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Abstract. In this paper, new classes of cone-generalized (,)-convex functions are introduced for a 

nonsmooth vector optimization problem over cones, which subsume several known studied classes. 

Using these generalized functions,  various sufficient Karush-Kuhn-Tucker (KKT) type  nonsmooth 

optimality conditions are established wherein Clarke's generalized gradient is used. Further, we prove 

duality results for both Wolfe and Mond-Weir type duals under various types of cone-generalized 

(,)-convexity assumptions. 
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1. Introduction 

Convexity plays an important role in many 

aspects of optimization theory including 

sufficient optimality conditions and duality 

theorems. In a quest to weaken the convexity 

hypothesis various generalized convexity notions 

have been introduced. Hanson and Mond [8] 

introduced F-convexity and Vial [10] defined -

convexity. Preda [9] unified the two concepts and 

gave the notion of an (F,)-convex function. 

Another generalization of convexity is invexity, 

introduced by Hanson [7]. The concept of (,)-

invexity has been introduced by Caristi et al. [3]. 

Sufficient optimality conditions and duality 

results have been studied under (,)-invexity 

for differentiable single-objective and 

multiobjective programs [3,6]. (,)-invexity 

notion has been extended to the nonsmooth case  

 

 

by Antczak and Stasiak [2].  

In this paper, we use the concept of cones to 

define new classes of nonsmooth functions that 

we call K-generalized (,)-convex, K-

generalized (,)-pseudoconvex and K-

generalized (,)-quasiconvex functions, where 

K is a closed convex pointed cone with nonempty 

interior. Sufficient optimality conditions are 

proved for a nonsmooth vector optimization 

problem over cones using the above defined 

functions. Further, both Wolfe and Mond-Weir 

type duals are formulated and weak and strong 

duality results are established. 

2. Definitions and preliminaries 

Let S be a nonempty open subset of Rn. 

Definition 2.1. A function : RS  is said to 

be locally Lipschitz at a point uS if for some 

0ul  , 
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 | ( ) ( ) | || ||  ux x l x x   

for all x, x  in a neighborhood of u. We say that 

: RS  is locally Lipschitz on S if it is locally 

Lipschitz at each point of S. 

Let 
1 2( , ,...., ) : R

t m

mf f f f S  be a vector-

valued function. Then f is said to be locally 

Lipschitz on S if each fi is locally Lipschitz on S. 

Definition 2.2. [4] Let : RS  be a locally 

Lipschitz function on S. The Clarke's generalized 

directional derivative of  at uS in the direction 

v, denoted as 0 ( ; )u v , is defined by 

 0

0

( ) ( )
( ; ) limsup

y u

t

y tv y
u v

t

 







 
  

Definition 2.3. [4] The Clarke's generalized 

gradient of  at uS, denoted as ( ) u , is given 

by  

0( ) { : ( ; ) , , }     R R
n nu u v v v    . 

The generalized directional derivative of a locally 

Lipschitz function 1( ,..., ) : R
t m

mf f f S  at 

u S  in the direction v is given by 

0 0 0 0

1 2( ; ) ( ( ; ), ( ; ),...., ( ; )) t

mf u v f u v f u v f u v . 

The generalized gradient of  f at u is the set  

1 2( ) ( ) ( ) ... ( )      mf u f u f u f u ,where ( ) if u  

is the generalized gradient of if  at u for i = 1, 

2,...,m. An element 1( ,..., ) ( ) t

mA A A f u  is a 

continuous linear operator from Rn to Rm and  

1( ,..., ) R
t t t m

mAu A u A u for all R
nu . 

Let  R
mK  be a closed convex pointed cone 

with nonempty interior and let intK denote the 

interior of K. The positive dual cone K* and the 

strict positive dual cone 
*sK  of K, are 

respectively defined as 

 
* * *{ : , 0 for all },and   R

mK y y y y K  

* * *{ : , 0 for all \{0}}   R
s mK y y y y K . 

Throughout the paper, we shall denote an element of 

Rn+1 by the ordered pair (a, r), where aRn and rR. 

Consider a function φ : SSRn+1R such that    

φ(x, u; ) is convex on Rn+1 and φ(x, u; (0, r))  0 for 

every x , uS and any real number rR+. Let             

f : SRm  be a locally Lipschitz function , uS ,

1( ,..., ) ( ) t

mA A A f u , 1( ,..., ) R
t m

m  

and ( , ;( , )) x u A  denote the vector 

1 1( ( , ;( , )),..., ( , ;( , )))t

m mx u A x u A    . 

We introduce the following  definitions: 

Definition 2.4. The function  f  is said to be K-

generalized (,)-convex at u on S if for every 

xS 

( ) ( ) ( , ;( , )) , ( ).    f x f u x u A K A f u  

Definition 2.5. The function f  is said to be K-

generalized (,)-pseudoconvex at u   on S if for 

every xS, ( )A f u  

( , ;( , )) int ( ( ) ( )) int .    x u A K f x f u K  

Equivalently, if for every xS 

( ) ( ) int ( , ;( , )) int ,

( ).

   

 

f x f u K x u A K

A f u


 

Definition 2.6. The function f  is said to be K-

generalized (,)-quasiconvex at u  on S if for 

every xS 

( ) ( ) int ( , ;( , )) ,

( ).

   

 

f x f u K x u A K

A f u


 

If f is K-generalized (,)-convex (K-generalized 

(,)-pseudoconvex, K-generalized (,)-

quasiconvex) at every uS then f is said to be K-

generalized (,)-convex (K-generalized (,)-

pseudoconvex, K-generalized (,)-

quasiconvex) on S. 

Remark 2.7: 1) If R
mK += and φ:SSRn+1R 

is of the form 

 φ(x, u; (A, )) = F(x, u, A) + d(x, u) 

where F(x, u,  ) is sublinear,  is a constant and  

d : SSR+, then K-generalized (,)-convexity 

reduces to (F,)-convexity introduced by Preda 

[9]. 

2) If f is a scalar valued function and K =R+, then 

Definition 2.4 becomes the definition of (,)-

invexity given by Antczak and Stasiak [2]. 

3) If f is a differentiable function and R
mK += , 

then the above definitions reduce to the 

corresponding definitions introduced in [6]. 

4) If R
mK +=  then Definition 2.4 becomes the 

definition of (,)-invexity introduced by 

Antczak [1]. 
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Now we give an example of a K-generalized 

(,)-convex function. 

Example 2.8. Let S=
2

R  and

{( , ) : 0, }.  K x y x y x Consider the following  

nonsmooth function 2: ,Rf S

1 2( ) ( ( ), ( )).f x f x f x  

1 1

1 1 2

1 2 1

4

1 2 1

2 1 2
2 2

1 2 1

, 0
( , )

2 , 0

1 1
, 0

( , ) 2 3

, 0

 
 




 

 
  

x x
f x x

x x x

x x x
f x x

x x x

 

Here, 

1 11 12 11 12(0,0) ( , ), [ 1,0], {0}    f A A A A  

and 2 21 22 21 22

1
(0, 0) ( , ), [0, ], {0}.

2
   f A A A A  

Define 
3:   R RS S  as 

1 2

4

1 2 1

( )2 2

1 2 1

( ) , 0
( , ; ( , ))

( ) , 0
 

  
 

 
a a

x x x
x u a

x x e x


  . 

Note that ( , ;(., .))x u  is convex on 3
R , 

( , ; (0, )) 0x u r , for every (x, u)SS  and any 

rR+. 

Set 
1

(0, )
3

  .Then, at (0,0)u  we have 

11 12

21 22

1 1 1

( )2 2

1 2 1 2

( )2 2

1 2 1

( ) ( ) ( , ; ( , ))

1
( , ), 0

6

(2 ( ) ,

( )(1 )), 0

 

 

  


 


  


  


A A

A A

f x f u x u A

x x x

x x x x e

x x e x



 

which gives that, 

( ) ( ) ( , ; ( , )) ,  f x f u x u A K for every xS 

and (0,0).A f  

Hence, f is K-generalized (,)-convex at u on S. 

It is clear that every K-generalized (,)-convex 

function is K-generalized (,)-pseudoconvex. 

Converse of this statement may not be true as 

shown by the following example.  

Example 2.9.  Let S= 2
R  and 

{( , ) : 0, }.  K x y x y x Consider the following  

nonsmooth function 2: ,Rf S

1 2( ) ( ( ), ( )) .f x f x f x  

1 1

1 1 2

1

1 2 1

2 1 2 2 2

1 2 1

, 0
( , )

0, 0

2 , 0
( , )

, 0

 
 



  
 

 

x x
f x x

x

x x x
f x x

x x x

 

Here, 

1 11 12 11 12

2 21 22 21 22

(0,0) ( , ), [ 1,0], {0}

and (0,0) ( , ), [ 1,0], [ 2,0].

    

     

f A A A A

f A A A A

 

Define 
3:   R RS S  as 

1 2

2

1 2 1

2 2

1 2 1

( ) , 0
( , ; ( , ))

( ) , 0


  
 

 
a a

x x x
x u a

x x e x


  . 

Note that, ( , ; (., .))x u  is convex on 3
R , 

( , ; (0, )) 0x u r , for every (x, u)SS  and any 

rR+. 

Set 
1

( , 1)
2

   .Then, at (0,0)u   we have 

1 2( ) ( ) int 0, 0

( , ;( , )) int ,

f x f u K x x

x u A K

    

 
 

for every xS and (0,0).A f  

Thus  f is K-generalized (,)-pseudoconvex at u 

on S. But f fails to be K-generalized (,)-

convex at u on S because for x = (4,1), 

3
( ) ( ) ( , ; ( , )) , 1 .

2

 
      

 
f x f u x u A K  

3. Optimality conditions 

Consider the following nonsmooth vector 

optimization problem over cones. 

(NVOP) K-minimize f(x) 

  subject to g(x) Q, 

where f : SRm, g : SRp are locally Lipschitz 

vector-valued functions and S is a nonempty open 

subset of Rn. K and Q are closed convex pointed 

cones with nonempty interiors in Rm and Rp 

respectively.  

Let S0 = {xS:g(x) Q} denote the set of 

feasible solutions of (NVOP).  

Definition 3.1. A point 0x S  is said to be  
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(i) a weak minimum of (NVOP) if for every 

xS0 

( ) ( ) int f x f x K . 

(ii) a  minimum of (NVOP) if for every  

xS0 

( ) ( ) \ {0}. f x f x K  

The following constraint qualification and 

Karush-Kuhn-Tucker type necessary optimality 

conditions are a direct precipitation from Craven 

[5]. 

Definition 3.2. (Slater-type cone constraint 

qualification).The problem (NVOP) is said to 

satisfy Slater-type cone constraint qualification at 

x  if, for all ( )B g x , there exists a vector  

Rn such that intB Q . 

Theorem 3.3. If a vector 0x S  is a weak 

minimum for (NVOP) with S= Rn at which 

Slater-type cone constraint qualification holds, 

then there exist Lagrange multipliers 
* \ {0}K and *Q , such that  

 0 ( )( ) t tf g x   

 ( ) 0t g x . 

Note that, for 

1 1( ,..., ) and ( ,..., )   R R
t m t p

m p      ,  

( )( ) ( ( ) ( ) )     t t t tf g x f x g x    . 

Now we give the generalized form of nonsmooth 

KKT sufficient optimality conditions for 

(NVOP). 

Theorem 3.4. Let f be K-generalized (,)-

convex and g be Q-generalized (,)-convex at 

0x S on 0S . If there exist * \ {0}K and 
*Q , such that 

0 ( ( ) ( ) )   t tf x g x  ,            (1) 

( ) 0t g x ,             (2)

 

1 1

0,
 

  
pm

i j

i j

 

    

          (3)
 

0, t t                 
(4) 

then x  is a weak minimum for (NVOP). 

Proof: Suppose to the contrary that x  is not a 

weak minimum for (NVOP). Then there exists 

0
ˆx S  such that 

 ˆ( ) ( ) int . f x f x K                          (5) 

By virtue of (1), there exist 

 1( ,..., ) ( ) t

mA A A f x  

and 
1( ,..., ) ( ) t

pB B B g x  

such that,  

 0 t tA B  .                                    (6) 

 Since f is K-generalized (,)-convex at x  on  

S0, we have 

 ˆ ˆ( ) ( ) ( , ;( , ))  f x f x x x A K .     (7) 

Adding (5) and (7) we get, 

 ˆ( , ;( , )) int x x A K .                    (8) 

Since * \ {0}K , we have 

 ˆ( , ;( , )) 0 t x x A  .                         (9) 

Also, since g is Q-generalized (,)-convex at x  

on S0and *Q , therefore 

 ˆ ˆ{ ( ) ( ) ( , ;( , ))} 0  t g x g x x x B  . 

However, *

0
ˆ , x S Q  and (2) together imply 

 ˆ( , ; ( , )) 0 t x x B  .                       (10) 

From (9) and (10), we have 

ˆ ˆ( , ;( , )) ( , ;( , )) 0.   t tx x A x x B          (11) 

Define  

1 1

1

 



 
pm

i j

i j



 

, 

 , 1, 2,..., i i i m  , 

 , 1, 2,..., . j j j p   

Let 
1 1( ,..., ) and ( ,..., ) t t

m p      . 

(3), (4) and (6) respectively imply 

0, 0  t t     and 0 t tA B  . 

Also, by definition 
1 1

1
 

  
pm

i j

i j

  . 

Thus, using the properties of φ, we have 
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1 1 1 1

1 1

ˆ0 ( , ; ( , ))

ˆ( , ; ( , ))

ˆ ˆ( , ; ( , )) ( , ; ( , ))

   

 

  

  

 

   

 

t t t t

p pm m

i i j j i i j j

i j i j

pm

i i i j j j

i j

x x A B

x x A B

x x A x x B

      

      

     

 

ˆ ˆ( ( , ;( , )) ( , ;( , )))   t tx x A x x B     < 0  

   (by (11)), 

which is a contradiction. 

Hence, x  is a weak minimum for (NVOP). 

Theorem 3.5. Let f be K-generalized (,)-

pseudoconvex and g be Q-generalized (,)-

quasiconvex at 0x S  on 0S  and suppose there 

exist * \ {0}K  and *Q  such that (1), (2), 

(3) and (4) hold, then x  is a weak minimum for 

(NVOP). 

Proof. Let, if possible, x  be not a weak 

minimum for (NVOP). Then there exists 0
ˆx S  

such that (5) holds. 

In view of (1) there exist ( )A f x  and

( )B g x  such that (6) is satisfied. 

Since f is K-generalized (,)-pseudoconvex at 

x  on S0, therefore from (5), we have 

 ˆ( , ;( , )) int . x x A K  

Now * \ {0}K  gives ˆ( , ;( , ))t x x A  < 0. 

As 0
ˆx S and *Q , we have ˆ( ) 0t g x . On 

using (2), we get 

 ˆ{ ( ) ( )} 0 t g x g x .                         (12)  

If 0 , then (12) implies ˆ( ) ( ) int g x g x Q . 

Since g is Q-generalized (,)-quasiconvex at x  

on S0, therefore 

ˆ( , ;( , )) , x x B Q   

so that, ˆ( , ;( , ))t x x B   0.                          (13) 

If 0 , then also (13) holds. 

Now proceeding as in the last part of Theorem 

3.4, we get a contradiction. Hence x  is a weak 

minimum for (NVOP). 

Theorem 3.6. Let f be K-generalized (,)-

convex and g be Q-generalized (,)-convex at 

0x S  on S0. Suppose there exist * sK   and 
*Q  such that (1), (2), (3) and (4) hold, then 

x  is a minimum for (NVOP). 

Proof. Let if possible x  be not a minimum for 

(NVOP), then there exists 0
ˆx S  such that 

 ˆ( ) ( ) \ {0} f x f x K .                       (14) 

As (1) holds, there exist 

( ) and  ( ) A f x B g x  such that (6) holds.  

Since f is K-generalized (, )-convex at x  on 

S0, therefore proceeding on the similar lines as in 

proof of Theorem 3.4 and using (14) we have 

 ˆ( , ; ( , )) \ {0} x x A K . 

As * sK , we have ˆ( , ;( , ))t x x A  < 0. 

This leads to a contradiction as in Theorem 3.4. 

Hence x  is a minimum for (NVOP). 

4. Duality 

We associate with the primal problem (NVOP), 

the following Wolfe-type dual problem 

(NWOD): 

(NWOD)K-maximize f(y) + tg(y)l 

 subject to 0 ( ( ) ( ) )t tf y g y    ,  (15) 

* *, int , \ {0}, and 1    ty S l K K Q l   . 

We now establish duality results between 

(NVOP) and (NWOD). 

Let W denote the set of feasible solutions of 

(NWOD) and WY  be the subset of S given by 

{ : ( , , ) }.  WY y S y W   

Theorem 4.1.(Weak Duality). Let x be feasible 

for (NVOP) and ( , , )y    be feasible for 

(NWOD). If f is K-generalized (,)-convex at y 

on 
0 WS Y , g is Q-generalized (, )-convex at 

y on
0 WS Y ,  

1 1

0
 

  
pm

i j

i j

   and 

0 t t    , then 

 ( ) ( ) ( ) int  tf y g y l f x K .         (16) 

Proof. Let if possible, 

( ) ( ) ( ) int  tf y g y l f x K .                      (17) 

Since ( , , )y    is feasible for (NWOD), 

therefore by (15), there exist 
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( ) and ( ) A f y B g y  such that 

 0. t tA B                                    (18) 

 Since f is K-generalized (,)-convex at y on 

0 WS Y , therefore  

 ( ) ( ) ( , ;( , )) .  f x f y x y A K     (19) 

Adding (17) and (19), we get 

 ( ) ( , ;( , )) int . t g y l x y A K    

As * \ {0}K and 1t l , we have 

 ( ) ( , ;( , )) 0  t tg y x y A   .         (20) 

Again, since xS0, g is Q-generalized (,)-

convex at y on 
0 WS Y and *Q , therefore 

[ ( ) ( ) ( , ; ( , ))] 0.  t g x g y x y B              (21) 

From (20) and (21), we have 

( , ;( , )) ( , ;( , )) ( )   t t tx y A x y B g x     . 

Since x is feasible for (NVOP) and 
* , ( ) 0 tQ g x  , so that we have 

 ( , ;( , )) ( , ;( , )) 0   t tx y A x y B    . 

Now proceeding as in proof of Theorem 3.4, we 

obtain a contradiction. Hence (16) holds. 

This weak duality result allows us to obtain 

strong duality result as follows. 

Theorem 4.2. (Strong Duality). Let x  be a 

weak minimum for (NVOP) at which Slater-type 

cone constraint qualification is satisfied. Then 

there exist * \ {0}K and *Q  such that 

( , , )x    is feasible for (NWOD). Moreover, if 

the conditions of Theorem 4.1, are satisfied for 

each feasible solution of (NWOD), then x  is a 

weak maximum for (NWOD). 

Proof. Since x  is a weak minimum of (NVOP), 

therefore by Theorem 3.3, there exist 
* \ {0}K , *Q   such that (1) and (2) hold. 

Thus ( , , )x    is feasible for (NWOD). Now 

assume on the contrary that ( , , )x   is not a 

weak maximum for (NWOD), then there exists a 

feasible solution (y, , ) for (NWOD) such that 

{ ( ) ( ) } { ( ) ( ) } int   t tf y g y l f x g x l K  , 

which on using (2) gives 

( ) ( ) ( ) int  tf y g y l f x K . 

This contradicts Weak Duality Theorem 4.1. 

Hence ( , , )x    is a weak maximum for 

(NWOD). 

