductance 

reduction is achievable.  

Since a switch mode power supply (SMPS) behaves as 

a nonlinear load, power factor has to be corrected. 

Power factor’s being close to ideal provides the 

increase of system efficiency, the prevention of 

overloading of the line and the production transmission 

devices and the decrease in harmonics and losses [15, 

16]. In TV power card design, power factor correction 

(PFC) circuits are used to provide the adjustment of low 

harmonic impairments and the necessary harmonic 

standards. A Boost type PFC converter turns standard 

network voltage into regulated DC output voltage, thus 

feeds power converter layer. In addition, it enhances 

power factor and current harmonics. In [17], a pseudo 

continuous conduction mode (PCCM) boost type PFC 

converter and control methods related to this structure 

were presented. In low and middle power class TV 

applications, boost type converters which are activated 

in critical conduction mode (CrM) are used. High 

efficiency can be achieved with this CrM, however it 

brings disadvantages such as increase in the component 

amount and ripples in output current. In order to 

overcome these ripples, integrated circuits (IC) having 

interleaved topology are designed in [18]. These ICs 

employ ZVS and have features such as wide input 

voltage gap and wide output load gap. Suggested CrM 

PFC controller is suitable for flat devices, where wide 

bulky components such as inductor and capacitor are 

divided and scattered thus decreasing profile thinness. 

In [19], frequency clenched CrM controlled PFC 

converter design associated with interleaved topology 

enabled the usage of small size passive components.  In 

[20], a digital adaptive current source driver (CSD) is 

proposed for the interleaved Boost PFC converter 

under CrM to reduce the high turn-off loss and gate 

drive loss.  

Topology and selection of material are important 

criteria to provide high efficiency and high power 

density in the design of power modules. In [21], a 

method is proposed for the improvement of high-

current density PCB design while maintaining power 

supply unit (PSU) load balance. For medium power 

solid state lighting applications, a new topology along 

with the use of film technology capacitors which has a 

longer lifetime than standard electrolytics is presented 

for effective power factor correction to comply with the 

harmonic injection and energy saving standards [22].  

Methods proposed in [7-12, 18-19] are used to optimize 

the efficiency of power sources used in LCD TVs. By 

using LLC resonance converters, 89.43% efficiency for 

40 inch LCD TV in [7],  high efficiency (full loading 

96.5%) and low cost for power sources used in 42 inch 

PDP TVs in [8] are achieved. In [10, 11] LLC resonant 

converters designed for PDP TV are presented, in [10] 

design of 14 mm transformer is done and total 

efficiency is calculated as 96.6 %. Serial converter with 

two transformers proposed in [11] is used in 50 inch 

PDP TV system. In [12] half bridge resonant converter, 

with its LCD TV power source having 46/47 inch active 

PFC circuit and standby converter, is designed. 

Permanent conduction mode PFC controller proposed 

in [18] is suitable for flat devices, where profile depth 

is decreased by dividing and scattering bulky inductors 

and capacitors. Flyback converter design, having 

12.5mm height high efficiency which enables the 

design of decreased depth LCD TV, is given in detail 

in [19]. Moreover, electromagnetic interference (EMI) 
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noise has to be minimized to provide efficient thermal 

management for heat emission.  

Considering the abovementioned criteria, the aim of 

this study, is to design a PSU with high efficiency and 

optimized power density which can be used in low 

profile TVs. For this purpose, a PSU having 13,5mm 

height and 220W output power has been redesigned as 

having 10mm height and the same output power with 

the referenced card.  In the second part of the study, 

flyback converter, LLC resonant converter and PFC 

converter typologies used in PSU design are explained. 

When power levels of TV power source of today’s 

technology is analyzed, a power need for 75-240W that 

can change according to screen dimension is 

determined. Outputs of designed power supply in this 

study are 5.2V/4.2A, 24V/6A and 12V/4.5A. Flyback 

topology is preferred for 100W and less power levels 

because of its features such as simple structure, low 

cost and its enabling input and output isolation. 24V/6A 

and 12V/4.5A output LLC converter topology, with its 

serial primary and parallel secondary connection type, 

provides high power density. In this topology [14], 

secondary windings have asymmetrical connection and 

leakage inductances resulting from current imbalances 

are decreased. For power levels below 300W, because 

of high power factor correction, low cost and simple 

control structure; Boost type PFC converter, which 

operates in CrM, is used. Third section includes circuit 

based studies related to the optimization of power 

density, operating in high switching frequencies, design 

of magnetic components, soft-switching technique and 

component selection. In the fourth section, 

experimental results related to the physical realization 

of power card are presented. Final section presents the 

concluding remarks and a discussion of optimization 

results. 

2. Design of low profile PSU 

In this study a power card, which meets the 

specifications of a regular TV power card and whose 

height is reduced in order to be suitable for low profile 

televisions, having 10 mm height and 220W output, is 

designed without any engraving process on printed 

circuit board (PCB). Proposed design meets the critical 

parameters such as referenced card’s surface area, heat, 

power consumption in standby mode and the 

international security standards. Sub blocks used in the 

design of TV power card are given in Fig.1.  

For power levels in 100W and below it, flyback 

converter topology is preferred for low cost, simple 

structure and its enabling input and output isolation. 

Above 100W level, LLC resonant converters are 

preferred in the design of power card due to its 

functions such as density of power and power 

efficiency they provide, control ease of output 

regulation over a wide load range and usage of soft-

switching techniques that reduce high frequency 

switching losses [14]. Below 300W level power value, 

due to its high power factor correction, low cost, simple 

control structure, boost type PFC converter that 

operates on CrM is used. In Figure 1, proposed PSU 

design is given as a block diagram and optimization 

techniques are explained in sub-chapters.   

2.1. Design of flyback converter 

Circuit components are selected as flyback converter’s 

output voltage being 5.2V and output current being 

4.2A. Because of the limitations in the dimensions of 

magnetic component, inductance value is determined 

having switching in discontinuous conduction mode 

(DCM). DCM operating allows smaller size 

transformer to be used in circuit design. Since the 

average power dissipation is less, it is possible to 

decrease the loss of power consumption with less 

coiling. Figure 2 shows the flyback converter topology. 

Controller IC of MOSFET switch is not shown in the 

figure but it is used in the exact design of Flyback 

Converter. 

 
Figure 2. Flyback converter topology

 

 
Figure 1. Sub-blocks of the PSU design  

 



Design and optimization of a power supply unit for low profile LCD/LED TVs                        161 

 

 

 

2.2. Design of LLC resonance converter 

Output values (12V/4.5A, 24V/6A) of two output LLC 

converter circuits of which topology is presented in 

[14] is determined in accordance with the needs of 

optimized 40-42” TVs. Switching losses are decreased 

using soft-switching technique in high frequencies. 

Acquisition and input-output function are obtained 

using Fundamental Harmonic Approximation (FHA) 

analysis. With the aim of decreasing the current 

imbalance caused by leakage inductances, 

asymmetrical connection design is analyzed in [14]. 

LLC Converter topology is provided in Figure 3. 

 
Figure 3. LLC resonant converter topology [14] 

2.3. Design of boost type PFC converter 

Common reasons for the usage of Boost PFC converter 

topology [23,24] are mainly input current shaping, 

isolation, and fast output voltage regulation that are 

performed in one single stage [23]. In control unit, a 

filtered DC output voltage is compared with reference 

voltage by using an error amplifier output of which is 

applied to the multiplier circuit. Output waveform of 

multiplier circuit follows the shape of AC input voltage 

and the shape of AC line voltage, the bobbin current of 

which was corrected. Gate drive pin controls the 

amplitude of bobbin current and thus output voltage is 

fixed.  Boost type PFC converter topology is given in 

Figure 4.  
 

 
Figure 4. Boost type PFC converter topology  

3. Power density optimization for LCD/LED TVs 

The concept of power density in TVs defines the 

relationship between the power gained from the power 

card and dimensions of the power card. Circuit based 

studies related to the optimization of power density 

include operating in high switching frequencies, design 

of magnetic components, soft-switching techniques and 

component selection.  

3.1. Selection of passive components and cooler 

In case height limit of a TV power source is reduced, 

the most important limiting component is the 

dimension of passive components. Capacitor, bobbin 

and transformer are the group of passive components 

which compel the height limit. The bulk capacitor used 

in PFC converter output is a primary component which 

compels the height limit. This capacitor decreases the 

ripple of input voltage of other converters.  

In addition to this, regulated source continues to 

provide regulated output voltage while ensuring hold 

up time in the absence of alternative input voltage 

which occurs in a sudden power failure. Equivalent 

series resistance (ESR) of output filter capacitor used in 

converters has to be as low as possible. ESR in high 

switching frequency applications has a great effect on 

the peak and active values of ripples in output voltages. 

Changes in the peak value of output voltage by a 

change in the load in the shape of a digit depend on ESR 

value of the capacitor [15]. Active current values of 

lower capacitors decreases in direct proportion with the 

dimensions. In case of increasing load in low profile 

structures, solution to increased stress on output 

capacitor is gathered by adding more than one capacitor 

to it.  

When thin design is aimed, the necessity of providing 

input-output isolation is inevitable and the design of 

transformer compatible with reliability standards 

becomes more challenging. Decreasing the size of 

magnetic core reduces plastic cover options suitable for 

this material. Switching frequency can be increased to 

decrease magnetic core size, but this leads to the 

increase of losses on magnetic component and thus 

heating problems. Interleaving the windings of 

transformer can be a solution to the height limit of 

passive component. In order to gather the necessary 

power, two transformers are designed, having primaries 

serially connected and secondaries parallelly connected 

[14]. 

Selection of cooler is as important as the selection of 

passive components, since keeping the temperature 

values during power density optimization in the limits 

provided by the manufacturers is essential. Switching 

components used in primary side and corrective diodes 

used in secondary side are main components that 

require cooler.  The surface area of coolers is 

determined by aiming a temperature value that does not 

exceed maximum junction temperature. In behalf of 

providing the heat flux of power source, materials that 

are predicted to warm are placed separately in a 
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position that it doesn’t block air flow and there is no 

gap between it and PCB surface.  Cooling surface areas 

are calculated to meet the temperature standards of the 

company with which this study is carried out. 

3.2. Selection of topology and conduction modes 

When traditional power supply needs are taken into 

consideration, the most important factor that 

determines topology is the power level. When the 

power levels of today’s technology’s TV power sources 

are examined, a power need between 75-240W that 

changes according to TV screen dimensions is 

determined. Flyback converter topology is preferred for 

100W and power levels below it due to some features 

such as simple structure, low cost and its enabling of 

input and output isolation. In this topology, dynamic 

fast-answering DCM is used for the magnetic induction 

of transformer [25].  

PFC converter structures, which operate in CrM 

because of the low cost of power factor correction and 

its simple control structure, are used in power values 

below 300W.By using high voltage obtained by PFC 

converter in resonant topology, high efficiency and 

high output power can be obtained.  

Switching losses can be majorly decreased by the soft 

switching method used in LLC resonant topology.  

Decreasing this loss also provides an increase in the 

efficiency and the usage of smaller cooling material. 

Moreover, when the height limit is decreased, the 

power that magnetic component can provide is also 

limited and thermal problems arise. As a solution, more 

than one magnetic components need to be connected 

serial-parallely to reach a high power level. 

4. Low profile PSU implementation and 

experimental results 

In this study, a TV power card is designed which has 

10 mm height and multi-output, 220W in total that can 

be used in televisions which have a panel size changing 

between 40- 47”. Optimization progress related to the 

reduction of height by protecting the surface area of 

13.5mm power cards is done compatible with 

international TV standards. For PFC converter and DC-

DC converters used in power card, three transformer 

designs that doesn’t exceed height limit are carried out. 

Switching components are placed in a way to prevent 

temperature problems that can occur because of the 

reduction in height limit and special coolers for output 

capacitors are designed. 

Surface view of the designed card is given in Fig. 5. To 

provide height limit of power card designed for low 

profile television, components which vertically exceed 

height limit on PCB are placed by tilting. Detailed view 

related to the height of the card is given in Fig 6.  

 
Figure 5. Surface view of the designed card 

 

A TV power card having 13,5mm height and 220W 

output power is redesigned as having 10mm height and 

220W output power by selecting optimal topology and 

material. In this study which focuses on the reduction 

of card height, the power density is enhanced at the rate 

of 34%. The card designed with 

291mmx240mmx10mm dimensions operates at 

nominal load condition with 84% efficiency. The most 

calescent module on the card is transformer and thermal 

analysis result is given in Fig. 7. 

 

 
Figure 7. Thermal analysis under 25°C ambient temperature 

[14] 

 

 
 

Figure 6. Detailed view of the height of the designed card 
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4.1. LLC resonant converter design converter 

LLC resonance converter topology is used to gain 

200W output power in the range of 330V-400V. 

Voltage acquired from PFC converter output is 

provided as an input to LLC topology and topology 

gives 12V/4.5A and 24V/6A outputs. Components used 

in LLC resonant converter is given in Table 1.  Detailed 

simulation results of the LLC resonant converter are 

provided in [14].   

 

Table 1. Components of LLC resonant converter [14] 

Circuit Component Definition Value 

LLC MOSFET Magnachip MDF5N50 (x2) 

Resonant capacitor CR 22nF 

Magnetic inductance LM 693uH 

Resonant inductance  LR 171.2uH 

LLC IC Fairchild Fan7621 

Output Diodes D SBR30A100 

 

4.2. Flyback converter design results 

A flyback converter, which operates for 5V output layer 

and standby mode in DCM is designed with its 

components are tabulated in Table 2. Voltage and 

current measurements are given in Fig. 8-10. Fig. 8 and 

Fig. 9 shows the switching behavior of flyback 

converter. From these figures, one can observe that 

energy is stored with the current flowing through 

primary winding when switch is on. When switch is off, 

this energy is transferred to secondary winding 

dependent on ratio of turns. High voltage and switching 

losses arise when switch is off. In order to protect the 

switch, a snubber circuit is used. In Fig. 10, voltage 

stress on switching component and snubber circuit 

voltage is given. 

 

Table 2. Components of flyback converter 

Circuit Component Definition Value 

Snubber Resistor RS 47kΩ 

Snubber Capacitor CS 1nF 

Integrated Circuit (IC) U2 FSB147H 

Transformer  Inductance LM 600uH 

Output Diode D 30A 60V 

Output Capacitors CO 2,2mF(x2) 

 

 
 Figure 8. Flyback converter output voltage (VOUT), voltage 

stress on switching component (VDS) and primary current 

(IPRI) 

 

 
Figure 9. Flyback converter output voltage (VOUT), voltage 

stress on switching component (VDS) and secondary current 

(ISEC) 

 

 
Figure 10. Voltage stress on switching component (VDS) 

and snubber circuit voltage (VSN). 

4.3.  Boost type PFC converter design results  

Output voltage of PFC converter layer is selected as 

400V to feed other layers. In Fig. 11, CrM PFC 

converter bobbin current (IL), voltage on current 

measurement node (VCS) and switching component 
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trigger voltage (Vg) are shown. When VCS reaches to 

the stated threshold point, trigger voltage Vg is cut, in 

addition to corrected network voltage, inducted current 

creates a voltage on bobbin and then it is transferred on 

output capacitor via output diodes. Thus, a higher 

voltage than the network voltage which is corrected 

with boost type PFC converter is acquired. In Fig. 12, 

voltage stress on switching component, switching 

component trigger voltage and current on PFC 

converter diode waveforms are given. Voltage on 

output capacitor and ripple current for over two periods 

are given in Fig. 13. Components used in PFC converter 

are tabulated in Table 3. 

 

 
Figure 11. CrM PFC converter bobbin current (IL), voltage 

on current measurement node (VCS) and switching 

component trigger voltage (Vg) 

 

 
Figure 12. Voltage stress on switching component (VDS), 

switching component trigger voltage (Vg) and current on 

PFC converter diode (Ig) 

5. Conclusion 

Considering the slim TV trend that today’s TV 

technology reveals, orientation of customers to thinner 

and lighter TVs has led to the limitation of the design 

of the power card, which is one of the main constituents 

of low profile TVs. In this study, a TV power card 

having 13,5mm height and 220W output power has

 
Figure 13. Voltage on output capacitor (VO) and ripple 

current (Iripple) 

 

Table 3. Components of PFC converter 

Circuit Component Definition Value 

PFC bobbin LM 200uH 

PFC IC Fairchild Fan7930c 

PFC MOSFET Magnachip MDF11N60 

PFC Diode NXP BYV29X 

Output Capacitors CO 39uF (x3) 

 

been redesigned as having 10mm height and the same 

output power with the referenced card. Topology and 

conduction modes of the converters are selected in 

order to provide 10 mm criterion for low profile TVs. 

Optimization of the power density of the card is 

targeted during the design procedure. Smaller cooling 

materials are used in order to reduce switching losses 

and thermal problems related height limit are 

minimized. TV power card with optimized power 

density is constructed with 200W LLC converter, 20W 

Flyback DC/DC converter, Boost PFC and EMI filter. 

In this study, power density of low profile TVs, which 

have various panel dimensions in a range of 40-47”, is 

enhanced at the rate of 34%. The results are compatible 

with the International Electrotechnical Commission 

(IEC) 61000-3-2 current harmonic standard. 
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Ömer Öztürkoğlu
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1. Introduction

In the last two decades, time-dependent process-
ing times of jobs in scheduling literature have
received increasing attention. The awareness of
human perspective on scheduling jobs or Total
productive maintenance (TPM) on productivity
lead researchers think out of the box. Although
many studies have to included some type of un-
certainties in scheduling or sequencing problems
(see [1–3] for details) in literature, some of the
issues have been restricted by assumptions so as
to simplify the problems. Boudreau et al. [4] dis-
cussed some of these issues from the human per-
spective that labor and task times are assumed
to be deterministic and predictable as if they are
always available.

In scheduling problems, Gupta and Gupta [5] in-
troduced a variable processing time of a job de-
scribed by a polynomial function of its starting
time to include some dynamic parameters of sys-
tems discussed by Gupta et al. [6] and some Rus-
sian papers (see [7] for details). Browne and

Yechiali [8] also introduced the concept of dete-
riorating jobs of which their processing time in-
creases as they await to be processed. For exam-
ple, awaiting steel material in the inventory to be
processed might corrode, a drop in the tempera-
ture of an ingot needs to be reheated, a delay in
medical treatment. Several papers can be given
as appropriate examples to deteriorating jobs as a
linear function of processing time of a job [5,8,9].
Kunnathur and Gupta [10] proposed a model with
piecewise increasing processing times. Mosheiov
[11] presented non-linear deterioration according
to a job-dependent step function. Ozturkoglu and
Bulfin [12] proposed a position-based, nonlinear
increasing function of processing time of a job.
We also implement a non-linear deterioration in
our models. Up to now, all studies have stud-
ied on single machine scheduling problem. Addi-
tional literatures about time-dependent process-
ing times in a single machine scheduling can be
seen in [13] and [14]. Lodree et al. [15] also pre-
sented a detailed survey study about sequence-
dependent studies from the perspective of human
factors.
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Mosheiov [11] formulated parallel, multiple ma-
chine scheduling problem with a job-dependent
step deterioration as an integer program and pro-
posed a heuristic algorithm for the problem. Chen
[16] also studied on parallel machine scheduling
problem that minimizes total completion time
with a consideration of a simple linear deteriora-
tion. The author showed that this problem is NP-
complete in the ordinary sense, not in the strong
sense even with a fixed number of machines.
Mosheiov [17] studied parallel, identical machines
for makespan minimization of deteriorating jobs
with simple linear function of their starting times.
Mosheiov [17] showed that the multi-machine
scheduling problem is NP-complete by reduction
to the single-machine problem and presented an
asymptotically optimal heuristic for minimization
of makespan. For studies published by 2004,
some additional discussions about multi-machine
scheduling problems and their NP-completeness
can be seen in [14]. Kang and Ng [18] presented a
fully-polynomial time approximation scheme (FP-
TAS) for scheduling linearly deteriorating jobs on
m identical parallel machines with the objective of
makespan. Ji and Cheng [19] also proposed an-
other FPTAS for parallel-machine total comple-
tion time problem with linearly deteriorating jobs.
Ji and Cheng [20] developed FPTAS for parallel-
machine scheduling of simple linear deteriorating
jobs with the objective of minimizing makespan,
total completion time and total machine load. Ji
and Cheng [20] also showed the makespan prob-
lem is strongly NP-hard for the fixed number of
machines. All of the above studies considered de-
teriorating jobs in which the processing time of a
job increases due to delay of processing of jobs,
depreciation of machines or workers fatigue.

Lee and Leon [21] introduced the concept of rate-
modifying activities to the scheduling literature.
A rate-modifying activity (RMA) is an activity
that affects and changes the speed or rate of the
resource. Maintenance activities for machines and
rest periods for workers can be given as exam-
ples to this concept. Lee and Lin [22] consid-
ered single-machine scheduling with the objec-
tives of minimizing makespan, total completion
time, total weighted completion time and max-
imum lateness. In their model, they evaluate
the placement of fixed length RMA as well as
sequencing of tasks. They proposed polynomial
time algorithm for makespan and total comple-
tion time problems, and pseudo-polynomial time
algorithms for several different objectives. Lee
and Lin [22] also studied single machine schedul-
ing problems with rate-modifying activities con-
sidering stochastic machine breakdown. In their

model, if the RMA is scheduled before a break-
down, then processing times of jobs are reduced.
If a breakdown occurs, then repair activity is ap-
plied then the resource works with its normal
rates. They considered makespan, total comple-
tion time and maximum lateness as an objective
function. Mosheiov and Sidney [23] developed
an efficient polynomial algorithm that minimizes
makespan for sequencing tasks with both learn-
ing and a RMA. All these studies have consid-
ered rate modifying activities on a single machine
scheduling without consideration of the deterio-
rating jobs.

Lodree et al. [15] integrated two distinct concepts,
deteriorating jobs and RMAs in scheduling mod-
els whose processing times are represented by lin-
ear increasing function of their starting times.
In several studies, the single machine schedul-
ing problem with deteriorating jobs and multi-
ple RMAs is modeled under different objectives,
such as minimizing makespan and total comple-
tion time [12,24–26]. In these studies, researchers
applied position dependent, non-linear function of
processing times for jobs. Additionally, Lee and
Wu [27] consider deteriorating jobs with mainte-
nance activities of scheduling jobs on parallel ma-
chines. They applied simple, linear deterioration
of jobs. In their model, maintenance period is
known in advance for each machine. They evalu-
ated makespan for this problem considering both
resumable and non-resumable cases. Recently,
Dalfard and Mohammadi [28] developed a model
for a multi-objective parallel machine schedul-
ing problem with maintenance activity excluding
deterioration in processing times. Authors also
solved the problem by using simulated annealing
and hybrid genetic algorithms. Cheng et al. [29]
proposed an improved ant colony optimization al-
gorithm for a parallel machine scheduling problem
in which jobs are processed in batches. Wang and
Wei [30] showed that an identical parallel machine
scheduling problem with linear deterioration and
rate-modifying activities can be solvable in poly-
nomial time even the objectives are minimization
of total absolute differences in both completion
and waiting times. Wang et al. [31] also studied
an identical parallel scheduling problem in which
machines are deteriorated due to delaying mainte-
nance activities that cause an increment in main-
tenance time. After a maintenance activity, pro-
cessing times of jobs decrease. Authors proposed
a polynomial time algorithm to solve total com-
pletion time for this scheduling problem. Yang
and Yang [32] proposed two polynomial time algo-
rithms for unrelated parallel machine scheduling
problems with multiple-rate modifying activities.
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They considered that processing times of jobs are
constant until a rate-modifying activity is per-
formed, afterwards it decreases with a constant
rate. Yang et al. [33] developed a polynomial
time algorithm to solve unrelated parallel ma-
chine scheduling problem with controllable pro-
cessing times and rate-modifying activities. The
cost function in their model comprises total com-
pletion time and total job compressions.

