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Abstract. This paper deals with finding most vital links of a network which carries flows over time
(also called ”dynamic flows”). Given a network and a time horizon T , Single Most Vital Link Over
Time (SMVLOT) problem looks for a link whose removal results in greatest decrease in the value of
maximum flow over time (dynamic maximum flow) up to time horizon T between two terminal nodes.
SMVLOT problem is formulated as a mixed binary linear programming problem. This formulation is
extended to a general case called k-Most Vital Links Over Time (KMVLOT) problem, in which we look
for finding those k links whose removal makes greatest decrease in the value of maximum flow over time.
A Benders decomposition algorithm is proposed for solving SMVLOT and KMVLOT problems. For
the case of SMVLOT problem, the proposed algorithm is improved to a fully combinatorial algorithm
by adopting an iterative method for solving existing integer programming problem. However, our
experimental results showed the superiority of proposed methods.
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1. Introduction

Static (traditional) most vital link problem seeks
for a link whose removal from network causes max-
imum decrease in static (not over time) maximum
flow between source node and sink node. Initially
Wollmer [17] defined this problem and proposed
a solution algorithm for this problem. Wollmer’s
algorithm is based on the well known and tradi-
tional Max-Flow Min-Cut theorem. Corley and
Sha [8] extended this problem to find a link whose
removal from network results in the greatest in-
crease in shortest distance between two specified
nodes. Malik et al. [13] defined k-most vital links
on shortest route problem and proposed an algo-
rithm for solving this problem. Their algorithm
attempts to find the single and k-most vital links
of a network using an iterative labeling procedure
which has a time complexity equal to that of Di-
jkstra’s algorithm [1] for the traditional shortest

path problem. Lin and Chern [12] extended most
vital link problem on fuzzy shortest path problem.
Bar-Noy et al. [5] studied complexity of finding k-
most vital links and nodes in a network and proved
that both of them are NP-hard. Until recent years,
static most vital link problem studied as a special
case of network interdiction problem (see e.g. [18],
[2]).

Although static most vital link problem is stud-
ied widely in literature, but none of existing mod-
els does not consider the most important role of
time factor in real world applications and exist-
ing models can not handle with networks in which
flows depend on time. For example to determine
most vital links in a traffic network, static version
of most vital link model is not a subsequent tool,
since in this type of networks every link has a tra-
verse time (the time that an auto takes to traverse
that link) that static network flows can not deal
with such flows. Existing models, which all are
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based on static network flows, does not consider
time-dependent network flows; and as we know
in most of real world networks time plays an im-
portant role. Providing more realistic model and
obviating the deficiency of existing models moti-
vated us to introduce SMVLOT and KMVLOT
problems in this paper which take into account

a1 

a2 ( 2 , 1 0 )
( 5 , 1 4 )

Figure 1. A Simple Network

the time factor in decision making. The model
studied in this paper has completely different na-
ture from all of existing models in literature, and
none of existing algorithms can be applied to
the problem studied in this paper. To formulate
SMVLOT and KMVLOT problems and to con-
sider the most important role of time, we use con-
tinuous time version of maximum flow over time
problem.

Initially Ford and Fulkerson [10] introduced dis-
crete time version of maximum flow over time
problem. Since introduction of flows over time
the research on this subject has taken two di-
rections. One direction models time in discrete
time steps(see e.g. [7], [11]). The other direc-
tion models time continuously (see e.g. [9], [16],
[3], [4] and [15]). In this paper we consider just
continuous time version of this problem and here
after we refer to continuous time version of maxi-
mum flow over time problem simply by maximum
flow over time problem. Maximum flow over time
problem for time horizon T is defined on a net-
work G = (N,A,u, τ , {s, t}), where N is the set of
nodes, A is the set of directed links with a positive
capacity u = (ua)a∈A and positive transit times
τ = (τa)a∈A, s is source node and t is terminal
node. Traverse time of the link a = (i, j) ∈ A is
the time that a unit of flow takes to move through
this link; more formally, if one unit of flow leaves
node i at time θ then one unit of flow arrives node
j at time θ + τa. Given G and a time horizon T ,
the aim of maximum flow over time problem is to
find a flow over time pattern which sends maxi-
mum value of flow from s to t up to time horizon
T .