Now we consider the following Mond-Weir type 

dual (NMOD) related to problem (NVOP): 

(NMOD)K-maximize f(y) 

 subject to 0 ( ) ( )  t tf y g y       (22) 

 ( ) 0t g y ,                                  (23) 

 
*, \ {0} y S K and *Q . 

Let M denote the set of feasible solutions of 

(NMOD) and MY  be the subset of S defined by 

{ : ( , , ) }.  MY y S y M   

Theorem 4.3. (Weak Duality). Let x be feasible 

for (NVOP) and ( , , )y    be feasible for 

(NMOD). Suppose f is K-generalized (,)-

pseudoconvex and g is Q-generalized (,)-

quasiconvex at y on 0 MS Y  such that 

1 1

0
 

  
pm

i j

i j

   and 0 t t     , then  

 ( ) ( ) int f y f x K .                          (24) 

Proof. Assume on the contrary, 

 ( ) ( ) int f y f x K .                          (25) 

Since ( , , )y    is feasible for (NMOD), there 

exist ( ) and ( ) A f y B g y  such that (18) 

holds. 

As f is K-generalized (,)-pseudoconvex at y on 

0 MS Y  , therefore from (25), we have 

 ( , ;( , )) int . x y A K  

Since * \ {0}K , we get ( , ;( , )) 0 t x y A  . 

Also, 0x S  and 
*Q  so that ( ) 0t g x . This 

together with (23) gives { ( ) ( )} 0 t g x g y . 

Now proceeding on similar lines as in proof of 

Theorem 3.5 we get a contradiction. Hence (24) 

holds. 

Theorem 4.4. (Strong Duality). Let x  be a 

weak minimum of (NVOP) at which Slater-type 

cone constraint qualification is satisfied. Then 

there exist * \ {0}K  and *Q  such that 
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( , , )x    is feasible for (NMOD). Moreover, if 

the conditions of Weak Duality Theorem 4.3 are 

satisfied for each feasible solution ( , , )y    of 

(NMOD), then ( , , )x    is a weak maximum of 

(NMOD). 

Proof. The proof is similar to that of Theorem 

4.2 except that we invoke Theorem 4.3 instead of 

Theorem 4.1. 
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Abstract. The aim of this paper is to summarize the findings of research concerning the application of 

genetic algorithm in transit network design and scheduling. Due to the involvement of several 

parameters the design and scheduling of transit network by means of traditional optimization 

technique is very difficult. To overcome these problems, most of the researchers have applied genetic 

algorithm for designing and scheduling of transit network. After the review of various studies 

involved in design and scheduling of transit network using genetic algorithm, it was concluded that 

genetic algorithm is an efficient optimization technique. 

 

Keywords: Transit network, genetic algorithm, optimization technique 

AMS Classification: 90B10, 90B15. 

 

1. Introduction 

In developing countries like India traffic 

congestion, slow speed of vehicle and poor level 

of service are the major problems encountered in 

our daily life. These problems are due to huge 

growth of vehicular population specially the 

private and intermediate transport service [1-3]. 

In this view of rapid development it necessary to 

plan and design the public transport system in an 

efficient manner so that the use of private and 

intermediate transport service is reduced. 

The transport system is efficient if design and 

schedule of transit network is efficient. From the 

user point of view, the system is efficient if  it  

meets the demand by providing cheap and direct 

service to the passenger, and from the operator 

point of view the system is efficient if  it makes 

as much profit as possible. This is the main 

challenge in the transit planning to find balance 

between these conflicting objectives, various 

optimization techniques come in to the game [4].  

Among various optimization techniques the 

genetic algorithm offers a new strategy with 

enormous potential for many tasks in planning 

and designing of transit network. It is an area of 

interest indicating how genetic algorithm 

addresses the shortcoming of conventional 

optimization techniques. In the present study an 

attempt has been made to explore the application 

of genetic algorithm in routing, scheduling, 

combined routing and scheduling and integration 

of mass transit planning.  

2. Genetic algorithm 

Genetic algorithms, search optimization 

techniques are based on the mechanics of natural 

selection. It is an evolutionary algorithm. The 

basic mechanics of genetic algorithm are simple 

involving copying strings and swapping partial 

strings. The major steps involve in the GA 

implementation algorithm are generation of 

population, finding the fitness function, and 

application of genetic operator and evaluation of 

population [5] as shown in Figure 1. 
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Figure 1. General scheme of evolutionary process [6] 

GA starts with the population of randomly 

created string structure representing the decision 

variable. The size of the population depends upon 

the string length and problem being optimized. 

These strings are called chromosome in 

biological system. The associate value with the 

chromosome is called the “fitness function”. 

These strings consist of coding and binary coding 

which is most common coding method and GA 

performs best if adopted [7] i.e. ones and zeros or 

“bits”. Every position in chromosome consists of 

“genes” having value as “allele” (e.g., 0 or 1). 

Initially the allele of chromosome is generated as 

simple tossing of an unbiased coin and 

consecutive flips (head=1 and tail=0) can be used 

to decide genes in coding of a population strings. 

Thus population having individuals is generated 

by pseudorandom generator whose individuals 

represent a feasible solution in solution space 

called initial solution. After deciding the 

encoding method as binary strings, its length is 

determined according to desired precision. While 

in the process of coding, the corresponding point 

can be found using fixed mapping rule [7]. 

Suppose the function of n variables, f(x1, 

x2,….,xn): Rn R to be minimized for each 

decision variable si then linear mapping rule is: 

)(   
12

_
minmax

min im

ii

ii S
XX

XX valuedecoded
i







                           
(1)

 

Where,  

Ximin = lower bound on decision variable Xi 

Ximax = upper bound on decision variable Xi 

The variable Xi is coded into substring Si of 

length mi then,  

Decoded value (si) is




1

0

2
i

i

i

i S
, where Si € (0, 1) 

and string is represented as (Sm-1, Sm-2, S2, S1, S0). 

After decoding all decision variables using above 

mapping rule, the function value can be 

calculated by substituting the variables in the 

given objective function F(x). The objective 

function value is used as a measure of 

“goodness” of the string and called as “fitness” in 

GA terminology. The obtained accuracy of a 

variable for a mi-bit coding is 

 

12

minmax





im

ii XX

              
(2) 

                    
 

In the next step, fitness function f(x) is derived 

from the objective function and used in 

Survivor  

      Initialization         

    Termination  

Population  

 

Parents 

  Offspring  

Recombination  

   Mutation  

Pseudo –code 

Begin  

INITIALISE population with random candidate solution  

EVALUATE each candidate. 

REPEAT UNTILL (termination condition) is satisfied DO 

1. SELECT Parents  

2. RECOMBINE Pairs of parents 

3. MUTATE the resulting offspring. 

4. SELECT individuals or the next generation. 

END  
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successive genetic operators. GAs is naturally 

suitable for solving maximization problems while 

for minimization problems are transformed into 

maximization problems using suitable 

transformation. For maximization problems, 

fitness function is the same as objective function 

i.e. f(x) = F(x). For minimization problems, the 

fitness function is an equivalent maximization 

problem chosen such that the optimum point 

remains unchanged. The fitness function used is 

[8]: 

 
  xf

xF



1

1

             
(3) 

 

With fitness function value of each string in 

particular generator, maximum, minimum and 

average fitness values of all strings in a 

population are calculated and checked for 

termination criteria. If the termination criterion is 

not satisfied then new population is created by 

applying three main genetic operators – 

reproduction, crossover and mutation.  

Reproduction / Selection:  [7, 9] is a process in 

which individual is copied considering their 

fitness function values to make more copies of 

better string in a population. This represents a 

measure of the utility or goodness related to what 

we want to maximize. Copying strings according 

to their fitness function values means that string 

with a high value have higher probability of 

contribution to one or more off-spring in the next 

generation. In all selection schemes the essential 

idea is to pick strings with more than average 

fitness value from current population and their 

multiple copies are inserted in the mating pool in 

a probabilistic manner as shown in Figure 2. The 

most commonly selection operator are uniform 

random selection, roulette selection and 

tournament selection. The former selects member 

of pool at random, ignoring fitness or other 

factors. Thus the chromosome is likely to be 

selected. The simplest way to implement the 

reproduction operator is to create a biased 

roulette wheel where each string in the current 

population has a slot sized proportionally to its 

fitness function value. The formula used to 

calculate the slot size of roulette wheel, 

corresponding to the reproduction probability 

pr(i) of the string is as follows: 

 

Reproduction probability 𝑃𝑟(𝑖) =  𝑓𝑖 / ∑ 𝑓𝑖
𝑛
𝑖=1    (4) 

 

Where, n = Population size  

 

fi = fitness value of i string. 

 

 

 

 

 

 

 

 

 
 

         Figure 2. Reproduction operator 

 
Crossover: [7, 9] after reproduction, crossover is 

applied to the string of mating pool. A crossover 

is used to combine two strings with the hope of 

creating better string. It can performed with the 

probability (Pc ) to restrict some of the good 

string found previously. Two strings are chosen 

at random for crossover. The most commonly 

used crossover operators are single point 

crossover, double point crossover. A crossing site 

(represented by vertical line) is chosen at 

random. The contents in the right side of the 

crossing side are swapped between the strings. 

The essential idea of crossover is to exchange 

bits between two good strings to obtain a string 

that is generally better than the parent.  For 

example, a single point crossover on five bit 

string is shown in Figure 3. 

Mutation: [7, 9] adds new information in a 

random way to genetic search process and 

prevents an irrecoverable loss of potentially 

useful information which reproduction and 

crossover can cause. It operates at bit level, when 

bits are copied from current string to new string. 

Mutation operates with a very small mutation 

probability (pm). It introduces the diversity in the 

population whenever the population trends to 

become homogeneous due to iterative use of 

reproduction and crossover. A coin toss 

mechanism is used; if a random number between 

0 and 1 is less than the mutation probability, then 

bit is inverted i.e. 0 become 1 and 1 become 0. 

There are different type of mutation operator flip-

bit, boundary, uniform, non-uniform and 

Gaussian. Flip-bit operator is used for binary 

gene; boundary, uniform, non-uniform and 

Gaussian operator is used for integer and float 

gene. In this paper the example using binary gene 

has been considered. To understand how to use 

integer gene refer [10]. 

 

Pr(1) 

Pr(2) 
Pr(4) 

Pr(3) 
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Figure 3. Crossover operator 

 

The newly created strings are evaluated by 

decoding and calculating their objective function 

values (fitness). This whole process completes 

one cycle of GAs, normally called as generation. 

Such iterative process continues until the 

termination criterion is satisfied. 

Termination Criteria:  the population is said to 

be converged, when the average fitness of all the 

string in a population is equal to best fitness. 

When the population is converged, the GAs is 

terminated. 

3. Review of GAs in design and scheduling 

of transit network  

Various attempts have been made in designing 

and scheduling of transit network by different 

researchers. The design and scheduling of transit 

network using GAs has been classified into four 

broad categories: Routing, scheduling, combined 

routing and scheduling and integration of mass 

transit planning. Table 1 provide an overview of 

the approaches reported in the literature.      

 
3.1 Routing approaches 

Design of a route is an important step in planning 

the transit system. Bus/rail takes a major share of 

public transport demand. However, in most of the 

service areas the distribution of passenger travel 

is not homogenous; and therefore such location 

may not be cost effective in terms of operator or 

user point of view. For better passenger 

accessibility and saving of cost, reconstruction of 

bus route and its associated frequency must be 

done to suit the travel demand results in better 

passenger accessibility and saving of operating 

cost. Transit operator and commuter both give 

preference to short routes so that the operator 

cost and the travel time can be decreased, 

respectively.  

Generally, the passengers also prefer those routes 

that can be easily accessed from their origin or 

destination trip. The route set is efficient if it 

satisfies the following rules: 
i. The transit demand of all commuters. 

ii. Transit demand of all commuters with zero 

transfer. 

iii. Less time to travel. 

Pattnaik et al.  [11] focused on route network 

design and calculated associated frequencies for a 

given set of routes using genetic algorithm 

(GAs). Design consisted of two phase; first of all 

candidate route set was generated and then using 

GAs optimum route set was selected. The GAs 

was solved by fixed string length coding scheme 

assuming a solution set route size, and tried to 

find many best routes from the candidate route 

set. Newly proposed varaible string length 

method was used to found the solution route set 

size and set of solution routes. 

Bielli et al. [17] focused on a new method of 

computing fitness function (ff) values in genetic 

algorithm for bus optimization. Each set was 

evaluated by computing a number of 

performance indicators obtained by analysis and 

aimed to achieve best bus network satisfying both 

demand and offer of transport. The algorithm was 

used to generate iteratively new set of bus 

networks. 

Ngamchai and Lovell [23] proposed a new model 

to optimize bus route design which incorporates 

unique frequency setting for each route using 

GAs. The model design the bus route in three 

phases; firstly an initial set of route is constructed 

which are feasible and good. Secondly the 

service frequency on each route was assigned and 

headway coordination techniques were applied 

by ranking of transfer demand at transfer 

terminal. Lastly the existing route was modified 

to identify the shortest paths between origin and 

destination. The efficiency of the model was 

tested by applying it on the benchmark network. 

The performance result shows that proposed 

model is better than binary-coded genetic 

algorithm.    

Chien et al. [21] develop a model using GAs to 

optimize bus transit system. The total cost 

function consisting of supplier and user costs was 

minimized subject to realistic demand 

distribution and irregular street pattern. The 

quality and quantity of the data can be improved 

by incorporating boarding demand data of census 

block and information of GIS (Geographical 

Information Systems) street network.  

 

 

   Selected Strings              Single point crossover                    New Strings 

   1 0 0 10      1 0     0 1 0       1 0 0 0 1  

  1 1 0 0 1      1 1      0 0 1                                1 1 0 1 0 
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Table 1. Classification of papers dealing with design and scheduling of transit network 

 

Year Author  Objectives   Decision  

variables  

Network 

structure  

1998 Pattnaik et al.[11] Total cost (user + 

operator ) 

Route, frequencies  Irregular grid  

1998 Deb & Chakroborty 

[12] 

Passenger waiting time Arrival time, departure 

time 

Not specified  

2000 Gundaliya et al. [13] Total cost (user + 

operator ) 

Route, frequencies Irregular grid 

2001 Chien et al. [14] Total cost (user + 

operator ) 

Route, headway Rectangular 

grid 

2001 Kalaga et al.[15] Crowding level  Route, frequencies Irregular grid 

2001 Chakroborty et al. [16] Total waiting time 

(passenger) 

Arrival time, departure 

time 

Not specified 

 

2002 Bielli et al. [17] Multi-objective Route, frequencies Irregular grid 

2002/ 

2006  

Shrivastava & Dhingra 

[18,19]  

Total cost (user + 

operator) 

Route, frequencies Not specified 

2002 Chakroborty & Diwedi 

[20] 

Multi-objective  Route  Irregular grid  

2003 Chien et al. [21] Total cost (user + 

operator) 

Route spacing, 

headway, stop spacing  

Rectangular 

grid 

2003 Tom and Mohan [22] Total cost (user + 

operator) 

Route, frequencies  Irregular grid 

2003 Ngamchai & Lovell 

[23] 

Total cost (user + 

operator) 

Route, frequencies  Irregular grid  

2004 Agrawal & 

Mathew[24]  

Total cost (user + 

operator) 

Route, frequencies Not Specified 

2005 Kidwai et al. [25] Passenger wait time 

and crowding level  

Route, frequencies Irregular grid 

2006  Zhao & Zeng [26] Coverage, transfer, user 

cost 

Route, frequencies Irregular grid 

2006 Kaun et al. [27] Total cost (user + 

operator) 

Route Not Specified 

2006 Verma & Dhingra [28] Total cost (user + 

operator) 

Route, headway  Irregular  grid  

 

2006/ 

2007 

Shrivastava & 

O’Mahony [29,30] 

Total cost (user + 

operator) 

Route, frequencies Irregular  grid  

 

2010 Wang and Lin [31] Operator cost, 

passenger travelling 

cost 

Route, frequencies, 

capacity, headway 

Not specified  

 

2012 Chew and Lee [32] Passenger Cost  Route  Irregular grid 

 

The developed model determines the optimal 

solution and generates relationship among 

variables. The service area was divided into  

 

various sub-regions to deal with multiple bus 

routes situation. Agrawal and Mathew [24] 

proposed two parallel computational models for 
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urban transit network using parallel genetic 

algorithm (PGA). The first model i.e., global 

parallel virtual machine (PVM) calculates the 

fitness function. The second model i.e., global 

message passing interface (MPI) substitutes MPI 

environment for PVM libraries. The large transit 

network consisting of 1332 nodes, 4076 links and 

6000 demand pairs was used as a case study. 

Both the models were tested for better 

performance using various factors, like 

efficiency, computation time and speedup. Based 

on the performance measure, it is identified that 

global PVM model is efficient than the other 

model. 

Wang and Lin [31] developed a bi-level 

programming model using genetic algorithm for 

mass transit route network design (MTRND). 

The TRTC (Taipei Rapid Transit Corporation) 

mass transit network was used as a case study. To 

attain better search space for initial feasible 

solution, the algorithm was formulated with 

smart generating methodology. The computation 

time of an efficient network model can be 

minimized using redundancy checking 

mechanism and gene repairing strategy. The 

solution quality is improved by embedding the 

passenger assignment model and improved 

fitness function. Based on the comparison 

between performance measures, such as two 

initial solution generating methods (1-car and 

Minimum –car) and three operators (1-point, 1-

point mutation and 2-point crossover), it was 

found that for MTRND problem proper 

combination of minimum-car method and the 2-

point crossover operator was suitable. The result 

indentifies that development model and algorithm 

is effective for solving MTRND problem.  

Chew and Lee [32] developed a framework using 

GAs to solve urban transit routing problem 

(UTRP). In this study, the infeasible solution was 

converted into feasible solution using adding-

node procedure. Minimizing the passenger cost 

was the main objective of the study. To perform 

genetic operation, route crossover and identical-

point mutation were proposed. The Mandl’s 

benchmark data set was used to carry out the 

computational experiment. The result shows that 

the proposed algorithm performs more efficiently 

when compared to other researchers as shown in 

Table 2. 

3.2 Scheduling approaches 

Careful and detail scheduling computation and 

precise presentation of schedulers are extremely 

important aspects of transit system operation. 

They affect efficiency and economy of operation, 

regularity and reliability of service and facility 

with which public can use system. Good 

scheduling means spacing transit vehicle at 

appropriate intervals throughout the day and 

evening to maintain an adequate level of service. 

Therefore, it minimizes both waiting time for 

passengers as well as transfer time from one 

route to another. Total waiting time of passengers 

is the sum of the total initial waiting time (IWT) 

and total transfer time (TT) of the passenger. As 

an effect, it will provide a better level of service 

to passenger at no extra cost. The resource and 

service related constraints are as follows: 

 

i. Minimum fleet size: number of buses 

available should be finite for running on 

different routes. 

ii. Minimum Bus capacity: capacity of the bus 

should be fixed. 

iii. Stopping time bounds: buses cannot stop for 

a very little or a very long time at a stop. 

iv. Policy headway: minimum frequency level 

should be maintained on a given route. 

v. Maximum transfer time: transfer time for 

the passenger should not be too long. 

Deb and Chakroborty [12] formulated the time 

scheduling problem of transit system into mixed 

–integer nonlinear programming problem 

(MINLP) while considering large number of 

resources and service related constraint like size 

of fleet, stopping time and headway. Minimize 

the total waiting time (initial waiting time + 

transfer time) of the passenger is the main 

objective of MINLP. Genetic algorithm based 

approach was selected to solve transit scheduling 

problem as difficulties rises while using 

conventional optimization techniques. This 

research shows that the GAS based approach with 

least modification can handle various transit 

scheduling problems, such as minimum versus 

maximum capacity of bus, static versus dynamic 

arrival time, and single versus multiple transfer 

stations. Result shows that GAs based approach 

is capable of finding optimal results. 