To the best of our knowledge, our model is the
first to attempt to evaluate the optimal sequence
of non-linearly deteriorating jobs and sequences
of multiple rate-modifying activities at identical
parallel machines. We use fixed length RMA time
and position-based, nonlinear deterioration simi-
lar to the [12]. The remainder of the paper is orga-
nized as follows. In the next section, we present a
mathematical model for this problem. In the later
sections, we implement ant colony optimization
(ACO) and simulated annealing (SA) algorithms
to solve this problem. Last, we solve the models
and compared their performances.

2. Mathematical model

In our model, we schedule a set of n jobs as
J = {J1, J2, ..., Jn} and at most b number of
RMAs on identical R set of parallel machines,
R = {R1, R2, ..., Rm}. Jobs are non-preemptive
and each job is assigned to only one machine.
We assume that jobs and machines are available
at the beginning of the scheduling, and jobs are
available when a machine is available for process-
ing. A RMA can be given only after a job is
completely processed at a machine (jobs are non-
resumable). The rest of the model parameters are
given in Table 1.

Initial processing time of jobs (pj) are the same
at any machines. Deteriorating processing times
of jobs are nonlinear, increasing functions of pj
based on the positions of assigned jobs. If a job is
assigned to the ith position after the beginning of
the schedule or a given RMA, pji is formulated in
the equation (1) defined by [12]. Additionally, we
assume that jobs revert to their base processing
time as soon as a RMA is performed.

pji = (1 + α)i−1 · pj (1)

Table 1. The mathematical model
parameters..

i the position number of scheduled jobs
at machines

j the index number of jobs
k the position number where an RMA is

given before processing a job at the
kth position

m the index number of machines
α constant deterioration rate of processing

time of jobs, 0 < α ≤ 1
q fixed period of time to perform an RMA
pj the initial (base) processing time of

job j at identical machines
pji is the processing time of deteriorated

job j at position i
xijkm 1, if job j is assigned to the ith position

after an RMA at the kth position
on machine m, otherwise 0

ykm 1 if an RMA is assigned at position k
on machine m

Cim completion time of the job in position i
on machine m

Hence, the developed integer programming (IP)
model can ben described as followings.

min Z = Cmax (2)

subject to

Cmax ≥ Cnm ∀m ∈ R (3)

C1,m =

n
∑

j=1

pj1 · x1j0m (4)

Cim = C(i−1)m +
i

∑

k=1

n
∑

j=1

pjk · xij(i−k)m+

qi · yim, ∀i = 2, ..., n and ∀m ∈ R (5)

n
∑

j=1

i−1
∑

k=0

xijkm = 1, ∀i = 1, ..., n, ∀m ∈ R (6)

n
∑

i=1

i−1
∑

k=0

∑

m∈R

xijkm = 1, ∀j = 1, ..., n (7)

xkjim ≤ y(i+1)m, ∀m ∈ R, ∀i = 1, ..., k − 1,

∀j ∈ J, ∀k = 2, ..., n (8)
n
∑

i+1

yim ≤ b, ∀m ∈ R (9)

xijkm ∈ {0, 1}, yim ∈ {0, 1} (10)

The equation (2) is the objective of minimizing
makespan where Cmax = max{Cz1, Cz2, ..., Czm},
maximum of the completion time of the last job z
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in each machine m. This is formulated by Equa-
tion (3). Equations (4) shows the completion time
of the jobs at the first position based on base
processing times of jobs. Equation (5) calculates
the completion time of jobs at the later positions
considering nonlinear deterioration of processing
times and RMA time if given. Equation (6) re-
stricts that each positions on each machine can
only take one job. Equation (7) shows that each
job should be assigned only to one position on
each machine. Equation (8) arranges the order of
RMAs based on the scheduled jobs. To make this
constraint clear, if a job is assigned to position 2
after given a RMA at the end of the first position
at machine 1 (x2j11 = 1), then y21, which repre-
sents that a RMA is given at the beginning of po-
sition 2 at machine 1, should be one. Equation (9)
controls the maximum number of allowable RMAs
in the sequence. Additionally, equations (10) are
the binary constraints.

Mosheiov [11] showed that multi-machine sched-
uling with linear deterioration is NP-hard even
for two machines, our problem is also NP-hard
because this is an extended model with the deci-
sion of optimal sequence of RMAs in a optimal
sequence of jobs of which their processing time is
nonlinearly deteriorated. Lee and Wu [27] also
claimed that the scheduling problems with lin-
early deteriorating jobs and maintenance period
are also NP-hard.

3. Ant colony optimization algorithm

Because our problem is also in NP-hard class, in
this section we propose a unique ant colonoy opti-
mization (ACO) algorithm which is originally de-
veloped by [34]. Sankar et al. [35] studied decen-
tralized distributed scheduling problem in a par-
allel machine shop environment applying an ACO
algorithm to the problem. Tkindt et al. [36] pro-
posed an ACO algorithm and a heuristic based
on simulated annealing (SA) algorithm for two
serial machine scheduling problem for minimiz-
ing both makespan and total completion time to-
gether. Alaykiran et al. [37] proposed an ACO al-
gorithm to solve hybrid flow shop problems con-
sidering makespan as an objective. Arnaout et
al. [38] and Arnaout [39] proposed an ACO algo-
rithm to non-preemptive, unrelated parallel ma-
chine scheduling problem with machine- and job
sequence-dependent setup times. They compared
the algorithm with tabu search algorithm and
one of the existing heuristics in literature. They
showed that ACO algorithm outperformed the
other algorithms. Rossi and Boschi [40] developed

a heuristic basis on a genetic algorithm (GA) and
ACO for the flexible manufacturing systems. In
their heuristic, GA and ACO co-evolve in parallel
so as to improve the performance of the algorithm.
Behnamian et al. [41] integrated three heuris-
tics, ACO, SA and variable neighborhood search
(VNS) to solve the parallel machine scheduling
problem with sequence-dependent setup times for
minimizing the makespan.

In our algorithms, we use a permutation based
encoding which represents the sequence of job
positions, split parameters and RMA parame-
ters. There are (m − 1) number of split pa-
rameters (si) in the encoding shows the po-
sition where jobs are distributed to machines.
rim represents the position of given maximum
of b number of RMAs at machine m. Hence,
the encoding can be shown as {J1, J2, ...Jn|
s1, s2, ..., sm−1|r11, ..., rx1|...|r1m, ..., rxm|}. Addi-
tionally, 0 ≤ r11 ≤ ... ≤ rk1 ≤ s1 < ... <
sm−1 ≤ r1m ≤ ... ≤ rxm. For example, let encod-
ing scheme {3 5 8 1 4 2 9 6 7 10 | 4 | 2 | 7} represent a
solution for a scheduling 10 jobs at parallel two
machines with at most one RMA. Hence, jobs 3,
5, 8 and 1 are scheduled at machine 1 because
s1 is 1, other jobs are at machine 2. An RMA is
scheduled after job 5 at machine 1 (r11 = 2 mean-
ing that RMA is given after the second position
at machine 1) and one RMA is given after job 9 at
machine 2. If any one of the RMA factors is equal
to 0 (start position) or the same as split factor, it
means that RMA is not actually needed at that
machine. The rest of the parameters for our ACO
algorithm is given in Table 2.

We solve our problem with ACO in two stages: se-
quencing and assigning. In the sequencing stage,
we allocate n jobs to the positions like assigning
them to a single machine. In the assigning stage,
we firstly split jobs into machines and allocate
RMAs in each machine. The sequencing and as-
signment are based on the pheromone amounts on
trails or positions and computed by probabilisti-
cally as in equation (11). After calculating proba-
bility of assigning next job, we select the job based
on simple tournament selection applying under q0
strategy. q0 strategy is used in classical ACO to
balance the exploration and exploitation. If a ran-
dom number is greater than q0, we use tourna-
ment selection, otherwise we select the job which

has the maximum value of (τij)
α · (ηij)

β . After
constructing a full schedule, we select the split
factors and then positions of RMAs.
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Table 2. The model parameters for
the ACO algorithm.

a number of ants in population
T number of iterations
τij(t) the intensity of the pheromone trail

on the path between jobs i and j
at time t

ηij(t) the heuristic value (visibility) 1/pj
where pj is the processing time of
job j at time t

λsi
k (t) the intensity of the pheromone on

positions k for split factors at time t
µrim
k (t) the intensity of the pheromone on

positions k for RMA factors at time t
α the relative importance of the

pheromone trail
β the relative importance of the

visibility
∆ addition of pheromone on trail ij or

between positions kn at time t
ρ evaporation factor, 0 < ρ < 1
ξ factor of the online pheromone update,

usually = 0.1
τ0 initial pheromone amount on all paths

and positions
τmin minimum allowance of the pheromone

amount on paths or positions
τmax maximum allowance of the pheromone

amount on paths or positions

P y
ij(t) =

(τij)
α · (ηij)

β

∑

l∈N
y

i
(τij)

α · (ηij)
β
, ∀y = 1, .., a

(11)

P y
sk(t) =

(λk)
α

∑

i∈Ns
(λk)

α , ∀y = 1, .., a (12)

P y
xk(t) =

(µk)
α

∑

l∈Nx
(µk)

α , ∀y = 1, .., a (13)

where, P y
ij(t) is the probability of selecting job j

if job i is scheduled for ant y at time t. Ny
i is the

neighborhood of ant y that comprises unscheduled
jobs up to that time. Ns is the whole available
positions for splitting, and Nx is the appropriate
positions for placing an RMA. P y

sk and P y
xk are

the probability of selecting positions for splitting
and RMAs, respectively, and these only account
for the pheromone amounts at the positions.

We also use two pheromone updating processes,
local and global updates, in our ACO algorithm.
In the local update, as soon as an ant constructs
a full schedule including splits and RMAs they
change the pheromone amount based on the equa-
tions (14), (15) and (16).

τij(t+ 1) = (1− ξ) · τij(t) + ξ · τ (14)

λk(t+ 1) = (1− ξ) · λk(t) + ξ · λ (15)

µk(t+ 1) = (1− ξ) · µk(t) + ξ · µ (16)

In the global update, after all ants construct a so-
lution, firstly some pheromone is evaporated, then
ants contribute to the appropriate paths and po-
sitions based on the equations (17), (18) and (19).

The pheromone amount is added to ij path if
jobs i and j are scheduled consecutively in the
sequence of a machine. After global updates, if
the pheromone amount on trail or at positions
exceeds maximum level or goes below the mini-
mum level, we set the pheromone amounts to the
closest limit.

τij(t+ 1) = ρ · τij(t) +
a

∑

y=1

∆y (17)

λk(t+ 1) = ρ · λij(t) +
a

∑

y=1

∆y (18)

µk(t+ 1) = ρ · µij(t) +
a

∑

y=1

∆y, (19)

where, ∆y = max {Cyz1, Cyz2, ..., Cyzm}, the max-
imum of completion time of the last job in each
machine based on the given solutions by ant y.

The pseudo-code for our ACO algorithm is ex-
plained as in the followings. In this algorithm,
we implement a local search procedure (LS1) to
improve the solution of an ant at every g number
of iterations.

In this local search, if base processing time of a
randomly chosen job is larger than the the sched-
uled job at its previous position, we simply re-
move that job in the sequence of the machine and
insert this job either to the first position or any
position after a given RMA. Hence, we aim to de-
crease the amount of deterioration by performing
the local search.
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Initialize parameters, pheromone amounts,
and ants
Do{ until termination criterion is met.

Do { for all ants
Construct a full schedule, including

splits and RMAs using tournament selection
Evaluate the makespan of an ant
If an ant is better than the best ant,

update best ant
Otherwise, at each g iterations do a

local search (LS1) on the ant, then compare it
with the best ant again

Do online pheromone update after
each ant

Do global pheromone update after
all ants controlled by (τmin, τmax)

}
}

4. Simulated annealing algorithm

Kirkpatrick et al. [42] proposed an iterative, sto-
chastic, neighbor-based search method based on
the analogy of heating and cooling of materials.
Koulamas [43] developed a polynomial decompo-
sition heuristic to minimize total tardiness on par-
allel machines. They embedded SA algorithm
into their heuristic to do local search by swapping
jobs. Park and Kim [44] suggested SA and TS
algorithms that minimize order holding costs for
scheduling these orders on identical parallel ma-
chines with ready times and due date. TS, SA and
GA techniques are implemented to the scheduling
problems with non-preemptable jobs on identical
parallel machines [45]. Hindi and Mhlanga [46]
developed SA and steepest descent algorithms to
solve the makespan minimization problem of jobs
having simple, linear and general linear deteriora-
tion on identical parallel machines. Kim et al. [47]
proposed a SA algorithm to minimize total tar-
diness for scheduling jobs on unrelated parallel
machines with sequence-dependent setup times.
As discussed before, SA is also implemented to
the parallel machine scheduling problem in stud-
ies [36, 41].

We use the same encoding that we discussed in
the previous section in our SA algorithm. In this
study, we modified the canonical SA algorithm by
embedding two local searches so as to improve the
solutions. The first one is the LS1, which is ex-
plained in the previous section. The second local
heuristic (LS2) considers whole neighborhood of
the scheduled jobs in the machine. It utilizes sim-
ple swap operator. Hence, LS2 swaps all jobs in
a machine and if it finds a better solution than
the current one, it updates the current solution.

Additionally, the split factors and RMA factors
are randomly chosen at the beginning of each it-
eration. The pseudo-code for this algorithm is as
in the following.

Initialize parameters and randomly generate
an initial solution
Do{ until termination criterion is met.

Do { for all stages
Move the split and RMA factors

randomly for the schedule
Implement a local search (LS2) for

the given split and RMA factors
If the temporary solution is better

than the current, update the current solution
Otherwise accept the non-improving

solution probabilistically
If the current solution is better

than the best, update best
If there is no improvement on the

best solution for g number of iterations,
implement a local search (LS1) on the best
solution.

}
}

The probability of accepting non-improving so-
lutions is calculated using Equation (20) defined
by [42]. Based on this equation, probability of ac-
cepting non-improving solutions is higher at the
higher temperatures, and it decreases as the tem-
perature decreases.

P = exp

(

−
∆E

c · T ′

)

, (20)

where, ∆E is the difference of the makespan be-
tween the temporary solution and the current so-
lution. c is a Boltzmann constant, and T is the
current temperature level. The other model pa-
rameters used in the SA algorithm are: T0 is
initial temperature, π is the cooling parameter
(0 < π < 1) and ν is the number of moves at each
stage where the local search is applied.

5. Simulation results

In this study, we only work on identical two par-
allel machines (m = 2). However, our models
are capable of considering multiple machines. We
solve our parallel machine scheduling problem for
10, 20, 30 and 50 jobs to investigate the effects
of heuristics. We randomly generate processing
times of jobs based on a uniform distribution that
resides between 1 and 160. We use 10 different
data set for each job set separately. We assume
that RMA time is 5 unit time, and deterioration
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rate is selected 0.08. After a simple tuning opera-
tion by trial-and-error, we decide to have 15 ants
in the population in ACO algorithm. The evapo-
ration rate is 0.70 so as to enhance more diversity.
The other ACO parameters are α = 1, β = 2,
ξ = 0.1, q0 = 0.1, τmin = 0.1 and τmax = 0.49.
Last, the algorithm is terminated after 1000 it-
erations. The SA algorithm is simulated for 500
iterations and 5 stages at each iteration. Initial
temperature is selected 100, the cooling parame-
ter is 0.99, and the Boltzmann constant is 0.4. Fi-
nally, the mathematical model (MM) is coded and
solved in IBM ILOG OPL CPLEX Optimization
Studio 12.6. Because of the NP-Hardness of the
problem, solution time is restricted to 3 hours. If
a global optimum integer solution is not obtained
by 3 hours, we used the best integer objective
value found for the comparisons. The ACO and
SA algorithms are coded with JAVA. They all are
run on Intel(R) Core(TM) i5 3.5 GHz PC with
2GB ram. Additionally, we also conduct 10 repli-
cations on the ACO and SA algorithms for each
data set. We use the simple average of the ten
replications for the comparisons.

Tables 3, 4 and 5 show the detailed solutions of
the algorithms. In Table 3, “Gap(%)” represents
absolute tolerance on the gap between the best in-
teger objective and the objective of the best node
remaining when the model is terminated. As seen
in this table, the gap increases as the number of
jobs increases, especially for 50 jobs due to NP-
hardness of the problem. “Best found solution”
column in Tables 4 and 5 show the best solu-
tion obtained by ACO and SA, respectively at the
end of iterations. “CPU time” in these tables is
the computational time that algorithms spend to
obtain the solution over iterations. The average
computational times of ACO algorithm for 10-,
20-, 30- and 50 job-problems are 0.6, 2, 4.8 and
15 seconds. For SA, these are 0.2, 3, 7.8 and 95.8
seconds. As seen, SA algorithm takes more time
than ACO as the number of jobs increases due to
intensive local search.

In order to compare solution quality of ACO and
SA algorithms, we calculate their percentage er-
ror that represents the difference of their solutions
with MM as a basis on mathematical model solu-
tions. These errors are given in Table 6. As seen
in the table, for small number of jobs ACO pro-
vides close solutions to the mathematical model.
The average error of ACO is about 4% for 30 jobs
and it takes only 4.8 seconds. However, the SA al-
gorithm does not provide as good solutions as the
ACO algorithm. The average error of SA is about
7.7% for 30 jobs. In terms of computational time,
even though SA is faster than ACO for 10 jobs,

SA requires more time than ACO as the number
of jobs increases. The reason of this observation
is due to the intensive local search algorithm in
SA.

6. Conclusion

In this study, we developed an integer program-
ming model for parallel machine scheduling with
deteriorating jobs and rate modifying activities.
We consider non-linearly increasing function of
processing times based on the sequence of the
job. We also consider rate-modifying activities
to recover the loss in processing times of the jobs.
Because this problem is NP-hard, we proposed
two meta-heuristic algorithms that rely on Ant
colony optimization and Simulated annealing al-
gorithms. In the ACO algorithm, we proposed
different pheromone update schemes for the prob-
lem. We run our mathematical model and heuris-
tics with two identical parallel machines for four
different sets of jobs; 10, 20, 30 and 50. Results
show that the ACO algorithm performs better
than SA and generates close optimal solutions for
with an average error of 0.7%, 1.6%, 4% and 8.8%
for 10, 20, 30 and 50 jobs, respectively. In terms
of computational time, ACO is also superior than
SA as numbers of job increases. For future stud-
ies, the proposed ACO algorithm might be pow-
ered by an efficient local search algorithm to ob-
tain closer solutions to the best found solutions.
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G., Local Search Metaheuristics for Discrete-
Continuous Scheduling Problems . European Journal
of Operational Research, 107, 354–370, (1998).

[46] Hindi, K. and Mhlanga, S., Scheduling Linearly De-
teriorating Jobs on Parallel Machines: A Simulated
Annealing Approach . Production Planning and Con-
trol, 12(1), 76–80, (2001).

[47] Kim, D.-W., Kim, K.-H., Jang, W., and Chen, F., Un-
related Parallel Machine Scheduling with Setup Times
Using Simulated Annealing . Robotics and Computer
Integrated Manufacturing, 18(3-4), 223–231, (2002).
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1. Introduction

Nonlinear conjugate gradient method is a very
powerful technique for solving large scale uncon-
strained optimization problems

min{f(x) : x ∈ R
n}, (1)

where f : R
n → R is a continuously differen-

tiable function. It has advantages over Newton
and quasi-Newton methods in that it only needs
the first order derivative and hence less storage
capacity is needed. It is also relatively simple to
program.

Given an initial guess x0 ∈ R
n, the nonlinear con-

jugate gradient method generates a sequence {xk}
for problem (1) as

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2)

where αk is a step length which is determined by
a line search and dk is a descent direction of f at
xk generated as

dk =

{

−gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where gk = ∇f(xk) is the gradient of f at xk and
βk is a parameter.

Conjugate gradient methods differ in their way of
defining the parameter βk. Over the years, several
choices of βk, which give rise to different conju-
gate gradient methods, have been proposed. The
most famous formulas for βk are Fletcher-Reeves
(FR) method [20]

βFR
k =

||gk||
2

||gk−1||2
,

Polak-Ribiére-Polyak (PRP) method [32,33]

βPRP
k =

gTk yk−1

||gk−1||2
,

Dai-Yuan (DY) method [12]

βDY
k =

||gk||
2

dTk−1yk−1
,

and the Hestenes-Stiefel (HS) method [18,23]
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βHS
k =

gTk yk−1

dTk−1yk−1
,

where yk−1 = gk − gk−1 and || · || denotes the
Euclidean norm of vectors. These were the first
scalars βk for nonlinear conjugate gradient meth-
ods to be proposed. Since then, other parameters
βk have been proposed in the literature (see for
example [1,2,4–6,14,15,17,19,22,28,35,39,40] and
references therein).

From the literature, it is well known that FR
and DY methods have strong convergence prop-
erties. However, they may not perform well in
practice. On the other side, PRP and HS methods
are known to perform better numerically but may
not converge in general. Given this, researchers
try to devise some new methods, which have the
advantages of these two kinds of methods. This
has been done mostly by combining two or more
βk parameters in the same conjugate gradient
method to come up with hybrid methods. Thus,
hybrids try to combine attractive features of dif-
ferent algorithms. For example, Touati-Ahmed
and Storey [36] proposed this hybrid method

βTS
k = max

{

0,min(βFR
k , βPRP

k )
}

to take advantage of the attractive convergence
properties of βFR

k and numerical performance of

βPRP
k .

Many other hybrids have been proposed by para-
metrically combining different parameters βk. In
Dai and Yuan [11], for instance, a one-parameter
family of conjugate gradient methods is proposed
as

βk =
||gk||

2

λk||gk−1||2 + (1− λk)d
T
k−1yk−1

,

where the parameter λk is such that λk ∈ [0, 1].
Liu and Li [28] proposes a convex combination of
βLS
k and βDY

k to get

βk = (1− γk)β
LS
k + γkβ

DY
k ,

where βLS
k = −

gT
k
yk−1

dT
k−1gk−1

is the Liu-Storey (LS)

[26] parameter and γk ∈ [0, 1]. Other hy-
brid conjugate gradient methods can be found
in [2, 4–8,13, 21, 22, 24, 25, 27, 29, 35, 38, 41].

The step length αk is often chosen to satisfy cer-
tain line search conditions. It is very important
in the convergence analysis and implementation
of conjugate gradient methods. The line search

in the conjugate gradient methods is often based
on the weak Wolfe conditions

f(xk + αkdk) ≤ f(xk) + µαkg
T
k dk (4)

and

g(xk + αkdk)
Tdk ≥ σgTk dk, (5)

or the stronger version of the Wolfe line search
conditions

f(xk + αkdk) ≤ f(xk) + µαkg
T
k dk (6)

and

|g(xk + αkdk)
Tdk| ≤ −σgTk dk, (7)

where 0 < µ < σ < 1. More information on these
line search methods and other line search meth-
ods can be found in the literature [9, 14, 25, 31,
34, 37, 39, 41]. In this paper, we suggest another
approach to get a new hybrid nonlinear conjugate
gradient method.

The rest of the paper is organised as follows. In
section 2, we present the proposed method. In
Section 3 we prove that the proposed algorithm
(method) globally converges. Section 4 presents
some numerical experiments and conclusion is
given in Section 5.