Given a network and its links capacities and tra-
verse times, the objective of SMVLOT problem is
to determine a link whose simultaneous removal

from the network causes the greatest decrease in
the value of maximum flow over time up to time
horizon T between two specified terminal nodes.
The traditional most vital link problem and what
we study in this paper have completely different
nature. To better understanding of SMVLOT
problem and to distinguish differences between
SMVLOT problem and traditional static most vi-
tal link problem, consider the simple example of
Figure 1. The 2-tuple vector beside each link
shows (ua, τa), where ua is link capacity and τa
is link traverse time. Static most vital link prob-
lem (withdrawing traverse times) implies that a1
is the most vital link, because its capacity (i.e. 5)
is greater than that of a2, therefore a1 carries more
flow in a static maximum flow pattern. Note that
static maximum flow does not consider the tra-
verse time of links. But to find SMVLOT in this
simple network, note that for a given time hori-
zon T , in a maximum flow over time pattern total
flow which arrives to node t up to time T from a1
and a2 are respectively (max{0, T − τa1})ua1 and
(max{0,−τa2})ua2 ; therefore we must distinguish
between following five cases:

a) 0 ≤ T ≤ 10. In this case no flow enters ter-
minal node up to time T since both links
traverse times is greater than T , therefore
both links can be selected SMVLOT.

b) 10 < T ≤ 14. In an optimal maxi-
mum flow over time pattern a1 carries no
flow to terminal node up to time T since
(max{0, T − τa1}) = 0 while a2 carries
a positive flow (max{0, T − τa2})ua2 =
(T −10)2. As a result in this case a2 is the
SMVLOT, since contribution in the max-
imum flow up to time T is greater than
that of a1.

c) 14 < T < 50
3 . In this case SMVLOT is

a2, because total arrival flow to t from a1
and a2 up to time T is equal to 5(T − 14)
and 2(T −10), respectively. But as we see,
5(T − 14) < 2(T − 10) for all T < 50

3 .

d) T = 50
3 . Since total flow that arrives to

t from a1 and a2 up to time 50
3 is equal,

therefore both links can be selected as
SMVLOT.

e) T > 50
3 . In this case a1 is the SMVLOT

since total arrival flow to t from a1 exceeds
that of a2 for all T > 50

3 .

As we see, taking into account the time factor
affects our decision. For the simple network of Fig-
ure 1 the SMVLOT problem distinguishes between
five cases while static most vital link problem de-
termines a1 as most vital link without taking into
account the time factor. Of course in reality the
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problem is not as simple as that of Figure 1, and
real networks may be very complicated. There-
fore it seems necessary to formulate and develop
an efficient solution method for this problem.

The SMVLOT and KMVLOT problems have
many real world application areas such as traf-
fic management, emergency operations (e.g emer-
gency evacuation and emergency dispatching),
military operations, smuggling prevention, sta-
dium evacuation, project management, telephone
and internet network and so on. Note that tra-
ditional most vital link problem may be used to
handle with these applications without consider-
ing the important role of time factor; but need-
less to say, in many of these applications such
as emergency operations, traffic management and
etc. time plays the most important role and with-
drawing time factor may deviate right decision
making.

The rest of this paper is organized as follows.
Section 2 consists of basic notations, definitions
which will be used in next sections, and a brief
description about maximum flow over time prob-
lem. Main contribution of the paper to the liter-
ature is presented in Section 3 which consists of
mathematical formulation of SMVLOT problem,
a basic and an improved Benders decomposition
algorithm for solving this problem and several new
and original results about SMVLOT problem. In
section 4 we have extended mathematical formu-
lation and all results of section 3 to k-most vital
links over time problem. In section 5 some experi-
mental results have been provided using proposed
solution methods.

2. Preliminaries

2.1. Notation and definitions

Let G = (N,A,u, τ , s, t) is given. A route from
node s to node t is called an s-t-route and an s-
t-route containing link a is called an a-crossing
route. Let p be an s-t-route and i, j two nodes on
p, the sum of traverse times of all links between
nodes i and j which belong to route p is denoted
by τp(i,j).

A static s-t-flow is a real valued mapping x on
the links of G that satisfies capacity constraints
0 ≤ xa ≤ ua for all a ∈ A and flow conserva-
tion constraints

∑

a∈A

ah=i

xa −
∑

a∈A

at=i

xa = 0, ∀i ∈

N \ {s, t}. The value of a static s-t-flow x is equal
to |x| =

∑

a∈A

ah=t

xa−
∑

a∈A

at=t

xa. A static circulation

is a static s-t-flow that must also satisfy conserva-
tion constraints at the terminals.