Kalaga et al. [15] presented a two-step based 

heuristic technique for the distribution of buses 

on urban bus route. In the first step, bus 

frequencies required to manage the peak demand 

on each route was worked out. To compute base 

frequencies, buses overcrowding at certain 

location was also included. 
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Table 2. Comparison of GAs model with models developed by other researchers [18] 

 

Authors  Case  Number of 

routes  

Parameters 

% of Demand satisfy through 

transfer  

Zero One Two  Unsat ATT 

Mandll [33]  

 

 

 

I 

 

 

 

 

4 

69.94 29.93 0.13 0.00 12.90 

Baaj and Mahmassani [34] N/A N/A N/A N/A N/A 

Kidwai [25] 72.95 26.92 0.13 0.00 12.72 

Chakroborty and Dwivedi [20] 86.86 12.00 1.14 0.00 11.90 

Fan and Mumford [35] 93.26 6.74 0.00 0.00 11.37 

Proposed  

GAs 

Avg Results 92.88 6.91 0.20 0.00 11.16 

Best Results 93.71 6.29 0.00 0.00 10.82 

Mandll [33]  

 

 

 

II 

 

 

 

 

6 

N/A N/A N/A N/A N/A 

Baaj and Mahmassani [34] 78.61 21.39 0.00 0.00 11.86 

Kidwai [25] 77.92 19.68 2.40 0.00 11.87 

Chakroborty and Dwivedi [20] 86.04 13.96 0.00 0.00 10.30 

Fan and Mumford [35] 91.52 8.48 0.00 0.00 10.48 

Proposed  

GAs 

Avg Results 93.85 5.88 0.24 0.03 10.51 

Best Results 95.57 4.43 0.00 0.00 10.28 

Mandll [33]  

 

 

 

III 

 

 

 

 

7 

N/A N/A N/A N/A N/A 

Baaj and Mahmassani [34] 80.99 19.01 0.00 0.001 12.50 

Kidwai [25] 93.91 6.09 0.00 0.00 10.69 

Chakroborty and Dwivedi [20] 89.15 10.85 0.00 0.00 10.15 

Fan and Mumford [35] 93.32 6.36 0.32 0.00 10.42 

Proposed  

GAs 

Avg Results 96.47 3.53 0.00 0.00 10.31 

Best Results 95.57 4.43 0.00 0.00 10.27 

Mandll [33]  

 

 

 

IV 

 

 

 

 

8 

N/A N/A N/A N/A N/A 

Baaj and Mahmassani [34] 79.96 20.04 0.00 0.00 11.86 

Kidwai [25] 84.73 15.27 0.00 0.00 11.22 

Chakroborty and Dwivedi [20] 90.38 9.62 0.00 0.00 10.46 

Fan and Mumford [35] 94.54 5.46 0.00 0.00 10.36 

Proposed  

GAs 

Avg Results 96.16 3.84 0.00 0.00 10.31 

Best Results 97.82 2.18 0.00 0.00 10.19 

Avg: Average, Unsat: Unsatisfied, ATT: Average Travel Time  

 
 

In the second step, additional frequencies were 

allocated in order to minimize the level of 

overcrowding in the network. The problem of 

commuters’ discomfort because of overcrowding 

was formulated as non-linear objective function.  

 

 

The problem, such as allocation of superfluous 

was solved using GAs. Route overlapping has 

been considered and a frequency of buses 

according to one transfer was set. The model 

concentrates on overcrowding as measure of user 

cost; other factors, like waiting time and vehicle 
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operating cost are not taken into account, which 

play a major role in allocation of buses. At 

intermediate node maximum of one transfer was 

considered that is generally not an actual case.  

They generated frequency-setting (FRESET) 

model and minimized the objective function 

subject to constraints of feasibility loading, 

assignment of commuter flow and size of fleet. 

Loading feasibility constraint ensured that the 

passengers demand across each route was 

fulfilled by allocation of frequency of buses 

across each route. Two stages of FRESET model 

were:  Base frequency allocation and surplus 

allocation.  

Chakroborty et al. [16] presented a genetic 

algorithm based approach for optimizing the 

problem related to allocation of fleet size and 

development of schedule with transfer 

consideration as well as minimizing the 

passenger waiting time. From the past 

experiences, it has been identified that it is 

impossible to get optimal result for simple 

problem using conventional optimization method 

but it is possible to get optimal result with 

minimum computation effort using GAs. 

Limitation of the developed method is that string 

length in case of a larger network is generally 

large. Two points that needs attention are; (i) 

developed a real- coded GAs based approach (ii) 

proposed procedure must be included with 

transfer stops.  

Shrivastava and Dhingra [18] developed a 

Schedule Optimization Model (SOM) for 

coordinating schedule of BEST buses determined 

on existing feeder routes. Minimizing transfer 

time between buses and train and operator cost 

are the main aims of the proposed model. The 

problem becomes nonlinear and non-convex due 

to large number of variables and constraint in the 

objective function, making it difficult to solve 

due to traditional approaches. Therefore, for 

coordination of sub-urban train and buses a 

genetic algorithm was used which is a robust 

optimization technique. The proposed model 

provides a better level of service to the 

commuters because they consider load factor and 

transfer time from train to bus rather than fleet 

size. It was found that less number of buses is 

required on existing feeder routes and it is a 

specific contribution towards integration of 

public transport mode.  

Kidwai et al. [25] presented a bi-level 

optimization model for bus scheduling problem. 

In first level, load feasibility was determined for 

each route individually and by adding the number 

of buses across each route, the fleet size was 

determined. In second level, using GAS the fleet 

size obtained from the first level is again 

minimized. Model is applied to real life network 

and based on the result, it is concluded that 

proposed algorithm yields significant saving for 

transit network with overlapping of routes. 

 

3.3 Routing and scheduling approaches  

Problems related to vehicle routing and 

scheduling (VRS) involve four decisions; (a) 

vehicle fleet size, (b) customer are assigned to a 

vehicle, (c) assigning a sequence to the vehicle 

which travel to the assigned customer, and (d) 

completing its route the actual time that vehicle 

travel. To solve the problem, various techniques 

have been used but no technique has included all 

the practical options or restriction confronting to 

a company. Unfortunately, the analysts had to be 

satisfied with the existing method or with slight 

modification they can develop their custom 

solution techniques. Routing and scheduling also 

mean an approach which deals with the route 

configuration and respective frequency 

simultaneously. This combined process of 

routing and scheduling involves two decisions 

parameters: number of routes and associated 

frequency.  

Gundaliya et al. [13]  proposed a GAs to develop 

a model for routing and scheduling. Objective 

function is minimization of total cost that is user 

and operator costs and the related constraints are 

load factor, fleet size and overloading of links. 

User cost is a combination of in-vehicle time, 

waiting time and transfer time and operator cost 

is vehicle operating cost of buses. Mandl’s Swiss 

network of fifteen nodes was used to test the 

model. Model gives the better optimized results 

found by other researcher on same network and 

demand matrix. 

Chakroborty and Dwivedi [20] proposed an 

algorithm using GAs that provides an efficient 

transit route networks. In this paper, four cases 

with different number of routes in the route set 

were used. A comparison of the proposed 

algorithm with algorithm developed by other 

author is done using various measures of 

effectiveness, such as (i) percentage of demand 

satisfied directly (ii) proportion of demand 

satisfied with one transfer (iii) proportion of 

demand satisfied with two transfers

(iv) proportion of demand unsatisfied (4) average 

travel time per user in minutes (5) total man-

hours saved per day. They also state that the 

developed procedure uses non-heuristic 
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techniques in optimization process. Further they 

mentioned that the proposed procedure is useful 

for transit planners and designers.  

Tom and Mohan [22] designed a route network 

for transit system involving selection of route set 

and its related frequency. The problem was 

formulated as an optimization function that 

minimized the overall cost of the system 

(operating cost of bus + travel time of passenger). 

Design of the route network was done in two 

stages: In the first stage, a large set of candidate 

route set was generated. In the second step, a 

solution route set with associated frequencies was 

chosen using GAs, from the large set of candidate 

route set generated during first step. The 

proposed model considered route frequency as 

the variable, thus making it different from the 

existing model in terms of adopted coding 

method. The model was studied on small size 

network and found that the performance of the 

model can be evaluated using adopted coding 

method for design of transit network. The SRFC 

model provides a solution with minimum 

operational cost, minimum fleet size and 

maximum allocation of demand which is directly 

satisfied. Using asymmetric demand matrix and 

demand sensitiveness to the service quality, this 

study can be extended. 

Chakroborty [36] discussed the optimal routing 

and optimal scheduling problems and described 

that the problem of routing can be classified as 

vehicle routing (TSP (travelling salesman 

problem), SVPDP (single vehicle pick-up and 

delivery problem) and SVPDPTW (single vehicle 

pick-up and delivery problem with time 

windows) and the transit routing problem. To 

develop schedules for bus arrival and departure at 

all the stops of network for a given set of route 

was the optimal scheduling problem. The genetic 

algorithm was used to solve optimization 

problem which was difficult to solve using 

conventional optimization tools. Results for 

various routing and scheduling problem were 

obtained by applying GAs technique. 

Zhao and Zeng [26] demonstrated a mathematical 

based stochastic methodology for optimizing 

transit route network using integrated Simulated 

Annealing (SA) and GAs search method. A 

computer program was developed to implement 

the methodology, and previously available results 

were used to test the feasibility of the proposed 

methodology. By developing time-dependent 

transit network optimization methods, the present 

study can be enhanced further to optimize a 

transit network for both periods that is peak and 

off-peak which also takes into account the 

waiting time and transfer penalties. It is also 

necessary to analyze the objective functions 

defined in terms of commuters and operator 

costs. To correctly identify the difference 

between two lines (i.e., is bus and rapid transit 

line), it is necessary to use the travel time instead 

of travel distance.  

 

3.4 Integration of mass transit planning   

Integration of mass transit planning means 

development of feeder routes and schedule 

coordination simultaneously. In integrated 

system, all the trips involve more than one mode 

and since passengers are subjected to transfer. 

The transfer is one of negative aspect of any trip 

but cannot be neglected. Transfer is essential 

because it make the integrated system quick and 

convenient.  

Dhingra and Shrivastava [37] described the 

methodology for co-ordination of suburban 

railway and BEST buses at Mumbai. The aim of 

this study was to achieve optimal coordinated 

schedules for optimally designed feeder route 

network with due consideration to user and 

operator costs and better level of service. To meet 

these objectives, network optimisation and 

transfer optimisation models were proposed. The 

problem was of multi-objective nature therefore a 

strong optimization technique GAs was proposed 

for optimisation.  The objective function contains 

minimisation of in-vehicle travel time, standing 

passengers and vehicle operating cost. 

Kaun et al. [27] presented a methodology for 

solving the problem related to feeder bus network 

design using meta-heuristic (combination of GAs 

and Ant Colony Optimization (ACO)). To 

compare the performance of meta-heuristic in 

terms solution quality and computational 

efficiency, a comparison was done between 

randomly generated 20 test solutions. In this 

study, each route was sequentially developed as 

follows: firstly the station was randomly selected, 

secondly the selected stop was added to the route 

linking to selected station, and lastly the route 

length was checked. The current route is 

terminated if it exceeds the maximum route 

length, and a similar procedure is used to develop 

new route. The procedure continues until all the 

stops have been included in the routes. To test the 

base problem, the results are compared with 

those published in the literature. Computational 

experiments have shown that both heuristics 

(simulated annealing and tab search) are 

comparable to the state-of-the-art algorithms. 
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Results also indicate that procedure can be 

further improved by using a 3-opt procedure 

(used to optimize each route) formed by applying 

GAs and ACO, so that the performance could be 

as good as that of tabu search with 

intensification. 

Shrivastava and O’Mahony [29, 30] build a 

model using GAs for generating the optimized 

feeder routes and indentifying associated 

frequencies for coordinating schedule of feeder 

buses. Thus instead of decomposing the problem 

in two steps (i) feeder route development (ii) 

schedule coordination of feeder buses, the two 

steps were optimized together that were 

complementary to each other. In this study, the 

authors determined the schedules coordination of 

feeder buses for the existing given schedules of 

main transit. The model produced better results in 

terms of improved load factor as compared to 

previous technique accepted by author for the 

same study area. The proposed model involves 

real life objective and constraints therefore it is 

specific involvement towards realistic modeling 

of integrated public transport system. 

Shrivastava and Dhingra [19] developed a 

methodology that determines the feeder routes 

and coordinated schedules for coordinating 

feeder buses with suburban trains. Feeder routes 

were developed using heuristic feeder route 

generation algorithm, and GAs was used for 

optimizing coordinated schedules. Based on the 

load factor and bus waiting time, the schedules 

were decided. To maintain better level of service 

and waiting time within satisfactory limit, the 

load factor lies between minimum and a 

maximum values. From the results, it is found 

that optimal values can be obtained in lesser time 

using genetic algorithm. 

Verma and Dhingra [28] described a model for 

building optimal coordinated schedules for urban 

rail and feeder bus operation.  An optimization 

technique GAs was used for developing a model. 

In this study, the optimal coordinated of urban 

train  and feeder buses was done in two parts; (i) 

sub-model was developed for train scheduling, 

and (ii) sub-model was developed for schedule 

coordination. The train scheduling objective 

function is taken as minimization of train 

operating cost and passenger waiting time cost 

(boarding the train) subject to constraint load 

factor and waiting time.  The schedule 

coordination objective function is taken as 

minimization of sum of bus operating cost, 

passenger transfer time cost (transferring from 

train to feeder buses), and passenger waiting time 

cost (boarding along the feeder route) subject to 

constraint load factor and transfer time. Two 

cases were considered for coordination, in first 

case, buses of different types were considered, 

and in second case single-decker fleet buses were 

considered. A comparison between both the cases 

was done to choose the strategy that is best. On 

the basis of comparison, it was found that mixed 

fleet size buses produce optimum result for 

coordinated feeder bus schedules. 

After examining and interpreting various 

literatures it is concluded that studies up until 

recent times are limited to operational integration 

of mass transit planning. The efficiency of 

different mass transit modes and main transit 

facility can be enhanced by overall system 

integration. The overall system integration 

includes operational integration, institutional 

integration and physical integration as shown in 

Figure 4. 

4. Conclusion  

In this review paper, we have presented the 

classification and analysis of studies on design 

and scheduling of transit network using GAs. It 

was found that problem related to design and 

scheduling of transit network are highly complex 

and non-linear in terms of decision variable and 

difficult to achieve using classical programming. 

GAs an optimization technique is 

computationally more efficient to solve the 

problem requiring large number of resources and 

services related constraints such as design and 

scheduling of transit network. Based on the 

review, it is concluded that GAs have advantage 

over traditional optimization techniques, as they 

work with clusters of points rather than a single 

point. Due to simulataneous prosess of more than 

one string it increases the posibility of global 

optimum solution. But still there exists some 

limitations: the solution for the complex 

problems  is efficient if the evaluation of the 

fitness function is good. But to evaluate a good 

fitness function is mostly the hardest part.  
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Figure 4. Overview of system integration  

5. Future scope  

For future scope the following points are 

recommended: 

1. The effeciency of the integrated transport 

sytem can be enhanced by overall system 

integration. 

2. The developed integrated transport system 

can be extended by developing integrated 

fare system between integrated modes 

which is a part of operation integration. 

3. Up till now, the developed integrated 

systems consider the train as the main mode 

and the bus and the intermediated transport 

system (auto-rickshaw and taxi) as feeder 

modes.  In order to develop a fully 

integrated transport system, personalized 

modes (car and two-wheeler) and non-

motorized modes (cycle-rickshaw & cycle) 

should also be considered.  

List of Abbreviation 

  
Gas : Genetic Algorithm  

SA  : Simulated Annealing 

ACO : Ant Colony Optimization 

ff : Fitness function  

GIS : Geographical Information System 

PGA : Parallel Genetic Algorithm  

PVM : Parallel Virtual Machine 

MPI : Message Passing Interface 

MTRND: Mass Transit Route Network Design   

TRTC : Taipei Rapid Transit Corporation 

UTRP : Urban Transit Routing Problem ` 

Avg : Average 

Unsat : Unsatisfied 

ATT : Average Travel Time  

IWT : Initial Waiting Time  

TT  : Transfer Time  

MINLP : Mixed Integer-Non-Linear 

Programming Problem  

FRESET: Frequency-Setting  

SOM : Schedule Optimization Model  
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Institutional Integration  Operation Integration Physical Integration 

Integrated transport 

system 

Integrated fare 

system 
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facilities 

Park & ride 

facilities 

Transit 

shelter 

Intermodal 

terminal 

Organizational Framework 

Planning of 

Transit services 
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VRS : Vehicle Routing and Scheduling 

TSP : Travelling Salesman Problem 

SVPDP : single vehicle pick-up and delivery 

problem 

SVPDPTW : Single Vehicle Pick-up and 

Delivery Problem with Time Windows  
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Abstract: Diversity is an important factor for genetic algorithms to do a successful search. High 

diversity obtained owing to the migration is one of the most important reasons of generation of 

successful results by Parallel Genetic Algorithms. While permeability is a new term that analyses the 

effect of the migration parameters in Parallel Genetic Algorithms. In this study, the effect of changing 

migration intervals on the permeability and the performance of algorithm has been examined and it 

has been showed that the migration done in exploration phase has made much more contribution to the 

performance of the algorithm. In addition to this, for the different migration parameters of the 

individuals that will migrate the values of diversity and permeability have been calculated and the 

obtained results have been analysed. 

Keywords: Parallel genetic algorithms; migration; diversity; permeability 
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1. Introduction 

Genetic Algorithms (GAs) do search by using 

individuals that represent different regions of 

search space. As for Parallel Genetic Algorithms 

(PGAs), they have been formed by practicing GA 

on different subpopulations. The most important 

property that separates PGAs from GAs is the 

migration that enables the individuals to change 

places between populations. The migration in 

PGAs enables the transmission of the required 

amount of individuals in subpopulations to 

different subpopulations. Owing to the 

individuals shared between subpopulations by 

migration, the risk of being caught at the local 

bests in PGAs decreases [1]. The migration 

process by sending good individuals to other 

subpopulations reduces the possibility of 

deterioration or loss of these individuals in the 

big population as a result of GA operations. This 

result enables PGAs to generate better results 

than GAs. 

The migration method extensively used in PGAs 

is ring migration method (R_PGA) [2-8]. In 

addition to this, the random ring method [9, 10], 

where migration process is carried out to a 

randomly chosen subpopulation, is another 

method that is used. The other method to be used 

is fully-connected migration method (FC_PGA) 

[3, 4, 11], where all subpopulations are connected 

to each other. According to this method, all 

subpopulations exchange individuals among 

themselves during the migration process. 

However, since this structure includes too many 

connections its communication cost is high. 

Elitist Migration Method (E_PGA) is a migration 

method that aims at generating good results 

earlier by transmitting good individuals to the 

right subpopulations faster. E_PGA by doing 

goodness evaluation among subpopulations, 

enables good individual to go to the good 

subpopulation [12-16]. 



24                                       G. Kuvat, N. Adar / Vol.6, No.1, pp.23-31 (2016) © IJOCTA 

In PGAs, migration parameters are used in 

addition to GA parameters. Migration parameters 

are topology, migration method, number of the 

migrated individuals, migration interval, the 

selection method of migration individuals, the 

method of changing places after migration, 

subpopulation number, subpopulation size and 

communication model. The selection of these 

parameters affects the search success in PGAs. 

Therefore, the studies and settings done on the 

migration are important for the algorithm to give 

faster and more efficient results. 