2. A new hybrid conjugate gradient

method

We now present our proposed hybrid conjugate
gradient method. The hybrid method we propose
is motivated by the work of Babaie-Kafaki [4, 5]
and Mo, Gu and Wei [29]. Babaie-Kafaki [4, 5]
suggested a quadratic hybridization of βFR

k and

βPRP
k method of the form

β
HQ±
k =







































β+
k (θ

±
k ), θ±k ∈ [−1, 1],

βPRP+
k , θ±k ∈ C,

−βFR
k , θ±k < −1,

βFR
k , θ±k > 1,

(8)

where

β+
k (θk) = (1−θ2k)β

PRP
k +θkβ

FR
k , θk ∈ [−1, 1],
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and

θ±k =
βFR
k ±

√

(βFR
k )2 − 4βPRP

k (βHS
k − βPRP

k )

2βPRP
k

is the solution of the quadratic equation

θ2kβ
PRP
k − θkβ

FR
k + βHS

k − βPRP
k = 0.

Thus, the author suggested two methods β
HQ+
k

and β
HQ−
k . The parameter

βPRP+
k = max{0, βPRP

k }

is a hybrid parameter that was suggested by
Gilbert and Nocedal [21] to improve on the con-
vergence properties of βPRP

k .

In Mo, Gu and Wei [29], the authors suggest a β∗
k

defined by

β∗
k = βPRP

k +
2gTk gk−1

‖gk−1‖2
, (9)

which then modifies the Touati-Ahmed and
Storey method [36] to give

βk = max
{

0,min(βFR
k , βPRP

k , β∗
k)
}

.

This method by Mo et al. [29] was shown to be
very competitive with the other hybrids in the lit-
erature and it was shown to perform much better
than the original βPRP

k .

Now, motivated by this suggestion (9) from [29]
and the work of Babaie-Kafaki [4,5], in this work
we modify Babaie-Kafaki’s method by introduc-
ing βS

k as

βS
k =







































β+
k (θk), θk ∈ [−1, 1],

max{0, β∗
k}, θk ∈ C,

−βFR
k , θk < −1,

βFR
k , θk > 1,

(10)

where

θk =
βFR
k −

√

(βFR
k )2 − 4β∗

k(β
HS
k − β∗

k)

2β∗
k

and

β+

k
(θk) = (1−θ2k)(max{0, β∗

k})+θkβ
FR

k , θk ∈ [−1, 1],
(11)

where β∗
k is as defined in (9), and then define

dk =







−gk, k = 0,

−gk + βS
k−1dk−1, k ≥ 1.

(12)

This leads to our hybrid conjugate gradient
method presented below.

Algorithm 1. New Hybrid βS
k Conjugate Gradi-

ent Method

Step 1 Give initial guess x0 ∈ R
n, and the pa-

rameters 0 < µ < σ < 1 and ǫ > 0.
Step 2 Set d0 = −g0 and k = 0. If ||g0|| < ǫ,

stop.
Step 3 Compute αk using the strong Wolfe con-

ditions (6) and (7).
Step 4 Set xk+1 = xk + αkdk, k = k + 1.
Step 5 If ||gk|| < ǫ, stop.
Step 6 Compute βk using (10–11).
Step 7 Compute dk = −gk + βS

k dk−1, go to Step
3.

3. Global convergence of the proposed

method

The global convergence analysis in this section
follows that of Babaie-Kafaki [4, 5]. To analyze
the global convergence property of our hybrid
method, the following assumptions are required.
These assumptions have been used extensively in
the literature for the global convergence analysis
of conjugate gradient methods.

Assumption 1. Let the level set

Ω = {x ∈ R
n : f(x) ≤ f(x0)},

where x0 is the initial guess, be bounded. That is,
there exists a positive constant B such that

‖x‖ ≤ B, ∀x ∈ Ω. (13)

Assumption 2. In some neighbourhood N of Ω,
the function f is continuously differentiable and
its gradient, g(x) = ∇f(x), is Lipschitz continu-
ous, that is, there exists a constant L > 0 such
that

‖g(x)− g(y)‖ ≤ L‖x− y‖

for all x, y ∈ N.

These assumptions imply that there exists a pos-
itive constant γ̂ such that

‖g(x)‖ ≤ γ̂. (14)
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Also, under Assumptions 1 and 2, the following
lemma can be established.

Lemma 1 (Zoutendijk lemma). Consider any it-
eration of the form xk+1 = xk + αkdk, where dk
is a descent direction and αk satisfies the weak
Wolfe conditions (4) and (5). Suppose Assump-

tions 1 and 2 hold, then
∞
∑

k=0

cos2 θk‖gk‖
2 < ∞.

It follows from Lemma 1 and the sufficient de-
scent condition with the Wolfe line search that

∞
∑

k=0

‖gk‖
4

‖dk‖2
< ∞. (15)

Lemma 2. Suppose that Assumptions 1 and 2
hold. Consider any conjugate gradient method in
the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12) in which, for all k ≥ 0, the search direc-
tion dk is a descent direction and the step length
αk is determined to satisfy the Wolfe conditions.
If

∞
∑

k=0

1

‖dk‖2
= ∞, (16)

then the method converges in the sense that

lim inf
k−→∞

‖gk‖ = 0. (17)

Lemma 3. Suppose that Assumptions 1 and 2
hold. Consider any conjugate gradient method in
the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12), with the conjugate gradient parameter
β+
k (θk) defined by (11), in which the step length

αk is determined to satisfy the strong Wolfe con-
ditions (6) and (7).

Also assume that the descent condition

dTk gk < 0, ∀k ≥ 0 (18)

holds and there exists a positive constant ξ such
that

|θk| ≤ ξαk, ∀k ≥ 0. (19)

If, for a positive constant γ, we have

‖gk‖ ≥ γ, ∀k ≥ 0, (20)

then dk 6= 0 and

∞
∑

k=0

‖uk+1 − uk‖
2 < ∞, (21)

where uk = dk
‖dk‖

.

Proof. Firstly, note that the descent condition
(18) guarantees that dk 6= 0. So, uk is well-
defined. Moreover, from (20) and Lemma 2, we
have

∞
∑

k=0

1

‖dk‖2
< ∞, (22)

since otherwise (17) holds contradicting (20).
Now, we divide β+

k (θk) into two parts as

β
(1)
k = (1− θ2k)max(0, β∗

k), β
(2)
k = θkβ

FR
k ,

and, for all k ≥ 0, we define

rk+1 =
vk+1

‖dk+1‖
, δk+1 = β

(1)
k

‖dk‖

‖dk+1‖
,

where
vk+1 = −gk+1 + β

(2)
k dk.

Therefore, from (12) we obtain that

uk+1 = rk+1 + δk+1uk. (23)

Since ‖uk‖ = ‖uk+1‖ = 1, from (23) we can write

‖rk+1‖ = ‖uk+1 − δk+1uk‖ = ‖δk+1uk+1 − uk‖. (24)

Because θk ∈ [−1, 1], we have δk+1 ≥ 0. Using
the condition δk+1 ≥ 0, the triangle inequality
and (24), we get

‖uk+1 − uk‖ ≤ ‖(1 + δk+1)uk+1 − (1 + δk+1)uk‖

≤ ‖uk+1 − δk+1uk‖+ ‖δk+1uk+1 − uk‖

= 2‖rk+1‖.
(25)

Also, from (13), (14), (19) and (20) we have
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‖vk+1‖ = ‖ − gk+1 + β
(2)
k dk‖

= ‖ − gk+1 + θk
‖gk+1‖

2

‖gk‖2
dk‖

≤ ‖gk+1‖+ |θk|
‖gk+1‖

2

‖gk‖2
‖dk‖

≤ γ̂ + ξαkγ̂
2

γ2 ‖dk‖

= γ̂ +
ξγ̂2‖xk+1−xk‖

γ2

≤ γ̂ +
ξγ̂2(‖xk+1‖+‖xk‖)

γ2

≤ γ̂ + 2Bξγ̂2

γ2 .

(26)

Now, from (22), (25), and (26) we have

∞
∑

k=0

‖uk+1 − uk‖
2 ≤ 4

∞
∑

k=0

‖rk+1‖
2

= 4

∞
∑

k=0

‖vk+1‖
2

‖dk+1‖2

≤ 4
(

γ̂ + 2Bγ̂2ξ

γ2

)2
∞
∑

k=0

1

‖dk+1‖2

≤ 4
(

γ̂ + 2Bγ̂2ξ

γ2

)2
1
γ4

∞
∑

k=0

‖gk‖
4

‖dk+1‖2

< ∞
(27)

�

We now define the following property, called prop-
erty (*).

Definition 1. [10] Consider any conjugate gra-
dient method in the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12). Suppose that for a positive constant γ
the inequality (20) holds. Under this assumption,
we say that the method has property (*) if and
only if there exist constants b > 1 and λ > 0 such
that for all k ≥ 0,

|βk| ≤ b, (28)

and

‖αkdk‖ ≤ λ ⇒ |βk| ≤
1

b
. (29)

Theorem 1. Suppose that Assumptions 1 and
2 hold. Consider any conjugate gradient method
in the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,

and (12), with the conjugate gradient parameter
β+
k (θk) defined by (11), in which the step length

αk is determined to satisfy the strong Wolfe con-
ditions (6) and (7). If the search directions satisfy
the descent condition (18) and there exists a pos-
itive constant η such that

|θk| ≤ η‖αkdk‖, ∀k ≥ 0, (30)

then the method converges in the sense that

lim inf
k→∞

‖gk‖ = 0.

Proof. Because of the descent condition and
strong Wolfe conditions, we have proven that the
sequence {xk}k≥0 is a subset of the level set Ω.
Also, since all the assumptions of Lemma 2 hold,
the inequality (21) holds. Now, to prove the con-
vergence, it is enough to show that the method
has property (*).

Since θk ∈ [−1, 1], from (11), (14), and (20) we
have

|β+
k (θk)| = |(1− θk)

2(max{0, β∗
k}) + θkβ

FR
k |

≤ |(1− θk)
2|

∣

∣

∣

∣

βPRP
k +

2gT
k+1

gk

‖gk‖
2

∣

∣

∣

∣

+ |θk||β
FR
k |

≤ |βPRP
k |+

|2gT
k+1

gk|

‖gk‖
2 + βFR

k

≤
‖gk+1‖(‖gk+1‖+‖gk‖)

‖gk‖
2 +

2‖gk+1‖‖gk‖

‖gk‖
2 +

‖gk+1‖
2

‖gk‖
2

≤ 2γ̂2

γ2 + 2γ̂2

γ2 + γ̂2

γ2

= 5γ̂2

γ2 .

(31)

Moreover, from Assumption 2 and equations
(11), (14), (20), and (30) we get

|β+
k (θk)| = |(1− θk)

2(max{0, β∗
k}) + θkβ

FR
k |

≤ |(1− θk)
2|

∣

∣

∣

∣

βPRP
k +

2gT
k+1

gk

‖gk‖
2

∣

∣

∣

∣

+ |θk||β
FR
k |

≤ |βPRP
k |+

|2gT
k+1

gk|

‖gk‖
2 + |θk|β

FR
k

≤
‖gk+1‖‖gk+1−gk‖

‖gk‖
2 +

2‖gk+1‖‖gk‖

‖gk‖
2 + |θk|

‖gk+1‖
2

‖gk‖
2
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≤
Lγ̂‖xk+1−xk‖

γ2 + 2γ̂2

γ2 + ηγ̂2

γ2 ‖αkdk‖

≤ Lγ̂

γ2 ‖αkdk‖+
2ηγ̂2

γ2 ‖αkdk‖+
ηγ̂2

γ2 ‖αkdk‖

= Lγ̂+3ηγ̂2

γ2 ‖αkdk‖.

(32)

So, from (31) and (32), if we let

b =
5γ̂2

γ2
and λ =

γ2

b(Lγ̂ + 3ηγ̂2)
,

then (28) and (29) hold and consequently, the
method has property (*). �

4. Numerical Experiments

We now present numerical experiments obtained
by our method on some test problems chosen from
Morè, et al. [30] and Andrei [3] to analyse its
efficiency and effectiveness. A number of these
test problems are widely used in the literature for
testing unconstrained optimization methods. We
present these test problems in Table 1, where the
columns ‘Prob’ and ‘Dim’, respectively, represent
the name and dimension of the test problem, and
the dimensions of the problems range from 2 to
20000.

We compare our proposed new hybrid conjugate
gradient method (βS

k ) with the quadratic hy-

bridization β
HQ−
k of Babaie-Kafaki [4, 5] and the

method β∗
k by Mo, Gu and Wei [29]. In [4], βHQ−

k

was shown to be the better hybridization as com-

pared to βHQ+
k , hence our comparison will only fo-

cus on β
HQ−
k . For all the methods, we considered

the stopping condition to be ǫ = 10−5, that is,
the algorithms (methods) were stopped once the
condition ||gk|| < 10−5 was satisfied, or the max-
imum number of iterations of 5000 was reached.
For the line search, the strong Wolfe conditions
(6) and (7) were used to find the step length αk,
with µ = 0.0001 and σ = 0.16. All the methods
were coded in MATLAB R2015b and numerical
results are compared based on number of gradient
evaluations, function evaluations and CPU time.

In Table 1, we present the number of func-
tions evaluations (NFE) and gradient evaluations

(NGE) obtained for the methods βHQ−
k , βS

k and
β∗
k, where the best results for each problem are in-

dicated in bold. We observe from the table that,

overall, the incorporation of β∗
k in the quadratic

hybridization has a positive effect on β
HQ−
k , even

though for some problems it is worse off.

We also compare the methods using the perfor-
mance profiles tool suggested by Dolan and Moré
[16] which, over the years, has been used exten-
sively to judge the performance of different meth-
ods on a given set of test problems. The tool
evaluates and then compares the performance of
the set of methods S on a set P of test problems.
That is, using the ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s is (function, gradient, CPU time) evalu-
ations required to solve p by method s, the overall
performance profile function is

ρs(τ) =
1

np
size{p : 1 ≤ p ≤ np, log(rp,s) ≤ τ},

where np is the total number of problems in P

and τ ≥ 0.

In case the method s fails to solve problem p, the
ratio rp,s is set to some sufficiently large num-
ber. The function ρs(τ) is then plotted against τ
to give the performance profile. Notice that the
function ρs(τ) takes the values ρs(τ) ∈ [0, 1] and
so the inequality ρs(τ1) < ρt(τ1) shows that the
method t outperforms the method s at τ1.

We now present the plots of these performance
profiles on function evaluations, gradient evalua-
tions and CPU time as figures. The function eval-
uations performance profile is presented in Fig-
ure 1, gradient evaluations in Figure 2 and CPU
time in Figure 3. It is clear from the figures that
replacing βPRP

k by β∗
k in the quadratic hybridiza-

tion β
HQ−
k has a positive effect. From the figures,

we observe that β∗
k is the best method overall. As

for βS
k and β

HQ−
k , we see that in Figures 1 and

2, for τ ≤ 0.5, βHQ−
k is slightly better than βS

k .
However, in Figure 3, the plot shows that in terms
of CPU time, there is not much difference between

βS
k and β

HQ−
k with the methods being much com-

petitive. Overall the figures show the influence of
β∗
k on the quadratic hybridization over the use of

βPRP
k .
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Table 1. Results of test problems.

Prob Dim
β
HQ−
k βS

k β∗
k

NFE NGE NFE NGE NFE NGE

Rosenbrock 2 133 63 95 43 95 38

Freud and Roth 2 40 14 45 16 39 14

Beale 2 40 24 74 38 48 28
Helical valley 3 130 50 264 103 152 61
Bard 3 91 53 66 44 75 50
Gaussian 3 7 6 9 7 9 7
Box 3 41 30 44 32 47 37
Powell Singular 4 508 236 351 168 208 110

Wood 4 592 160 414 134 211 70

Biggs EXP6 6 201 139 502 374 338 284
Osborne 2 11 660 344 684 352 1557 762
Broyden tridiagonal 30 90 33 90 33 94 35
Ext. TET 100 17 10 28 15 20 11
Gen. White & Holst 100 11088 2614 9477 2329 14012 3451
Ext. Penalty 500 63 20 51 15 52 15

Ext. Maratos 500 234 109 630 259 257 105

Gen. Rosenbrock 1000 21985 4574 22010 4581 25069 6558
Fletcher 1000 15881 4664 15881 4664 27857 7616
Ext. Rosenbrock 5000 133 63 100 45 103 42

10000 133 63 100 45 103 42

Ext. Powell singular 10000 257 136 623 294 273 154
20000 475 236 1370 656 217 121

Raydan 2 5000 52 52 7 7 6 6

10000 101 101 8 8 6 6

Ext. Beale 10000 77 45 70 42 69 41

20000 77 45 70 42 69 41

Ext. Himmelblau 10000 32 13 38 15 35 14
20000 32 13 38 15 35 14

Ext. DENSCHNB 10000 15 9 19 13 17 10
Ext. DENSCHNF 10000 75 33 90 36 64 29

Ext. Freud & Roth 10000 40 14 45 16 39 14

Ext. White & Holst 10000 300 124 247 92 137 62

Ext. Wood 10000 757 200 450 145 224 74

NONSCOMP 10000 147 59 151 61 173 72
Quartic 10000 81 80 28 27 44 43
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Figure 1. Function evaluations profile.
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Figure 2. Gradient evaluations profile.
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Figure 3. CPU time profile.

5. Conclusion

In this article, a modified quadratic hybridization
of Polak–Ribière–Polyak and Fletcher–Reeves
conjugate gradient method (βS

k ) was presented.
Its global convergence under the strong Wolfe line
search conditions was also established. The βS

k

method presented was tested on a number of un-
constrained problems that have been extensively
used in the literature and compared to the original
quadratic hybridization of Polak–Ribière–Polyak
and Fletcher–Reeves conjugate gradient method

β
HQ−
k . The numerical results show that this pro-

posed modification has a positive effect on the

performance of β
HQ−
k . However, the numeri-

cal results from this study show that further re-
search to improve the efficiency and effectiveness

of βHQ−
k and other conjugate gradient hybrids is

still needed. A number of hybrid conjugate gradi-
ent methods have been proposed in the literature
but there are many problems that are currently
not properly handled by these methods, hence the
need for more research in this field.
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1. Introduction

Neutral functional-differential equations with pro-
portional delays represent a specific form of delay
differential equations. Such equations arise in var-
ious fields of science and engineering and play a
significant role in the mathematical modeling of
real-world phenomena [1]. Clearly, most of these
equations cannot be solved with well-known exact
methods. For this reason, it is necessary to design
efficient numerical treatment to approximate so-
lutions. Ishiwata et al. used the rational approx-
imation method and the collocation method to
obtain numerical solutions of NFDEs with pro-
portional delays [2,3]. Hu et al. applied linear
multi step methods to obtain numerical solutions
for NFDEs [4]. Wang et al. obtained approximate
solutions for NFDEs by continuous Runge-Kutta
methods and one-leg-θ method [5-7]. Chen and
Wang applied the variational iteration method
for solving NFDEs with proportional delays [8].
Biazar and Ghanbari applied the homotopy per-
turbation method to obtain numerical solution of
NFDEs with proportional delays [9] and so on
[10,11].

Homotopy analysis method (HAM) is proposed
by Liao [12,13]. This method has been success-
fully employed to handle a wide variety of sci-
entific and engineering applications. Alomari et
al. used modified HAM for solution of delay dif-
ferential equation in [14]. Kumar and Rashidi
applied fractional homotopy analysis transform
method to obtain approximate analytical solu-
tion of nonlinear homogeneous and nonhomoge-
neous time-fractional gas dynamics equations in
[15]. Abbasbandy employed HAM to find a fam-
ily of travelling-wave solutions of the Kawahara
equation in [16]. Jafari and Seifi used HAM for so-
lution of linear and nonlinear fractional diffusion-
wave equation in [17]. Sakar and Erdogan applied
the HAM and Adomian’s decomposition method
for solving the time-fractional Fornberg-Whitham
equation in [18]. HAM is different from the per-
turbation methods it provides the convenient way
to control and adjust the convergence region and
convergence rate of the series solution. However,
for some type of auxiliary operator, in other words
some type of base functions, it is generally time-
consuming to get high order approximation, and
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very large terms appearing in high order approx-
imation [19]. The homotopy-series solution is not
only dependent upon t but also the convergence-
control parameter ~. Convergence-control param-
eter ~ which supplies us a convenient way to guar-
antee the convergence of homotopy-series solu-
tion. When the approximations contain unknown
convergence-control parameters and other physi-
cal parameters, it is time-consuming to compute
the square residual error at high-order of approx-
imations. To avoid the time-consuming calcula-
tion, we will employ averaged square residual er-
ror function [19,20].

The aim of this paper is to extend the homotopy
analysis method with residual error function to
obtain the numerical solution of the following neu-
tral functional-differential equations with propor-
tional delays [8,9],

(u(t) + a(t)u(pnt))
(n) =

n−1
∑

k=0

bk(t)u
(k)(pkt)

+ βu(t) + f(t), t ≥ 0 (1)

with the initial conditions

n−1
∑

k=0

ciku
(k) (0) = λi, i = 0, 1, ..., n− 1. (2)

Here, a(t) and bk(t), (k = 0, 1, ..., n− 1) are given
analytical functions, and β, pk, cik, λi denote
given constant with 0 < pk < 1, (k = 0, 1, ..., n).

This paper is organized as follows: In Section
2, homotopy analysis method with residual error
function is presented. Section 3 is devoted to the
convergence analysis of the method. Section 4
contains numerical comparisons between the re-
sults obtained by the homotopy analysis method
in this work and some existing methods. Finally,
concluding remarks are given in the last section.

2. Homotopy analysis method with

residual error function

We consider the following nonlinear differential
equation

N [u(t)] = (u(t) + a(t)u(pnt))
(n) − βu(t)

−
n−1
∑

k=0

bk(t)u
(k)(pkt)− f(t) = 0 (3)

where, N is a nonlinear differential operator, t

denotes independent variable, u (t) is an unknown

function. By means of generalizing the traditional
homotopy method, Liao [12] constructs the so-
called zero-order deformation equation

(1− p)L[φ(t; p)− u0(t)] = p~H(t)N [φ(t; p)] (4)

here, p ∈ [0, 1] is the embedding parameter, ~ 6= 0
is a non-zero auxiliary parameter, H (t) 6= 0 is
non-zero auxiliary function, L is an auxiliary lin-
ear operator. u0 (t) is the initial guess of u (t) and
φ (t; p) is unknown function, respectively. It is im-
portant that one has great freedom to choose aux-
iliary things such as ~ and L in homotopy analysis
method. Obviously, when p = 0 and p = 1 , it
holds

φ (t; 0) = u0 (t) , φ (t; 1) = u (t) , (5)

respectively. Thus, as p increases from 0 to 1,
the solution φ (t; p) varies from the initial guesses
u0 (t) to the solution u (x, t). Expanding φ (t; p)
in Taylor series with respect to p, we have

φ (t; p) = u0 (t) +
∞
∑

m=1

um (t) pm, (6)

where

um (t) =
1

m!

∂mφ (t; p)

∂pm
|p=0 . (7)

If the auxiliary linear operator, the initial guess,
the auxiliary operator ~, and the auxiliary func-
tions are so properly chosen, then the series Eq.(6)
converges at p = 1 and

φ (t; 1) = u0 (t) +
∞
∑

m=1

um (t) , (8)

which must be one of the solutions of the original
nonlinear equations, as proved by Liao [12]. Ac-
cording to Eq.(7), the governing equations can be
deduced from zeroth-order deformation equation
Eq.(4).
Define the vector

−→un = {u0 (t) , u1 (t) , ..., un (t)} . (9)

Differentiating Eq.(4)m-times with respect to the
embedding parameter p and then setting p =
0 and finally dividing them by m!, we obtain
the mth-order deformation equation, with the as-
sumption H (t) = 1,
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L [um (t)− χmum−1 (t)] = ~Rm(−→u m−1), (10)

where,

Rm(−→u m−1) =
∞
∑

m=1

1

(m− 1)!

∂m−1N [φ(t; p)]

∂pm−1
|p=0

and

χm =

{

0, m ≤ 1,
1, m > 1.