Let the sets of all real numbers and non-
negative real numbers are denoted by ℜ and ℜ+,

respectively. Given G and a time horizon T ∈ ℜ+,
a flow over time on G is defined as an array
of nonnegative functions such as f = (fa)a∈A,
where for each link a ∈ A, fa : ℜ → ℜ+ is a
Lebesgue-integrable function which is zero for all
θ ∈ ℜ\ [0, T − τa); in other words, fa(θ) = 0 must
hold except for some θ ∈ [0, T ). A flow over time
f = (fa)a∈A is called feasible if it satisfies the ca-
pacity constraints fa(θ) ≤ ua, ∀a ∈ A, θ ∈ [0, T ).
A feasible flow over time f which satisfies flow con-
servation constraints

∫ θ

0
(
∑

a∈A

ah=i

fa(η − τa)−
∑

a∈A

at=i

fa(η))dη ≥ 0,

∀i ∈ N \ {s, t}, θ ∈ [0, T ),
∫ T

0
(
∑

a∈A

ah=i

fa(η − τa)−
∑

a∈A

at=i

fa(η))dη = 0,

∀i ∈ N \ {s, t},

is called an s-t-flow over time. The value of an
s-t-flow over time f up to time horizon T , is equal

to vf (T ) =
∫ T

0 (
∑

a∈A

ah=t

fa(η−τa)−
∑

a∈A

at=t

fa(η))dη.

Let x be a static s-t-flow in G. Using the
renowned flow decomposition theorem [1], de-
compose x into some s-t-route and cycle flows
(xp)p∈P∪C , where P = {p1, p2, . . . , pk} and C =

{pk+1, pk+2, . . . , pk+z} are decomposed routes and
cycles with respect to x. Then the corresponding
temporally repeated flow f for time horizon T is
defined as follows

fa(θ) =
∑

pi∈P(θ)

xpi , ∀a ∈ A, θ ∈ [0, T ),

where P(θ) = {pi : i ≤ k, a ∈ pi, τpi(s,at) ≤
θ, τpi(at,t) < T − θ}.

An intuitive interpretation of temporary re-
peated flow corresponding to static s-t-flow x is
that for each route pi ∈ P, send flow at rate xpi

into pi from the source s during the time interval
[0, T − τpi) and let the flow progress towards the
sink without any delay at intermediate nodes.

All over the paper, we make the following as-
sumption.

Assumption 1. There exists any unbounded s-t-
route p such that τp(s,t) < T .

This assumption is not restrictive, since if there
exists an s-t-route with a capacity equal to +∞
and traverse time less than T, then the problem
has infinite optimal solution. That is, using such
route we can sent infinite units of flow from s to t

through G up to time T .
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2.2. Maximum flow over time problem

Given G and T , the task of maximum flow over
time problem is to send as much flow as possi-
ble from source node to terminal node up to time
horizon T . In other words, maximum flow over
time problem seeks an s-t-flow over time which
has minimum value among all s-t-flows over time.
In continuous time setting, this problem can be
formulated as follows[16].

max
f

vf (T )

s.t.
∫ θ

0
(
∑

a∈A

ah=i

fa(η − τa)−
∑

a∈A

at=i

fa(η))dη ≥ 0,

∀i ∈ N \ {s, t}, θ ∈ [0, T ), (1)
∫ T

0
(
∑

a∈A

ah=i

fa(η − τa)−
∑

a∈A

at=i

fa(η))dη

=







−vf (T ) i = s

0 ∀i ∈ N \ {s, t}
vf (T ) i = t,

(2)

0 ≤ fa(θ) ≤ ua, ∀a ∈ A, θ ∈ [0, T ). (3)

The optimal solution for maximum flow over
time problem and its optimal value is denoted by
f∗ and v∗(T ), respectively.

Ford and Fulkerson [10] showed that if x be
such a static s-t-flow that maximizes −T |x| +
∑

a∈A τaxa, then temporary repeated flow corre-
sponding to x, is an optimal solution for discrete
time version of maximum flow over time problem.
As a generalization to results of Ford and Fulker-
son [10] to continuous-time setting, by following
theorem Anderson and Philpott [4] showed that
the optimum value of complicated problem (1) can
be obtained by solving a static minimum cost cir-
culation problem which is polynomially solvable.

Theorem 1. (Anderson and Philpott [4]). The
continuous maximum flow over time up to time
horizon T in the network G = (N,A,u, τ , s, t) has
value v∗(T ) = Tx∗ts −

∑

a∈A τ∗ax
∗
a, , where x∗ is a

minimum cost circulation in the network with an
additional sink-to-source link with cost −T and in-
finite capacity. (x∗ts denotes the flow on artificial
link (t, s)).

This theorem declares that the value of maxi-
mum flow over time up to time horizon T is equal
to optimal objective value of following minimum
cost circulation problem which is defined on net-
work G with an additional link (t, s) with cost −T
and infinite capacity.

min
x
−Txts +

∑

a∈A

τaxa

s.t.
∑

a∈A

ah=i

xa −
∑

a∈A

at=i

xa = 0, ∀i ∈ N, (4)

xa ≤ ua, ∀a ∈ A, (5)

xa ≥ 0, ∀a ∈ A′, (6)

where A′ = A ∪ {(t, s)}. Notice that according to
Assumption 1 feasible region of above circulation
problem is a closed convex set. For future pur-
poses we reformulate this minimization problem
as following maximization problem.

max
x

Txts −
∑

a∈A

τaxa (7)

s.t. (4)− (6).