In GAs, diversity is used for the measure of the 

affinity between the individuals in the population. 

High diversity values are necessary to obtain 

more successful search results [17]. However, 

only the examination of the individuals in the 

population is not enough to exhibit the 

relationship between diversity and PGA 

performance. In this study, the term of 

permeability is introduced as the diversity 

measure between populations. Thus, the effects 

of migration parameters to PGA have been 

examined with the measures of diversity in 

subpopulation and diversity between 

subpopulations. 

In the following part of the study, the terms of 

diversity and permeability have been explained, 

in part 3 the effect of the migration interval 

changing linearly and parabolically to the 

permeability has been examined, in part 4 and 5 

the permeability and diversity of the individuals 

that will migrate have been examined. As for part 

6 the obtained findings have been interpreted. 

2. Diversity and permeability in parallel 

genetic algorithms 

2.1. Diversity and permeability 

GAs are formed of individuals representing 

different regions of the search space. Owing to 

this, they can reach the solution in different 

points at the same time. However, as the iteration 

steps proceed if the reached solutions are out of 

the region in which there is the best solution, it 

becomes difficult to obtain a good result. 

Therefore, there is a need for a balanced selection 

pressure which will gather the individuals of the 

population around the best solution. Besides this, 

the gathering of the individuals only in a specific 

region is not a desired situation as well. If the 

region in which the individuals gathered is not 

the right region to do the search, a good solution 

cannot be caught and the possibility of getting 

caught to the local bests increases. For this 

reason, sufficient diversity and selection pressure 

are needed in order to reach good solutions in 

GAs [17]. As for PGAs the migrated individuals 

in them, since they are not same with the 

individuals in the target subpopulation, they 

contribute to the formation of the diversity. High 

diversity in all subpopulations (big population) is 

shown as the main reason of the PGAs’ 

generation of good results [18]. 

The diversity in GAs is calculated by two 

methods considering fitness values or gene 

structure. The diversity is calculated in the first 

method by looking at the closeness of fitness 

values of population individuals with each other 

and in the second method according to the 

differences in the gene structures of the 

individuals. According to the second method the 

affinity rate between the genes are determined by 

using Hamming Distance (HD) and the diversity 

is calculated [19]. 

Another used gene-based diversity analysis is 

entropy calculation carried out on bits forming 

the chromosomes. In this approach, 0 and 1s in 

bit positions belonging to all chromosomes are 

counted, the rate being used in entropy 

expression, is evaluated as the diversity 

belonging to the result population obtained as 

chromosome length [2]. Since this approach is 

completely independent from fitness value and 

fitness function, it is easy to adapt to structures 

with different parameters. 

As for permeability, it is calculated with the 

diversity analysis between the individuals by 

examining the subpopulations as a whole 

population. Since permeability is obtained by the 

evaluation of the individuals in all 

subpopulations together, it is an approach used to 

determine whether the genes spreaded in the big 

population correctly, and thus used to interpret 

the quality of the gene change. When 

permeability is provided, low permeability 

values; when it is not provided sufficiently high 

permeability values are obtained. Since the 

correct spread of the genes provides a faster 

convergence to a good solution, it is a desired 

situation that the permeability takes minimum 

values. If the migration is not carried out 

successfully, the permeability value doesn’t come 

close to the minimum. In this case, 
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subpopulations by being caught to the local best 

points, do not generate good results. 

2.2. The calculation of diversity and 

permeability by entropy 

The used diversity analysis method is the entropy 

approach calculating the diversity by counting 

the 0 and 1s on the bit points of chromosomes in 

subpopulation. In Figure 1 subpopulations in 

PGA and the gene distribution of the individuals 

belonging to them are given representatively. In 

this way, i  expresses bit position, l  chromosome 

length, and n  expresses the number of 

individuals in subpopulation. 0 and 1s are 

counted by using Equation (1) on subpopulations 

formed by using binary coding and the rate of 0 

and 1s in thi  bit position is determined. In 

Equation (2) [2] where l  expression represents 

the chromosome length, diversity value 

belonging to thk  subpopulation is determined by 

using 0 and 1 rates in all bit positions. A general 

diversity value is calculated by averaging the 

diversity values belonging to subpopulations as 

in Equation (3) [16, 20]. 

Equation (1) is the expression used to calculate 

the rate of 0 and 1s in the thi bit position. The 

summand term ( , )k

ic r t takes its values depending 

on the value at the thi  bit position which belongs 

to the thr individual of the thk subpopulation. It 

takes 1 if the corresponding bit value is equal to 

t  and 0 if not.  

 

Figure 1. Subpopulation structure 

 

Hence, ( )k

iP t  gives the rate of the t
 
values at the 

thi  bit position, which is obtained by summing 

the ( , )k

ic r t  values over all the individuals of the 

thk  subpopulation and normalizing the 

summation by their total number n  [16, 20].
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[ ( )]kH P t  [2] given in Equation (2) is the 

expression where the entropy value has been 

calculated by using the rate of 0 and 1s in thi  bit 

position belonging to thk  subpopulation. 

The expression given in Equation (3) enables to 

calculate the diversity value ( DIV ) among all 

individuals by averaging the diversity values 

calculated independently in subpopulations. p  in 

Equation (3) and (4) expresses the subpopulation 

number [16, 20]. 

1

1
p

k

k

DIV H
p



   (3) 

As for the calculation of permeability in PGAs, 

when it is wanted, diversity analysis is done by 

examining subpopulations as a whole population. 

First of all, the rates of 0 and 1s in thi  bit 

position within the subpopulations are 

determined by applying Equation (1) exactly. As 

for the next step, the rates of 0 and 1s in thi  bit 

position when all populations are considered, are 

calculated by applying the following Equation (4) 

[16, 20]. 

1

1
( ) ( ) (0,1)

p
k

i i

k

WP t P t t
p



   (4) 

In Equation (5) given below, permeability

( )PRM  has been obtained by using the rates of 0 

and 1 in thi  bit position obtained by using 

Equation (4). 
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3. The effect of changing migration interval 

to permeability and algorithm 

performance 

The optimization process in GAs is carried out in 

two phases as exploration and exploitation. The 

exploration phase is the phase where the different 

regions of solution space are searched, as for the 

exploitation phase it is a phase in which a better 

solution has been obtained by using the genes 

gathered in the region where there are good 

solutions [21]. The number of the migration and 

the iteration step in which it has been done, is 

important in order to obtain a successful PGA. It 

is obvious that a great number of migration 

process will increase the cost, but few migrations 

will not make enough contribution to the 

performance. Therefore, it is important to carry 

out the migration process in the correct steps. In 

this stage of the study, it is put forward that if the 

migration process in exploration phase is done 

densely in PGAs, better results are produced. The 

reason of this, is that there are more genes in the 

first iteration steps which will enable variety 

among subpopulations. As for the following 

iteration steps, since the genes in subpopulations 

resemble each other, the variety will decrease, the 

exchange of the individuals among 

subpopulations will not make enough 

contribution to the performance. 

In this part of the study, the values of 

performance and permeability of PGAs have 

been obtained by taking stable migration interval 

80 with increasing and decreasing migration 

intervals as linear and parabolic and the results 

have been exhibited. E_PGA [12-16] has been 

used in this analysis. The results obtained from 

Rastrigin ( Rasf ) function [10, 22, 23] given in 

Equation (6), have been given by using 

subpopulation size 640, migration rate 7.2%. The 

trials have been carried out by using 8 

subpopulations. In these trials, equal number of 

migrations have been done at the iteration length. 

In all of the real environment tests done in this 

study “send the best, replace with the worst in 

target subpopulation” method which is used 

widely as the migration policy [24], has been 

used. 

2

1...
1

( ) ( )

10, 2

5.12 5.12

n

Ras i i ii n
i

i

f x a n x a Cos x

a

x



 




       

 

  



        (6) 

 

3.1. Linear changing migration interval 

In this part of the study, the maximum fitness 

value and permeability results obtained by 
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migration interval increasing and decreasing 

linearly are presented. As is seen in Figure 2(a), 

the approach whose migration interval increases 

linearly, namely which carries out the majority of 

the migration at the initial steps, has shown a 

faster climb and has reached the flexion point 

earlier. As for the migration interval decreasing 

linearly, compared with increasing and stable 

migration interval approach, has converged more 

slowly and has not produced a good result. When 

the permeability results in Figure 2(b) are 

examined, it is seen that increasing migration 

interval approach has reached lower values faster 

compared with other models however, at the end 

of the iteration it has finished at a close value 

with the decreasing migration interval. The 

reason of this is that at the increasing migration 

interval approach migration cannot be carried out 

towards the end of the iteration and due to this, 

the result does not change and the obtained 

permeability value advances horizontally. As for 

the decreasing migration interval, the migration 

exhibits a reverse behaviour to increasing 

approach showing its effect on permeability at 

the end of the iteration steps. 

The real environment tests presented in this part, 

show that by doing the migration process at 

initial iterations better results can be reached at 

early steps. It has been put forward that migration 

done frequently at initial iterations decrease the 

permeability quickly. When Figure 2(a) and 

Figure 2(b) are examined together, it is seen that 

as the permeability decreases, the performance of 

the algorithm increases. This result exhibits the 

effect of the migration process to performance 

obviously. The reason of increasing migration 

interval approach to reach good result at early 

iteration steps is the low possibility of migration 

individuals to exist in the target subpopulation 

initially. The sent individual will contribute to the 

diversity in the target subpopulation, and good 

results will be able to be obtained with the 

gathering of good genes. As for the following 

iterations, since all subpopulations will start to 

search in the correct regions of the search space, 

the sent individuals will be similar to the present 

individuals, and thus a low migration effect will 

be formed [16]. 

3.2. Parabolic changing migration interval 

As is shown in the previous part, it provides to 

obtain better results to do the migration process 

frequently when the iteration has started. In this 

part of the study, it has been searched how it will 

perform when the migration process is more 

frequent initially, compared with the linear 

change. Thus, trials have been carried out by 

using migration intervals changing parabolically.  

 

Figure 2. For linear changing intervals (a) maximum 

fitness value and (b) permeability results 

 

Figure 3. Parabolically changing  

migration intervals 

In Figure 3, migration point-migration interval 

graphic has been given. By selecting 1200 as 

total iteration number, the obtained values have 

been used normalizing with a determined 

coefficient. As it is understood from Figure 3, in 

each migration step the process has been done by 

defining after how many iterations the migration 

process will be carried out.  
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The test results for parabolically changing 

migration interval and the change in permeability 

values have been given in Figure 4. In 

parabolically increasing migration interval, initial 

iterations carry out more migrations. As a result 

of this, a very fast convergence to flexion point 

has been obtained. As for parabolically 

decreasing migration interval, since few 

migrations are carried out at initial iterations, in 

all iteration steps it is seen to produce worse 

results than other methods as is seen in Figure 

4(a). As is given in Figure 4(b) the permeability 

belonging to parabolically increasing migration 

interval has decreased very quickly at first, but in 

the latter iteration steps it has not reached low 

values since it could not carry out migration. As 

for parabolically decreasing migration interval, 

the permeability has shown very little change at 

initial steps in it, but since the migration process 

increases approaching the last steps, it enters into 

a fast decrease period [16]. 

 

Figure 4. For parabolically changing migration 

intervals (a) maximum fitness value and (b) 

permeability results 

4. Migration individuals and permeability 

New individuals are added to the subpopulations 

as a result of migration process. The new 

individuals since they are most probably not the 

individuals existing in the subpopulation, reform 

the space where the search is done. For this 

reason, the analysis of the individuals that are 

selected to the migration process is important. 

The permeability results for migration interval 5, 

20, 80, 160 and migration method E_PGA, 

obtained from the whole of all populations and 

from the individuals that will migrate are given in 

Figure 5. In the given graphic permeability has 

been shown as PRM , permeability belonging to 

the migration individuals as mPRM . As for the 

migration interval, it is the value presented with 

this illustration. According to the results, the 

permeability obtained from the whole of the 

subpopulations takes bigger values than the 

permeability obtained only for the individuals 

that will migrate. The reason of this is the 

selection of the best individuals for migration and 

thus sending of the individuals resembling each 

other. According to the results obtained from the 

real environment tests, the permeability values 

obtained for migration interval 160 are very high. 

Since the migration interval is too much, very 

few migrations have been done, many GA steps 

have been carried out between two migration 

points, and the populations have acted completely 

independent from each other. For these reasons, 

the individuals joining the subpopulation by 

migration have not been effective, the 

permeability obtained by the evaluation of the 

whole of the populations and the permeability 

values obtained from the migration individuals 

have shown a little difference. When the 

migration interval is 80, the permeability 

difference between the population and the 

migration individuals increases. Since the 

migration interval decreases, migration 

individuals take place in the target 

subpopulations more efficiently. When the 

migration interval is taken as 5 and 20, the 

difference between the permeability values 

belonging to the population and the migration 

individuals increases quickly. The permeability 

values belonging to the population and the 

migration individuals similarly get close to each 

other in the following iteration steps for 

migration interval 5 and 160. When the migration 

interval is taken as 5, because of the migration 

done very frequently, the majority of the target 

subpopulation is formed of migration individuals 

and the whole of the population consists of 

similar individuals. In the following steps, since 

both population and the migration individuals are 

formed with the effect of the migration, the 

permeability difference between them decreases 

very much. The other point that must be 
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considered in this study is that as the migration 

interval decreases, the permeability value 

belonging both to the population and to the 

migration individuals decreases quickly. This 

result shows that the permeability term that has 

been put forward, has analysed the migration 

effect correctly [16]. 

 

Figure 5. The permeability values for migration interval 5, 20, 80, 160 obtained from the population individuals 

and the individuals that will migrate 

 

5. Migration individuals and diversity 

Migration in PGAs is an important process for 

increasing the diversity and the performance 

since it adds new individuals to the 

subpopulation. Therefore, the analysis of the 

individuals that will migrate becomes important. 

In this study, diversity values of migration 

individuals for different migration methods and 

migration intervals have been given. In the 

diversity analysis, the differences of the 

individuals of all subpopulations that will 

migrate, have been calculated and by averaging it 

a final diversity value has been produced. In 

Figure 6, the diversity values obtained from the 

individuals that E_PGA, R_PGA and FC_PGA 

used in the migration respectively for the 

migration interval 20 and 160 are presented. In 

Figure 6(a) it is seen that for migration interval 

20, the migration individuals that E_PGA has 

used, have higher diversity values. Especially, in 

the first half of the iteration steps the diversity 

formed by E_PGA is much more successful than 

the other methods. For this reason, it provides a 

faster convergence to good results. In Figure 

6(b), in the trials done for the migration interval 

160 while the migration individuals belonging to 

R_PGA produce more successful diversity 

values, in the following steps they take close 

values.  

 

Figure 6. Diversity values of individuals belonging to 

different migration methods for migration interval (a) 

20 and (b) 160 

In both graphics it is seen that FC_PGA has 

produced low diversity results. The reason of this 

is that while the diversity analysis is being done, 

7.2% of the individuals in E_PGA ordered 

according to the fitness value in the 
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subpopulations is exposed to evaluation and 10% 

of it in R_PGA, but this analysis is done for 

1.25% in FC_PGA. Although E_PGA is exposed 

to evaluation with lower rate than R_PGA, it 

produces close diversity values in migration 

individuals. This result is one of the reasons of 

E_PGA’s production of successful results [16]. 

6. Results 

In order PGAs to produce more successful 

results, it is important in which phase the 

migration process will be done. It has been 

shown with the trials done for linear and 

parabolic changing migration intervals that more 

frequently done migration in exploration phase 

has been effective to obtain good results in early 

steps. With this study, the contribution of the 

migration process to the permeability has been 

exhibited. In order to increase the contribution of 

the migration to the performance the analysis of 

the migration individual is also important as well 

as the phase in which the migration has been 

done. For the purpose of doing this evaluation, 

the permeability belonging to the migration 

individuals and the whole of the subpopulations 

for different migration intervals has been 

examined. According to the obtained results, the 

permeability obtained from the whole of the 

subpopulations takes bigger values than the 

permeability obtained only for the individuals 

that will migrate. It has been shown that as the 

migration interval increases, the permeability 

values of migration individuals and the whole 

populations get close to each other. Besides this, 

it has been put forward that as the migration 

interval decreases, both permeability values 

decrease, namely better permeability has been 

provided. In addition to this, diversity results 

belonging to the migration individuals for 

different migration methods and migration 

intervals have been given. The differences of the 

migration individuals have been examined for 

E_PGA, R_PGA and FC_PGA. Although 

E_PGA is evaluated for lower migration rate than 

R_PGA, it has produced close diversity values to 

R_PGA both at 20 and 160 migration intervals. 
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Abstract. In this work, an optimal control approach is presented in order to propose an optimal ther-

apy for the treatment HIV infection using a combination of two appropriate treatment strategies. The

optimal treatment duration and the optimal medications amount are considered. The main objective

of this study is to be able to maximize the benefit based on number of healthy CD4+ T-cells and CTL

immune cells and to minimize the infection level and the overall treatment cost while optimizing the

duration of therapy. The free terminal time optimal control problem is formulated and the Pontrya-

gin’s maximum principle is employed to provide the explicit formulations of the optimal controls. The

corresponding optimality system with the additional transversality condition for the terminal time is

derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order

scheme and a gradient method routine.

Keywords: Interleukin-2 immunotherapy; Highly active antiretroviral therapy; Pontryagin’s maxi-

mum principle; Free terminal time optimal tracking control problem, Forward backward sweep method.

AMS Classification: 34H05, 49J15.

1. Introduction

Recent data from the World Health Organization
[19] show that approximately 34 million people
worldwide are infected with HIV, more than 30
million people died of AIDS-related causes since
twenty years. HIV/AIDS is the sixth leading
cause of death overall, and the third leading cause
of death in poor countries, where an estimated
3.4 million children are infected with HIV/AIDS.
Mathematical modeling allows public health offi-
cials to compare, plan, implement, evaluate and
optimize various programs for the detection, pre-
vention, treatment and control of this disease.
Mathematical modeling of infectious diseases at
the molecular level is a relatively new science. If
epidemiology has a long history, it is only recently

that mathematicians and immunologists have be-
gun to work together to create models to predict
the evolution of a disease. Since the discovery
of human immunodeficiency virus (HIV) and the
assertion that it is the cause of the acquired im-
mune deficiency syndrome (AIDS), many scien-
tific studies have focused on the HIV infection
[8, 9, 11, 12, 23, 31, 39] and various mathematical
models have been developed in order to suggest
possible optimal treatment strategies for HIV in-
fection [6, 7, 13, 29, 30, 33, 49, 51].

The HIV infection [19, 36] affects the im-
mune system and particularly the body’s natu-
ral defenses against disease. If the infection is
not treated, serious illnesses can occur. Nor-
mally, harmless infections like flu or bronchi-
tis can get worse and become very difficult to
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treat sometimes involving even death of the in-
fected patients. The human immunodeficiency
virus (HIV) approaches the Antigen-presenting
cells (APCs) [54], once entered by phagocytosis;
it joined the molecular recognition system of the
cell. The HIV virus is a retrovirus, the RNA
of this virus is converted into DNA inside the
CD4+ T-cell. Thus, when the infected CD4+ T-
cells begin to multiply for fighting this pathogen,
eventually more viruses are produced in parallel.

The scientific research continues for the devel-
opment of an effective drug therapy hence the
interest of optimal control theory [33] which is
presented as an indispensable tool for a better
understanding of the dynamics of immune sys-
tem and the evolution of HIV infection in or-
der to propose an appropriate treatment strategy
[6, 13, 20, 29, 30].