The mth-order approximation series solution is
given as

u (t) =
m
∑

k=0

uk (t). (11)

It is clear from Eq.(11) that u (t) contains un-
known convergence-control parameter ~ which de-
termine the convergence region and rate of the
homotopy-series solution.

2.1. Selection of optimal value of ~ with

residual error function

As given by Liao [19], at the mth-order of approx-
imation, one can define the exact square residual
error as,

∆m =

∫

Ω

(

N

(

m
∑

i=0

ui (t)

))2

dt. (12)

Here, ∆m contains ~ unknown convergence-
control parameter. For mth-order approximation,
optimal values of the convergence-control param-
eter ~ is given by the minimum of ∆m, namely

d∆m

d~
= 0. (13)

However, it is proven by Liao [19] that the exact
residual error ∆m defined by Eq.(13) needs too
much CPU time to calculate even if the order of
approximation is not very high. Thus, to greatly
decrease the CPU time, we use here the so-called
averaged square residual error

√
Em defined by

Em =
1

n+ 1

n
∑

j=0

(

N

(

m
∑

i=0

ui

(

j

n
, ~

)

))2

. (14)

3. Convergence analysis and error

estimate

In this section we present convergence analysis
and error estimate for our method.

Theorem 1. If the homotopy series Eq.(8) con-

verges, then
∞
∑

m=1
Rm(−→u m−1(t)) = 0.

Theorem 2. If the homotopy series Eq.(8) con-
verges, it must be the solution of original nonlin-
ear Eq.(3).

The proofs of Theorem 1. and Theorem 2. can
be found in [12].

Theorem 3. Let the solution components un (t)
be defined in Banach space (C[0, 1], ‖.‖). Then
the series solution

∑∞
n=0 un(t) defined in Eq.(11)

converges to the solution of Eq.(3), if ∃ 0 < γ < 1
such that ‖un+1‖ ≤ γ‖un‖, ∀n ≥ n0, for some
n0 ∈ N .

Proof. Assume that (C [0, 1] , ‖.‖) is the Banach
space, the space of all continuous functions on
[0, 1]. Define that {Sn} is the sequence of partial
sums of the series Eq.(11) as,



























S0 = u0(t),
S1 = u0(t) + u1(t),
S2 = u0(t) + u1(t) + u2(t),
...
Sn = u0(t) + u1(t) + u2(t) + ...+ un(t).

We need to show that {Sn}∞n=0 is a Cauchy se-
quence in Banach space (C[0, 1], ‖.‖). For this
purpose, we consider,

‖Sn+1 − Sn‖ = ‖un+1(t)‖
≤ γ ‖un (t)‖
≤ γ2 ‖un−1(t)‖
≤ ... ≤ γn+1 ‖u0 (t)‖ . (15)

For every, n,m ∈ N , n ≥ m, by using Eq.(15)
and triangle inequality successively, we have,

‖Sn − Sm‖ = ‖(Sn − Sn−1) + . . .+ (Sm+1 − Sm)‖
≤ ‖(Sn − Sn−1)‖+ ‖(Sn−1 − Sn−2)‖
+ ...+ ‖(Sm+1 − Sm)‖
≤ γn‖u0(t)‖+ γn−1‖u0(t)‖
+ ...+ γm+1‖u0(t)‖

=
1− γn−m

1− γ
γm+1‖u0(t)‖. (16)



Numerical solution of neutral functional-differential equations with proportional delays 189

Since 0 < γ < 1, we have 1− γn−m < 1; then,

‖Sn − Sm‖ ≤ γm+1

1− γ
max

∀t∈[0,1]
‖u0 (t)‖ .

Since u0 (t) is bounded,

lim
n,m→∞

‖Sn − Sm‖ = 0.

Therefore, {Sn}∞n=0 is a Cauchy sequence in the
Banach space (C[0, 1], ‖.‖), so the series solution
defined in Eq.(11), converges. This completes the
proof. �

Theorem 4. Assume that the series solution
∑∞

n=0 un(t) defined in Eq.(11), is convergent
to the solution u(t). If the truncated series
∑m

n=0 un(t) is used as an approximation to the so-
lution u(t) of Eq.(3), then the maximum absolute
truncated error is estimated as,

∥

∥

∥

∥

∥

u (t)−
m
∑

n=0

un (t)

∥

∥

∥

∥

∥

≤ γm+1

(1− γ)
‖u0 (t)‖ . (17)

Proof. From Theorem 3. and Eq.(16), we have

‖Sn − Sm‖ =
1− γn−m

1− γ
γm+1 ‖u0 (t)‖ ,

for n ≥ m. Now, as n → ∞ then Sn → u (t). So,

‖u (t)− Sm‖ ≤ γm+1

(1− γ)
‖u0 (t)‖ .

Since 0 < γ < 1, we have 1−γn−m < 1. Herewith
the above inequality becomes,

∥

∥

∥

∥

∥

u (t)−
m
∑

n=0

un (t)

∥

∥

∥

∥

∥

≤ γm+1

(1− γ)
‖u0 (t)‖ . (18)

This completes the proof. �

Remark 1. If we define for every j ∈ N ∪ {0},
the parameters,

γj =

{

‖uj+1‖
‖uj‖

, ‖uj‖ 6= 0

0, ‖uj‖ = 0

then the solution
∑∞

n=0 un(t) of Eq.(3) converges
to an exact solution u(t), when 0 ≤ γj < 1, ∀j ∈
N ∪ {0}. Moreover, as stated in Theorem 4., the
maximum absolute truncation error is estimated
to be,

∥

∥

∥

∥

∥

u (t)−
∞
∑

n=0

un(t)

∥

∥

∥

∥

∥

≤ 1

1− γ
γi+1 ‖u0(t)‖ ,

where

γ = max {γj , j = 0, 1, ..., i}.

4. Numerical examples

Now, we apply the homotopy analysis method
with residual error function which presented in
Section 2-3 to some NFDEs with proportional de-
lay.

Example 1. We consider the following first-
order NFDE with proportional delay [8,9]:

u′(t) = −u(t) +
1

2
u(

t

2
) +

1

2
u′(

t

2
), 0 ≤ t ≤ 1, (19)

with initial condition,

u (0) = 1. (20)

The exact solution is u (t) = exp (−t) [8].

We select auxiliary linear operator,

L (φ (t; p)) =
dφ (t; p)

dt
, (21)

with property

L (c1) = 0, (22)

in which c1 is an integral constant to be deter-
mined by initial condition Eq.(20).

Furthermore, Eq.(19) suggest that we define a
nonlinear operator as

N [φ(t; p)] =
dφ(t; p)

dt
+ φ(t; p)

− 1

2
φ(

t

2
; p)− 1

2

dφ( t2 ; p)

dt
. (23)

From mth-order deformation equation we can ob-
tain following components,

u1 (t) =
1

2
~t,

u2 (t) =
1

2
~t+

3

16
~
2t2 +

1

4
~
2t,

...

Then the solution is,

u (t) = u0 (t) +
n
∑

m=1

um (t), (24)
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where n is the number of terms.

We define the following residual error function,

r7(t, ~) =
7
∑

m=1

u′m(t, ~) +
7
∑

m=1

um(t, ~)

− 1

2

7
∑

m=1

um(
t

2
, ~)

− 1

2

7
∑

m=1

u′m(t, ~), (25)

for obtaining optimal value of ~. Figure 1(b)
shows averaged square residual error function for
the 7th-order approximation, i.e.,

√

Em =





1

201

200
∑

j=0

r7

(

j

200
, ~

)2




1/2

(26)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.2), and u′′ (0.2) in Figure 1(a). It ap-
pears that ~ should at least lie within the inter-
val [−2,−1]. For the best possible value within
this region, the averaged square residual error at
the 7th-order approximation was evaluated from
Eq.(26) which gives rise to the optimal value ~

of ~ = -1.18613, resulting in a averaged square
residual error 4.27 × 10−4. For 10th-order ap-
proximation we found ~ = −1.12058 and averaged
square residual error 5.20 × 10−5. The accuracy
is improved by optimal choice of ~. In Table 1,
we compare the absolute errors of the homotopy
analysis method (n = 7 and n = 10) with those
of the Runge-Kutta method (R-K) of [1,8], varia-
tional iteration method (VIM) [8] with ni = 7 and
the one-leg θ method [5,6] with θ = 0.8, where
h = 0.01 and homotopy perturbation method
(HPM) [9] with n = 7.

Table 1. Comparison of absolute errors for Example 1.

t R-K [8] One-leg-θ [8] VIM [8] HPM [9] HAM (n = 7) HAM (n = 10)

0.1 4.55E-4 2.57E-3 7.43E-4 6.73E-4 1.59E-4 2.32E-5
0.2 8.24E-4 8.86E-3 1.42E-3 1.16E-3 2.74E-4 4.00E-5
0.3 1.12E-3 1.72E-2 2.02E-3 1.50E-3 3.54E-4 5.18E-5
0.4 1.33E-3 2.66E-2 2.58E-3 1.73E-3 4.08E-4 5.97E-5
0.5 1.52E-3 3.63E-2 3.07E-3 1.86E-3 4.39E-4 6.44E-5
0.6 1.66E-3 4.58E-2 3.52E-3 1.94E-3 4.53E-4 6.69E-5
0.7 1.75E-3 5.47E-2 3.93E-3 1.95E-3 4.52E-4 6.75E-5
0.8 1.81E-3 6.29E-2 4.30E-3 1.93E-3 4.34E-4 6.68E-5
0.9 1.84E-3 7.02E-2 4.64E-3 1.89E-3 3.96E-4 6.52E-5
1.0 1.85E-3 7.66E-2 4.94E-3 1.82E-3 3.32E-4 6.30E-5

(a) Sub-figure 1 (b) Sub-figure 2

Figure 1. ~ curves for 7th-order of approximation of Example 1. (a) and 7th-order averaged
square residual error for Example 1. (b).
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Example 2. Consider the second-order NFDE
with proportional delay [8,9]:

u′′(t) =
3

4
u(t) + u(

t

2
) + u′(

t

2
) +

1

2
u′′(

t

2
)

− t2 − t+ 1, 0 ≤ t ≤ 1, (27)

with initial conditions,

u (0) = u′ (0) = 0, (28)

which has the exact solution u (t) = t2 [8].

We select auxiliary linear operator,

L (φ (t; p)) =
d2φ (t; p)

dt2
, (29)

with property

L (c1 + c2t) = 0, (30)

in which c1 and c2 are integral constants to be
determined by initial condition Eq.(28).
Furthermore, Eq.(27) suggest that we define a
nonlinear operator as

N [φ(t; p)] =
d2φ(t; p)

dt2
− 3

4
φ(t; p)− φ(

t

2
; p)

− dφ( t2 ; p)

dt
− 1

2

d2φ( t2 ; p)

dt2

+ t2 + t− 1. (31)

Frommth-order deformation equation, we can ob-
tain following components,

u1 (t) =
1

12
~t4 +

1

6
~t3 − 1

2
~t2,

u2 (t) =
1

12
~t4 +

1

6
~t3 − 1

2
~t2 − 13

5760
~
2t6

− 3

320
~
2t5 +

5

48
~
2t4 +

5

24
~
2t3 − 1

4
~
2t2,

...

We define the following residual function,

r6(t, ~) =
6
∑

m=1

u′′m(t, ~)− 3

4

6
∑

m=1

um(t, ~)

−
6
∑

m=1

um(
t

2
, ~)−

6
∑

m=1

u′m(
t

2
, ~)

− 1

2

6
∑

m=1

u′′m(
t

2
, ~) + t2 + t− 1, (32)

for obtaining optimal value of ~. Figure 2(b)
shows averaged square residual error function for
the 6th-order approximation, i.e.,

√

Em =





1

501

500
∑

j=0

r6

(

j

500
, ~

)2




1/2

(33)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.1), and u′′ (0.1), in Figure 2(a). It
appears that ~ should at least lie within the in-
terval [−2,−1]. For the best possible value within
this region, the averaged square residual error at
the 6th-order approximation was evaluated from
Eq.(33) which gives rise to the optimal value ~ of
~ = -1.49346, resulting in a averaged square resid-
ual error 8.16× 10−4. For 10th-order approxima-
tion we found ~ = −1.45885 and averaged square
residual error 5.93 × 10−6. In Table 2, we com-
pare the absolute errors of the homotopy analysis
method (n = 6 and n = 10) with those of the
Runge-Kutta method of [1,8], variational itera-
tion method [8] with ni = 6 and the one-leg θ

method [5,6] with θ = 0.8, where h = 0.01 and
homotopy perturbation method [9] with n = 6.

Example 3. Consider the third-order neutral
functional differential equation with proportional
delay [8,9]:

u′′′(t) = u(t) + u′(
t

2
) + u′′(

t

3
) +

1

2
u′′′(

t

4
)

− t4 − t3

2
− 4

3
t2 + 21t, 0 ≤ t ≤ 1 (34)

with initial conditions,

u (0) = u′ (0) = u′′ (0) = 0, (35)

which has the exact solution u (t) = t4 [8].

We select auxiliary linear operator,

L (φ (t; p)) =
d3φ (t; p)

dt3
, (36)

with property

L
(

c1 + c2t+ c3t
2
)

= 0, (37)

in which c1, c2 and c3 are integral constants to be
determined by initial condition Eq.(35). Further-
more, Eq.(34) suggest that we define a nonlinear
operator as

N [φ(t; p)] =
d3φ(t; p)

dt3
− dφ( t2 ; p)

dt
− 1

2

d3φ( t4 ; p)

dt3

− φ(t; p) + t4 +
t3

2
+

4

3
t2 − 21t. (38)
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From mth-order deformation equation we can ob-
tain following components,

u1 (t) =
1

210
~t7 +

1

240
~t6 +

1

45
~t5 − 7

8
~t4,

...

We define the following residual function,

r4(t, ~) =
4
∑

m=1

u′′′m(t, ~)−
4
∑

m=1

um(t, ~)

−
4
∑

m=1

u′m(
t

2
, ~)−

4
∑

m=1

u′′m(
t

3
, ~)

− 1

2

4
∑

m=1

u′′′m(
t

4
, ~) + t4 +

t3

2

+
4

3
t2 − 21t, (39)

for obtaining optimal value of ~. Figure 3(b)
shows averaged square residual error function for
the 4th-order approximation, i.e.,

√

Em =





1

101

100
∑

j=0

r4

(

j

100
, ~

)2




1/2

(40)

with respect to ~ for t ∈ [0,1].

To determine the region of validity of the
convergence-control parameter ~, we plot the val-
ues of u′ (0.2), and u′′ (0.2) in Figure 3(a). It
appears that ~ should at least lie within the in-
terval [−1.5,−0.5]. For the best possible value
within this region, the averaged square residual
error at the 4th-order approximation was evalu-
ated from Eq.(40) which gives rise to the optimal
value ~ of ~ = -1.0932155, resulting in a averaged
square residual error 1.77 × 10−5. For 7th-order
approximation we found ~ = −1.08382 and aver-
aged square residual error 2.05×10−8. In Table 3,
we compare the absolute errors of the homotopy
analysis method (n = 4 and n = 7) with those
of the Runge-Kutta method of [1,8], variational
iteration method [8] with ni = 4 and the one-leg
θ method [5,6] with θ = 0.8, where h = 0.01 and
homotopy perturbation method [9] with n = 5.

Table 2. Comparison of absolute errors for Example 2.

t R-K [8] One-leg-θ [8] VIM [8] HPM [9] HAM (n = 6) HAM (n = 10)
0.1 1.00E-3 6.10E-3 1.67E-4 1.67E-4 2.82E-6 2.25E-8
0.2 2.02E-3 2.58E-2 7.15E-4 7.15E-4 1.22E-5 9.81E-8
0.3 3.07E-3 6.47E-2 1.73E-3 1.72E-3 3.03E-5 2.44E-7
0.4 4.17E-3 1.37E-1 3.30E-3 3.30E-3 6.07E-5 4.90E-7
0.5 5.34E-3 2.81E-1 5.55E-3 5.55E-3 1.08E-4 8.69E-7

(a) Sub-figure 3 (b) Sub-figure 4

Figure 2. ~ curves for 6th-order of approximation of Example 2. (a) and 6th-order averaged
square residual error for Example 2. (b).
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Table 3. Comparison of absolute errors for Example 3.

t R-K [8] VIM [8] HPM [9] HAM (n = 4) HAM (n = 7)
0.1 4.97E-5 2.46E-8 2.50E-8 3.35E-10 1.20E-13
0.2 4.43E-4 4.03E-7 4.09E-7 5.03E-9 2.00E-12
0.3 1.57E-3 2.09E-6 2.12E-6 2.36E-8 1.10E-11
0.4 3.85E-3 6.80E-6 6.90E-6 6.84E-8 3.00E-11
0.5 7.78E-3 1.71E-5 1.73E-5 1.50E-7 1.00E-10
0.6 1.39E-2 3.64E-5 3.69E-5 2.76E-7 2.00E-10
0.7 2.28E-2 6.96E-5 7.06E-5 4.42E-7 5.00E-10
0.8 3.53E-2 1.23E-4 1.24E-4 6.37E-7 7.00E-10
0.9 5.19E-2 2.03E-4 2.06E-4 8.47E-7 1.10E-9
1.0 7.34E-2 3.21E-4 3.25E-4 1.07E-6 1.60E-9

(a) Sub-figure 5 (b) Sub-figure 6

Figure 3. ~ curves for 4th-order of approximation of Example 3. (a) and 4th-order averaged
square residual error for Example 3. (b).

5. Conclusion

In this paper, we have demonstrated the suitabil-
ity of the homotopy analysis method with resid-
ual error function for solving neutral functional-
differential equations with proportional delays.
We obtain high-accuracy approximate solutions
after only a few iterations. The numerical results
also show that the HAM with residual error func-
tion is more effective than Runge-Kutta method,
HPM, VIM and other methods for solving NFDEs
with proportional delays.
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1. Introduction

Analytical or numerical solutions of nonlinear
problems has a crucial importance in all areas of
physical, mathematical and engineering sciences.
Nonlinear equations have interesting characteris-
tics for physical systems and they can be under-
stood by the solution of these problems either an-
alytically or numerically. In general, finding the
analytical solution of nonlinear problems is very
hard or even impossible for some cases, because
of that, numerical solutions of these equations are
particularly important.

In this paper, we will consider coupled KdV
(cKdV) equation which is an important nonlin-
ear evolution equation and given in the following
form

ut − 6auuy − 2bvvy − auyyy = 0,

vt + 3uvy + vyyy = 0, y1 ≤ y ≤ y2
(1)

with the initial conditions

u(y, 0) = f(y), v(y, 0) = g(y), y ∈ [y1, y2]
(2)

and the boundary conditions

u(y1, t) = u(y2, t) = uy(y2, t) = 0 t ∈ [0, T ]

v(y1, t) = v(y2, t) = vy(y2, t) = 0 t ∈ [0, T ] (3)

where a and b are constants [1]. These equations
describe interaction of two long waves with dif-
ferent dispersion relations, it is introduced by Hi-
rota and Satsuma [1] in 1981. A lot of long waves
with weak dispersion such as internal, acoustic,
and planetary waves in geophysical hydrodynam-
ics are related with (cKdV) equation [2, 3].

Because of the importance of cKdV system among
evolution equations it is studied by many re-
searchers both analytically and numerically: A
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difference scheme given in [4] by Zhu for the peri-
odic initial-boundary value problem of the cKdV
Equation. Adomian decomposition method is
used to solve this system by Kaya and Inan [5].
Tanh method is used to find solution of the sys-
tem by Fan [6]. By using the Jacobian elliptic
function expansion approach and Hermite trans-
formation Ma and Zhu [7] have obtained some
new exact solutions of the cKdV equations. cKdV
equation is solved by Assas [8] by using variational
iteration method. Homotopy analysis method is
used by Abbasbandy [9] for solving the general-
ized cKdV system. Analytic solutions of nonlin-
ear cKdV equations are studied by Al-Khaled et
al. [10] by using tanh and the He’s variational it-
eration methods. Mokhtari and Mohammadi [11]
solved a coupled system of nonlinear partial dif-
ferential equations by using Exp-function method.
Ismail solved cKdV system by using finite differ-
ence and finite element methods [12–14]. Halim
et al. [2, 3] introduced a numerical scheme for
general cKdV systems. For the periodic initial
boundary value problem of the cKdV system a fi-
nite difference scheme produced by Wazwaz [15].
By using collocation method and quintic splines
Ismail [16] solved cKdV system. A quadratic
B-spline Galerkin approach applied by Kutluay
and Ucar [17] for solving cKdV system. Ismail
and Ashi [18] used a Petrov-Galerkin method and
product approximation technique to solve numer-
ically the Hirota-Satsuma cKdV equation.

In this paper, for obtaining numerical solutions
of systems (1), we have employed Haar wavelet
method. The paper is organized as follows; In
Section 2, an introduction about Haar wavelets is
given. In Section 3, time and space discretizations
are described and error analysis is given. Numer-
ical results are given in Section 4 and finally the
paper is concluded in Section 5.

2. Haar wavelets

The wavelet methods have been attracting more
attention lately in solving differential equations
numerically since they were first applied to solve
differential equations in early 1990s. Before ex-
plaining the method, we will give basic informa-
tion about Haar wavelets. They are special kind
of wavelets, introduced in 1910 by Alfred Haar
and they are the simplest of all possible wavelets
with compact support. They are box shaped func-
tions, defined in the interval [0,1). Together they
form an orthonormal system in the space of square
interable functions. In order to use these wavelets
in differential equations one must solve the discon-
tinuity problem of Haar wavelets. This problem
was overcome by Chen and Hsiao [19], they used

integral method in which the highest derivative
of the function in the dierential equation is ex-
panded into Haar series. After this achievement
researchers have been using Haar wavelets to ob-
tain numerical solutions of differential equations
because of their simplicity and computational fea-
tures. Recently, many authors have used Haar
wavelet method for solving ordinary and partial
differential equations [20–31]. Especially high or-
der pdes like KdV and fractional coupled KdV
equations are considered in [32, 33].

Here we give an explanation of the method, start-
ing with the definition of the ith Haar wavelet as
follows for x ∈ [0, 1]

hi(x) =











1, for x ∈
[

k
m , k+0.5

m

)

−1, for x ∈
[

k+0.5
m , k+1

m

]

0, elsewhere

(4)

wherem = 2j , j = 0, 1, ..., J and k = 0, 1, ...,m−1
is dilation parameter and translation parameter,
respectively. The index of hi in Eq. (4) can be
found by relation i = m + k + 1. For the lowest
values of m = 1, k = 0, we have i = 2 and the
greatest value of i will be i = 2M = 2J+1; where
J is the maximal resolution of the wavelet. For
i = 1 we have Haar scaling function

h1(x) =

{

1, for x ∈ [0, 1)

0, elsewhere

Any function u(x) ∈ L2[0, 1) can be expanded
into Haar series as

u(x) =
∞
∑

i=1

cihi(x),

where ci can be found by

ci = 2j
∫ 1
0 u(x)hi(x)dx,

i = 2j + k, j ≥ 0, 0 ≤ k < 2j .

Practically, for approximating a square integrable
function u(x) on interval [0, 1) finite terms of Haar
series are needed, hence one may write

u(x) =
2M
∑

i=1

cihi(x) = cT(2M)h(2M)(x),

In the above relation M = 2j , T denotes trans-
pose and
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cT(2M) = [c1, c2, ..., c(2M)]

h(2M)(x) = [h1(x), h2(x), ..., h(2M)(x)]
T .

To employ Haar wavelet method for solving any
order partial differential equation one needs the
following integrals

pi,1(x) =

∫ x

0
hi(x)dx

pi,n+1(x) =

∫ x

0
pi,n(x)dx, n = 1, 2, 3, ...

general form of the integral is given in [34]

pi,α(x) =











































0; for x < ζ1
1
α!