The temporary repeated flow corresponding to
optimal solution of (7), provides an optimal solu-
tion for (1).

3. Single Most Vital Link Over Time

Problem

Theoretically, the SMVLOT problem and
KMVLOT problem are the same. Therefore to
avoid confusing and more notations, in this sec-
tion we just study in detail the SMVLOT prob-
lem as a special case of KMVLOT problem; and
in the next section all results addressed in this
section may be simply extended to global case
of KMVLOT. In this section we attempt to for-
mulate SMVLOT problem mathematically, after-
wards we will provide a solution method for this
problem and finally we prove some results in order
to clarify some properties of SMVLOT problem.
First of all we recall the SMVLOT problem using
a notational language.

Given a network structureG = (N,A,u, τ , s, t),
let Ga denotes a network same as G in which link a

is blocked. To block a link means that no flow can
traverse through corresponding link. Denote the
value of maximum flow over time between termi-
nal nodes {s, t} up to time horizon T in networks
G and Ga by M(T ) and Ma(T ), respectively. Us-
ing these notations, the single most vital link of
G corresponding to time horizon T is a link with
maximum value of M(T ) −Ma(T )(i.e. minimum
value of Ma(T )) among all links a ∈ A. Note that
this definition for SMVLOT is consistent with our
previous definition as a link whose blockage causes
the greatest decrease in the value of maximum flow
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over time up to time horizon T between terminal
nodes {s, t}. Generally the single most vital link
in G for time horizon T is not unique. Taking
into account this observation, let av(T ) denote a
SMVLOT in network G for time horizon T and
Av(T ) denote the set of all single most vital links
for time horizon T . We denote by ea an |A|−tuple
vector with 1 as the element corresponding to link
a and 0 otherwise. By this introduction we de-
velop a mathematical model for SMVLOT prob-
lem.

3.1. Mathematical formulation

To formulate SMVLOT problem we define a set of
binary variables φa assigned to each link a ∈ A.
We mean by φa = 1 that link a is blocked and
otherwise link a is not blocked(φa = 0). Using
these considerations, let Φ be the set of all pos-
sible elections for the single most vital link over
time in G; that is Φ = {φ ∈ {0, 1}|A| :

∑

a∈A φa =
1}. As is obvious, Φ is the set of all vectors
ea1 , ea2 , · · · , ea|A|

. To block a link a in mathemati-
cal model, we can simply increase its traverse time
to a number greater than T , because if the traverse
time of a link be grater than T then the traverse
time of every a-crossing route will be greater than
T , therefore in a maximum flow over time pattern
no flow arrives to t from such routes up to time
horizon T . In this case, this implies that link a

will not be used in any maximum flow over time
pattern. Given φ ∈ Φ, let a be those link for
which φa = 1 and denote the set of all s-t-flows
over time in Ga by F (φ). In other words, F (φ)
contains the set of all f = (fa(θ))a∈A that satisfies
following relations in G.

∫ θ

0
[
∑

a∈A

ah=i

fa(η − (τa + Tφa))−

∑

a∈A

at=i

fa(η)]dη ≥ 0, ∀i ∈ N \ {s, t}, θ ∈ [0, T ),

∫ T

0
[
∑

a∈A

ah=i

fa(η − (τa + Tφa))−
∑

a∈A

at=i

fa(η)]dη

=







−vf (T ) i = s

0 i ∈ N \ {s, t}
vf (T ) i = t,

0 ≤ fa(θ) ≤ ua, ∀a ∈ A, θ ∈ [0, T ).

As is stated in the beginning of Section 3, the
SMVLOT may be defined as

argmina∈A{Ma; a ∈ A}.

In other words, a ∈ Av(T ) if the value of maxi-
mum flow over time up to time horizon T in Ga

be less than that of all other links in A. Denot-
ing the value of maximum flow over time for all
f ∈ F (φ) by H(φ), since each φ ∈ Φ is equiva-
lent with blocking one of links in G, therefore the
SMVLOT problem looks for a φ ∈ Φ for which
H(φ) is minimized.

Using these notations and introduction we can
formulate most single vital link over time problem
as following mini-max problem.

min
φ∈Φ

H(φ)

H(φ) = max
f

vf (T ) (8)

s.t. f ∈ F (φ).

Note that (8) is a very complicated problem
which can not be solved directly and we must do
some reformulations for this problem to provide a
solution method.