The HIV infection is usually treated with
highly active antiretroviral therapy (HAART)
[1, 18] which commonly refers to the combination
of antiretroviral treatments struggling against
the HIV. The different classes of antiretroviral
agents act by disrupting different stages of the
HIV replication cycle. This has the effect of re-
ducing the number of virions in the body. The
HAART has proven to be very effective limiting
significantly the progression of HIV in order to
minimize the viral load and to reduce both mor-
bidity and mortality. There are several classes of
antiretroviral drugs including: Reverse transcrip-
tase inhibitors [24], HIV fusion inhibitor [48],
CCR5 receptor antagonist class [37] and Protease
inhibitors [40].

The Interleukin-2 [32, 34] is one of the chemi-
cal signals used by immune cells to communicate.
This cytokine plays a role in the activation and
the proliferation of healthy CD4+ T-cells that are
the target cells for HIV virus. The Interleukin-2
is currently used in addition to the antiretrovi-
ral therapy (HAART) for increasing the natural
immunity of HIV patients. Indeed, the HAART
controls the replication of the virus in the blood
and IL-2 helps to regenerate more healthy CD4+

T-cells causing effectively the maturation and the
proliferation of target immune cells.

In this work, an optimal control approach with
free terminal time is proposed for the treatment
of HIV infection during an optimal therapeutic
period. This approach is based on the introduc-
tion of two optimal controls characterizing a com-
bination treatment using both HAART and IL-2
immunotherapy. A free terminal time optimal

tracking control problem [3, 27, 28, 41, 46, 47] is
formulated by defining a suitable objective func-
tion that summarizes the main objectives of the
adopted treatment strategy. The corresponding
optimality system is expanded to include the nec-
essary condition on free terminal time. However,
the Pontryagin maximum principle [17, 44, 45]
is used to characterize the formulation of opti-
mal controls. Finally, for the numerical resolu-
tion of the optimality system with the additional
transversality condition for the terminal time, an
adapted iterative method known as the Forward
backward sweep method (FBSM) [33, 38]is im-
plemented using a Runge-Kutta [33] fourth order
scheme and a gradient method routine [3].

This paper is organized as follows: Section 2
describes the mathematical control model of HIV
treatment using a combination treatment of both
HAART and IL-2 immunotherapy. The analysis
of the free terminal time optimal tracking control
problem is also presented in the same section. In
section 3, the iterative method is introduced and
the numerical simulations are discussed. Finally,
the results of this therapeutic approach are ex-
plored in the conclusion in section 4.

2. Mathematical model

2.1. Presentation of the treatment model

In this section, a system of ordinary differential
equations modeling the treatment of HIV infec-
tion is presented. The adopted therapeutic ap-
proach is based on the introduction of a treat-
ment strategy using combination of both Highly
active antiretroviral therapy (HAART) and IL-2
immunotherapy with tolerated doses. The basic
HIV dynamics model was originally discussed by
Roy et al. in [50] and the control model providing
optimal treatment strategies has been studied in
[20].

The HIV dynamics model [50] explores the
possible interactions between immune cells and
HIV-producing cells in the presence of appropri-
ate therapeutic agents. The obtained biological
results have provided a better understanding of
dynamics and behavior of the immune system,
especially after stimulation of CTL cells that are
produced after a maximum proliferation of CD4+

T-cells, which ultimately enables to design the bi-
ological reasons that led to such a reaction of the
immune system [42, 43, 56, 57].

Note with interest that it has been proven that
results from mathematical analysis of the model
is fully compatible with clinical and experimental
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observations. In addition, it was verified analyt-
ically that this system is globally asymptotically
stable under specific conditions [50].

The main purpose of this work [50] is the de-
velopment of an adequate mathematical frame-
work which must be consistent with medical ex-
periments and biological observations in order
to provide thereafter a set of optimal therapeu-
tic strategies for the treatment of HIV infection.
Clinical findings from biological results of treat-
ment strategies that exploit antiretroviral ther-
apy using Lamivudine and Zidovudine show that
these treatment strategies enable reducing the vi-
ral load (10 to 100 %) and allow increasing the
concentration of healthy CD4+ T-cells by almost
25 %, provided that the treatment duration must
exceed one year [42, 43, 58].

Since this study is interested primarily in the
possible biological changes resulting from the in-
troduction of an appropriate treatment in the
equilibrium state [50], the mathematical analy-
sis shows that any state variable relating to the
dynamics of HIV particles can be omitted [50],
which explains the absence of any specific com-
partment that characterizes the evolution of HIV
concentration in the studied model.

However, it should be noted that it was nec-
essary to introduce in this same mathematical
model, a new state variable z(t) that describes
the behavior and models the dynamics of CTL
cells during HIV infection [50]. Three compart-
ments characterizing the different biological pop-
ulations are defined as follows: x(t) the unin-
fected CD4+ T-cells, y(t) the infected CD4+ T-
cells and z(t) the immune response measured by
the rate of the cytotoxic T-cells (CTL). There-
fore, the mathematical control model represent-
ing the immune system dynamics in presence of
appropriate treatments is governed by the follow-
ing equations:

dx

dt
= λ+ px(1−

x

Tm
)− dx− (1− u1)βxy

+u2x,
dy

dt
= (1− u1)βxy − ay − lyz,

dz

dt
= sy − bz.

(1)

where X(t) =





x(t)
y(t)
z(t)



 is the state vector and

u(t)=(u1(t),u2(t)) is the control function which

describes the medication used for the treatment
of HIV infection. For biological specificities char-
acterizing the HIV infection at AIDS stage, the
initial values estimations assigned to state vari-
ables of the system (1) are measured in units of
cells mm−3day−1 [50] and verify [16, 26] at t = 0:

x0 = 50, y0 = 50, z0 = 2. (2)

Note that u1(t) represents the HAART control
function which inhibits the viral production in
order to reduce the number of infected CD4+ T-
cells. It is important to observe that the param-
eter β represents both rates of infection and viral
replication, which explains the choice of intro-
duction of control u1. The values of u1(t) vary
between 0 if no treatment is used and 1 if totally
effective HAART therapy is exploited.

However, u2(t) represents the IL-2 im-
munotherapy control function that stimulates
immune cells and restores the immune response.
The Interleukin-2 is administered to patients
with HIV by daily injections following a continu-
ous process for an optimal immunotherapy period
where u2(t) = α = 0.003 is the maximum toler-
ated dose (MTD) [25, 30] producing the desired
effect without unacceptable toxicity.

The descriptions of parameters used in the
state system (1) are ranged in the table (1). No-
tice that the experimental observation period is
fixed T = 600 days [50] and the main objective
of this study is to find the optimal duration of
treatment T ∗ which allows to reach all goals set
in the optimal control problem.

Note with interest that the scientific works
[15, 21] present results of an optimal control
approach which aims to introduce a notion of
isoperimetric constraint representing the exact
total amount of immunotherapy that could be
administered to the patient during the treatment
period reducing subsequently the total cost of
therapy. Furthermore, the biological results ob-
served during the discontinuous administration
of immunotherapeutic agents to patients, follow-
ing a pulse vaccination process, are the subject
of a recent study [52] presenting an optimal con-
trol problem with a view to suggesting optimal
treatment strategies.

Finally, in the presence of an additional initial
pathogen concentration, the enhancement of im-
mune response via immunotherapy was adopted
using a neighboring optimal control approach in
order to restore the optimality conditions of con-
trol system [22].
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Table 1. The parameters descriptions [50].

Parameters Descriptions

λ Production rate of healthy CD4+ T cells

β Infection rate and viral replication rate

d Natural mortality rate of healthy CD4+ T cells

p Maximum proliferation rate of healthy

CD4+ T cell

a Natural mortality rate of infected CD4+ T cells

l Mortality rate of virus-producing cells

by CTL cells

s Production rate of CTL cells

b Natural mortality rate of CTL cells

Tm Number of CD4+ T cells after

a maximum proliferation

2.2. The optimal control problem

A free terminal time optimal tracking control
problem is formulated in order to propose an op-
timal therapeutic schedule for an optimal treat-
ment duration. For that purpose, an objective
function is defined as follows:

J(u1, u2, T ) =
1

2

∫ T

0
x2(t) + z2(t)− y2(t)

−A1u
2
1(t)−A2u

2
2(t)dt,

(3)

where the positive parameters A1 ≥ 0 and A2 ≥ 0
balance the terms size and characterize weight
factors which are based on benefits and costs of
the treatment.

The principal aim of this therapeutic strat-
egy suggested for the treatment of HIV infection
is to maximize the benefit based on the count
of healthy CD4+ T-cells and CTL immune cells
while minimizing the number of infected CD4+

T-cells and the concentration of infectious HIV
population allowing thereafter to minimize the
harmful side effects and costs based on the per-
centage effect of HAART and IL-2 immunother-
apy given (i.e. u∗1 and u∗2).

All elements constituting the objective func-
tion (3) are quadratic to ensure a better homo-
geneity of optimal control problem. Note with
interest that the optimal duration T ∗ of the treat-
ment program is also considered. Mathemati-
cally, the optimal controls (u∗1, u

∗
2) ∈ U are sought

such that:

J(u∗1, u
∗
2, T

∗) = max J(u1, u2, T ), (4)

Over the control set U defined as follows:
U = U1 × U2

where

U1 = {u1 continuous, 0 ≤ u1(t) ≤ 1, t ∈ [0, T ]},

and

U2 = {u2 continuous, 0 ≤ u2(t) ≤ α, t ∈ [0, T ]}.

Notice that the scientific work [14] dealing with
an optimal control problem has outlined the
study results of a same objective function J(u),
presenting initially a quadratic cost and subse-
quently a linear cost [14].

The control system (1) is rewritten implicitly
as follows:

X
′

(t) = f(t,X(t), u1(t), u2(t)),
X(0) = X0 given.

(5)

where X(t) =





x(t)
y(t)
z(t)



 is the state vector and

u(t) = (u1(t), u2(t)) is the control pair. Thus,
the objective function (3) is implicitly defined at
control u(t) = (u1, u2) as follows:

J(u1, u2, T ) =

∫ T

0
g(t,X(t), u1(t), u2(t))dt

+θ(T,X(T )),
(6)

Consider the optimal control problem:

max

∫ T

0
g(t,X(t), u1(t), u2(t))dt+ θ(T,X(T )),

subject to X
′

(t) = f(t,X(t), u1(t), u2(t)),

where X(0) = X0 given,

(7)
The corresponding adjoint system is expressed as
follows:

ψ′(t) = −gX(t,X(t), u1(t), u2(t))

−ψfX(t,X(t), u1(t), u2(t)),

where ψ(T ∗) = θX(T
∗, X(T ∗)),

and 0 ≤ u1(t) ≤ 1 and 0 ≤ u2(t) ≤ α.

(8)

The Pontryagin’s Maximum Principle [17, 44, 45]
is used to determine the precise formulation of
the optimal control pair u∗(t) = (u∗1(t), u

∗
2(t)).
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In order to characterize the optimal control u∗,
the Hamiltonian is defined from the formulation
of cost function (3) as follows:

H(X,u, ψ) = g(t,X, u1, u2) + ψf(t,X, u1, u2)

where ψ(t) =





ψ1(t)
ψ2(t)
ψ3(t)



 is the adjoint variable

vector.

Explicitly:

H(X,u, ψ) =
1

2
× (x2 + z2 − y2

−A1u
2
1 −A2u

2
2)

+ψ1[λ+ px(1−
x

Tm
)

−dx− (1− u1)βxy + u2x]

+ψ2[(1− u1)βxy − ay − lyz]

+ψ3[sy − bz].
(9)

The existence of an optimal control solution is
satisfied using a classical result of existence that
was developed by Fleming in [17]. Indeed, the
following properties have to be checked:

(1) The class of all initial conditions with
controls u1 and u2 in the admissible con-
trol set U = U1 × U2 along with state
system equations (1) is not empty;

(2) The admissible control set U is convex
and closed;

(3) The right-hand side of the state system
is continuous, is bounded above by a sum
of the bounded control and the state, and
can be expressed as a linear function of
controls u1 and u2 with coefficients de-
pending on time and state.

(4) The integrand g(t,X, u1, u2) of the objec-
tive functional J(u, T ) is concave on U ;

(5) There exist positive constants b1, b2 > 0
and β > 1 such that the integrand of the
objective functional J(u, T ) is bounded
below by g(t,X, u1, u2) ≤ b2 − b1(|u1|

2 +

|u2|
2)

β

2 ;

(6) The payoff function θ(T,X(T )) in the ob-
jective functional J(u) is continuous at
the terminal time T .

Proof. Since the system has bounded coeffi-
cients and any state system solution is bounded
on a finite interval [0, T ] [5], a classical result es-
tablished by Lukes [35] is used to prove the exis-
tence of solutions for the state system (1). The
admissible control set U is convex and closed by
definition.

The system (1) is bilinear in controls u1 and u2
and each right-hand side of this state system (1)
is continuous since each term has a nonzero de-
nominator and can be written as a linear function
of controls u1 and u2 with coefficients depending
on time and state.

Moreover, the fact that state variables x, y, z
and controls u1 and u2 are bounded on time in-
terval [0, T ] involves the rest of the third prop-
erty. In order to verify that the integrand
g(t,X, u1, u2) in the objective functional (3) is
concave on U , the following condition should be
verified:

h(t,X, (1− λ)ui + λvi) ≤ (1− λ)h(t,X, ui)

+λh(t,X, vi)
(10)

where

h(t,X(t), ui(t)) = −g(t,X(t), ui(t))

=
1

2
× (−x2(t)− z2(t) + y2(t)

+Aiu
2
i (t)),

(11)
This inequality (10) is rewritten in the following
form:

A = h(t,X, (1− λ)ui + λvi)− (1− λ)h(t,X, ui)

−λh(t,X, vi) ≤ 0
(12)

where λ ∈ [0, 1], ui, vi ≥ 0 and with i = 1, 2.
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A =
1

2
Ai((1− λ)2u2i − (1− λ)u2i + λ2v2i − λv2i

+2λ(1− λ)uivi)

=
1

2
Ai(u

2
i ((1− λ)2 − (1− λ)) + v2i (λ

2 − λ)

+2λ(1− λ)uivi)

=
1

2
Ai(u

2
i (λ

2 − λ) + v2i (λ
2 − λ)

−2(λ2 − λ)uivi)

=
1

2
Ai(λ

2 − λ)(u2i + v2i − 2uivi)

=
1

2
Ai(λ

2 − λ)(ui − vi)
2 ≤ 0

(13)

Since λ ∈ [0, 1], this implies that λ ≥ λ2.
Thus, the inequality (10) is verified which proves
that the integrand g(t,X, u1, u2) is concave.
Thus, since h is convex on U =⇒ g is concave on
U . In addition, notice that there exists positive
constants b1, b2 > 0 and β > 1 satisfying:

g(t,X(t), u1(t), u2(t)) ≤ x2(t) + z2(t)−A1u
2
1(t)

−A2u
2
2(t)

≤ b2 − b1(|u1|
2 + |u2|

2)
β

2

(14)

where the positive constant b2 depends on the up-
per bounds on x and z and by analogy it would
be appropriate to set b1=inf(A1, A2) and β=2.

If the control pair u(t) = (u1(t), u2(t)) and the
corresponding state X(t) are optimal, there ex-
ists an adjoint vector ψ(t) such that the Hamil-
tonian H(t,X, u1, u2, ψ) reaches its maximum on
the set U at u∗,T ∗. It ensues the following theo-
rem:

Theorem 1. Given an optimal control vector
u∗=(u∗1,u

∗
2), an optimal terminal time T ∗, and

solutions of corresponding state system (1), there
exists an adjoint vector ψ=[ψ1, ψ2, ψ3] satisfying

the following equations:

ψ
′

1(t) = −x+ ψ1(
2px∗

Tm
+ d− p− u∗2)

+βy∗(1− u∗1)(ψ1 − ψ2),

ψ
′

2(t) = y + βx∗(1− u∗1)(ψ1 − ψ2)

+ψ2(a+ lz∗)− ψ3s,

ψ
′

3(t) = −z + ψ2ly
∗ + ψ3b.

(15)

with final conditions

ψj(T ) = 0, j = 1, 2, 3.

The transversality condition for the terminal
time is defined as follows:

1

2
× (x2(t) + z2(t)− y2(t)−A1u

2
1(t)

−A2u
2
2(t)) = 0 at t = T ∗

(16)

Further, u∗1 and u∗2 are represented by:

u∗1(t)

= min(1,max(0, βx
∗(t)y∗(t)(ψ1(t)−ψ2(t))

A1
)),

(17)
and

u∗2(t) = min(α,max(0,
x∗(t)ψ1(t)

A2
)). (18)

Proof. Due to the existence of an optimal cou-
ple (X∗, u∗) which maximizes the objective func-
tion J subject to the state system (1), the ad-
joint equations can be obtained using Pontrya-
gin’s maximum principle [17, 44, 45] such that:

ψ
′

1 = −
∂H

∂x
,

ψ
′

2 = −
∂H

∂y
,

ψ
′

3 = −
∂H

∂z
.

(19)

The terminal time T variable of the objective
function J (3) should be exploited to provide all
necessary information concerning the optimal fi-
nal time T ∗ [33]. For this, consider a real number
σ ≥ −T ∗ in order that T ∗ + σ is an admissible
final time and T ∗ + σ ∈ R

+.

Note that the corresponding state X∗ and the
control function u∗ are considered on an inter-
val larger than [0, T ∗] [33]. Suppose that u∗ is
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left-continuous at T ∗, then set u∗(t) = u∗(T ∗)
for all t > T ∗ in order that u∗ is continuous
at T ∗. Now, x∗ and z∗ are also defined for
t > T ∗. As J(u1, u2, T ) reaches its maximum
at u∗ = (u∗1, u

∗
2),T

∗, the following equality is es-
tablished [33]:

0 = lim
σ→0

J(u∗, T ∗ + σ)− J(u∗, T ∗)

σ
, (20)

Hence,

0 = lim
σ→0

[

∫ T ∗+σ

0
g(t,X∗(t), u∗(t))dt

+θ(T ∗ + σ,X∗(T ∗ + σ))

−

∫ T ∗

0
g(t,X∗(t), u∗(t))dt− θ(T ∗, X∗(T ∗))].

(21)

0 = lim
σ→0

[

∫ T ∗+σ

0
g(t,X∗(t), u∗(t))dt

+θ(T ∗ + σ,X∗(T ∗ + σ))

−

∫ T ∗

0
g(t,X∗(t), u∗(t))dt− θ(T ∗, X∗(T ∗))]

= lim
σ→0

∫ T ∗+σ

T ∗

g(t,X∗(t), u∗(t))dt

+
θ(T ∗ + σ,X∗(T ∗ + σ))− θ(T ∗, X∗(T ∗))

σ

= g(T ∗, X∗(T ∗), u∗(T ∗)) + θt(T
∗, X∗(T ∗))

+θX(T
∗, X∗(T ∗))

X∗

dt
(T ∗)

= g(T ∗, X∗(T ∗), u∗(T ∗))

+ψ(T ∗)f(T ∗, X∗(T ∗), u∗(T ∗))

+θt(T
∗, X∗(T ∗))

= H(T ∗, X∗(T ∗), u∗(T ∗), ψ(T ∗))

+θt(T
∗, X∗(T ∗)).

(22)

Taking into account that θt(T
∗, X∗(T ∗)) = 0 and

ψj(T ) = 0 for j = 1, 2, 3. Thus, the transver-
sality condition (16) for the terminal time is ob-
tained.

Since controls u1(t) and u2(t) are bounded, the
optimal controls u∗1 and u∗2 can be solve from the
following optimality conditions:

∂L

∂u1
= 0 and

∂L

∂u2
= 0.