(

x− k
m

)α
; for x ∈ [ζ1, ζ2]

1
α!

[

(

x− k
m

)α − 2 (x− ζ2)
α
]

;

for x ∈ [ζ2, ζ3]
1
α!

[

(

x− k
m

)α − 2 (x− ζ2)
α
+ (x− ζ3)

α
]

;

for x > ζ3

For the first three integrals following expressions
can be found from the above equation

pi,1(x) =











x− ζ1, for x ∈ [ζ1, ζ2]

ζ3 − x, for x ∈ [ζ2, ζ3]

0, elsewhere

(5)

pi,2(x) =























(x−ζ1)2

2 , for x ∈ [ζ1, ζ2]
1

4m2 − (ζ3−x)2

2 , for x ∈ [ζ2, ζ3]
1

4m2 , for x ∈ [ζ3, 1]

0, elsewhere

(6)

pi,3(x) =























(x−ζ1)3

6 , for x ∈ [ζ1, ζ2]
x−ζ2
4m2 − (ζ3−x)3

6 , for x ∈ [ζ2, ζ3]
x−ζ2
4m2 , for x ∈ [ζ3, 1]

0, elsewhere

. (7)

where ζ1, ζ2 and ζ3 defined as follow.

ζ1 =
k

m
, ζ2 =

k + 0.5

m
, ζ3 =

k + 1

m
.

Once the above integrals are computed we can
store the results in memory and we can use them
wherever they are needed.

3. Discretization scheme for cKdV

Since we defined Haar wavelets for x ∈ [0, 1]. We
have to transform the domain of Eq. (1) into
unit interval. By using transformation x = y−y1

L ,
L = y2−y1 the interval y1 ≤ y ≤ y2 can be trans-
formed into the unit interval 0 ≤ x ≤ 1. Hence
Eqs. (1) become

ut −
6

L
auux −

2

L
bvvx −

1

L3
auxxx = 0,

vt +
3

L
uvx +

1

L3
vxxx = 0.

Now we can start to discretization process

3.1. Time discretization for cKdV

To discretize the Eq. (1), we use forward finite
differences for time derivatives and time averages
of the other terms, as follows

un+1 − un

∆t
− 6a

2L
[(uux)n+1 + (uux)n]

− 2b

2L
[(vvx)n+1 + (vvx)n]

− a

2L3
[(uxxx)n+1 + (uxxx)n] = 0,

vn+1 − vn

∆t
+

3

2L
[(uvx)n+1 + (uvx)n]

+
1

2L3
[(vxxx)n+1 + (vxxx)n] = 0

For nonlinear term (uux)n+1, we use un+1 (ux)n+
un (ux)n+1 − (uux)n linearization [35] formula.
We make similar linearization for (vvx)n+1 and
(uvx)n+1. Hence we get

un+1 −
∆t

L
3a [un+1(ux)n + un(ux)n+1]

−∆t

L
b [vn+1(vx)n + vn(vx)n+1]

−a∆t

2L3
(uxxx)n+1 = un +

a∆t

2L3
(uxxx)n,

vn+1 + 3
∆t

2L
[un+1(vx)n + un(vx)n+1]

+
∆t

2L
(vxxx)n+1 = vn − ∆t

2L3
(vxxx)n (8)

with the initial conditions

u0 = f(x), v0 = g(x), x ∈ [0, 1]

and boundary conditions
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un+1(0) = f1(tn+1), un+1(1) = f2(tn+1),

(ux) n+1(1) = f3(tn+1), n = 0, 1, ..., N − 1

vn+1(0) = g1(tn+1), vn+1(1) = g2(tn+1),

(vx) n+1(1) = g3(tn+1), n = 0, 1, ..., N − 1 (9)

where un+1 and vn+1 are the solutions of the Eq.
(8) at the (n+ 1)th time step.

3.2. Space discretization by Haar wavelets

In this subsection we show how to discretize space
derivatives appeared in Eqs. (8), we start with the
highest derivative by Haar wavelets. To do so we
assume

(uxxx)n+1 (x) =
2M
∑

i=1

cihi(x) = cT(2M)h(2M)(x) (10)

where the row vector cT(2M) is constant. Integrat-

ing Eq. (10) with respect to x from 0 to x, we get
the following equation

(uxx)n+1 (x) = (uxx)n+1 (0) +
2M
∑

i=1

cipi,1(x). (11)

In Eq. (11), (uxx)n+1 (0) is unknown so to find it,
we need to integrate Eq. (11) from 0 to 1. After
that, using boundary conditions (9) we get

(ux)n+1 (1)− (ux)n+1 (0) = (uxx)n+1 (0)

+
2M
∑

i=1

cipi,2(1)

(uxx)n+1 (0) =f3(tn+1)− (ux)n+1 (0)

−
2M
∑

i=1

cipi,2(1). (12)

Substituting (12) into Eq. (11) results in the fol-
lowing equation

(uxx)n+1 (x) =
2M
∑

i=1

cipi,1(x) + f3(tn+1)

− (ux)n+1 (0)−
2M
∑

i=1

cipi,2(1).

(13)

Now, if we integrate Eq. (13) from 0 to x we get

(ux)n+1 (x) = (ux)n+1 (0) +
2M
∑

i=1

cipi,2(x)

+ x
(

f3(tn+1)− (ux)n+1 (0)
)

− x

2M
∑

i=1

cipi,2(1). (14)

In Eqs. (12), (13) and (14),(ux)n+1 (0) term is un-
known. So to find (ux)n+1 (0) term we integrate
Eq. (14) from 0 to 1 and use boundary conditions
(9). Therefore we have

(ux)n+1 (0) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

Now by plugging the calculated value of
(ux)n+1 (0) into Eq. (14) we obtain

(ux)n+1 (x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

(1− x)

+x (f3(tn+1)) +
2M
∑

i=1

cipi,2(x)− x

2M
∑

i=1

cipi,2(1)

(15)

Finally, integrating (15) from 0 to x, we obtain

u(x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
2M
∑

i=1

cipi,3(1) +
1

2

2M
∑

i=1

cipi,2(1)

]

×
(

x− x2

2

)

+
x2

2
(f3(tn+1))

+
2M
∑

i=1

cipi,3(x)−
x2

2

2M
∑

i=1

cipi,2(1) + f1(tn+1)

(16)

If we summarize, we have
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(uxxx)n+1
(x) =

2M
∑

i=1

cihi(x)

(uxx)n+1
(x) =

2M
∑

i=1

cipi,1(x) + f3(tn+1)

− 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

−

2M
∑

i=1

cipi,2(1)

(ux)n+1
(x) = 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

(1− x)

+ x (f3(tn+1)) +
2M
∑

i=1

cipi,2(x)

− x

2M
∑

i=1

cipi,2(1)

(u)
n+1

(x) = 2 [f2(tn+1)− f1(tn+1)

−

1

2
f3(tn+1)−

2M
∑

i=1

cipi,3(1)

+
1

2

2M
∑

i=1

cipi,2(1)

]

×

(

x−

x2

2

)

+
x2

2
(f3(tn+1))

+
2M
∑

i=1

cipi,3(x)−
x2

2

2M
∑

i=1

cipi,2(1)

+ f1(tn+1)
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Similarly, we have

(vxxx)n+1
(x) =

2M
∑

i=1

dihi(x)

(vxx)n+1
(x) =

2M
∑

i=1

dipi,1(x) + g3(tn+1)

− 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

−

2M
∑

i=1

dipi,2(1)

(vx)n+1
(x) = 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

(1− x)

+ x (g3(tn+1)) +
2M
∑

i=1

dipi,2(x)

− x

2M
∑

i=1

dipi,2(1)

(v)
n+1

(x) = 2 [g2(tn+1)− g1(tn+1)

−

1

2
g3(tn+1)−

2M
∑

i=1

dipi,3(1)

+
1

2

2M
∑

i=1

dipi,2(1)

]

×

(

x−

x2

2

)

+
x2

2
(g3(tn+1))

+
2M
∑

i=1

dipi,3(x)−
x2

2

2M
∑

i=1

dipi,2(1)

+ g1(tn+1)
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Notice that for our problem

f1(tn+1) = 0, g1(tn+1) = 0

f2(tn+1) = 0, g2(tn+1) = 0

f3(tn+1) = 0, g3(tn+1) = 0

Substituting Eqs. (17), (18) into Eq. (8) and
discretizing the results at the collocation points
xl = l−0.5

2M , l = 1, 2, ..., 2M we found following
system of equations for cKdV system

Al,ici +Bl,idi = un +
a∆t

2L3
(uxxx)n

Dl,ici +El,idi = vn − ∆t

2L3
(vxxx)n (19)

where
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Al,i =

(

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

)(

1−
∆t

L
.3a.(ux)n

)

−

∆t

L
.3a.un

(

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

)

−

a∆t

2L3
hi(xl),

Bl,i =−

∆t

L
.b

([

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

]

(vx)n

)

−

∆t

L
.b

(

vn

[

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

])

,

Dl,i =

[

3
∆t

2L
(vx)n

(

2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

)]

,

El,i =2

[

−pi,3(1) +
1

2
pi,2(1)

](

xl −
x2
l

2

)

+ pi,3(xl)−
x2
l

2
pi,2(1)

+ 3
∆t

2L
un

(

2

[

−pi,3(1) +
1

2
pi,2(1)

]

(1− xl) + pi,2(xl)− xlpi,2(1)

)

+
∆t

2L3
hi(xl).

ci and di are column vectors of wavelet coeffi-
cients and right hand side of Eqs. (19) is column
vectors calculated at xl collocation points for time
steps n. By solving Eqs. (19) simultaneously,
wavelet coefficients ci and di can be calculated
successively.

3.3. Error analysis

Convergence analysis of the Haar wavelets is
taken from [28]. Using the asymptotic expansion
of Eq. (16) as given in [28], one can write

u(x) = 2

[

f2(tn+1)− f1(tn+1)−
1

2
f3(tn+1)

−
∞
∑

i=1

cipi,3(1) +
1

2

∞
∑

i=1

cipi,2(1)

]

×
(

x− x2

2

)

+
x2

2
(f3(tn+1))

+
∞
∑

i=1

cipi,3(x)−
x2

2

∞
∑

i=1

cipi,2(1) + f1(tn+1)

Lemma 1. Suppose that u(x) ∈ L2(R) with
∣

∣

∣

∂u(x)
∂x

∣

∣

∣
≤ K, ∀x ∈ (0, 1); K > 0 and u(x) =

∑∞
i=1 cihi(x). Then |ci| ≤ K2(−3j−2)/2 [37].

Lemma 2. Let u(x) ∈ L2(R) be a continuous
function defined in (0, 1). Then the error norm
at J th level satisfies the following inequality

‖Ej‖2 ≤
K2

12
2−2J

where
∣

∣

∣

∂u(x)
∂x

∣

∣

∣
≤ K, ∀x ∈ (0, 1); K > 0, M is a

positive number related to the J th level resolu-
tion of the wavelet given by M = 2J [37].

Theorem 1. Suppose that u(x) is exact and
u2M (x) is approximate solution of the Eq. (16),
then

‖Ej‖ = ‖u(x)− u2M (x)‖ ≤
√
CK2−3(2J )−1

1− 2−3/2

Proof. See Kumar et al. [28] �

Similar procedure is valid for the convegence of
v2M (x). It is clear from above equation that by
increasing the level of resolution J the error de-
creases.

4. Numerical Experiments

Numerical computations have been done with the
free software package GNU Octave and graphi-
cal outputs were generated by Matplotlib package
[36]. In order to measure the difference between
the numerical and analytic solutions as the simu-
lation proceeds we considered the error norms L2

and L∞ defined by

L2 =

√

√

√

√∆x

2M
∑

i=1

|uexacti − unumi |2

L∞ = max
i

∣

∣uexacti − unumi

∣

∣ .

We also check the conservation laws of the cKdV
equation given by

I1 =

∫ ∞

−∞
udy

I2 =

∫ ∞

−∞

(

u2 +
2

3
bv2

)

dy



A Numerical Treatment Based on Haar Wavelets for Coupled KdV Equation 201

I3 =

∫ ∞

−∞

[

(1 + a)

(

u3 − 1

2
u2y

)

+ b
(

uv2 − v2y
)

]

dy.

The invariants I1,I2 and I3 [18] are monitored at
the computations to check the conservation of the
numerical scheme.

4.1. Single soliton

Firstly, we consider the following initial condi-
tions for the single soliton problem for the Eq.
(1)

u(y, 0) = 2λ2sech2(ξ), v(y, 0) =
1

2
√
w
sech(ξ)

and the boundary conditions (3). This problem
have the following exact solution [1].

u(y, t) = 2λ2sech2(ξ), v(y, t) =
1

2
√
w
sech(ξ)

where

ξ = λ(y − λ2t) +
1

2log(w)
, w =

−b

8(4a+ 1)λ4
.

We solve the problem for ∆t = 0.01, λ = 0.5,
a = −0.125, b = −3 and different values of 2M
at t = 10. Table 1 shows the L2, L∞ error norms
for both u and v for increasing collocation points.
We can easily see from the table that the er-
ror norms decrease with the increasing colloca-
tion points as expected. In Table 2 we tabulated
the error norms with the invariants, for various
values of time. We see that the error norms are
sufficiently small and also the invariants are con-
served with increasing time. Relative changes of
invariants I1, I2 and I3 between t = 0 and t = 10
are found as %9.5362 × 10−6, %8.0525 × 10−9,
%3.5459× 10−6 respectively according to the for-

mula
|It=0

i −It=10
i |

It=0
i

× 100, (i = 1, 2, 3).

Finally, for the single soliton problem we depicted
the evolution of numerical solutions of u and v in
Fig. 1 for a = −0.125, b = −3 and λ = 0.5.
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Figure 1. Numerical solutions for
∆t = 0.01 and 2M = 1024.

4.2. Birth of solitons

We consider Eq. (1) with the initial conditions

u(y, 0) = e−0.01y2 , v(x, 0) = e−0.01y2

and the boundary conditions (3). Computer sim-
ulation of this problem are done for a = 0.5 and
b = −3 in the interval −50 ≤ y ≤ 150. Nu-
merical results of invariants and their comparison
with Petrov-Galerkin method are tabulated in Ta-
ble 4, as it can be seen from the table our results
are agree with Ref. [18]. The positions and am-
plitudes of waves at t = 25 are given in Table
5. It is clearly seen from the table that for first
three wave the positions are same for u and v.
Finally, evolution of numerical solutions between
t = 0 and t = 25 for ∆t = 0.01 and 2M = 2048 is
depicted in Fig. 2.

In Table 3, we give a comparison of our results
with ref. [18] for ∆t = 0.01, λ = 0.5, a = −0.125,
b = −3 and 2M = 1024. Numerical results of
the present method are comparable with the other
methods.
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Table 1. Numerical results for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and different values of
2M at t = 10.

2M L2(u) L2(v) L∞(u) L∞(v)
256 0.000951 0.000327 0.000583 0.000140
512 0.000240 0.000082 0.000147 0.000035
1024 0.000060 0.000021 0.000037 0.000009

Table 2. Numerical results for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and 2M = 1024.

t I1 I2 I3 L2(u) L2(v) L∞(u) L∞(v)
0 2.000000 0.500000 0.112500 0.000000 0.000000 0.000000 0.000000
2 2.000000 0.500000 0.112500 0.000025 0.000009 0.000019 0.000005
4 2.000000 0.500000 0.112500 0.000040 0.000014 0.000028 0.000007
6 2.000000 0.500000 0.112500 0.000050 0.000017 0.000033 0.000008
8 2.000000 0.500000 0.112500 0.000057 0.000019 0.000036 0.000008
10 2.000000 0.500000 0.112500 0.000060 0.000021 0.000037 0.000009

Table 3. A comparison for ∆t = 0.01, λ = 0.5, a = −0.125, b = −3 and 2M = 1024.

t Present Method Petrov-Galerkin [18] Product Approx. Tech. [18]

L∞(u) L∞(v) L∞(u) L∞(v) L∞(u) L∞(v)
2 0.000019 0.000005 0.000015 0.000004 0.000004 0.000005
4 0.000028 0.000007 0.000021 0.000005 0.000008 0.000007
6 0.000033 0.000008 0.000023 0.000006 0.000010 0.000009
8 0.000036 0.000008 0.000024 0.000007 0.000013 0.000012
10 0.000036 0.000009 0.000025 0.000008 0.000014 0.000013
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Figure 2. Numerical solutions for ∆t = 0.01 and 2M = 1024.

Table 4. Numerical results for ∆t = 0.01 and 2M = 2048 at various times.

t I1 I2
Haar Petrov-Galerkin [18] Haar Petrov-Galerkin [18]

0 17.7245385 17.724343 -12.5331414 -12.533142
5 17.7245385 17.723816 -12.5331169 -12.532956
10 17.7245385 17.723352 -12.5325963 -12.530116
15 17.7245385 17.722782 -12.5324374 -12.529239
20 17.7245020 17.722217 -12.5323640 -12.529013
25 17.7245998 17.721734 -12.5306828 -12.528983



A Numerical Treatment Based on Haar Wavelets for Coupled KdV Equation 203

Table 5. Amplitudes and positions of waves and their comparisons for ∆t = 0.01 and 2M =
2048 at t = 25.

Position (y) Amplitude (u) Position (y) Amplitude (v)
First wave 47.7 3.4508 47.7 2.4415
Second wave 32.4 2.4434 32.4 2.7298
Third wave 18.7 1.5601 18.7 1.1046
Fourth wave 7.0 0.6908 6.9 0.5236
Fifth wave -2.8 0.2214 -3.6 0.1809

5. Conclusion

In conclusion, we have applied Haar wavelet
method to coupled KdV equation in this study.
Single soliton and birth of solitons have been used
as test examples to see the efficiency of the Haar
wavelet method. The error norms L2 and L∞

obtained by Haar wavelet method are compared
with the exact solutions and with those numerical
ones available in the literature. The comparisons
of error norms as well as conservation of invari-
ants during simulations clearly indicate that the
present method is both reliable and competitive
with other methods. As a conclusion, the pro-
posed method can safely and quickly be employed
to solve similar coupled partial differential equa-
tions.
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1. Introduction

Let Φ : I ⊆ R → R be a convex mapping defined
on the interval I of real numbers and a, b ∈ I,
with a < b. The following double inequality is well
known in the literature as the Hermite-Hadamard
inequality [13]:

Φ

(

a+ b

2

)

(1)

≤
1

b− a

∫ b

a

Φ (x) dx

≤
Φ (a) + Φ (b)

2
.

The most well-known inequalities related to the
integral mean of a convex function are the Her-
mite Hadamard inequalities or its weighted ver-
sions, the so-called Hermite-Hadamard-Fejér in-
equalities (see, [14], [19], [21]). In [11], Fejer gave
a weighted generalizatinon of the inequalities (1)
as the following:

Theorem 1. Let Φ : [a, b] → R be a convex func-
tion. Then the inequality hold:

Φ

(

a+ b

2

)

b
∫

a

Ψ(x) dx

≤

b
∫

a

Φ (x)Ψ (x) dx

≤
Φ (a) + Φ (b)

2

b
∫

a

Ψ(x) dx,

where Ψ : [a, b] → R is nonnegative, integrable

and symmetric to (a+b)
2 .

In the following, we will give some necessary def-
initions and mathematical preliminaries of frac-
tional calculus theory which are used further in
this paper. More details, one can consult [12,18].

Definition 1. ( [4, 12, 18]) Let Φ ∈ L1([a, b]).
The Riemann-Liouville integrals Jα

a+Φ and Jα
b−Φ

of order α > 0 with a ≥ 0 are defined by
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Jα
a+Φ(x) =

1

Γ(α)

∫ x

a

(x− t)α−1Φ(t)dt, x > a

and

Jα
b−Φ(x) =

1

Γ(α)

∫ b

x

(t− x)α−1Φ(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function
and J0

a+Φ(x) = J0
b−Φ(x) = Φ(x).

Meanwhile, in [24], Sarikaya et al. gave the fol-
lowing interesting Riemann-Liouville integral in-
equalities of Hermite-Hadamard-type:

Theorem 2. Let K : [a, b] → R be a positive
function with 0 ≤ a < b and K ∈ L1([a, b]). If K
is a convex function on [a, b], then the following
inequalities for fractional integrals hold:

K

(

a+ b

2

)

(2)

≤
Γ(α+ 1)

2 (b− a)α
[

Jα
a+K(b) + Jα

b−K(a)
]

≤
K (a) +K (b)

2

with α > 0.

Later, in [14], Iscan presented the following
Hermite-Hadamard-Fejer type inequalities for
convex functions via Riemann-Liouville fractional
integrals:

Theorem 3. Let K : [a, b] → R be convex func-
tion with 0 ≤ a < b and K ∈ (L1 [a, b]). If
L : [a, b] → R is nonnegative, integrable and sym-
metric with respect to a+b

2 , then the following in-
equalities for fractional integrals hold:

K

(

a+ b

2

)

[

Jα
a+L(b) + Jα

b−L(a)
]

(3)

≤
[

Jα
a+K(b) + Jα

b−K(a)
]

≤
K (a) +K (b)

2

[

Jα
a+L(b) + Jα

b−L(a)
]

with α > 0.

Let us now consider a bi-demensional interval
which will be used throughout this paper. So,
we define ∆ =: [a, b]× [c, d] in R

2 with a < b and
c < d. A mapping Φ : ∆ → R is said to be convex
on the co-ordinates ∆ if the following inequality:

Φ(tx+ (1− t) z, ty + (1− t) r)

≤ tΦ (x, y) + (1− t) Φ (z, r)

holds, for all (x, y) , (z, r) ∈ ∆ and t ∈ [0, 1] .
A function Φ : ∆ → R is said to be convex on the
co-ordinates on ∆ if the partial mappings Φy :
[a, b] → R, Φy (u) = Φ (u, y) and Φx : [c, d] → R,

Φx (v) = Φ (x, v) are convex where defined for all
x ∈ [a, b] and y ∈ [c, d] (see, [10]).

A formal definition for co-ordinated convex func-
tions may be stated as follows:

Definition 2. ( [10]) A function Φ : ∆ → R

will be called co-ordinated convex on ∆, for all
t, s ∈ [0, 1] and (x, y), (u, r) ∈ ∆, if the following
inequality holds:

Φ(tx+ (1− t) y, su+ (1− s) r)

≤ tsΦ(x, u) + s(1− t)Φ(y, u) (4)

+t(1− s)Φ(x, r) + (1− t)(1− s)Φ(y, r).

Clearly, every convex function is a co-ordinated
convex. Furthermore, there exists a co-ordinated
convex function which is not convex, (see, [10]).

For several recent results concerning Hermite-
Hadamard’s inequality for some convex function
on the co-ordinates on a rectangle of R2, we refer
the reader to ( [1]- [3], [10], [15]- [17], [20], [22],
[27]).

In [10], Dragomir established the following
inequality of Hermite-Hadamard-type for co-
ordinated convex mapping on a rectangle of R2

similar to (1).

Theorem 4. Suppose that Φ : ∆ → R is co-
ordinated convex on ∆. Then one has the inequal-
ities:
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Φ

(

a+ b

2
,
c+ d

2

)

≤
1

2

[

1

b− a

∫ b

a

Φ

(

x,
c+ d

2

)

dx

+
1

d− c

∫ d

c

Φ

(

a+ b

2
, y

)

dy

]

≤
1

(b− a) (d− c)

∫ b

a

∫ d

c

Φ (x, y) dydx (5)

≤
1

4

[

1

b− a

∫ b

a

Φ (x, c) dx+
1

b− a

∫ b

a

Φ (x, d) dx

+
1

d− c

∫ d

c

Φ (a, y) dy +
1

d− c

∫ d

c

Φ (b, y) dy

]

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4
.