According to Theorem 1, for a fixed and con-
stant φ ∈ Φ, optimum value of inner maximum
flow over time problem in (8) is equal to optimum
value of following circulation problem.

MCCP(φ, T ) : max
x

Txts −
∑

a∈A

(τa + Tφa)xa

s.t. (4)− (6).

Notice that for a fixed φ, if φa = 1 then
the penalized traverse time of link a is τa + T .
As a result the traverse time of every a-crossing
route is greater than T . Therefore every positive
flow on such routes decreases objective function of
MCCP(φ, T ) since, the contribution of an ǫ > 0
flow on an a−crossing route p in objective func-
tion of MCCP(φ, T ) is (T −τp)ǫ which is less than
zero. This implies that in optimal solution xa = 0
must hold in an optimal solution, since xa is the
sum of flows on all a-crossing routes. The same
discussion on (8) implies that if φa = 1 then in an
optimal flow over time pattern fa(θ) = 0 for all
θ ∈ [0, T ). Using Theorem 1, since H(φ) equals
optimum value of MCCP(φ, T ), then (8) may be
reformulated as following mini-max problem.

min
φ∈Φ

H(φ)

H(φ) = max
x

Txts −
∑

a∈A

(τa + Tφa)xa (9)

s.t. (4)− (6).
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Now, for fixed φ according to strong duality
theorem, taking dual of inner maximization prob-
lem in (9) gives following equivalent model.

min
φ∈Φ

H(φ)

H(φ) = min
α,µ

∑

a∈A

uaµa

s.t. (10)

µa + αat − αah + Tφa ≥ −τa, ∀a ∈ A,

αt − αs ≥ T,

µa ≥ 0, φa ∈ {0, 1}, ∀a ∈ A.

Now by releasing φ, we can transform (10) to
following mixed linear integer programming prob-
lem.

min
φ,α,µ

∑

a∈A

uaµa

s.t.

µa + αat − αah + Tφa ≥ −τa, ∀a ∈ A, (11)

αt − αs ≥ T,
∑

a∈A

φa = 1,

µa ≥ 0, φa ∈ {0, 1}, ∀a ∈ A.

We have transformed the complicated problem
(8) into the mixed linear minimization problem
(11) which is solvable by all existing methods for
solving mixed linear programming problem.

Although (11) can be solved by well-known
methods in literature such as branch and bound
methods or cutting plane methods but our exper-
iments demonstrated that, when the size of net-
work grows, applying branch and bound meth-
ods directly to the problem (11), is time consum-
ing (see section 5; in some cases optimal solu-
tion is achieved after performing millions of it-
erations). To provide a computationally efficient
and a fast solution method, according to special
structure of (11) we propose two Benders decom-
position type algorithms [6] to this problem. The
advantage of proposed algorithms versus branch
and bound methods is their combinatorial or semi-
combinatorial nature. However, one of the pro-
posed algorithms is semi-combinatorial while the
other one is fully combinatorial.

3.2. A basic benders decomposition
algorithm

In this section we propose a Benders decomposi-
tion type algorithm [6] to find av(T ) for given G

and time horizon T . Generally benders decompo-
sition algorithm is a suitable solution method for
those problems containing two groups of variables
with different nature. In the case of SMVLOT
problem since all variables of its equivalent prob-
lem (11) can be decomposed into two groups
(i.e. binary variable φ and continuous variables
µ and α) and the feasible region of its dual (i.e.
MCCP(φ, T )) does not depend on φ, therefore
Benders decomposition algorithm [6] is a suitable
tool for solving (11). More formally, note that (11)
may be rewritten as

min
φ∈Φ

{

min

{

∑

a∈A

uaµa :
µ,α satisfy the
constraints of(11)

}}

(12)

Now for a fixed φ ∈ Φ, taking dual of inner
minimization problem with respect to µ and α

implies the following reformulation for (12).

min
φ∈Φ
{max{Txts −

∑

a∈A

(τa + Tφa) : (4)− (6)}} (13)

Notice that the feasible region of maximization
problem in (13), which is equivalent with that of
MCCP(φ, T ), is nonempty (x=0 is feasible) and
does not depend on φ. According to Assumption
1, the inner maximization problem in (13) has also
a finite optimal solution, therefore according to
duality theory its dual is feasible and has a finite
optimal solution equal with that of maximization
problem in (13). Using this discussion let X de-
note the set of all extreme points of feasible re-
gion of inner maximization problem in (13), then
according to the well known property of linear pro-
gramming, X consists the optimal solution of in-
ner maximization problem in (13). As a result of
this explanation (13) is equivalent to

min
φ∈Φ

q (14)

s.t. Txts −
∑

a∈A

(τa + Tφa)xa ≤ q; ∀x ∈ X.