In order to find the characterization of optimal
controls (17) and (18), the Lagrangian L is used
and defined as follows:

L = H+ω11(1−u1)+ω12u1+ω21(α−u2)+ω22u2
(23)

where ω11, ω12, ω21, ω22 > 0 are the penalty
multipliers which ensure the boundedness of con-
trols u1(t) and u2(t) and satisfy the two following
conditions [5, 27]:

ω11(1− u∗1) = ω12u
∗
1 = 0 at u1 = u∗1,

ω21(α− u∗2) = ω22u
∗
2 = 0 at u2 = u∗2.

(24)

The maximization problem (4) is redefined as
follows:

L(T ∗, X∗, u∗1, u
∗
2, ψ, ωij)

= maxL(T,X∗, u1, u2, ψ, ωij)
(25)

Differentiating the Lagrangian L with respect
to u1 on the set U1 : {t | 0 ≤ u1(t) ≤ 1} allows to
obtain the following optimality equation:

dL

du1
= −A1u1 + βxy(ψ1 −ψ2)− ω11 + ω12 = 0

at u1 = u∗1.

Thus, the control is expressed:

u∗1(t) =
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))− ω11 + ω12

A1

According to the conditions (24), three cases
are distinguished:

⋆ if 0 < u∗1(t) < 1 then w11 = w12 = 0. There-
fore, the control is expressed as follows:

u∗1(t) =
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))

A1

⋆ if u∗1(t) = 0 then w11 = 0. Therefore, the
control is expressed as follows:

u∗1 =
βxy(ψ1 − ψ2) + ω12

A1
= 0

=⇒ ω12 = A1u1 − βxy(ψ1 − ψ2).

Knowing that ω12(t) ≥ 0 and A1 > 0, the control
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is expressed as follows:

u∗1 = 0 ≤ βxy(ψ1 − ψ2) ≤
βxy(ψ1 − ψ2)

A1

⋆ if u∗1(t) = 1 and w12(t) = 0 then the con-
trol is expressed as follows:

u∗1 =
βxy(ψ1 − ψ2)− ω11

A1
= 1

=⇒ ω11(t) = −A1u1 + βxy(ψ1 − ψ2).

Given that w11(t) ≥ 0 and A1 > 0, the con-
trol is expressed as follows:

u∗1 = 1 ≥
βxy(ψ1 − ψ2)

A1

Combining these three results, the optimal con-
trol u∗1(t) is characterized as follows:

u∗1(t) =
βxy(ψ1 − ψ2)

A1

if 0 <
βxy(ψ1 − ψ2)

A1

< 1,

u∗1(t) = 0 if
βxy(ψ1 − ψ2)

A1

≤ 0,

u∗1(t) = 1 if
βxy(ψ1 − ψ2)

A1

≥ 1.

(26)

Thus, the optimal control u∗1(t) is formulated
as follows:

u∗1(t) = min(max(0,
βx∗(t)y∗(t)(ψ1(t)− ψ2(t))

A1
, 1))

Differentiating the Lagrangian L with respect to
u2 on the set U2 : {t | 0 ≤ u2(t) ≤ α} allows to
obtain the following optimality equation:

dL

du2
= −A2u2 + ψ1x− ω21 + ω22 = 0 at u2 = u∗2.

Thus, the control is expressed as follows:

u∗2(t) =
ψ1x− ω21 + ω22

A2

According to the conditions (24), three cases
are distinguished:

⋆ if 0 < u∗2(t) < α then w11 = w12 = 0. There-
fore, the control is expressed as follows:

u∗2(t) =
ψ1(t)x

∗(t)

A2

⋆ if u∗2(t) = 0 then w11 = 0. Therefore, the
control is expressed as follows:

u∗2 = 0 =
ψ1x+ ω22

A2

=⇒ ω22 = A2u2 − ψ1x.

Knowing that ω22(t) ≥ 0 and A2 > 0, the control
is expressed as follows:

u∗2 = 0 ≤
ψ1(t)x

A2

⋆ if u∗2(t) = α and w12(t) = 0, then the con-
trol is expressed as follows:

u∗2 = α =
ψ1x− ω21

A2

=⇒ ω21(t) = ψ1x−A2u2.

Given that w21(t) ≥ 0 and A2 > 0,
the control is expressed as follows:

u∗2 = α ≥
ψ1(t)x

A2

Combining these three results, the optimal con-
trol u∗2(t) is characterized as follows:

u∗2(t) =
ψ1x

A2
if 0 <

ψ1x

A2
< α,

u∗2(t) = 0 if
ψ1x

A2
≤ 0,

u∗2(t) = α if
ψ1x

A2
≥ α.

(27)

Thus, the optimal control u∗2(t) is formulated as
follows:

u∗2(t) = min(max(0,
ψ1x

∗(t)

A2
, α))

3. Numerical simulations

3.1. Model parameters

The main purpose of the theoretical analysis de-
veloped by Roy et al. [50] was intended to explore
the equilibrium of dynamical system and to study
the various aspects of the stability of solutions in
order to determine the threshold values of stud-
ied model parameters for which the disease can
be controlled.

In this sense, any optimal control approach
elaborated for the studied dynamical model and
which aims to provide treatment strategies for
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the HIV infection, should absolutely explore the
equilibria and consider the theoretical results
of stability analysis [50], which implies respect-
ing the established conditions and constraints
that characterize the different model parameters,
thus allowing to define specific parametric regions
where the equilibrium is locally or globally sta-
ble.

Indeed, the standard values of parameters [50]
have been chosen in the context of this theoret-
ical analysis in order to observe the particular
dynamical behavior of state variables x, y and
z with the threshold values that enable control-
ling the disease from a well-defined initial state
(x(0) = 50, y(0) = 50, and z(0) = 2). Note
with interest that analytical study and numeri-
cal resolution of the system have been developed
entirely on the basis of these model parameters
set to their standard values [50].

Subsequently, studying the influence of model
parameters, allowed to observe the impact of
these parameters on the dynamical behavior of
state variables. The stability analysis shows that
for the positive equilibrium of the dynamical sys-
tem, the disease can only be controlled if the pa-
rameter p (Proliferation constant rate of CD4+

T-cells) is greater than the parameter d (Death
rate of Uninfected CD4+ T-cells) [50].

Moreover, it is observed that if the parameter
p increases, we note a considerable growth in the
concentration of immune cells (Healthy CD4+ T-
cells and CTL immune cells) and we notice a sig-
nificant decrease of oscillations characterizing the
evolution of the state variables that manage to
converge more quickly to their respective equi-
librium states [50].

The study also allows to note that increasing of
the parameter value β (0, 0008 to 0, 01) denoting
the rate of infection, causes a development of the
HIV infection followed by a rise in the number of
CTLs and a substantial decline in the concentra-
tion of healthy CD4+ T-cells [50].

However, we note that any increase of param-
eters k (0, 001 to 0, 005) and s (0, 01 to 0, 05) im-
plies a significant growth in the count of active
immune cells (Healthy CD4+ T-cells and CTL
immune cells) and an important decrease in the
level of virus producing cells [50]. In addition,
the theoretical analysis enables to determine a
specific stability criteria of the equilibrium in the
parametric space of β, p and k [50].

Finally, it is clear that the possibility of
proposing a control approach for the treatment

of HIV infection requires the exploitation of nu-
merical results obtained in this analytical study.

Therefore, since the main purpose of this study
is to use optimal control theory in the context
of a free terminal time optimal tracking con-
trol problem which should be coherent and com-
patible with the parametric conditions obtained
analytically in [50], in order to suggest an opti-
mal strategy for the treatment of HIV infection
during an optimal therapeutic period, the ba-
sic parameters set to their standard values and
found in [4, 12, 42, 50, 56] are kept and it is
stated that the stability properties [50] of the
state system (1) are stored for these parameters
which are rearranged in the table (2).

Table 2. The standard parameter
values [50].

Parameters Values
λ 10 mm−3day−1 [12, 42]
β 0.002 mm−3day−1 [4]
d 0.01 day−1 [42]
p 0.03 day−1 [42, 56]
a 0.024 day−1 [12]
l 0.001 mm−3day−1 [4]
s 0.2 day−1 [4]
b 0.02 day−1 [4]
Tm 1500 mm−3 [42, 56]

3.2. Numerical method

Various numerical methods are used to solve the
optimality system and find an optimal solution
for controls u1 and u2 [10, 55]. In this work, an it-
erative method known as the Forward-Backward
sweep method (FBSM) [33, 38] is developed us-
ing a Runge-Kutta [33] fourth order scheme in
order to characterize numerical solutions for the
optimality system resulting from the studied free
terminal time optimal tracking control problem
(4).

The general principle of this numerical method
is that from an initial guess for the control vari-
ables u1 and u2 and terminal time T , the state
system (1) with initial conditions is solved for-
ward in time and subsequently the adjoint system
(15) with terminal conditions is solved backward
in time. Taking into account the nature of the
optimal control problem with free terminal time
(4), a specific numerical technique is considered
for the numerical resolution of the optimality sys-
tem.
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Indeed, an adapted iterative Forward back-
ward sweep method is extended using a gradi-
ent algorithm with the Formulae of sensitivity to
change of end-time [3] view to finding the op-
timal solutions u∗1,u

∗
2 and T ∗ while considering

the transversality condition for the terminal time
(16).

This numerical resolution process comprises
a number of numerical computation tech-
niques summarized in the algorithm given be-
low. Here the vector approximations for state

variable ~X=(X1,...,XN+1) and adjoint variable
~ψ=(ψ1,...,ψN+1).

Algorithm

Step 0:

. Make an initial guess for the terminal time T ;

. Make an initial guess for the controls ~u1 and
~u2 over the time interval;

Step 1:

. Solve the state system (1) with initial condi-
tions X1=X(0) forward in time using the stored
values for the controls ~u1 and ~u2;

Step 2:

. Solve the adjoint system (15) with terminal
conditions ψN+1=ψ(T ) backward in time using
the stored values for the controls ~u1 and ~u2 and
the state variable ~X;

Step 3:

. Update the controls ~u1 and ~u2 using by the
Forward backward sweep method;
. Update the terminal time by the gradient
method defined as follows:

Ti+1

= Ti − h[H(Ti, Xi(Ti), ψi(Ti), u1i(Ti), u2i(Ti))

−∇J(Ti, Xi(Ti))],
(28)

for i = 1, .., n with h is a small positive constant,

. Test the convergence: If the difference of values
of these variables in this iteration and the last it-
eration is sufficiently small, output the obtained
current values as solutions. If the difference is
not considerably small, go to Step 1.

3.3. Numerical results

The estimates of initial values assigned to the
state variables at time t = 0 (2) and specifically

the number of healthy CD4+ T-cells which is far
below than 200 cell units, indicate that the dis-
ease has reached the AIDS stage [16].

This biological phase of HIV infection is gen-
erally characterized by the progressive weaken-
ing of the immune system and the occurrence
of various anomalies and opportunistic diseases
[26]. Without therapeutic intervention, the state
variables converge logically to their respective
equilibrium points [20, 50]. The concentration
of healthy CD4+ T-cells after an observation pe-
riod which lasts 600 days shows that the immune
system is weak and defective and the general con-
dition of the HIV patient is clearly deteriorated
[20].

However, introducing a treatment strategy us-
ing both highly active antiretroviral therapy and
IL-2 immunotherapy provides biological results
which are satisfactory and especially promising
(Figures 1, 2 and 3). Indeed, at the end of an
observation therapeutic period of 600 days, the
treatment effectively helps to maximize the num-
ber of healthy CD4+ T-cells which reached 1400
cell units (Figure 1).

Similarly, the infection level has gradually de-
creased and the number of infected CD4+ T-
cells has achieved values lower than 5 units to-
wards the end of the therapeutic period (Figure
3). Henceforth, the immune system makes full
use of its defensive function and the immune re-
sponse reacts actively to the evolution of the HIV
infection: Any increase in the concentration of in-
fected cells is followed immediately by a consid-
erable proliferation of CTL immune cells (Figure
3).

However, it was observed that the count of im-
mune cells which are stimulated for the immune
response has naturally decreased after the min-
imization of the viral load thereby reducing the
side effects resulting from a prolonged maximiza-
tion of the immune cells level (Figure 3).

Considering the shape and the behavior of the
optimal controls u∗1 and u∗2 (Figures 4 and 5)
during the optimal duration of treatment, it is
noted with interest that the therapeutic process
has adopted an appropriate treatment approach
which takes into consideration the progression of
HIV infection and the development of infected
cells in order to achieve the objectives of the op-
timal control problem (4).

Compared to the initial observation period
lasting 600 days, this free terminal time optimal
tracking control problem (4) situated within the
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framework of a treatment strategy of HIV infec-
tion, has allowed to find an optimal terminal time
T ∗ (Figure 6) satisfying the transversality condi-
tion (16) and has enabled to define an optimal
treatment duration of 512 days, ensuring there-
fore a more consequent reduction of the overall
cost of treatment and a minimization of the side
effects resulting from the adopted therapy.

In fact, from the optimal terminal time T ∗, it
is observed that even after stopping the treat-
ment process, the optimality conditions remain
satisfied (Figures 1, 2 and 3), allowing subse-
quently to generate an important increase in the
level of healthy CD4+ T-cells (Figure 1) and a
large reduction of infection level (Figure 2). Fi-
nally, for testing the effectiveness of the treat-
ment approach which is adopted in this study, a
new terminal time is fixed T = 500 days with the
aim of finding a new optimal terminal time T ∗

able to further reduce the treatment duration and
thereby allowing to further minimize the overall
cost of treatment.

However, it is noticed that the obtained bi-
ological results (Figures 7, 8 and 9) show that
this new therapeutic approach has not achieved
the key objectives defined in the optimal control
problem (4). Although the number of healthy
CD4+ T-cells is significantly important during
the treatment period (Figure 7), the gradual re-
duction of the controls concentration in the last
30 days of the treatment period generates a sub-
stantial increase in the level of infected CD4+

T-cells (Figure 8).

Moreover, despite a maximum stimulation of
CTL immune cells (Figure 9), the HIV infec-
tion remains unstable and the concentration of
infected CD4+ T-cells increases abruptly just be-
fore the end of treatment, which explains the in-
ability of the immune system that fails to limit
the HIV infection progression and to restrict the
action of the HIV particles. These recent obser-
vations prove the efficiency of the initial optimal
control approach with free terminal time T ∗ for
the treatment of HIV infection in an optimal du-
ration which lasts 512 days.

Using standard parameter values given in ta-
ble (2) [50], the behavior of the state variables
has been observed in the presence of the natural
immune response and without the intervention of
any specific therapy. Indeed, the state variables
converge respectively towards their equilibrium
states [20, 50].

However, from a biological point of view, de-
spite the weak growth in the level of immune cells

and the limited reduction in viral load, this equi-
librium state fails to reach the expected biologi-
cal objectives since the concentration of healthy
CD4+ T-cells is still low and the general con-
dition of the HIV patient remains critical [26].
By exploiting the different results of the study
conducted by Roy et al. [50], the interest of
adopting an appropriate therapeutic strategy for
treatment of the HIV infection is well confirmed,
thereby justifying the introduction of the control
u1 that limits the growth of the parameter β in
order to reduce the level of infection and viral
load and the control u2 that stimulates the pro-
liferation of active immune cells. Finally it is
important to note that the effectiveness of drug
used in the treatment process is assumed to be
fully controlled by drug dose level.

The continuous character [6, 13, 29, 30, 33] of
optimal solutions u∗1 and u∗2 (Figures 4 and 5)
is essentially acquired from the definition of the
admissible control set U . This continuity aspect
characterizing the controls u1 and u2 permits the-
oretically to find optimal solutions that achieve
the objectives set in the optimal control problem,
thus enabling to provide a general profile of ther-
apeutic strategies to be adopted with a view to
treating the HIV infection (Figures 4 and 5).

For clinical tests and trials, the treatment
strategies relating to the optimal controls u∗1 and
u∗2 that are represented by continuous functions
would be difficult to implement from a practical
point of view. As part of an optimal control prob-
lem presenting an objective function with linear
control, the optimal control may just take the
extreme constant values (The solution is of the
bang-bang type) [33] provided that it is possible
to prove the absence of singular arcs [33].

However, the problem studied in this work de-
fines a quadratic objective function in order to
ensure more consistency to the optimal control
problem by minimizing the contributions of small
variations [53]. Hence the interest to provide
functions approaching the optimal solutions and
which are much easier to prescribe practically in
the context of the adopted treatment strategy.

At first, the curves illustrating the evolution
of optimal controls u∗1 and u∗2 were fitted [2] with
the aim of reducing the irregularities and the
singularities characterizing these curves (Figures
10,11,20 and 21) and thus enabling to mitigate
the observed disturbances. Then, on the basis
of obtained results, piecewise constant functions
are defined to characterize the control functions
u1 and u2 (Figures 10,11,20 and 21).
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The impact of applying these new treatment
regimens u

′

1 and u
′

2 (Figures 10 and 11) on the
behavior of the state variables is observed by il-
lustrating graphically the evolution of the vari-
ables x, y and z using the two types of control
functions (Figures 12,13 and 14). Over an obser-
vation period of 600 days, although the results of
the optimal treatment strategy are better than
those obtained with piecewise constant control
functions, the treatments u

′

1 and u
′

2 (Figures 10
and 11) allow to obtain satisfactory biological re-
sults and manage to reach all objectives of opti-
mal control problem.

Indeed, using constant control functions mod-
eling the adopted treatment, the healthy CD4+

T-cells follow an increasing evolution. The pro-
liferation peak occurs around the 600th day by
reaching the count of 1320 cell units (Figure 12).
Similarly, the immune response is active allowing
the stimulation of immune cells thus generating a
significant proliferation of the CTL immune cells
(Figure 14) when the viral load is growing. The
infection is reduced considerably and the concen-
tration of virus producing cells reaches very low
levels towards the end of the observation period
(Figure 13).

A number of scientific works [29, 30, 33] show
that the administration of a treatment strategy
during early stages of the HIV infection is more
beneficial for the therapeutic process. For ex-
ample, the immunotherapy adopted in an earlier
stage increases the levels of healthy CD4+ T-cells
[29, 30].

In this respect, we use numerical data sug-
gested in the scientific work developed by But-
ler et al. [6] and which characterizes a new ini-
tial state corresponding to a clinical case pre-
senting an infection appeared since only 74 days
(x(0) = 494.3 and y(0) = 0.04) [6]. During this
stage of the disease which is known as the Acute
HIV syndrome that precedes the stage of clini-
cal latency, we note a wide spread of the virus
particles in the body and a replication of HIV in
lymphoid organs.

Indeed, towards the 20th day of treatment, a
severe increase in the concentration of infected
CD4+ T-cells is observed due to the biological
resistance of these virus producing cells to the in-
troduction of therapeutic agents involved in the
treatment process (Figure 16). The stimulation
of cells involved in immune response (Figure 17)
and the action of optimal controls (Figures 18
and 19), allow to reduce the viral load in the
short term from the 23th day (Figure 16). The

level of infection is stabilizing from the 200th day.

Furthermore, the count of infected CD4+ T-
cells reached values below 10 cell units from the
420th day of treatment (optimal final time T ∗

(Figure 22)) and it eventually reached values be-
low 2 cell units towards the end of the observa-
tion period (Figure 16). In addition, we note a
gradual growth in the number of healthy CD4+

T-cells from the 30th day, thus enabling to reach
a count of 1492 cell units by the end of the clinical
observation period (Figure 15).

Finally, note with interest that the introduc-
tion of an appropriate treatment strategy at an
early stage of HIV infection has achieved all the
objectives set in the optimal control problem
thereby allowing to further stimulating the im-
mune cell proliferation (Figures 15 and 17) and
reducing the viral load (Figure 16) while mini-
mizing the optimal treatment duration (Figure
22).