The above inequalities are sharp.

Later, in [27], Sarikaya and Yaldiz proved inequal-
ities of the Hermite-Hadamard type by using the
definition of co-ordinated convex functions for L-
Lipschitzian mappings.

In [3], a Hermite-Hadamard-Fejer type inequality
for co-ordinated convex mappings is established
as follows:

Theorem 5. Let Φ : ∆ → R be a co-ordinated
convex function. Then the following double in-
equality hold:

Φ

(

a+ b

2
,
c+ d

2

)

≤

b
∫

a

d
∫

c

Φ (x, y) p (x, y) dydx

b
∫

a

d
∫

c

p (x, y) dydx

(6)

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4
,

where p : ∆ → R is positive, integrable and sym-
metric with respect to x = a+b

2 and y = c+d
2 on

the co-ordinates on ∆. The above inequalities are
sharp.

Because of the wide application of Hermite
Hadamard type inequalities, Fejer type inequal-
ities and Riemann-Liouville integrals for two-
variable functions, many authors extend their
studies to Hermite Hadamard type inequalities
and Fejer type inequalities involving Riemann-
Liouville integrals not limited to integer integrals.

Definition 3. ( [12, 18]) Let Φ ∈ L1 (∆) .

The Riemann-Liouville integrals J
α,β
a+,c+, J

α,β
a+,d−,

J
α,β
b−,c+ andJα,β

b−,d− of order α, β > 0 with a, c ≥ 0

are defined by

J
α,β
a+,c+Φ(x, y) =

1

Γ(α)Γ(β)

∫ x

a

∫ y

c

(x− t)
α−1

(y − s)
β−1

Φ(t, s)dsdt,

x > a, y > c

J
α,β
a+,d−Φ(x, y) =

1

Γ(α)Γ(β)

∫ x

a

∫ d

y

(x− t)
α−1

(s− y)
β−1

Φ(t, s)dsdt,

x > a, y < d

J
α,β
b−,c+Φ(x, y) =

1

Γ(α)Γ(β)

∫ b

x

∫ y

c

(t− x)
α−1

(y − s)
β−1

Φ(t, s)dsdt,

x < b, y > c

and

J
α,β
b−,d−Φ(x, y) =

1

Γ(α)Γ(β)

∫ b

x

∫ d

y

(t− x)
α−1

(s− y)
β−1

Φ(t, s)dsdt,

x < b, y < d

respectively. Here, Γ is the Gamma function,

J
0,0
a+,c+Φ(x, y) = J

0,0
a+,d−Φ(x, y)

= J
0,0
b−,c+Φ(x, y) = J

0,0
b−,d−Φ(x, y) = Φ(x, y)

and

J
1,1
a+,c+Φ(x, y) =

∫ x

a

∫ y

c

Φ(t, s)dsdt.

Similar to Definition 1 and Definition 3, we intro-
duce the following fractional integrals:

Jα
a+Φ

(

x,
c+ d

2

)

=
1

Γ(α)

∫ x

a

(x− t)α−1Φ

(

t,
c+ d

2

)

dt, x > a;
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Jα
b−Φ

(

x,
c+ d

2

)

=
1

Γ(α)

∫ b

x

(t− x)
α−1

Φ

(

t,
c+ d

2

)

dt, x < b;

J
β
c+Φ

(

a+ b

2
, y

)

=
1

Γ(β)

∫ y

c

(y − s)
β−1

Φ

(

a+ b

2
, s

)

ds, y > c;

J
β
d−Φ

(

a+ b

2
, y

)

=
1

Γ(β)

∫ d

y

(s− y)
β−1

Φ

(

a+ b

2
, s

)

ds, y < d.

It is remarkable that Sarikaya et al.( [26]) and
( [28]) gave the following interesting integral
inequalities of Hermite-Hadamard-type involv-
ing Riemann-Liouville fractional integrals by us-
ing convex functions of 2-variables on the co-
ordinates.

Theorem 6. Let Φ : ∆ → R be co-ordinated
convex on ∆, with 0 ≤ a < b, 0 ≤ c < d and
Φ ∈ L1 (∆) . Then one has the inequalities:

Φ

(

a+ b

2
,
c+ d

2

)

(7)

≤
Γ(α+ 1)Γ(β + 1)

4 (b− a)α (d− c)β

×

[

J
α,β
a+,c+Φ(b, d) + J

α,β
a+,d−Φ(b, c)

+J
α,β
b−,c+Φ(a, d) + J

α,β
b−,d−Φ(a, c)

]

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4
.

For some recent results connected with fractional
integral inequalities, see ( [5]- [9], [23]- [26]).

The main aim of this paper is to establish new
results on Hermite-Hadamard-Fejer type inequal-
ities for co-ordinated convex functions on the rec-
tangle ∆ introduced in the first section of this pa-
per. We will use the Riemann-Liouville integral
operators to prove our main results.

2. Hermite-Hadamard-Fejer type

inequalities for fractional integrals

In this section, using Riemann-Liouville fractional
integral operators, we establish new results on
Hermite-Hadamard-Fejer type inequalities for co-
ordinated convex functions. We present evidence

by using two different methods. We begin by the
following theorem:

Theorem 7. Let Φ : ∆ → R be a co-ordinated
convex function such that Φ ∈ L1 (∆) . If Ψ : ∆ →

R is nonnegative, integrable and symmetric with
respect to a+b

2 , c+d
2 on the co-ordinates, then for

any α, β > 0 with a, c ≥ 0, the following integral
inequalities hold

Φ

(

a+ b

2
,
c+ d

2

)

(8)

×

[

J
α,β

a+c+
Ψ(b, d) + J

α,β

a+d−
Ψ(b, c)

+J
α,β

b−c+
Ψ(a, d) + J

α,β

b−d−
Ψ(a, c)

]

≤
1

4

[

J
α,β

a+c+
(ΦΨ) (b, d) + J

α,β

a+d−
(ΦΨ) (b, c)

+J
α,β

b−c+
(ΦΨ) (a, d) + J

α,β

b−d−
(ΦΨ) (a, c)

]

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4

×

[

J
α,β

a+c+
Ψ(b, d) + J

α,β

a+d−
Ψ(b, c)

+J
α,β

b−c+
Ψ(a, d) + J

α,β

b−d−
Ψ(a, c)

]

.

Proof. Since Φ is a convex function on ∆, then,
for all (t, s) ∈ [0, 1]× [0, 1] , we can write:

Φ

(

a+ b

2
,
c+ d

2

)

(9)

= Φ

(

ta+ (1− t)b+ (1− t)a+ tb

2
,

sc+ (1− s)d+ (1− s)c+ sd

2

)

≤
1

4
[Φ (ta+ (1− t)b, sc+ (1− s)d)

+Φ (ta+ (1− t)b, (1− s)c+ sd)

+Φ ((1− t)a+ tb, sc+ (1− s)d)

+Φ ((1− t)a+ tb, (1− s)c+ sd)] .

Multiplying both sides of (9) by

tα−1sβ−1Ψ((1− t)a+ tb, (1− s)c+ sd) , and in-
tegrating the resulting inequality with respect to
(t, s) on [0, 1]× [0, 1], we obtain
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Φ

(

a+ b

2
,
c+ d

2

)

×

1
∫

0

1
∫

0

tα−1sβ−1Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt

≤
1

4

∫ 1

0

∫ 1

0

tα−1sβ−1 [Φ (ta+ (1− t)b, sc+ (1− s)d)

+Φ (ta+ (1− t)b, (1− s)c+ sd)

+Φ ((1− t)a+ tb, sc+ (1− s)d)

+Φ ((1− t)a+ tb, (1− s)c+ sd)]

×Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt

=
1

4

1
∫

0

1
∫

0

tα−1sβ−1Φ(ta+ (1− t)b, sc+ (1− s)d)

×Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt

+

1
∫

0

1
∫

0

tα−1sβ−1Φ(ta+ (1− t)b, (1− s)c+ sd)

×Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt

+

1
∫

0

1
∫

0

tα−1sβ−1Φ((1− t)a+ tb, sc+ (1− s)d)

×Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt

+

1
∫

0

1
∫

0

tα−1sβ−1Φ((1− t)a+ tb, (1− s)c+ sd)

×Ψ((1− t)a+ tb, (1− s)c+ sd) dsdt.

Setting x = tb + (1− t) a, y = sd + (1− s) c and
dx = (b− a) dt, dy = (d− c) ds, we obtain:

1

(b− a)α (d− c)β
Φ

(

a+ b

2
,
c+ d

2

)

×

b
∫

a

d
∫

c

(x− a)α−1 (y − c)β−1Ψ(x, y) dydx

≤
1

4 (b− a)α (d− c)β

×

{
∫ b

a

∫ d

c

(x− a)α−1 (y − c)β−1

×Φ (a+ b− x, c+ d− y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1

×Φ (a+ b− x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ (x, c+ d− y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (x, y)Ψ (x, y) dydx

}

=
1

4 (b− a)α (d− c)β

×

{
∫ b

a

∫ d

c

(b− x)α−1 (y − c)β−1

×Φ (x, c+ d− y)Ψ (a+ b− x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ (x, y)Ψ (a+ b− x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ (x, c+ d− y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (x, y)Ψ (x, y) dydx

}
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=
1

4 (b− a)α (d− c)β

{
∫ b

a

∫ d

c

(b− x)α−1 (y − c)β−1

×Φ (x, c+ d− y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ (x, c+ d− y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (x, y)Ψ (x, y) dydx

}

.

Therefore,

Γ (α) Γ (β)

(b− a)α (d− c)β
Φ

(

a+ b

2
,
c+ d

2

)

×

[

J
α,β

a+c+
Ψ(b, d) + J

α,β

a+d−
Ψ(b, c)

+J
α,β

b−c+
Ψ(a, d) + J

α,β

b−d−
Ψ(a, c)

]

≤
Γ (α) Γ (β)

4 (b− a)α (d− c)β

×

[

J
α,β

a+c+
(ΦΨ) (b, d) + J

α,β

a+d−
(ΦΨ) (b, c)

+J
α,β

b−c+
(ΦΨ) (a, d) + J

α,β

b−d−
(ΦΨ) (a, c)

]

.

The first inequality of (8) is thus proved.
We shall prove the second inequality of (8): Since
f is a convex function on ∆, then, for all (t, s) ∈
[0, 1]× [0, 1], it yields

Φ (ta+ (1− t)b, sc+ (1− s)d)

+Φ (ta+ (1− t)b, (1− s)c+ sd)

+Φ ((1− t)a+ tb, sc+ (1− s)d)

+Φ ((1− t)a+ tb, (1− s)c+ sd) (10)

≤ Φ(a, c) + Φ(b, c) + Φ(a, d) + Φ(b, d).

Then, multiplying both sides of (10) by
tα−1sβ−1Ψ(tb+ (1− t) a, sd+ (1− s) c) and inte-
grating the resulting inequality with respect to
(t, s) over [0, 1]× [0, 1], we get

∫ 1

0

∫ 1

0
tα−1sβ−1 [Φ (ta+ (1− t)b, sc+ (1− s)d)

+Φ (ta+ (1− t)b, (1− s)c+ sd)

+Φ ((1− t)a+ tb, sc+ (1− s)d)

+Φ ((1− t)a+ tb, (1− s)c+ sd)]

×Ψ(tb+ (1− t) a, sd+ (1− s) c) dsdt

≤ [Φ(a, c) + Φ(b, c) + Φ(a, d) + Φ(b, d)]

×

∫ 1

0

∫ 1

0
tα−1sβ−1Ψ(tb+ (1− t) a, sd+ (1− s) c) dsdt.

That is,

1

4

[

J
α,β

a+c+
(ΦΨ) (b, d) + J

α,β

a+d−
(ΦΨ) (b, c)

+J
α,β

b−c+
(ΦΨ) (a, d) + J

α,β

b−d−
(ΦΨ) (a, c)

]

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4

×

[

J
α,β

a+c+
Ψ(b, d) + J

α,β

a+d−
Ψ(b, c)

+J
α,β

b−c+
Ψ(a, d) + J

α,β

b−d−
Ψ(a, c)

]

.

The proof of Theorem 7 is thus achieved. �

Remark 1. In Theorem 7:
(i) If we take α = β = 1, then the inequality (8)
becomes the inequality (6) of Theorem 5.
(ii) If we take Ψ(x, y) = 1, then (8) becomes (7)
of Theorem 6.

We prove also the following result:

Theorem 8. Let Φ : ∆ ⊂ R
2 → R be a co-

ordinated convex function on ∆, with a, c ≥ 0,
α, β > 0 and Φ ∈ L1 (∆) . If Ψ : ∆ → R is non-
negative, integrable and symmetric with respect to
a+b
2 and c+d

2 on the co-ordinates, then we have:

Φ

(

a+ b

2
,
c+ d

2

)

×

[

J
α,β
a+,c+Ψ(b, d) + J

α,β
a+,d−Ψ(b, c)

+J
α,β
b−,c+Ψ(a, d) + J

α,β
b−,d−Ψ(a, c)

]

(11)
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≤ Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
c+Ψ(b, d)

]

+Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
d−Ψ(b, c)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
c+Ψ(a, d)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
d−Ψ(a, c)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
a+Ψ(b, d)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
b−Ψ(a, d)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
a+Ψ(b, c)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
b−Ψ(a, c)

]

≤ 2
[

J
α,β
a+,c+ (ΦΨ) (b, d) + J

α,β
a+,d− (ΦΨ) (b, c)

+J
α,β
b−,c+ (ΦΨ) (a, d) + J

α,β
b−,d− (ΦΨ) (a, c)

]

≤ Jα
a+

[

Φ (b, c) Jβ
c+Ψ(b, d)

]

+Jα
a+

[

Φ (b, d) Jβ
d−Ψ(b, c)

]

+Jα
b−

[

Φ (a, c) Jβ
c+Ψ(a, d)

]

+Jα
b−

[

Φ (a, d) Jβ
d−Ψ(a, c)

]

+J
β
c+

[

Φ (a, d) Jα
a+Ψ(b, d)

]

+J
β
c+

[

Φ (b, d) Jα
b−Ψ(a, d)

]

+J
β
d−

[

Φ (a, c) Jα
a+Ψ(b, c)

]

+J
β
d−

[

Φ (b, c) Jα
b−Ψ(a, c)

]

≤
Φ (a, c) + Φ (a, d) + Φ (b, c) + Φ (b, d)

4

×

[

J
α,β
a+,c+Ψ(b, d) + J

α,β
a+,d−Ψ(b, c)

+J
α,β
b−,c+Ψ(a, d) + J

α,β
b−,d−Ψ(a, c)

]

.

Proof. Since Φ : ∆ → R is convex on the
co-ordinates, it follows that the mapping Fx :

[c, d] → R, Fx(y) = Φ(x, y), is convex on [c, d] and
the mapping Gx : [c, d] → R, Gx(y) = Ψ(x, y) is
nonnegative, integrable and symmetric with re-
spect to c+d

2 , for all x ∈ [a, b]. Then, thanks to
the inequalities (3), we can write

Fx

(

c+ d

2

)

[

J
β
c+Gx(d) + J

β
d−Gx(c)

]

≤ J
β
c+ (FxGx) (d) + J

β
d− (FxGx) (c)

≤
Fx (c) + Fx (d)

2

[

J
β
c+Gx(d) + J

β
d−Gx(c)

]

,

x ∈ [a, b].

That is,

Φ

(

x,
c+ d

2

)

1

Γ(β)

[
∫ d

c

(d− y)β−1Ψ(x, y) dy

+

∫ d

c

(y − c)β−1Ψ(x, y) dy

]

≤
1

Γ(β)

[
∫ d

c

(d− y)β−1Ψ(x, y) Φ (x, y) dy

+

∫ d

c

(y − c)β−1Ψ(x, y) Φ (x, y) dy

]

≤
Φ (x, c) + Φ (x, d)

2

1

Γ(β)

[
∫ d

c

(d− y)β−1Ψ(x, y) dy(12)

+

∫ d

c

(y − c)β−1Ψ(x, y) dy

]

,

for all x ∈ [a, b].

Multiplying both sides of (12) by (b−x)α−1

Γ(α) and
(x−a)α−1

Γ(α) , and integrating with respect to x over

[a, b], respectively, we have

1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx (13)

+
1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx
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≤
1

Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ (x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1Φ (x, y)Ψ (x, y) dydx

]

(14)

≤
1

2Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ (x, c)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1Φ (x, c)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (x, d)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1Φ (x, d)Ψ (x, y) dydx

]

.

and

1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1

×Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx (15)

+
1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1

×Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx

≤
1

Γ (α) Γ(β)
×

[
∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1

×Φ (x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1

×Φ (x, y)Ψ (x, y) dydx]

≤
1

2Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1

×Φ (x, c)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1Φ (x, c)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Φ (x, d)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1Φ (x, d)Ψ (x, y) dydx

]

.

For the mappings Fy : [a, b] → R, Fy(x) = Φ(x, y)
and Gy : [a, b] → R, Gy(x) = Ψ(x, y), we use the
same arguments as before. So, we can state that

1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx (16)

+
1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx

≤
1

Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ (x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Φ (x, y)Ψ (x, y) dydx

]

≤
1

2Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ (a, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Φ (a, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Φ (b, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Φ (b, y)Ψ (x, y) dydx

]

and

1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx (17)

+
1

Γ (α) Γ(β)

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx

≤
1

Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ (x, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1Φ (x, y)Ψ (x, y) dydx

]
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≤
1

2Γ (α) Γ(β)

[
∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ (a, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1Φ (a, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1Φ (b, y)Ψ (x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(y − c)β−1

×Φ (b, y)Ψ (x, y) dydx] .

Adding the inequalities (13)-(17), we can write

Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
c+Ψ(b, d)

]

+Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
d−Ψ(b, c)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
c+Ψ(a, d)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
d−Ψ(a, c)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
a+Ψ(b, d)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
b−Ψ(a, d)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
a+Ψ(b, c)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
b−Ψ(a, c)

]

≤ 2
[

J
α,β
a+,c+ (ΦΨ) (b, d) + J

α,β
a+,d− (ΦΨ) (b, c)

+J
α,β
b−,c+ (ΦΨ) (a, d) + J

α,β
b−,d− (ΦΨ) (a, c)

]

≤ Jα
a+

[

Φ (b, c) Jβ
c+Ψ(b, d)

]

+Jα
a+

[

Φ (b, d) Jβ
d−Ψ(b, c)

]

+Jα
b−

[

Φ (a, c) Jβ
c+Ψ(a, d)

]

+Jα
b−

[

Φ (a, d) Jβ
d−Ψ(a, c)

]

+J
β
c+

[

Φ (a, d) Jα
a+Ψ(b, d)

]

+J
β
c+

[

Φ (b, d) Jα
b−Ψ(a, d)

]

+J
β
d−

[

Φ (a, c) Jα
a+Ψ(b, c)

]

+J
β
d−

[

Φ (b, c) Jα
b−Ψ(a, c)

]

.

These give the second and the third inequalities
in (11).

Now, by using the first inequality in (3), it yields
that

Φ

(

a+ b

2
,
c+ d

2

)

×

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Ψ(x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Ψ(x, y) dydx

]

≤

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx

+

∫ b

a

∫ d

c

(x− a)α−1(d− y)β−1Φ

(

x,
c+ d

2

)

Ψ(x, y) dydx

and

Φ

(

a+ b

2
,
c+ d

2

)

×

[
∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1Ψ(x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1Ψ(x, y) dydx

]

≤

∫ b

a

∫ d

c

(b− x)α−1(d− y)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx

+

∫ b

a

∫ d

c

(b− x)α−1(y − c)β−1

×Φ

(

a+ b

2
, y

)

Ψ(x, y) dydx.

By addition, and using the fact that Ψ is symmet-
ric, we get
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Φ

(

a+ b

2
,
c+ d

2

)

×

[

J
α,β
a+,c+Ψ(b, d) + J

α,β
a+,d−Ψ(b, c)

+J
α,β
b−,c+Ψ(a, d) + J

α,β
b−,d−Ψ(a, c)

]

≤ Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
c+Ψ(b, d)

]

+Jα
a+

[

Φ

(

b,
c+ d

2

)

J
β
d−Ψ(b, c)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
c+Ψ(a, d)

]

+Jα
b−

[

Φ

(

a,
c+ d

2

)

J
β
d−Ψ(a, c)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
a+Ψ(b, d)

]

+J
β
c+

[

Φ

(

a+ b

2
, d

)

Jα
b−Ψ(a, d)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
a+Ψ(b, c)

]

+J
β
d−

[

Φ

(

a+ b

2
, c

)

Jα
b−Ψ(a, c)

]

which gives the first inequality in (11).

Finally, by using the second inequality in (3), we
can state that:

α

2(b− a)α

[
∫ b

a

(b− x)α−1Φ (x, c) dx

+

∫ b

a

(x− a)α−1Φ (x, c) dx

]

≤
Φ (a, c) + Φ (b, c)

2
,

α

2(b− a)α

[
∫ b

a

(b− x)α−1Φ (x, d) dx

+

∫ b

a

(x− a)α−1Φ (x, d) dx

]

≤
Φ (a, d) + Φ (b, d)

2
,

β

2 (d− c)β

[
∫ d

c

(d− y)β−1Φ (a, y) dy

+

∫ d

c

(y − c)β−1Φ (a, y) dy

]

≤
Φ (a, c) + Φ (a, d)

2
,

β

2 (d− c)β

[
∫ d

c

(d− y)β−1Φ (b, y) dy

+

∫ d

c

(y − c)β−1Φ (b, y) dy

]

≤
Φ (b, c) + Φ (b, d)

2
.

By addition, we get the last inequality in (11). �

Remark 2. In Theorem 8, if we take α = β = 1,
then the inequalities (11) become (5).

3. Conclusion

In this paper, we established the Hermite-
Hadamard-Fejer type inequalities for co-
ordinated mappings related results to present new
type of inequalities involving Riemann-Liouville
integral operator. The results presented in this
paper would provide generalizations of those given
in earlier works. The findings of this study have
several significant implications for future applica-
tions.
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1. Introduction

In [16], h(x)-Fibonacci polynomials are defined
by Fh,0(x) = 0, Fh,1(x) = 1 and Fh,n+1(x) =
h(x)Fh,n(x) + Fh,n−1(x) for n ≥ 1. h(x)-Lucas
polynomials are defined by Lh,0(x) = 2, Lh,1(x) =
h(x) and Lh,n+1(x) = h(x)Lh,n(x)+Lh,n−1(x) for
n ≥ 1. Therefore some properties of these poly-
nomials are presented in that paper.

Let p(x) and q(x) be polynomials with real coeffi-
cients, p (x) 6= 0, q (x) 6= 0 and p2 (x)+4q (x) > 0.
In [9], it was defined generalized Fibonacci poly-
nomials Fp,q,n(x) as

Fp,q,n+1(x) = p(x)Fp,q,n(x)

+ q(x)Fp,q,n−1(x), n ≥ 1 (1)

with initial values Fp,q,0(x) = 0, Fp,q,1(x) = 1 and
generalized Lucas polynomials Lp,q,n(x) as

Lp,q,n+1(x) = p(x)Lp,q,n(x)

+ q(x)Lp,q,n−1(x), n ≥ 1 (2)

with the initial values Lp,q,0(x) = 2, Lp,q,1(x) =
p(x). In that paper, it was derived factorizations

and representations of polynomial analogue of an
arbitrary binary sequence by matrix methods. In
[11], it was given factorizations of Pascal matrix
involving (p, q)−Fibonacci polynomials. In [19],
it was obtained some arithmetic and combinato-
rial identities for the (p, q)−Fibonacci and Lucas
polynomials. In Section 2, we obtain some ba-
sic properties of generalized Fibonacci and Lucas
polynomials. In Section 3, we give some prop-
erties of these polynomials using 2 × 2 matrices.
In Section 4, we make the proof of two idenitites
concerning generalized Fibonacci and Lucas poly-
nomials using Laplace expansion of determinants.
In Section 5, we give new families of tridiagonal
matrices whose successive determinants generate
any subsequence of the generalized Fibonacci and
Lucas polynomials.