But in practice finding all extreme points (i.e
X) is impossible; therefore Benders algorithm de-
composes the problem into a master problem and
a sub-problem and instead of X this decomposi-
tion uses just a subsequence of Xsuch as X̂. How-
ever, Benders decomposition algorithm updates X̂
in each iteration by adding a new extreme point.
A Benders decomposition for (13) may be formu-
lated as follows.
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[Master(X̂)] min
φ∈Φ

q

s.t. Txts −
∑

a∈A

(τa + Tφa)xa ≤ q; ∀x ∈ X̂ (15)

[Sub(φ)] max
x

Txts −
∑

a∈A

(τa + Tφa)xa

s.t. (4)− (6).

In each iteration the algorithm solves Sub(φ)

and updates X̂ by adding a new extreme point and
then Master(X̂) seeks for the suboptimal φ to im-
prove previous φ by examining all x in updated
X̂. Note that in each iteration Master(X̂) pro-
vides a lower bound and Sub(φ) provides an up-
per bound on optimal solution of original problem.
The algorithm terminates when upper bound and
lower bound be equivalent. Although it is possi-
ble that the algorithm finds optimal solution when
X̂ = X, but, as experimental results showed, we
hope to find optimal solution generating only a
small fraction of extreme points. By this discus-
sion, basic Benders decomposition algorithm can
now be stated as follows.

Basic Benders Decomposition Algorithm
Input: G = (N,A,u, τ , s, t) and T .
Output: Single most vital link of G corresp-

onding to T and Mav(T )(T ).

Step 0. UB ← +∞; LB ← −∞; X̂ ← ∅.

φ̂← 0.

Step 1. Solve Sub(φ̂) to obtain optimal

solution x∗(φ̂).

Step 2. X̂ ← X̂ ∪ x∗(φ̂).

s← Tx∗ts(φ̂)−
∑

a∈A τax
∗
a(φ̂).

Step 3. If s <UB then UB ← s and

φ∗ ← φ̂.

Step 4. If UB = LB then STOP. φ∗defines

the most vital link. Otherwise, go
to Step 5.

Step 5. Solve Master(X̂) to find φ∗

and q∗; LB ← q∗.

Step 6. If UB = LB then STOP. φ∗defines

the most vital link. Otherwise,

φ̂← φ∗; and go to Step 1.

Note that, Sub(φ) in Step 1 of the algorithm is a
minimum cost circulation problem for which there
exist polynomial time solution algorithms (see [1,

chap. 9]) and in Step 5 Master(X̂) is a binary

programming problem which can be solved using
well known branch and bound method.

The correctness of the algorithm, as in any Ben-
ders decomposition algorithm, is based on the fol-
lowing observations:
1. The subproblem finds an optimal follower’s re-
sponse for selected single most vital link. Hence,
optimal solution of Sub(φ) gives an upper bound
on the leader’s optimal objective value.
2. When X̂ ⊆ X, Master(X̂) is a relaxation of (9)

and optimum value of Master(X̂) is a lower bound
on the leader’s optimal objective value.
3. If the subproblem produced same solution
twice, the upper and lower bounds match and the
algorithm terminates. The algorithm converges
after finite iterations because the number of ex-
treme points of feasible region of Sub(φ) is finite.

Since that master problem in Benders decompo-
sition algorithm is an integer programming prob-
lem and the minimum cost circulation problem
(i.e. Sub(φ)) can be solved using existing poly-
nomial time and fully combinatorial algorithms (
[1]), then the derived basic benders decomposi-
tion algorithm has a semi-combinatorial nature vs
branch and bound method which has completely
non-combinatorial nature.

The algorithm may suffer from solving a bi-
nary integer programming problem in Step 5 of
each iteration by branch and bound methods. To
avoid the complexity of solving integer program-
ming problem analytically, an improved Benders
decomposition algorithm is proposed in the next
section which uses an iterative procedure for solv-
ing master problem in basic Benders decompo-
sition algorithm. This improvement transforms
the semi-combinatorial basic benders decomposi-
tion algorithm to a fully combinatorial algorithm
which we will present in the next section.

3.3. An improved benders decomposition
algorithm

3.3.1. The algorithm

Solving the binary programming problem in Step 5
of basic Benders decomposition algorithm may be
problematic and time consuming when X̂ grows in
large scale networks. According to special struc-
ture of Φ, solving Master(X̂) by an iterative pro-

cedure, the difficulty of solving Master(X̂) in ba-
sic Benders decomposition algorithm by analytical
methods may be driven away.
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Improved Benders Decomposition
Algorithm
Input: G = (N,A,u, τ , s, t) and T .
Output: Single most vital link of G corresp-

onding to T and Mav(T )(T ).

Step 0. UB ← +∞; LB ← −∞; X̂ ← ∅.