Compared to the first studied case (x(0) = 50,
y(0) = 50, z(0) = 2), the optimal treatment
duration was considerably minimized (T ∗=420
days) (Figure 22) and the concentration of con-
trols used in the therapeutic process has de-
creased significantly (Figures 18,19,20 and 21).

The results obtained have helped to reduce
side effects and overall costs of the adopted treat-
ment leading to a marked improvement in the
quality of life of HIV patients.

0 100 200 300 400 500 600
0

500

1000

1500

Time: Days

x(
t)

: 
U

n
in

fe
ct

e
d

 C
D

4
+

 c
e

lls

T*=512 days

Figure 1. The state variable x with
x(0)=50 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 2. The state variable y with
y(0)=50 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 3. The state variable z with
z(0)=2 units mm−3day−1, initial
terminal time T = 600 days and op-
timal terminal time T ∗ = 512 days.
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Figure 4. The optimal control u∗1(t)
with x(0)=50 units mm−3day−1,
y(0)=50 units mm−3day−1, z(0)=2
units mm−3day−1 and T ∗ = 512
days.
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Figure 5. The optimal control u∗2(t)
with x(0)=50 units mm−3day−1,
y(0)=50 units mm−3day−1, z(0)=2
units mm−3day−1 and T ∗ = 512
days.
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Figure 6. Estimation of optimal
terminal time T ∗, zero of ∇J with
initial terminal time T = 600 days,
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1 and z(0)=2 units
mm−3day−1.
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Figure 7. The state variable x with
x(0)=50 units mm−3day−1 and ter-
minal time T = 500 days.
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Figure 8. The state variable y with
y(0)=50 units mm−3day−1 and ter-
minal time T = 500 days.
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Figure 9. The state variable z with
z(0)=2 unitsmm−3day−1 and termi-
nal time T = 500 days.
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Figure 10. The profile fitting of
the optimal control function u∗1(t)
(Left) and the piecewise constant

control function u
′

1(t) (Right) with
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 512 days.
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Figure 11. The profile fitting of
the optimal control function u∗2(t)
(Left) and the piecewise constant

control function u
′

2(t) (Right) with
x(0)=50 units mm−3day−1, y(0)=50
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 512 days.
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Figure 12. The state variable x

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with x(0)=50 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 13. The state variable y

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with y(0)=50 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 14. The state variable z

using optimal controls u∗1(t) and
u∗2(t) (DashDot) and using piece-

wise constant control functions u
′

1(t)

and u
′

2(t) (Solid) with z(0)=2 units
mm−3day−1, initial terminal time
T = 600 days and optimal terminal
time T ∗ = 512 days.
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Figure 15. The state variable x

with x(0)=494.3 units mm−3day−1,
initial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 16. The state variable y

with y(0)=0.04 units mm−3day−1,
initial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 17. The state variable z

with z(0)=2 units mm−3day−1, ini-
tial terminal time T = 600 days
and optimal terminal time T ∗ = 420
days.
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Figure 18. The optimal con-
trol u∗1(t) with x(0)=494.3
units mm−3day−1, y(0)=0.04
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 420 days.
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Figure 19. The optimal con-
trol u∗2(t) with x(0)=494.3
units mm−3day−1, y(0)=0.04
units mm−3day−1, z(0)=2 units
mm−3day−1 and T ∗ = 420 days.
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Figure 20. The profile fitting of
the optimal control function u∗1(t)
(Left) and the piecewise constant

control function u
′

1(t) (Right) with
x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1,
z(0)=2 units mm−3day−1 and
T ∗ = 420 days.
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Figure 21. The profile fitting of
the optimal control function u∗2(t)
(Left) and the piecewise constant

control function u
′

2(t) (Right) with
x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1,
z(0)=2 units mm−3day−1 and
T ∗ = 420 days.
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Figure 22. Estimation of optimal
terminal time T ∗, zero of ∇J with
initial terminal time T = 600
days, x(0)=494.3 units mm−3day−1,
y(0)=0.04 units mm−3day−1 and
z(0)=2 units mm−3day−1.

4. Conclusion

In this work, a therapeutic approach has been
suggested with the aim of treating the HIV in-
fection by adopting a treatment strategy that
uses both highly active antiretroviral therapy
(HAART) to limit the virus evolution and an IL-
2 immunotherapy to stimulate the active immune
response.

In this sense, techniques of the optimal con-
trol theory have been used to develop an appro-
priate mathematical framework relating to this
treatment approach. Indeed, a free terminal time
optimal control problem was formulated by iden-
tifying a specific objective function that includes
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all the main objectives of the adopted therapeu-
tic strategy.

The Pontryagin’s maximum principle is used
to characterize the optimal controls related to
the used treatments. An adapted forward back-
ward sweep method is implemented using a
Runge-Kutta fourth order scheme and a gradient
method routine for numerical resolution of the
optimality system with the additional transver-
sality condition for the terminal time.

Taking into account all the theoretical and nu-
merical techniques used in the context of this
research work, the treatment strategy suggested
for the treatment of HIV infection has achieved
all the objectives defined in the optimal control
problem. Indeed, the adopted treatments have
led to maximize the healthy CD4+ T-cells and
to establish an active immune response while re-
ducing both the infection concentration and the
treatment duration.

Finally, this optimal control approach has en-
abled the minimization of side effects and there-
fore the overall cost of the medication treatment
allowing a significant improvement of the quality
of life of HIV patients.

Acknowledgments

The authors would like to express their gratitude
to the honorable reviewers who suggested many
worthwhile changes to improve the quality of the
manuscript.

References

[1] Agosto, L. M., Zhong, P., Munro, J. and
Mothes, W. Highly active antiretroviral ther-
apies are effective against HIV-1 cell-to-cell
transmission. PLoS Pathog, 10, e1003982
(2014).

[2] Arlinghaus, S. Practical handbook of curve
fitting. CRC press (1994).

[3] Boccia, A., Falugi, P., Maurer, H. and Vin-
ter, R. B. Free time optimal control problems
with time delays. In Decision and Control
(CDC), 2013 IEEE 52nd Annual Conference,
520-525 (2013).

[4] Bonhoeffer, S., Coffin, J. M. and Nowak,
M. A. Human immunodeficiency virus drug
therapy and virus load. Journal of Virology,
71(4),3275-3278 (1997).

[5] Burden, T. N., Ernstberger, J. and Fister, K.
R. Optimal control applied to immunother-
apy. Discrete and Continuous Dynamical
Systems Series B, 4(1), 135-146 (2004).

[6] Butler, S., Kirschner, D. and Lenhart, S. Op-
timal control of chemotherapy affecting the
infectivity of HIV. Ann Arbor, 1001, 48109-
0620 (1997).

[7] Cai, L., Guo, S. and Wang, S. Analysis of
an extended HIV/AIDS epidemic model with
treatment. Applied Mathematics and Com-
putation, 236, 621-627 (2014).

[8] Callaway, D. S. and Perelson, A. S. HIV-1 in-
fection and low steady state viral loads. Bul-
letin of mathematical biology, 64(1), 29-64
(2002).

[9] Cassels, S., Jenness, S. M. and Khanna, A. S.
Conceptual Framework and Research Meth-
ods for Migration and HIV Transmission Dy-
namics. AIDS and Behavior, 18(12), 2302-
2313 (2014).

[10] Cheney, E. and Kincaid, D. Numerical math-
ematics and computing. Cengage Learning,
(2012).

[11] Coffin, J. M. HIV population dynamics
in vivo: implications for genetic varia-
tion, pathogenesis, and therapy. Science,
267(5197), 483-489 (1995).

[12] Culshaw, R. V. and Ruan, S. A delay-
differential equation model of HIV infection
of CD4+ T-cells. Mathematical biosciences,
165(1), 27-39 (2000).

[13] Culshaw, R. V., Ruan, S. and Spiteri, R. J.
Optimal HIV treatment by maximising im-
mune response. Journal of Mathematical Bi-
ology, 48(5), 545-562 (2004).

[14] Elmouki, I., Saadi, S. Quadratic and linear
controls developing an optimal treatment for
the use of BCG immunotherapy in superfi-
cial bladder cancer. Optimal Control Appli-
cations and Methods. (2015).

[15] Elmouki, I., Saadi, S. BCG immunother-
apy optimization on an isoperimetric optimal
control problem for the treatment of superfi-
cial bladder cancer. International Journal of
Dynamics and Control. 1-7, (2014).

[16] Fauci, A.S., Desrosiers, R.C. Pathogenesis of
HIV and SIV, 587-636. Cold Spring Harbor
Laboratory Press, New York (1997).

[17] Fleming, W.H., Rishel, R.W. Deterministic
and stochastic optimal control. Springer Ver-
lag, New York (1975).

[18] Gray, C.M., Lawrence, J., Schapiro, J.M.,
Altman, J.D., Winters, M.A., Crompton,
M., Loi, M., Kundu, S.K., Davis, M.M. and
Merigan, T.C. Frequency of Class I HLA-
Restricted anti-HIV CD8+ T-cells in individ-
uals receiving Highly Active Antiretroviral
Therapy (HAART). The journal of immunol-
ogy. 162, 1780-1788 (1999).



50 A. Hamdache et al., / Vol.6, No.1, pp.33-51 (2016) c©IJOCTA

[19] Gumel, A.B. Spread and control of HIV:
a mathematical model. Accromath. 26(8),
(2013).

[20] Hamdache, A., Saadi, S., Elmouki, I.,
Zouhri, S. Two Therapeutic Approaches for
the Treatment of HIV Infection in AIDS
Stage. Journal of Applied Mathematical sci-
ences. 7(105), 5243-5257 (2013).

[21] Hamdache, A., Elmouki, I., Saadi, S. Op-
timal Control with an Isoperimetric Con-
straint Applied to Cancer Immunotherapy.
International Journal of Computer Applica-
tions. 94(15), 31-37 (2014).

[22] Hamdache, A., Saadi, S. and Elmouki, I.
Nominal and neighboring-optimal control ap-
proaches to the adoptive immunotherapy for
cancer. International Journal of Dynamics
and Control, 1-16 (2015).

[23] Hlavacek, W.S., Wofsy, C. and Perelson,
A.S. Dissociation of HIV-1 from follicular
dendritic cells during HAART: mathematical
analysis. Proceedings of the National Acad-
emy of Sciences. 96(26), 14681-14686 (1999).

[24] Iversen, A.K., Shafer, R.W., Wehrly, K.,
Winters, M.A., Mullins, J.I., Chesebro, B.
and Merigan, T.C. Multidrug-resistant hu-
man immunodeficiency virus type 1 strains
resulting from combination antiretroviral
therapy. Journal of Virology. 70(2), 1086-
1090 (1996).

[25] Jacobson, E.L., Pilaro, F. and Smith, A.K.
Rationnal IL-2 therapy for HIV positifs in-
dividuals: daily low doses enhance immune
function without toxicity. Proc. Natl. Acad.
Sci USA. 93, 10405-10410 (1996).

[26] Janeway, C., Murphy, K. P., Travers, P. and
Walport, M. Janeway’s immunobiology, 530-
535. Garland Science, London (2008).

[27] Jang, T., Kwon, H. D. and Lee, J. Free ter-
minal time optimal control problem of an
HIV model based on a conjugate gradient
method. Bulletin of mathematical biology,
73(10), 2408-2429 (2011).

[28] Jiang, C., Lin, Q., Yu, C., Teo, K. L. and
Duan, G. R. An exact penalty method for
free terminal time optimal control problem
with continuous inequality constraints. Jour-
nal of Optimization Theory and Applica-
tions, 154(1), 30-53 (2012).

[29] Joshi, H. R. Optimal control of an HIV im-
munology model. Optimal control applica-
tions and methods, 23(4), 199-213 (2002).

[30] Kirschner, D.E., Webb, G.F. Immunother-
apy of HIV-1 infection. Journal of Biological
Systems. 6(1), 71-83 (1998).

[31] Khanna, A. S., Dimitrov, D. T. and
Goodreau, S. M. What can mathematical
models tell us about the relationship between
circular migrations and HIV transmission dy-
namics?. Mathematical biosciences and engi-
neering: MBE, 11(5), 1065-1090 (2014).

[32] Klatzmann, D. and Abbas, A. K. The
promise of low-dose interleukin-2 therapy for
autoimmune and inflammatory diseases. Na-
ture Reviews Immunology, (2015).

[33] Lenhart, S., Workman, T. Optimal control
applied to biological models, 49-55. Chap-
man and Hall/CRC Mathematical and Com-
putational Biology Series, New York (2007).
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des lieux. M/S: médecine sciences. 22(8-9),
751-754 (2006).

[35] Lukes, D. L. Differential Equations: Clas-
sical to Controlled, Mathematics in Science
and Engineering, Academic Press, New York,
(1982).

[36] Maartens, G., Celum, C. and Lewin, S.
R. HIV infection: epidemiology, pathogene-
sis, treatment, and prevention. The Lancet,
384(9939), 258-271 (2014).

[37] MacArthur, R.D., Novak, R.M. Maraviroc:
The First of a New Class of Antiretrovi-
ral Agents. Oxford journals. 47(2), 236-241
(2008).

[38] McAsey, M., Mou, L., Han, W. Convergence
of the Forward-Backward Sweep Method in
optimal control. Comput Optim Appl. 3,
(2012).

[39] Mastroberardino, A., Cheng, Y., Abdel-
razec, A. and Liu, H. Mathematical modeling
of the HIV/AIDS epidemic in Cuba. Interna-
tional Journal of Biomathematics, 1550047
(2015).

[40] Merry, C., Barry, M.G., Mulcahy, F.,
Ryan, M., Heavey, J., Tjia, J.F., Gibbons,
S.E., Breckenridge, A.M. and Back, D.J.
Saquinavir pharmacokinetics alone and in
combination with ritonavir in HIV-infected
patients. AIDS. 11(4), (1997).

[41] Palanki, S., Kravaris, C. and Wang, H. Y.
Optimal feedback control of batch reactors
with a state inequality constraint and free
terminal time. Chemical engineering science,
49(1), 85-97 (1994).

[42] Perelson, A. S., Neumann, A. U., Markowitz,
M., Leonard, J. M. and Ho, D. D. HIV-1 dy-
namics in vivo: virion clearance rate, infected
cell life-span, and viral generation time. Sci-
ence, 271(5255), 1582-1586 (1996).



Free terminal time optimal control problem for the treatment of HIV infection 51

[43] Perelson, A. S., Kirschner, D. E. and De
Boer, R. Dynamics of HIV infection of CD4+

T cells. Mathematical biosciences, 114(1), 81-
125 (1993).

[44] Pontryagin, L. S. Mathematical theory of op-
timal processes. CRC Press, (1987).

[45] Pontryagin, L. S., Boltyanskii, V. G. and
Gamkrelidze, R. V. EF Mishchenko The
Mathematical Theory of Optimal Processes.
New York: Interscience (1962).

[46] Pooseh, S., Almeida, R. and Torres, D.
F. Fractional order optimal control prob-
lems with free terminal time. arXiv preprint
arXiv: 1302.1717 (2013).

[47] Qun, L., Loxton, R., Teo, K. L. and Wu, Y.
H. A new computational method for a class
of free terminal time optimal control prob-
lems. Pacific Journal of Optimization. 7(1),
63-81 (2011).

[48] Raffi, F.: Enfuvirtide, premier inhibiteur
de fusion dans le traitement de l’infection
par le virus de l’immunodéficience humaine:
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Abstract. In this paper, we study a modelization of the evolution of cereal output production,

controlled by adding fertilizers and in presence of locusts, then by adding insecticides. The aim is

to maximize the cereal output and meanwhile minimize pollution caused by adding fertilizers and

insecticides. The optimal control problem obtained is solved theoretically by using the Pontryagin

Maximum Principle, and then numerically with shooting method.

Keywords: Optimal control; optimization; Pontryagin maximum principal.

AMS Classification: 49J15.

1. Statement of the problem

Consider x(t), t ∈ [0, T ] the rate of pollution at
time t. In cereal field, If the farmer does not put
fertilizers and insecticides then the evolution of
pollution satisfies

ẋ(t) = −αx(t), t ∈ [0, T ];

where α is the natural decreasing rate. Note that
the rate x(t), t ∈ [0, T ] is decreasing.
In order to increase the cereal output, we add fer-
tilizers and insecticides to protect the crop harm
locusts. Denoting by u(t) and v(t) , t ∈ [0, T ]
the quantities of fertilizers and insecticides re-
spectively, in this case x(t) is evolving as

ẋ(t) = −αx(t) + u(t) + v(t), (1)

x(0) = x0 > 0, t ∈ [0, T ]

Our goal is to minimize the pollution generated
by fertilizers and insecticides, and optimize the
cereal output from the seed to the harvest.

In practice, we choose typically T =
10months, which corresponds to a cycle of cereal
production from September to July.
Let be y(t), t ∈ [0, T ] the quantity of the cereal

production. Adding fertilizers, the production in-
creases, this production decreases with the pres-
ence of locusts and by adding large quantities of
fertilizers.

Denoting by z(t), t ∈ [0, T ], the quantity of
locusts presents in cereal field. In this case the
evolution of cereal output is given for t ∈ [0, T ]
by:

ẏ(t) = −by(t)z(t) +
√

(M − u(t))(m+ u(t)) (2)

y(0) = 0.

and z(t) verify the following equation

ż(t) = z(t)(c(t)y(t)− d(t))− v(t), (3)

z(0) = z0 > 0, t ∈ [0, T ]

where m > 0,M > 0 are real numbers, b is the
rate of reproduction of cereal, c(t), t ∈ [0, T ] is the
rate of reproduction of locusts and d(t), t ∈ [0, T ],
is the rate of extinction of locusts. All those pa-
rameters will be identified subsequently.

Note that if we add a too large quantity of fer-
tilizers and insecticides, this causes the death of
locusts but also the death of cereals.

53
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The functions u(.) and v(.) are considered as
controls. Those controls u(.) and v(.) considered
are submitted to constraints. They are such that

0 ≤ v(.) ≤ V, (∗)
and

0 ≤ u(.) ≤ M. (∗∗)

Note that V > 0 will be by identified in the
following section.

In a cereal field, the aim is to maximize the
production of cereals and to minimize the bad
effects of pollution given by insecticides and fer-
tilizers. For this our criterion is:

J(u) = βx(T )− y(T ) → min
u, v

,

where β > 0 is a real number to be chosen, x(.)
is solution of (1) and y(.) is solution of (2).
Minimizing J corresponds to realizing a compro-
mise between maximizing the cereal output and
minimizing the bad effects of pollution given by
insecticides and fertilizers.

Finally, our problem is as follows























































































ẋ(t) = −αx(t) + u(t) + v(t),
x(0) = x0 > 0

ẏ(t) = −by(t)z(t)

+
√

(M − u(t))(m+ u(t)),
y(0) = 0

ż(t) = z(t)(c(t)y(t)− d(t))− v(t),
z(0) = z0 > 0

0 ≤ v(t) ≤ V

0 ≤ u(t) ≤ M. t ∈ [0, T ].

Here we consider that the final time T is fixed.

This problem is inspired by a model used in [9],
where the authors formulated a model without
presence of locusts. They calculated the quan-
tities of fertilizers to put in cereal field to get a
better production. The reader can refer also to
[11].

This article is structured as follows. In Section
2, we provide an identification of the parameters
considered in the model with real life measures

used in Algeria see [4,7]. In this section, we cal-
culated the rate of reproduction of cereals using a
simple dechotomy method. we calculated also the
durations of maturity of locusts, then the repro-
duction rate and the rate of extinction of locusts,
in hot and cold seasons.