2. Generalized Fibonacci and Lucas

polynomials

Let p(x) and q(x) be polynomials with real coeffi-
cients, p (x) 6= 0, q (x) 6= 0 and p2 (x)+4q (x) > 0.
In this section, firstly we consider the general-
ized Fibonacci polynomials Fp,q,n(x) defined in
(1). The first six generalized Fibonacci polyno-
mials are given in the following table :
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Fp,q,1(x) = 1
Fp,q,2(x) = p(x)
Fp,q,3(x) = p2(x) + q(x)
Fp,q,4(x) = p3(x) + 2p(x)q(x)
Fp,q,5(x) = p4(x) + 3p2(x)q(x) + q2(x)
Fp,q,6(x) = p5(x) + 4p3(x)q(x) + 3p(x)q2(x).

For p(x) = x and q(x) = 1 we have Catalan’s
Fibonacci polynomials Fn(x); for p(x) = 2x and
q(x) = 1 we have Byrd’s polynomials ϕn(x);
for p(x) = k and q(x) = t we have general-
ized Fibonacci numbers Un ; for p(x) = k and
q(x) = 1 we have k-Fibonacci numbers Fk,n; for
p(x) = q(x) = 1 we have classical Fibonacci num-
bers Fn (for more details see [2], [4], [8], [10], [18]
and the references therein).

The generating function gF,p,q(t) of the general-
ized Fibonacci polynomials Fp,q,n(x) is defined by

gF,p,q(t) =
∞∑

n=0

Fp,q,n(x)t
n. (3)

From [11], we know that the generating function
of the generalized Fibonacci polynomials Fp,q,n(x)
is

gF,p,q(t) =
t

1− tp(x)− t2q(x)
. (4)

Theorem 1. Assume that p(x) is an odd poly-
nomial and q(x) is an even polynomial. Then
Fp,q,n(−x) = (−1)n+1Fp,q,n(x) for n ≥ 0.

Proof. From (3), and (4), we have

∞∑

n=0

Fp,q,n(−x)(−t)n =
−t

1− tp(x)− t2q(x)

and

∞∑

n=0

(−1)n+1Fp,q,n(−x)tn =
t

1− tp(x)− t2q(x)

=
∞∑

n=0

Fp,q,n(x)t
n.

Then the proof is follows.

�

Binet’s formulas are well known among the Fi-
bonacci numbers. Let α(x) and β(x) be the roots
of the characteristic equation

v2 − vp(x)− q(x) = 0, (5)

of the recurrence relation (1). From [9], we know
that

Fp,q,n(x) =
αn(x)− βn(x)

α(x)− β(x)
, for n ≥ 0, (6)

where

α(x) =
p(x)+

√
p2(x)+4q(x)

2 ,

β(x) =
p(x)−

√
p2(x)+4q(x)

2 .



 (7)

Notice that α(x)+β(x) = p(x), α(x)β(x) = −q(x)

and α(x)− β(x) =
√
p2(x) + 4q(x).

Theorem 2. For n ≥ 1, we have

Fp,q,n(x)

= 21−n
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(p2(x) + 4q(x))j .

Proof. From (7), we have

αn(x)− βn(x) = 2−n[(p(x) +
√
p2(x) + 4q(x))n

−(p(x)−
√

p2(x) + 4q(x))n]

= 2−n[
n∑

j=0

(
n

j

)
pn−j(x)(

√
p2(x) + 4q(x))j

−
n∑

j=0

(
n

j

)
pn−j(x)(−

√
p2(x) + 4q(x))j ]

= 2−n+1
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(

√
p2(x) + 4q(x))2j+1.

From the equation (6), then we obtain

Fp,q,n(x) =
αn(x)−βn(x)
α(x)−β(x) = αn(x)−βn(x)√

p2(x)+4q(x)

= 2−n+1
⌊n−1

2 ⌋∑
j=0

(
n

2j + 1

)
pn−2j−1(x)(p2(x) + 4q(x))j .

�

In [12], definitions of Chebyshev polynomials of
the first and second kinds are given by the follow-
ings (resp.)

Tn (x) = cosnθ and Hn (x) =
sin [(n+ 1) θ]

sin θ
,

where x = cos θ, 0 ≤ θ ≤ π.

We know that the generating functions of Cheby-
shev polynomials of the first and second kinds are

∞∑

n=0

Tn (t) z
n =

1− tz

1− 2tz + z2

and
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∞∑

n=0

Hn (t) z
n =

1

1− 2tz + z2
,

respectively. Also we can write Chebyshev poly-
nomials of the first and second kinds as follows:

Tn(t) =
n

2

⌊n
2 ⌋∑

j=0

(−1)j

n− j

(
n− j

j

)
(2t)n−2j

with T0 (t) = 1 and

Hn(t) =

⌊n
2 ⌋∑

j=0

(−1)j
(

n− j

j

)
(2t)n−2j

with H0 (t) = 1 (for more details one can see [3],
[13] and [17]).

Theorem 3. For n ≥ 1, we have

Fp,q,n(x) = in−1q(x)
n−1

2 Hn−1

(
p(x)

2i
√
q(x)

)
,

where i2 = −1 and

Hn(t) =

⌊n
2 ⌋∑

j=0

(−1)j
(

n− j

j

)
(2t)n−2j

with H0 (t) = 1 is the Chebyshev polynomial of
the second kind.

Proof. We know that the generating function for
the second kind Chebyshev polynomial Hn(t) is

∞∑

n=0

Hn(t)z
n =

1

1− 2tz + z2
.

Let z = iy
√

q(x) and t = p(x)

2i
√

q(x)
. Then we get

∞∑
n=0

inynq(x)
n
2 Hn

(
p(x)

2i
√

q(x)

)

= 1
1−yp(x)−y2q(x)

or

∞∑
n=0

inyn+1q(x)
n
2 Hn

(
p(x)

2i
√

q(x)

)

= y
1−yp(x)−y2q(x)

.

From the equation (4), we find

Fp,q,n(x) = in−1q(x)
n−1

2 Hn−1

(
p(x)

2i
√
q(x)

)
.

�

Now, we consider the generalized Lucas polynomi-
als Lp,q,n(x) defined in (2). The first six general-
ized Lucas polynomials are given in the following
table :

Lp,q,1(x) = p(x)
Lp,q,2(x) = p2(x) + 2q(x)
Lp,q,3(x) = p3(x) + 3p(x)q(x)
Lp,q,4(x) = p4(x) + 4p2(x)q(x) + 2q2(x)
Lp,q,5(x) = p5(x) + 5p3(x)q(x) + 5p(x)q2(x)
Lp,q,6(x) = p6(x) + 6p4(x)q(x)

+ 9p2(x)q2(x) + 2q3(x).

For p(x) = x and q(x) = 1 we have Lucas poly-
nomials Ln(x); for p(x) = k and q(x) = t we
have generalized Lucas numbers Vn; for p(x) = k

and q(x) = 1 we have k-Lucas numbers Lk,n; for
p(x) = q(x) = 1 we have classical Lucas numbers
Ln (for more details see [5], [7], [10], [18] and the
references therein).

The generating function gL,p,q(t) of the Lucas
polynomials Lp,q,n(x) is defined by

gL,p,q(t) =
∞∑

n=0

Lp,q,n(x)t
n.

From [11], we know that the generating function
of the generalized Lucas polynomials Lp,q,n(x) is

gL,p,q(t) =
2− tp(x)

1− tp(x)− t2q(x)
. (8)

Theorem 4. Assume that p(x) is an odd poly-
nomial and q(x) is an even polynomial. Then we
have

Lp,q,n(−x) = (−1)nLp,q,n(x), for n ≥ 0.

Proof. Using the equation (8), the proof is
clear. �

From [9], we know that Binet’s formula for
Lp,q,n(x) is

Lp,q,n(x) = αn(x) + βn(x) for n ≥ 0,

where α(x) and β(x) are the roots of the charac-
teristic equation (5). Using Binet formulas for the
generalized Fibonacci and Lucas polynomials, we
obtain the following corollaries.

Corollary 1. For n ≥ 0, we have

Lp,q,n(x) = p (x)Fp,q,n(x) + 2q (x)Fp,q,n−1(x).
(9)
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Corollary 2. For n ≥ 0, we have

αn(x) =
Lp,q,n(x) +

√
p2(x) + 4q(x)Fp,q,n(x)

2

and

βn(x) =
Lp,q,n(x)−

√
p2(x) + 4q(x)Fp,q,n(x)

2
.

Corollary 3. For n ≥ 0, we have

L2
p,q,n(x)− (p2(x)+4q(x))F 2

p,q,n(x) = 4q(x)(−1)n.

Corollary 4. For n ≥ 0, we have

Fp,q,2n(x) = Fp,q,n(x)Lp,q,n(x).

As similar to Theorem 3, we can give the follow-
ing theorem giving the relation between Lp,q,n(x)
and Tn(x). Since its proof is similar to that of
Theorem 3, we omit it.

Theorem 5. For n ≥ 0, we have

Lp,q,n(x) = 2inq(x)
n
2 Tn

(
p(x)

2i
√
q(x)

)
,

where i2 = −1 and

Tn(t) =
n

2

⌊n
2 ⌋∑

j=0

(−1)j

n− j

(
n− j

j

)
(2t)n−2j

with T0 (t) = 1 is the Chebyshev polynomial of the
first kind.

3. Some new identities for generalized

Fibonacci and Lucas polynomials

In [19], it was defined generalized Fibonacci and
Lucas polynomials with negative subscript of the
following form:

Fp,q,−n(x) =
−Fp,q,n(x)
(−q(x))n ,

Lp,q,−n(x) =
Lp,q,n(x)
(−q(x))n .

}
(10)

In this section we find some identities using the
following 2× 2 matrices

A =

[
p(x) q(x)
1 0

]
and B =

[
0 1

q(x) p(x)

]
.

Indeed the above matrices satisfy X2 = p(x)X +
q(x)I. We obtain some new identities using 2× 2
matrices of the form

X2 = p(x)X + q(x)I. (11)

In the following theorems we use the proof meth-
ods like as [18].

Theorem 6. If X is a square matrix of the form
X2 = p(x)X + q(x)I, then we have

Xn = Fp,q,n(x)X + q(x)Fp,q,n−1(x)I,

for any integer n.

Proof. It can be easily seen that Xn =
Fp,q,n(x)X+ q(x)Fp,q,n−1(x)I for every n ∈ N us-
ing mathematical induction. Now we show that
X−n = Fp,q,−n(x)X + q(x)Fp,q,−n−1(x)I for every
n ∈ N. Let K = p(x)I −X, then we have

K2 = (p(x)I −X)2

= p2(x)I − p(x)X + q(x)I

= p(x)K + q(x)I.

So we get Kn = Fp,q,n(x)K + q(x)Fp,q,n−1(x)I.
Then

(−q(x))nX−n = Kn

= Fp,q,n(x)K + q(x)Fp,q,n−1(x)I
= Fp,q,n(x) (p(x)I −X)
+q(x)Fp,q,n−1(x)I
= Fp,q,n+1(x)I − Fp,q,n(x)X.

Thus using the equation (10), we find

X−n =
−Fp,q,n(x)X

(−q(x))n
+

Fp,q,n+1(x)I

(−q(x))n

and

X−n = Fp,q,−n(x)X + q(x)Fp,q,−n−1(x)I.

�

Theorem 7. Let X be an arbitrary 2× 2 matrix.
Then X2 = p(x)X + q(x)I if and only if X is of
the form

X =

[
a b

c p(x)− a

]
, with detX = −q(x)

or X = δI where δ ∈ {α(x), β(x)} , α(x) =
p(x)+

√
p2(x)+4q(x)

2 and β(x) =
p(x)−

√
p2(x)+4q(x)

2 .
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Proof. Assume that X2 = p(x)X + q(x)I. Then
the minimal polynomial of X must divide λ2 −
λp(x)− q(x). So it must be λ−α(x), λ− β(x) or
λ2 − λp(x) − q(x). In the first case X = α(x)I,
in the second case X = β(x)I and in the third
case characteristic polynomial of X should be
λ2 − λp(x) − q(x) because X is a 2 × 2 matrix.
Clearly, its trace is p(x) and its determinant is
−q(x). The rest of the proof can be similarly com-
pleted. �

Corollary 5. If X =
[
a b

c p(x)− a

]

is a matrix with detX = −q(x), then we have

Xn =
[
aFp,q,n(x) + q(x)Fp,q,n−1(x) bFp,q,n(x)

cFp,q,n(x) Fp,q,n+1(x)− aFp,q,n(x)

]
.

Proof. From Theorem 7, we know that X2 =
p(x)X + q(x)I. Then, from Theorem 6 we get
Xn = Fp,q,n(x)X + q(x)Fp,q,n−1(x)I for any in-
teger n. Then the proof follows. �

Corollary 6. Let S =

[
p(x)
2

p2(x)+4q(x)
2

1
2

p(x)
2

]
, then

we have

Sn =

[
Lp,q,n(x)

2
(p2(x)+4q(x))Fp,q,n(x)

2
Fp,q,n(x)

2
Lp,q,n(x)

2

]
.

Proof. Since S2 = p(x)S + q(x)I , the proof is
completed by using Corollary 5. �

4. Generalized Fibonacci and Lucas

polynomials with Laplace expansion

In [6], it was given some identities about Fi-
bonacci numbers using Laplace expansion. In this
section we give two theorems about generalized
Fibonacci and Lucas polynomials and prove them
using Laplace expansion of determinants.

Let us consider the n×n tridiagonal matrix C(n)
defined by the following form:

C(n) =




p(x) i
√
q(x)

i
√
q(x) p(x) i

√
q(x)

i
√
q(x) p(x) .

. . .

. . i
√
q(x)

i
√
q(x) p(x)




.

Theorem 8. For any integer k (2 ≤ k ≤ n− 1),
we have

Fp,q,n(x) = Fp,q,k(x)Fp,q,n−k+1(x)

+ q(x)Fp,q,k−1(x)Fp,q,n−k(x). (12)

Proof. From k = 2 to k = n − 1, the equation
(12) becomes the followings:

Fp,q,n(x) = Fp,q,2(x)Fp,q,n−1(x)
+ q(x)Fp,q,1(x)Fp,q,n−2(x),

Fp,q,n(x) = Fp,q,3(x)Fp,q,n−2(x)
+ q(x)Fp,q,2(x)Fp,q,n−3(x),

...

Fp,q,n(x) = Fp,q,n−2(x)Fp,q,3(x)
+ q(x)Fp,q,n−3(x)Fp,q,2(x),

Fp,q,n(x) = Fp,q,n−1(x)Fp,q,2(x)
+ q(x)Fp,q,n−2(x)Fp,q,1(x).

It can be easily seen that Fp,q,n(x) = |C(n− 1)|
for n ≥ 2. Using Lemma 1 in [1] we get

|C(n− 1)|
= p(x) |C(n− 2)|+ q(x) |C(n− 3)|
= p(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)
= Fp,q,2(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

Then we find

Fp,q,n(x) = Fp,q,2(x)Fp,q,n−1(x) + q(x)Fp,q,n−2(x)

Now we use the techniques in [14] to find the de-
terminant of the matrix C(n−1). If we choose the
first two rows of C(n−1), there are only three 2×2
submatrices of C(n− 1) whoose determinants are
not equal to zero.

C([1, 2], [1, 2]) =

∣∣∣∣
p(x) i

√
q(x)

i
√
q(x) p(x)

∣∣∣∣
= |C(2)| = Fp,q,3(x),

C([1, 2], [1, 3]) =

∣∣∣∣
p(x) 0

i
√
q(x) i

√
q(x)

∣∣∣∣
= ip(x)

√
q(x),

C([1, 2], [2, 3]) =

∣∣∣∣
i
√
q(x) 0

p(x) i
√
q(x)

∣∣∣∣
= −q(x).

Their corresponding cofactors are

C̃([1, 2], [1, 2]) = (−1)1+2+1+2 |C(n− 3)|
= Fp,q,n−2(x),

C̃([1, 2], [1, 3]) = (−1)1+2+1+3i
√
q(x) |C(n− 4)|

= −i
√
q(x)Fp,q,n−3(x),

C̃([1, 2], [2, 3]) = 0.

By the Laplace expansion in [14], we have
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Fp,q,n(x) = |C(n− 1)|
= C([1, 2], [1, 2])C̃([1, 2], [1, 2])

+C([1, 2], [1, 3])C̃([1, 2], [1, 3])

+C([1, 2], [2, 3])C̃([1, 2], [2, 3])

= |C(2)|Fp,q,n−2(x) + p(x)i
√
q(x)

(−i
√
q(x))Fp,q,n−3(x) + (−q(x)).0

= Fp,q,3(x)Fp,q,n−2(x)
+p(x)q(x)Fp,q,n−3(x).

Then we get

Fp,q,n(x) = Fp,q,3(x)Fp,q,n−2(x)
+ q(x)Fp,q,2(x)Fp,q,n−3(x).

If we choose the first three rows of C(n−1), there
are only four 3×3 submatrices of C(n−1) whoose
determinants are not equal to zero.

C([1, 2, 3], [1, 2, 3]) =

∣∣∣∣∣∣

p(x) i
√
q(x) 0

i
√
q(x) p(x) i

√
q(x)

0 i
√
q(x) p(x)

∣∣∣∣∣∣
= |C(3)| = Fp,q,4(x),

C([1, 2, 3], [1, 2, 4]) =

∣∣∣∣∣∣

p(x) i
√
q(x) 0

i
√
q(x) p(x) 0

0 i
√
q(x) i

√
q(x)

∣∣∣∣∣∣
= i
√
q(x) |C(2)| = i

√
q(x)Fp,q,3(x),

C([1, 2, 3], [1, 3, 4]) =

∣∣∣∣∣∣

p(x) 0 0

i
√
q(x) i

√
q(x) 0

0 p(x) i
√
q(x)

∣∣∣∣∣∣
= −p(x)q(x),

C([1, 2, 3], [2, 3, 4]) =

∣∣∣∣∣∣

i
√
q(x) 0 0

p(x) i
√
q(x) 0

i
√
q(x) p(x) i

√
q(x)

∣∣∣∣∣∣
= −i

√
q(x)q(x).

Their corresponding cofactors are

C̃([1, 2, 3], [1, 2, 3]) = (−1)6+6 |C(n− 4)|
= Fp,q,n−3(x),

C̃([1, 2, 3], [1, 2, 4]) = (−1)6+7i
√
q(x) |C(n− 5)|

= −i
√
q(x)Fp,q,n−4(x),

C̃([1, 2, 3], [1, 3, 4]) = 0,

C̃([1, 2, 3], [2, 3, 4]) = 0.

By the Laplace expansion in [14], we have

Fp,q,n(x) = |C(n− 1)|
= C([1, 2, 3], [1, 2, 3])C̃([1, 2, 3], [1, 2, 3])

+C([1, 2, 3], [1, 2, 4])C̃([1, 2, 3], [1, 2, 4])

+C([1, 2, 3], [1, 3, 4])C̃([1, 2, 3], [1, 3, 4])

+C([1, 2, 3], [2, 3, 4])C̃([1, 2, 3], [2, 3, 4])
= Fp,q,4(x)Fp,q,n−3(x)

+i
√
q(x)Fp,q,3(x)(−i)

√
q(x)Fp,q,n−4(x).

Then we get

Fp,q,n(x) = Fp,q,4(x)Fp,q,n−3(x)
+ q(x)Fp,q,3(x)Fp,q,n−4(x).

By the mathematical induction, we prove the
other identities in the equation (12). �

Let D(n) be the n × n tridioganal matrix given
of the following form:

D(n) =




p(x)
2 i

√
q(x)

i
√
q(x) p(x) i

√
q(x)

i
√
q(x) p(x) .

. . .

. . i
√
q(x)

i
√
q(x) p(x)




Theorem 9. For any integer k (1 ≤ k ≤ n− 1),
we have

Lp,q,n(x) = Lp,q,k(x)Fp,q,n−k+1(x)

+ q(x)Lp,q,k−1(x)Fp,q,n−k(x). (13)

Proof. From k = 1 to k = n − 1, the equation
(13) becomes the followings:

Lp,q,n(x) = Lp,q,1(x)Fp,q,n(x)
+ q(x)Lp,q,0(x)Fp,q,n−1(x),

Lp,q,n(x) = Lp,q,2(x)Fp,q,n−1(x)
+ q(x)Lp,q,1(x)Fp,q,n−2(x),

...

Lp,q,n(x) = Lp,q,n−2(x)Fp,q,3(x)
+ q(x)Lp,q,n−3(x)Fp,q,2(x),

Lp,q,n(x) = Lp,q,n−1(x)Fp,q,2(x)
+ q(x)Lp,q,n−2(x)Fp,q,1(x).

It is clear that Lp,q,n(x) = 2 |D(n)| , for n ≥
1. From the Corollary 1, we have Lp,q,n(x) =
p(x)Fp,q,n(x) + 2q(x)Fp,q,n−1(x). Then we get

Lp,q,n(x) = Lp,q,1(x)Fp,q,n(x)
+ q(x)Lp,q,0(x)Fp,q,n−1(x).

The rest of the proof can be completed similar to
the proof of the Theorem 8. �
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In [19], for m = 0 in the equation (3.9) coincides
with our Theorem 9 for k = n− 1.

5. Generalized Fibonacci and

generalized Lucas polynomials

subsequences

In this section we obtain another applications of
Lemma 1 in [1]. We generalize the family of tridi-
agonal matrices to a subsequence of generalized
Fibonacci (resp. generalized Lucas) polynomials
which is a family of tridiagonal matrices whose
successive determinants are given by that polyno-
mials. To do this, we use the following identities.

For n ≥ 1 we have

Fp,q,m+n(x) = Lp,q,n(x)Fp,q,m(x)

+ (−1)n+1qn(x)Fp,q,m−n(x) (14)

and

Lp,q,m+n(x) = Lp,q,n(x)Lp,q,m(x)

+ (−1)n+1qn(x)Lp,q,m−n(x). (15)

These identities was proved in [15] for p(x) = k

and q(x) = 1. We give the following theorems
using the proof methods given in [1].

Theorem 10. Let Mα,β(n), n = 1, 2, ... be the
family of symmetric tridiagonal matrices whose
elements satisfy following conditions :

m1,1 = Fp,q,α+β(x),

m2,2 =
⌈
Fp,q,2α+β(x)
Fp,q,α+β(x)

⌉
,

m1,2 = m2,1

=
√
m2,2Fp,q,α+β(x)− Fp,q,2α+β(x),

mj,j+1 = mj+1,j =√
(−1)αqα(x), 2 ≤ j ≤ 3,

mj,j = Lp,q,α(x), 3 ≤ j ≤ k,

with α ∈ Z
+ and β ∈ N. The successive determi-

nants of this family of matrices is

|Mα,β(n)| = Fp,q,αn+β(x).

Proof. We use the principle of mathematical in-
duction. We have

|Mα,β(1)| = detFp,q,α+β(x) = Fp,q,α+β(x)

and

|Mα,β(2)|

=

∣∣∣∣∣
Fp,q,α+β(x)

√
m2,2Fp,q,α+β(x)−Fp,q,2α+β(x)

√
m2,2Fp,q,α+β(x)−Fp,q,2α+β(x)

⌈
Fp,q,2α+β(x)
F,p,q,α+β(x)

⌉
∣∣∣∣∣

= Fp,q,2α+β(x).