φ̂← 0; z← −∞|A|.

Step 1. Solve MCCP(φ̂, T ) to obtain

optimal solution x∗(φ̂).

Step 2. X̂ ← X̂ ∪ x∗(φ̂);

s← Tx∗ts(φ̂)−
∑

a∈A τax
∗
a(φ̂).

Step 3. If s < UB then UB ← s

and φ∗ ← φ̂.

Step 4. If UB = LB then STOP. φ∗defines

the most vital link. Otherwise, go
to Step 5.

Step 5. For all a ∈ A, if −Tx∗a(φ̂) + s > za

then za ← −Tx
∗
a(φ̂) + s.

Step 6. Select a link a′ such that

za′ = mina∈A{za}; LB ← za′ .

Step 7. If UB=LB then STOP; a′ is

the most vital link. Otherwise,

Step 8. φ̂← ea′ ; and go to Step 1.

In improved Benders decomposition algorithm
we have replaced Step 5 of basic Benders decom-
position algorithm by Step 5 and Step 6 in new
algorithm. The improved algorithm solves no inte-
ger linear programming problem directly. Instead
of solving master problem in basic Benders decom-
position algorithm by analytical methods such as
branch and bound methods or cutting plane meth-
ods, the improved algorithm uses an iterative pro-
cedure for solving Master(X̂).

As is seen, the improved algorithm solves no
integer programming problem directly by analyt-
ical methods and instead it solves the binary lin-
ear programming of Master(X̂) using an iterative
procedure. From this point of view, the improved
algorithm is a fully combinatorial algorithm.

3.3.2. Algorithm correctness

The improved algorithm is the same as basic Ben-
ders decomposition algorithm in which Step 5 of
basic Benders decomposition algorithm is replaced
by Step 5 and Step 6 in improved algorithm. Since
correctness of basic Benders decomposition algo-
rithm is demonstrated therefore to prove correct-
ness of improved algorithm it is sufficient to show
that Step 5 and Step 6 of improved algorithm is

equivalent to Step 5 of basic Benders decomposi-
tion algorithm which we have proved in following
theorem.

Theorem 2. The Step 5 and Step 6 of improved
algorithm is equivalent with Step 5 of basic Ben-
ders decomposition algorithm; that is, Step 5 and
Step 6 of improved algorithm solves Master(X̂)
correctly.

Proof. Consider that we are in iteration k and X̂

contains x1,x2, · · · ,xk. After Step 5 of improved
algorithm for each ā ∈ A, zā is equal to

max{Txits −
∑

a∈A;

a 6=ā

τax
i
a − (τā + T )xā : xi ∈ X̂}.

Step 6 selects link a′ which has minimum value
of za′ ; Notice that za′ is minimum value which
Txits −

∑

a∈A;

a 6=a′
τax

i
a − (τa′ + T )xa′ ≤ za′ holds for

all xi ∈ X̂. Since Master(X̂) seeks minimal q∗

such that Txits −
∑

a∈A;

a 6=a′
τax

i
a − (τa′ + T )xa′ ≤ q∗

hold for all xi ∈ X̂; this implies that za′ = q∗. �

Theorem 2 implies that Step 5 and Step 6 of
improved algorithm solves Master problem in ba-
sic Benders decomposition algorithm correctly. As
a result the improved algorithm solves (11) cor-
rectly.

3.4. Several results

In this section we prove several properties of
SMVLOT problem which will be helpful in prac-
tice. Consider a case in which we want to deter-
mine av(T ) and Mav(T )(T ) for all T ∈ (0, T̂ ). As
we know this is practically impossible specially for
large scale networks and big values of T̂ . In this
section we prove that the function Mav(T )(T ) is
a continuous, piecewise linear and quasi-convex
function which makes it possible to determine
av(T ) and Mav(T )(T ) for all T ∈ (0, T̂ ) just by
determining them in finite number of time hori-
zons T1, T2, ..., Tn which will be referred as ”criti-
cal time horizons”.

Another result which we prove in this section
demonstrates that there exists a time horizon that
Av(T ) remains unchanged for greater time hori-
zons. This emphasizes that the sequence of criti-
cal time horizons is finite therefore if we find the
greatest critical time horizon then we can obtain
Av(T ) and Mav(T )(T ) for all time horizons greater
than the greatest critical time horizon. Using this
property we can determine av(T ) and Mav(T )(T )
for all T ∈ (0,+∞) just by determining them in
finite number of time horizons. By this glancing
clarification about what we want to demonstrate
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in this section, we are now ready to discuss about
stated results.