Section 3 is devoted to the study of necessary
condition of optimality based on the Pontryagin
Maximum Principle see[10,12]. We make a rigor-
ous mathematical analysis of the extremal equa-
tions leading to a precise expression of the opti-
mal control. In Section 4, we provide numerical
simulations based on the rigorous mathematical
analysis, using the shooting method and we com-
ment these results. Note that these numerical re-
sults describe the best possible way for a farmer
to realize a good compromise between maximiz-
ing the cereal output and minimizing pollution
effects consequences of fertilizers and insecticides.

2. Identification of the parameters of

the model

In what follows, the time t is given in months,
and T corresponds to a cycle of cereal produc-
tion, T = 10 months.

The quantities of fertilizers used in Algeria are
given by [7]:

u(t) =











































































100kg/ha if

t ∈ [0, 1] = [September,October]

100
3 kg/ha if

t ∈ [2, 3] = [November,December]

200
3 kg/ha if

t ∈ [6, 7] = [March,April]

0
otherwise([1, 2] ∪ [3, 6] ∪ [7, 10])

(4)

According to [7], the quantity of cereal output
without fertilizers is equal to 500 kilograms per
hectare.

From this in our model corresponds to u(t) =
0, and hence, using equation (2);

ẏ(t) =
√
Mm, then we obtain

10
√
Mm = 500. (5)

From [7], the cereal output with the addition of
fertilizers and in absence of locusts as described
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by (2) is equal to 4500 kilograms per hectare.
In our model, this leads to

y(T ) = 4500 =

∫ 1

0

√

(M − 100)(m+ 100)dt+

∫ 3

2

√

(M − 100/3)(m+ 100/3)dt+

∫ 7

6

√

(M − 200/3)(m+ 200/3)dt+ 7
√
Mm.

solving the system































10
√
Mm = 500

√

(M − 100)(m+ 100)

+
√

(M − 100/3)(m+ 100/3)

+
√

(M − 200/3)(m+ 200/3)

+7
√
Mm = 4500 .

and leads to

M = 300, 83, m = 0.00083.

Let us now compute the value of the decreas-
ing rate α of pollution, according to real-life
data. In the absence of fertilizers and insecti-
cides, u(t) = 0, we have x(0) = x0 = 119mg/l at
t = 0, and x(T ) = 28mg/l at T = 10 months.
From this by using formula (1), we obtain:

x(T ) = x0e
−αT

⇔ 28 = 119e−10α,

then
α = 0.12.

Note that the locust attack held in May. From
equation (2), and in absence of fertilizers (u(t) =
0),

ẏ(t) = −b y(t) z(t) +
√
mM, t ∈ [0, T ].

the larval density causing damage is 5000 locusts
per hectare [4], they consume 80 % of cereal a
day.

For t1 =
1
30 month = 1 day, we will have:

y(
1

30
) = 0.2y0.

Note that y0 = y(8) is cereal production at
the time of the attack of locusts. the value of b
is determined by solving the following differential
equation:

ẏ(t) = −5000 b y(t) +
√
Mm

under the initial conditions:

y(8) = y0, y(
1

30
) = 0.2y0.

Using these data, we will have

d

dt
(y(t)−

√
Mm

bz(t)
) = −bz(t)(y(t)−

√
Mm

bz(t)
)

⇒ y(t)−
√
Mm

bz(t)
= cste× e−bz(t)t;

then

y(t) =

√
Mm

bz(t)
+ (y0 −

√
Mm

bz(t)
)e−bz(t)t, t ∈ [0, T ].

For t = t1, we will have:

√
Mm

bz(t)
+ (y0 −

√
Mm

bz(t)
)e−bz(t)t1 = 0.2y0.

To determine the value of y0, we set the fol-
lowing assumptions:

- The locust come in May .
- Insects attack a fraught field of cereal.
- The field has not been attacked before May.

To calculate y0, we solve the following equa-
tion:

y(8) =

∫ 1

0

√

(M − 100)(m+ 100)dt+

∫ 3

2

√

(M − 100/3)(m+ 100/3)dt+

∫ 7

6

√

(M − 200/3)(m+ 200/3)dt+ 5
√
Mm.

Such that M = 300 and m = 0.00083, then
y(8) = 4379kg/ha. To determine the value of b,
plot the graph of the following function:

b 7→
√
Mm

bz
+ (y0 −

√
Mm

bz
)e−bzt1 − 0.2y0

where t1 = 1
30 month, y0 = 4379kg/ha and z =

5000locusts/ha.
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Figure 1. t 7→ b(t).

By Dichotomy, we obtain b = 2.85 (see Figure
1).

Population of locusts on which is based our
work is 55000 larvae and 375 adults. A female
lays 140 eggs in two generations [4]. Average
losses of eggs are about 33% [4]. The Table 1
shows the duration of maturity of locusts. For
method for calculating incubation periods see [4].

Table 1. Durations of maturity of
locusts [4].

Locusts
temperatures high bass
Eggs IT: 11 days IT: 41 days

Larvae DT: 80 days DT: 21 days

Adults AM : 20 days AM: 6 months

Indications: IT: Incubation time, DT: Develop-
ment time and AM: Adults maturity.

After hatching of eggs, the larvae pass from
five larval stages L1, L2, L3,L4, L5. The per-
centages of mortality in different stages of larvae
are given in Table 2. For more informations see[4]

Table 2. Larval mortality [4].

Stages L1 L2 L3 L4 L5

percentages 70% 20% 10% 10% 10%

There, and using these data, we calculate the
number of locusts that can produce a viable fe-
male in hot and cold seasons.

Hot seasons:

N1 = 140× 0.66× 0.3× 0.8× (0.9)3 = 16.16

≃ 17locusts

Cold seasons:

N2 = 140× 0.35× 0.3× 0.8× (0.9)3 = 8.57

≃ 9 locusts

In other words: On 55375 Locust (larvae, im-
mature adults , mature adults) we assume that
100 females lay their eggs in two generations.
They will generate 17 locusts viable in the hot
season and 9 locusts viable in the cold season.
The rate of reproduction of locusts c(t), t ∈ [0, T ]
is represented in Figure 2 and calculated as fol-
lows:

c(t) =







200
55375 ∗ 17, in hot season

200
55375 ∗ 9, in cold season .

Then

c(t) =







0.0613, in hot season

0.0288, in cold season .

Analytic expression of c(t), t ∈ [0, T ] is

c(t) = 0.0288 + (0.0613− 0.0288)
(t− 5)2

25
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Figure 2. t 7→ c(t).

The average lifespan of a locust is 3 months
in hot periods, it is 8 months in cold periods (see
[4]). we assume that we are at 0 when 90 % of the
population locusts disappeared (this assumption
is possible because after elimination of locusts,
the solitary locusts do not disappear).

From Constraint (3), in the absence of insecti-
cides and food,

ż(t) = −d z(t).

This differential equation has the solution:

z(t) = z0e
−dt, t ∈ [0, T ],

where z0 = z(0).
In hot season, t = 3 months,
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z0 e−3d = 0.1 z0

⇒ e−3d = 0.1

d = −1

3
ln(0.1) = 0.767

In cold season t = 8 months:

z0 e−8d = 0.1 z0

⇒ e−8d = 0.1

d = −1

8
ln(0.1) = 0.287.

In other words:

d(t) =

{

0.767 in hot season
0.287 in cold season .

The analytical expression for the rate of ex-
tinction of locusts d(t) represented in Figure 3
and it is given by:

d(t) = 0.287+(0.767−0.287)
(t− 5)2

25
, t ∈ [0, T ].
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Figure 3. t 7→ d(t).

For the value of V = 5l/ha see [4].

3. Theoretical solving of the optimal

control problem

In this section, we solve the problem (4) theo-
retically by employing the Pontryagin Maximum
Principle.

Let us first recall a version of the Pontryagin
Maximum Principle (see [10,12]).

Theorem 1. We consider the control system on
R
n

ẋ(t) = f(t, x(t), u(t)), (6)

where f : R × R
n × R

m → R
n in C1. Where

the controls are the measurable and bounded func-
tions in [0, te(u)] of R

+ in values in Ω ⊂ R
m. Let

M0 and M1 two subsets of Rm. Note by U the
set of an admissible controls u whose correspond-
ing trajectories connect one point of M0 to a final
point in M1 in time t(u) < te(u). Note the qual-
ity criterion by

C(t, u) =

∫ t

0
f0(s, x(s), u(s))ds+ g(t, x(t)),

where f0 : R×R
n×R

m → R
n and g : R×R

n → R

in C1, and x(.) is solution of (7) associated to the
control u.

We consider the following optimal control
problem: determine one trajectory connecting M0

to M1 and minimize the cost.
If a control u is optimal in [0, T ], then there

exist an application p(.) absolutely continuous
on [0,T], with values in R

n, called adjoint vec-
tor, and a real nonpositive number p0 such that
(p(.), p0) is nontrivial, and for almost all t ∈
[0, T ]

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)), (7)

ṗ(t) =
−∂H

∂x
(t, x(t), p(t), p0, u(t)). (8)

where
H(t, x, p, p0, u) = p′(t)f(t, x, u) + p0f0(t, x, u)

is the Hamiltonian of the system (7).
Moreover, we have a condition of maximiza-

tion

H(t, x(t), p(t), p0, u(t))
= maxv∈U H(t, x(t), p(t), p0, v),

(9)

for all t ∈ [0, T ].
Moreover, if M0 and M1 are two submanifolds

of R
n having tangent spaces in x(0) ∈ M0 and

x(T ) ∈ M1, then the adjoint vector satisfies the
transversality conditions

p(0)⊥Tx(0)M0, (10)

and

p(T )− p0
∂g

∂x
(T, x(T ))⊥Tx(T )M1. (11)
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We apply the Pontryagin Maximum Principle
to our specific optimal control problem.
The Hamiltonian of System (4) is

H(x, p, p0, u, v) = px(−α x+u+v)+py(−b y z+
√

(M −m)(m+ u)) + pz(z(cy − d)− v)

where p(t) =













px(t)

py(t)

pz(t)













, t ∈ [0, T ] is adjoint

vector solution of the following system:























ṗx = −∂H
∂x

= αpx,

ṗy = −∂H
∂y

= bpyz − cpzz =

bzpy − czpz = z(bpy − cpz),

ṗz = −∂H
∂z

= bypy − pz(cy − d) =
y(bpy − cpz) + pzd.

(12)

The final transversality condition

We know that x(T ) is free, the final transversality
condition leads to

p(T ) = p0∇g(x(T )).

In other words:

px(T ) = p0
∂

∂x
(βx(T )− y(T )),

py(T ) = p0
∂

∂y
(βx(T )− y(T )),

pz(T ) = p0
∂

∂z
(βx(T )− y(T )).

Then px(T ) = −β, py(T ) = 1, pz(T ) = 0.
It is easy to see that

px(t) = −βeα(t−T ), t ∈ [0, T ]

Remark 1. Since β > 0, it follows that, for ev-
ery t ∈ [0, T ], px(t) < 0.

Lemma 1. p0 6= 0.

Proof. We argue by contradiction. If p0 = 0
then p(T ) = 0 so (p(T ), p0) = (0, 0); this is
in contradiction with the Pontryagin Maximum
Principle. �

Remark 2. If p0 = 0 then the extremal
(x(.), p(.), u(.)) is said normal and in this case
it is usual to normalize the adjoint vector so
that p0 = −1. If p0 = 0, then the extremal
(x(.), p(.), u(.)) is said abnormal. Note that sev-
eral works have been devoted to the investigation

of abnormal extremals in a generic context (see
[1],[2],[3]). In our example, the abnormal case
does not occur.

Lemma 2. py(.) is not canceled identically on a
sub interval.

Proof. Assume that py ≡ 0 is canceled identi-
cally on a sub interval of [0, T ],

py ≡ 0 ⇒ ṗy ≡ 0

⇒ z(t)(bpy(t)− c(t)pz(t)) = 0

⇒ pz ≡ 0

So by unicity of Cauchy,

py ≡ pz ≡ 0 sur [0, T ],

this is in contradiction with py(T ) = 1. �

For the proof of the following lemma see [11].

Lemma 3. px(.) − pz(.) does not vanish identi-
cally on a subset interval.

To study the maximization condition, we
search the maximum on v and u of the follow-
ing function

pxu(t) + py(t)
√

(M − u(t))(m+ u(t))+

(px(t)− pz(t))v(t)

It is clear that

v(t) =

{

0 if px(t)− pz(t) < 0 ,
V if px(t)− pz(t) > 0 .

(13)

To determine the optimal control u(.), we
search in [−m,M ], the maximum of the following
function

φ(u) = pxu+ py
√

(M − u)(m+ u).

Function φ is defined on [−m,M ]. To found
its absolute maximum proceed as follows

φ′(u) = px + py
−u+ M−m

2
√

(M − u)(m+ u)

φ′(u) = 0 ⇔ py
−u+ M−m

2
√

(M − u)(m+ u)
= −px

Note that px(t) < 0, then

py(−u+
M −m

2
) > 0

(p2x + p2y)u
2 − (M −m)(p2x + p2y)u+

(M −m)2

2
p2y

−p2xMm = 0.
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The absolute maximum of φ on [−m,M ] is

uφ =
M −m

2
+

M +m

2
√

p2x(t) + p2y(t)
pxsign(py(t))

We deduce two cases:
py(t) > 0, in this case the maximum of φ on

[0,M ] is

0 if uφ < 0,

uφ if uφ ≥ 0,

py(t) < 0

φ(0) = py(t)
√
Mm < 0

and

φ(M) = px(t)M < 0.

The maximum of φ on [0,M ] is

0 if py(t)
√
Mm > px(t)M

M if px(t)M > py(t)
√
Mm, t ∈ [0, T ]

Conclusion

The optimal control of system (4) is

u(t) =



















































































0 if py(t) > 0

and M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) ≤ 0,

M−m
2 + (M+m)px(t)

2
√

p2
x
(t)+p2

y
(t)

if py(t) > 0

and M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) > 0,

0 if py(t) < 0

and py(t)
√
m > px(t)

√
M

M if py(t) < 0

and py(t)
√
m < px(t)

√
M.

(14)
We proved the following theorem.

Theorem 2. If py(t) > 0 and
M−m

2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) < 0, then

u(t) = 0, t ∈ [0, T ].

If py(t) > 0 et M−m
2 + M+m

2
√

p2
x
(t)+p2

y
(t)
px(t) > 0,

then

u(t) =
M −m

2
+

(M +m)px(t)

2
√

p2x(t) + p2y(t)
, t ∈ [0, T ].

If py(t) < 0 and py(t)
√
m > px(t)

√
M ,

then

u(t) = 0, t ∈ [0, T ].

If py(t) < 0 and py(t)
√
m < px(t)

√
M ,

then

u(t) = M, t ∈ [0, T ].

4. Numerical simulations

We give here a brief overview of the indirect
method, this method is based on the Pontryagin
Maximum Principle, which gives necessary con-
dition for optimality, and states that every opti-
mal trajectory is the projection of an extremal.
If one is able from the condition of maximiza-
tion to express the extremal control in function of
(x(t), p(t)), then the extremal system is a differ-
ential system of the form ż(t) = F (t, z(t)), where
z(t) = (x(t), p(t)), and the values of initial, final
and transversality conditions are put in the form
R(z(0), z(T )) = 0.

Finally we obtain a problem of the form

{

ż(t) = F (t, z(t)),
R(z(0), z(T )) = 0 .

(15)

Let z(t, z0) the solution of Cauchy’s problem

ż(t) = F (t, z(t)), z(0) = z0.

Put G(z0) = R(z0, z(T, z0)). The problem (16)
it equivalent to

G(z0) = 0

which is solved using the Newton’s method. For
more details on the shooting method, the reader
can refer to [12].

Let us consider now that the ground is fertil-
ized from September to July, and the insecticides
is put in a continuous way, from May to July. To
solve the problem, the indirect method based on
the Pontryagin Maximum Principle is used. We
provide in Table 3 numerical results of x(T ), y(T )
and z(T ) for several values of the weight param-
eter β. The numerical simulations were led using
Matlab on a desktop computer.
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Table 3. Pollution, cereal output
and locusts final as time function of
β.

0 909 5.94 248
10 36.40 16.90 13.39
50 35.97 20.76 2.50
70 35.91 18.47 1.92
100 35.90 15.65 1.39
150 35.87 12.18 1
200 35.84 9.85 1

We note that pollution decreases slowly, yield
is decreased significantly, this is due to the fact
that the wheat been ravaged by locusts.

Variations of controls u(.) and v(.) depending
on t for β = 0 and β = 50 respectively are shown
in the Figure 4 and Figure 5 :
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Figure 4. Optimal controls for β = 0.
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Figure 5. Optimal controls for β = 50.

It is visible from Figure 4 that when the farmer
is only interested to increase the output, with-
out taking into account the pollution, the opti-
mal weight to be considered is of course ”β = 0”.
Then u(t) = 150qx/ha, for all t ∈ [0, 10] and
quantities of insecticides are zero before the ar-
rival of locusts i.e before May, v(t) = 0, but from
May v(t) = 5l/ha.

Whereas, if he does not want to pollute the
ground, he should use smaller quantities of fer-
tilizers, for example, β = 50, the optimal control
u(.) decrease from u = 0.34 qx/ha at time t = 0
to u = 0.05 qx/ha at time t = 10. The quantities
of insecticides in this case are zero (Figure 5).

Figure 6 shows the variations of pollution, ce-
real output and the number of locusts function
of time t, for β = 0.
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Figure 6. Optimal trajectories ver-
sus to t for β = 0.

We note that when β = 0, pollution increases,
cereal output also increases until time t = 8 i.e
until the coming of the locusts. At the same
time, the number of locusts is maximum, then the
curve decreases because of the maximum amount
of insecticides v(t) = 5l/ha which is applied.

If β = 50, in other words, taking into account
the pollution, this last decreases according to t,
cereal output increases until time t = 8 months,
in May, then curve y decreases. But the curve
representing the number of locusts does not de-
crease because no amount of insecticides is ap-
plied (see Figure 7).
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Figure 7. Optimal trajectories ver-
sus to t for β = 50.

5. Conclusion

In this work, we have modeled a practical prob-
lem in agriculture which is the optimization prob-
lem of a cereal production by introducing the con-
straint of the presence of locusts that are a real
nuisance in Algeria. Controls resulting from the
model are nonlinear. Different parameters of the
model are identified using real-life data from the
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National Institute of Plant Protection (INPV) lo-
cated in the capital of Algeria Algiers. The the-
oretical resolution is done using the Pontryagin
maximum principle. For the numerical resolu-
tion, we used the shooting method based on the
Pontryagin maximum principle.

Our simulations show that the strategy of
spreading fertilizers and insecticides can be im-
proved in Algeria compared to what is done at
present, so as to increase the rate of production
and however minimizing the pollution effect.
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sur le criquet pèlerin: Annexes, Organisa-
tion des nations unies pour l’alimentation et
l’agriculture (2001).

[5] Frankowska, H., Regularity of minimizers
and of adjoint states for optimal control prob-
lems under state constraints. J. Convex Anal-
ysis, 13, 299-328 (2006).

[6] Stoer, J., Bulirsh, R., Introduction to numer-
ical analysis. Springer-Verlag, (2002).

[7] Ministry of Agriculture, Statistics (2006).
[8] Murray, J.D., Mathematical Biology: II.

Spatial Models and Biomedical Applications,
(2003).

[9] Moussouni, N., Aidene, M., An Algorithm for
optimization of cereal output. Acta Applican-
dae Mathematicae, 119, 113-127 (2012).

[10] Pontryaguin, L. et al., Mathematical theory
of optimal processes. Moscou (1974).

[11] Sethi, S.P and Thompson, G.L. Optimal
Control Theory: Applications to Manage-
ment Science and Economics, Second Edi-
tion, Springer (2000).
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