Now we assume that |Mα,β(n)| = Fp,q,αn+β(x) for
1 ≤ k ≤ n. Then by Lemma 1 in [1] and (14) we
have

Mα,β(n+ 1)
= mn,n |Mα,β(n)| −mn,n−1mn−1,n |Mα,β(n− 1)|
= Lp,q,α(x) |Mα,β(n)| − (−1)αqα(x) |Mα,β(n− 1)|
= Lp,q,α(x)Fp,q,αn+β(x) + (−1)α+1qα(x)Fp,q,αn+β−α(x).

Using the equation (14), we get

Mα,β(n+ 1) = Fp,q,α+αn+β(x)
= Fp,q,α(n+1)+β(x).

�

Theorem 11. Let Rα,β(n), n = 1, 2, ... be the
family of symmetric tridiagonal matrices whose
elements satisfy the following conditions :

r1,1 = Lp,q,α+β(x),

r2,2 =
⌈
Lp,q,2α+β(x)
Lp,q,α+β(x)

⌉
,

r1,2 = r2,1
=
√
r2,2Lp,q,α+β(x)− Lp,q,2α+β(x),

rj,j+1 = rj+1,j

=
√
(−1)αqα(x), 2 ≤ j ≤ 3,

rj,j = Lp,q,α(x), 3 ≤ j ≤ k,

with α ∈ Z
+ and β ∈ N. The successive determi-

nants of this family of matrices is

|Rα,β(n)| = Lp,q,αn+β(x).

Proof. We use the principle of mathematical in-
duction. We have

|Rα,β(1)| = detLp,q,α+β(x) = Lp,q,α+β(x)

and

|Rα,β(2)|

=

∣∣∣∣∣
Lp,q,α+β(x)

√
m2,2Lp,q,α+β(x)−Lp,q,2α+β(x)

√
m2,2Lp,q,α+β(x)−Lp,q,2α+β(x)

⌈
Lp,q,2α+β(x)
L,p,q,α+β(x)

⌉
∣∣∣∣∣

= Lp,q,2α+β(x).

Now we assume that |Rα,β(n)| = Lp,q,αn+β(x) for
1 ≤ k ≤ n. Then by Lemma 1 in [1] and (15) we
find
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Rα,β(n+ 1)
= rn,n |Rα,β(n)| − rn,n−1rn−1,n |Rα,β(n− 1)|
= Lp,q,α(x) |Rα,β(n)| − (−1)αqα(x) |Rα,β(n− 1)|
= Lp,q,α(x)Lp,q,αn+β(x)
+(−1)α+1qα(x)Lp,q,α(n−1)+β(x).

Using the equation (15), we get

Rα,β(n+ 1) = Lp,q,α+αn+β(x)
= Lp,q,α(n+1)+β(x).

�

As a consequence of Theorem 10 and Theorem 11,
we establish new families of tridiagonal matrices
whose successive determinants generate any sub-
sequence of the generalized Fibonacci and gener-
alized Lucas polynomials. For example, we have

Fp,q,4n−2(x) =











p (x) 0 0
0 p4 (x) + 4p2 (x) q (x) + 3q2 (x) q2 (x)
0 q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x) .

. . .

. . q2 (x)
q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x)











and

Lp,q,4n−2(x) =











p2 (x) + 2q (x) 0 0
0 p4 (x) + 4p2 (x) q (x) + q2 (x) q2 (x)
0 q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x) .

. . .

. . q2 (x)
q2 (x) p4 (x) + 4p2 (x) q (x) + 2q2 (x)











.

6. Conclusion

In this study we give some new properties of gen-
eralized Fibonacci and Lucas polynomials using
matrices, complex numbers and Chebyshev poly-
nomials. Our results generalize some known re-
sults in the literature.
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1. Introduction

Nonlinear differential equations are extensive in
science and technology. However, finding analyt-
ical solutions for this class of equations has al-
ways been a challenging work [3]. Many approx-
imate methods were introduced for the analyti-
cal solution of nonlinear differential equations in
the recent years. Among these, Homotopy Analy-
sis Method (HAM) [49], Adomian Decomposition
Method (ADM) [2], Variational Iteration Method
(VIM) [21], Differential Transformation Method
(DTM) [31], and Homotopy Perturbation Method
(HPM) [41] can be referred. Some new techniques
for approximate solution of nonlinear differential
equations are shown up recently, such as Op-
timal Homotopy Asymptotic Method (OHAM)
[45], Generalized Homotopy Method (GHM) [46],
and reproducing kernel method (RKM) [13].

In the present paper, the RKM has been applied
for the solution of two different forms of nonlinear
Blasius equation in a semi-infinite domain. Much
notice has been given to the work of the RKM
to solve many works. The work [13] presents

great applications of the RKM. For more details
see [1,4–7,10–12,17,22,23,26,27,32,42,44,48,51].

We present two forms of the Blasius equation aris-
ing in fluid flow inside the velocity boundary layer
as follows.

The first form of the Blasius equation is given as:





u(3)(x) + u(x)u′′(x)
2 = 0, 0 ≤ x ≤ ∞,

u(0) = u′(0) = 0, u′(x) = 1 as x→ ∞.

(1)

The second form is given as:





u(3)(x) + u(x)u′′(x)
2 = 0, 0 ≤ x ≤ ∞,

u(0) = 0, u′(0) = 1, u′(x) = 0 as x→ ∞.

(2)

These equations are the same except for bound-
ary conditions. The first form of the equation is
the well-known classical Blasius first derived by
Blasius and dates back about a century, which
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defines the velocity profile of two-dimensional vis-
cous laminar flow over a finite flat plate. This
form of the Blasius equation is the simplest form
and the origin of all boundary layer equations in
fluid mechanics. The second form of the equation,
presented more recently, arises in the steady free
convection about a vertical flat plate embedded
in a saturated porous medium, Laminar bound-
ary layers at the interface of cocurrent parallel
streams, or the flow near the leading edge of a
very long, steadily operating conveyor belt [3].

Many analytical techniques were introduced to
investigate Blasius equation. He [24] pre-
sented a perturbation method. Comparison with
Howarth’s numerical solution finds out that this
technique gives the approximate value σ = 0.3296
with 0.73 accuracy. Asaithambi [9] obtained
this number correct to nine decimal positions
as σ = 0.332057336. The variational iteration
method (VIM) is implemented for a reliable treat-
ment of two forms of Blasius equation [47]. Fazio
[18] searched the Blasius problem numerically.
Sinc-collocation technique is implemented in [36]
and the HAM is employed by Yao and Chen
in [49] and Liao in [29]. For more details see
[8, 14–16,19, 28, 30, 33–35,37–40,43, 49, 50].

We organize the paper as follows. We give some
new reproducing kernel functions in Section 2. We
present the linear operator in Section 3. We show
the main results in Section 4. We give the ap-
proximate solutions of (1)–(2) in this section. We
illustrate examples in Section 5. We give the con-
clusion in Section 6.

2. Preliminaries

Definition 1. We describe the space W 4
2 [0,∞)

by

W 4
2 [0,∞) = {v ∈ AC[0, 1] : v′, v′′, v(3) ∈ AC[0,∞),

v(4) ∈ L2[0,∞), v(0) = v′(0) = v′(∞) = 0}.

The inner product and the norm in W 4
2 [0,∞) are

given by

〈v, h〉W 4
2

= v(0)h(0) + v′(0)h′(0) + v′′(0)h′′(0)

+ v(3)(0)h(3)(0) +

∫
∞

0
u(4)(t)h(4)(t)dt,

v, h ∈W 4
2 [0,∞)

and

‖v‖W 4
2
=

√
〈v, v〉W 4

2
, v ∈W 4

2 [0,∞).

The space W 4
2 [0,∞) is called a reproducing kernel

space. A function Ry is obtained as:

v(y) = 〈v,Ry〉W 4
2

.

Definition 2. We describe the space W 1
2 [0, 1] by

W 1
2 [0, 1] = {v ∈ AC[0, 1] : v′ ∈ L2[0, 1]}.

The inner product and the norm in W 1
2 [0, 1] are

defined by

〈v, h〉W 1
2
=

∫ 1

0
v(t)h(t) + v′(t)h′(t)dt, (3)

v, h ∈ G1
2[0, 1]

and

‖v‖W 1
2
=

√
〈v, v〉W 1

2
, v ∈W 1

2 [0, 1]. (4)

W 1
2 [0, 1] is a reproducing kernel space. Kernel

function Tt(y) is obtained as [13]

Tt(y)=
1

2 sinh(1)
[cosh(t+ y − 1) + cosh(|t− y| − 1)]

(5)

Theorem 1. W 4
2 [0,∞) is a reproducing kernel

space. Kernel function Ry is obtained as:

Ry(t) =





∑8
i=1 ci(y)t

i−1, t ≤ y,

∑8
i=1 di(y)t

i−1, t > y,

(6)

where

c1(y) = 0, c2(y) = 0, c3(y) =
1

4
y2,

c4(y) =
1

36
y3, c5(y) =

1

144
y3,

c6(y) = −
1

240
y2, c7(y) =

1

720
y,

c8(y) = −
1

5040
, d1(y) = −

1

5040
y7

d2(y) =
1

720
y6, d3(y) = −

1

240
y2(y3 − 60),

d4(y) =
1

144
y3(y + 4), d5(y) = 0, d6(y) = 0,

d7(y) = 0, d8(y) = 0.

Proof.

〈v(t), Ry(t)〉W 4
2

= v(0)Ry(0) + v′(0)R′

y(0)

+ v′′(0)R′′

y(0) + v(3)(0)R(3)
y (0)

+

∫
∞

0
v(4)(t)R(4)

y (t)dt,

We obtain
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〈v,Ry〉W 4
2

= v(0)Ry(0) + v′(0)R′

y(0)

+ v′′(0)R′′

y(0) + v(3)(0)R(3)
y (0)

+ v(3)(1)R(4)
y (1)− v(3)(0)R(4)

y (0)

− v′′(1)R(5)
y (1) + v′′(0)R(5)

y (1)

+ v′(1)R(6)
y (1)− v′(0)R(6)

y (0)

− v(1)R(7)
y (1) + v(0)R(7)

y (0)

+

∫
∞

0
v(t)R(8)

y (t)dt,

(7)

with integrations by parts. We obtain

〈v(t), Ry(t)〉W 4
2
= v(y), (8)

by reproducing property. If





Ry(0) = 0,

R′

y(0) = 0,

R′

y(∞) = 0,

R′′

y(0) +R
(5)
y (0) = 0,

R
(3)
y (0)−R

(4)
y (0) = 0,

R
(4)
y (∞) = 0,

R
(5)
y (∞) = 0,

R
(7)
y (∞) = 0,

(9)

then (7) implies that

R(8)
y (t) = δ(t− y).

When t 6= y,

R(8)
y (t) = 0,

therefore

Ry(t) =





∑8
i=1 ci(y)t

i−1, t ≤ y,

∑8
i=1 di(y)t

i−1, t > y,

(10)

Since

R(8)
y (t) = δ(t− y),

we have

∂kRy+(y) = ∂kRy−(y), k = 0, 1, 2, 3, 4, 5, 6
(11)

and

∂7Ry+(y)− ∂7Ry−(y) = 1. (12)

Due to Ry(t) ∈W 4
2 [0,∞), it follows that

Ry(0) = R′

y(0) = R′

y(∞) = 0, (13)

from (9)–(13), the unknown coefficients ci(y) and
di(y) (i = 1, 2, . . . , 8) can be acquired. Therefore,
Ry(t) is obtained as:

Ry(x) =





− 1
5040 t

2(21y2t3 + t5 − 1260y2 − 7yt4)

− 1
5040 t

2(−140y3t− 35y3t2), t ≤ y

− 1
5040y

2(21t2y3 + y5 − 1260t2 − 7ty4)

− 1
5040y

2(−140t3y − 35t3y2), t > y

�

3. Solution representation in W 4
2 [0,∞)

In this section, the solutions of (1)–(2) are pre-
sented in the W 4

2 [0,∞). On defining the linear
operator L :W 4

2 [0,∞) →W 1
2 [0, 1] as

Lv(t) = v(3)(t) +
exp(−t) + t− 1

2
v′′(t)(14)

+
exp(−t)

2
v(t)

the problem (1) gets the form:

{
Lv = f(t, u), t ∈ [0,∞),

v(0) = v′(0) = v′(∞) = 0
(15)

where f(t, v) = exp(−t) − 1
2v(t)v

′′(t) −
1
2 exp(−t)(exp(−t) + t− 1).

Theorem 2. The L given by (14) is a bounded
linear operator.

Proof. We need to show ‖Lv‖2W 1
2

≤ M ‖v‖2W 4
2
,

where M > 0 is a positive constant. By (3) and
(4), we have

‖Lv‖2W 1
2
= 〈Lv, Lv〉W 1

2
=

∫ 1

0
[Lv(t)]2+

[
Lv′(t)

]2
dt.

By (8), we have

v(t) = 〈v(·), Rt(·)〉W 4
2
,

and

Lv(t) = 〈v(·), LRt(·)〉W 4
2
,

so

|Lv(t)| ≤ ‖v‖W 4
2
‖LRt‖W 4

2
=M1 ‖u‖W 4

2
,

where M1 > 0 is positive. Therefore,
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∫ 1

0
[(Lv) (t)]2 dt ≤M2

1 ‖v‖
2
W 4

2
.

We have

(Lv)′(t) =
〈
v(·), (LRt)

′(·)
〉
W 4

2

,

by reproducing property. Thus, we get

∣∣(Lv)′(t)
∣∣ ≤ ‖v‖W 4

2

∥∥(LRt)
′
∥∥
W 4

2

=M2 ‖u‖W 4
2
,

where M2 > 0 is positive. Therefore, we obtain

[
(Lv)′(t)

]2
≤M2

2 ‖u‖
2
W 4

2
,

and

∫ 1

0

[
(Lv)′(t)

]2
dt ≤M2

2 ‖v‖
2
W 4

2
,

that is

‖Lv‖2W 1
2
≤

∫ 1

0

(
[(Lv) (t)]2 +

[
(Lv)′(t)

]2)
dt

≤
(
M2

1 +M2
2

)
‖v‖2W 4

2
=M ‖v‖2W 4

2
,

where M =M2
1 +M2

2 > 0 is a positive constant.

�

4. The main results

Let ϕi(t) = Tti(t) and ψi(t) = L∗ϕi(t), where
L∗ is conjugate operator of L. The orthonormal

system
{
Ψ̂i(t)

}
∞

i=1
of W 4

2 [0,∞) can be obtained

from Gram-Schmidt orthogonalization process of
{ψi(t)}

∞

i=1,

ψ̂i(t) =
i∑

k=1

βikψk(t), (βii > 0, i = 1, 2, . . .)

(16)

Theorem 3. Let {ti}
∞

i=1 be dense in [0,∞) and
ψi(t) = LyRt(y)|y=ti

. The sequence {ψi(t)}
∞

i=1 is

a complete system in W 4
2 [0,∞).

Proof. We obtain

ψi(t) = (L∗ϕi)(t) = 〈(L∗ϕi)(y), Rt(y)〉

= 〈(ϕi)(y), LyRt(y)〉 = LyRt(y)|y=ti
.

The subscript y by the operator L indicates that
the operator L applies to the function of y.
Clearly, ψi(t) ∈ W 4

2 [0,∞). For each fixed v(t) ∈
W 4

2 [0,∞), let 〈v(t), ψi(t)〉 = 0, (i = 1, 2, . . .),
which means that,

〈v(t), (L∗ϕi)(t)〉 = 〈Lv(·), ϕi(·)〉 = (Lv)(ti) = 0.

{ti}
∞

i=1 is dense in [0,∞). Therefore, (Lv)(t) = 0.
u ≡ 0 by L−1. �

Theorem 4. If v(t) is the exact solution of (15),
then

v(t) =

∞∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(t). (17)

where {(ti)}
∞

i=1 is dense in [0,∞).

Proof. We get

v(t) =

∞∑

i=1

〈
v(t), Ψ̂i(t)

〉
W 4

2

Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈v(t),Ψk(t)〉W 4
2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈v(t), L
∗ϕk(t)〉W 4

2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βik 〈Lv(t), ϕk(t)〉W 1
2
Ψ̂i(t)

=

∞∑

i=1

i∑

k=1

βik 〈f(t, v), Ttk〉W 1
2
Ψ̂i(t)

=
∞∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(x),

by (16) and uniqueness of solution of (15). This
completes the proof. �

The approximate solution un(x) can be acquired
as:

vn(t) =
n∑

i=1

i∑

k=1

βikf(tk, vk)Ψ̂i(t). (18)

Lemma 1. If ‖vn − v‖W 4
2
→ 0, tn → t, (n→ ∞)

and f(t, v) is continuous for x ∈ [0,∞), then [20]

f(tn, vn−1(tn)) → f(t, v(t)) as n→ ∞.

Theorem 5. For any fixed v0(t) ∈ W 4
2 [0,∞) as-

sume that the following conditions are hold:

(i)

vn(t) =

n∑

i=1

Aiψ̂i(t), (19)

Ai =
i∑

k=1

βikf(tk, uk−1(tk)), (20)
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(ii) ‖vn‖W 4
2
is bounded;

(iii) {ti}
∞

i=1 is dense in [0,∞);
(iv) f(t, u) ∈ W 1

2 [0, 1] for any v(t) ∈
W 4

2 [0,∞).

Then vn(t) in iterative formula (19) converges to
the exact solution of (17) in W 4

2 [0,∞) and

v(t) =
∞∑

i=1

Aiψ̂i(t).

Proof. By (19), we obtain

vn+1(t) = un(t) +An+1Ψ̂n+1(t), (21)

from the orthonormality of {Ψ̂i}
∞

i=1, we get

‖vn+1‖
2 = ‖vn‖

2 +A2
n+1 = ‖vn−1‖

2 +A2
n +A2

n+1

= . . . =

n+1∑

i=1

A2
i ,

from boundedness of ‖un‖W 4
2
, we obtain

∞∑

i=1

A2
i <∞,

i.e.,

{Ai} ∈ l2 (i = 1, 2, . . .).

Let m > n, in view of (vm − vm−1) ⊥
(vm−1 − vm−2) ⊥ . . . ⊥ (vn+1 − vn), we get

‖vm − vn‖
2
W 4

2
= ‖vm − vm−1 + . . .+ un+1 − vn‖

2
W 4

2

≤ ‖vm − vm−1‖
2
W 3

2
+ . . .+ ‖vn+1 − vn‖

2
W 4

2

=
m∑

i=n+1

A2
i → 0, m, n→ ∞.

By the completeness of W 4
2 [0,∞), there exists

v(t) ∈W 4
2 [0,∞), such that

vn(t)→v(t) as n→ ∞.

(ii) Taking limits in (19),

v(t) =
∞∑

i=1

Aiψ̂i(t).

We have

(Lv) (tj) =
∞∑

i=1

Ai

〈
Lψ̂i(t), ϕj(t)

〉
W 1

2

=

∞∑

i=1

Ai

〈
ψ̂i(t), L

∗ϕj(t)
〉
W 4

2

=
∞∑

i=1

Ai

〈
ψ̂i(t), ψj(t)

〉
W 4

2

.

Therefore, we get

n∑

j=1

βnj(Lv)(tj) =
∞∑

i=1

Ai

〈
ψ̂i(t),

n∑

j=1

βnjψj(t)

〉

W 4
2

=

∞∑

i=1

Ai

〈
ψ̂i(t), ψ̂n(t)

〉
W 4

2

= An.

If n = 1, then

Lv(t1) = f(t1, v0(t1)). (22)

If n = 2, then

β21(Lv)(t1) + β22(Lv)(t2)

= β21f(t1, v0(t1)) + β22f(t2, v1(t2)).

We have

(Lv(t2) = f(t2, u1(t2)).

Then, we get

(Lv)(tj) = f(tj , uj−1(tj)), (23)

by induction. We have,

(Lv)(y) = f(y, v(y)).

Therefore, v (t) is the solution of (15) and

v(t) =
∞∑

i=1

Aiψ̂i,

where Ai are given by (20).

�

5. Numerical results

In this section, two examples are given to demon-
strate the efficiency of the RKM. We have shown
comparison tables to prove the power of the RKM.
All computations are applied by Maple software
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program. The accuracy of the RKM for the Bla-
sius equations are controllable. The numerical
results we obtained justify the advantage of this
technique. We consider first and second forms of
the Blasius equation by RKM. In Tables 1–3, v,
v′, and v′′ obtained from the RKM are compared
with Howarth’s numerical solution [25]. Further-
more, as it can be seen from Tables 1–3, the RKM
is more accurate than the variational iteration
method [24]. In Tables 4–6, the result of the RKM
is given against that of exact (numerical) method.
There is a good agreement between the results of
the RKM and numerical solution. The results are
in very good agreement with numerical and pre-
vious data available in the literature.

Table 1. Comparison between v(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.00000 0.00000 0.00000

1 0.16577 0.19319 0.16557

2 0.65003 0.67940 0.65001

3 1.39682 1.39106 1.39679

4 2.30576 2.24573 2.30572

5 3.28329 3.17748 3.28309

6 4.27964 4.14688 4.27767

7 5.27926 5.13359 5.26736

RKM

0.00000

0.16570

0.65310

1.39782

2.33481

3.29502

4.28542

5.26896

Table 2. Comparison between v′(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.00000 0.00000 0.00000

1 0.32979 0.35064 0.32977

2 0.62977 0.61218 0.62976

3 0.84605 0.79640 0.84603

4 0.95552 0.90185 0.95551

5 0.99150 0.95523 0.99152

6 0.99868 0.98032 0.99883

7 0.99992 0.99158 0.99943

RKM

0.00000

0.33005

0.63039

0.84469

0.95294

0.98514

0.99131

0.99378

Table 3. Comparison between v′′(t)
obtained from RKM with VIM, HPM
and numerical method, first form of
the Blasius equation.

t Howarth [25] VIM [24] HPM [3]

0 0.33206 0.54360 0.33205

1 0.32301 0.27141 0.32300

2 0.26675 0.22748 0.26675

3 0.16136 0.14117 0.16135

4 0.06424 0.07469 0.06422

5 0.01591 0.03600 0.01586

6 0.00240 0.01645 0.00110

7 0.00022 0.00723 0.00060

RKM

0.33236

0.32336

0.26631

0.16127

0.06522

0.01918

0.00313

0.00029

Table 4. Comparison between v(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 0.000000 0.00000 0.00000

1 0.786198 0.78620 0.78657

2 1.218546 1.21855 1.21310

3 1.432728 1.43273 1.43823

4 1.533086 1.53308 1.53938

5 1.578851 1.57884 1.57502

6 1.599437 1.59945 1.59266

7 1.612470 1.61280 1.61966
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Table 5. Comparison between v′(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 1.000000 1.000000 1.000000

1 0.587153 0.587153 0.589473

2 0.301784 0.301783 0.308234

3 0.144016 0.144016 0.141545

4 0.066244 0.066243 0.066661

5 0.029956 0.029949 0.026618

6 0.013469 0.013434 0.011824

7 0.006119 0.006005 0.006437

Table 6. Comparison between v′′(t)
obtained from RKM with HPM and
numerical method, second form of the
Blasius equation.

t

Numerical [3]

(5th order

Runge-Kutta

Fehlberg)

HPM [3] RKM

0 −0.443749 −0.443748 −0.442162

1 −0.358313 −0.358312 −0.359575

2 −0.214505 −0.214505 −0.213139

3 −0.109834 −0.109834 −0.109184

4 −0.052157 −0.052159 −0.052283

5 −0.023906 −0.023922 −0.023166

6 −0.010736 −0.010800 −0.010687

7 −0.046658 −0.048415 −0.044522

6. Conclusion

In this work, we introduced an algorithm for solv-
ing the Blasius equation with two different bound-
ary conditions in semi-infinite domains. For illus-
tration purposes, examples were chosen to show
the computational accuracy. This work has con-
firmed that the RKM offers important benefits in

terms its computational effectiveness to solve the
strongly nonlinear equations.
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