Let S be an open interval of ℜ(real numbers),
then we refer to the function f : S → ℜ as a quasi-
convex function if for each p and q ∈ S and for all
λ : 0 < λ < 1, f satisfies following inequality.

f(λp+ (1− λ)q) ≤ max{f(p), f(q)}.

Following lemma demonstrates that minimum
of several increasing, continuous, piecewise linear
and convex functions is an increasing continuous,
piecewise linear and quasi-convex function.

Lemma 1. Let g1, g2, · · · , gm to be m

(strictly)increasing continuous, piecewise linear
and convex functions from S to ℜ and define g as
the minimum of these functions in S, i.e.

g(x) = min
i

gi(x), ∀x ∈ S.

Then g is an (strictly)increasing, continuous,
piecewise linear and quasi-convex function.

Proof. Continuity, increasing and piecewise linear
property of g is obvious. We just survey quasi-
convexity of g. Let p and q ∈ S, we show that
g(λp + (1 − λ)q) ≤ max{g(p), g(q)} holds for all
0 < λ < 1. Without loss of generality consider
that p < q. Since g is an increasing function, then
g(p) ≤ g(q). Therefore max{g(p), g(q)} = g(q).
As a result to prove quasi-convexity of g it suffices
to show that g(λp+ (1− λ)q) ≤ g(q) holds for all
0 < λ < 1. Since for all j ∈ {1, 2, · · · ,m}, gj is
monotone and convex, therefore

g(λp+ (1− λ)q) = min
i
{gi(λp+ (1− λ)q) :

i = 1, 2, · · · ,m}

≤ gj(λp+ (1− λ)q)

≤ λgj(p) + (1− λ)gj(q)

≤ λgj(q) + (1− λ)gj(q)

≤ gj(q).

Taking minimum of right hand side over j im-
plies that g(λp+(1−λ)q) ≤ g(q). This completes
the proof. �

Let T0 and T0a denote the length of shortest
s-t-route in G and Ga, respectively. Using these
notations and denoting positive reals by ℜ+, we
have following result.

Theorem 3. Given a network G =
(N,A,u, τ , s, t) and a time horizon T , the func-
tion f : ℜ+ → ℜ+, defined by f(T ) = Mav(T )(T ),
is an increasing, piecewise linear, continuous
and quasi-convex function. Moreover for T ≥

T0max, f(T ) is strictly increasing, where T0max =
maxa{T0a|a ∈ A}.

Proof. From non-combinatorial view point, for
fixed φ ∈ Φ, regarding T as a parameter in
MCCP(φ, T ) yields a special parametric cost lin-
ear programming problem. The optimum value
of such parametric maximization linear program-
ming problem is a continuous, piecewise linear
and convex function with respect to T (see e.g.
Murty[14]). Therefore for each link a ∈ A, Ma(T )
is a continuous, piecewise linear and convex func-
tion with respect to T . From a combinatorial view
point, let x∗aT denote optimal solution of circu-
lation problem MCCP(ea, T ). If T ≥ T0a then
x∗aTts will be greater than zero. Notice that for
0 ≤ T ≤ T0a, x∗aT = 0 is an optimal solution
for MCCP(ea, T ). Since the slope of the piece-
wise linear function Ma(T ) is x∗aTts ≥ 0, there-
fore Ma(T ) is an increasing function of T . Spe-
cially, for T > T0a, x∗aTts > 0 therefore Ma(T )
is strictly increasing for T ≥ T0a. But notice
that for each T , Mav(T )(T ) = mina∈A{Ma(T )|a ∈
A}, therefore according to Lemma 1, f(T ) =
Mav(T )(T ) is an increasing, continuous, piecewise
linear and quasi-convex function. Specially, since
all functions {Ma(T )|a ∈ A} are strictly increas-
ing for T ≥ T0max = maxa{T0a|a ∈ A}, then
f(T ) = Mav(T )(T ) is strictly increasing for all
T ≥ T0max. �

According to Theorem 3, Mav(T )(T ) is a piece-
wise linear and quasi-convex function and since
Mav(T )(T ) = mina∈A{Ma(T )|a ∈ A} then each
linear piece of Mav(T )(T ) coincides with some of
functions Ma(T ). As a result following corollary
states that the time interval (0,T) can be parti-
tioned into some disjoint intervals such that Av(T )
remains unchanged within each of these disjoint
intervals.

Corollary 1. Given G = (N,A,u, τ , s, t) and a
time horizon T , there exist 0 = T0 < T1 < T2 <

T3 < · · · < Tn−1 < Tn = T such that for each

i = 1, 2, · · · , n and for all T̃ , T̂ in time interval
(Ti, Ti+1) we have Av(T̂ ) = Av(T̃ ).

Given a time horizon T̂ and Av(T̂ ), let T̄ be the

greatest time horizon that Av(T ) = Av(T̂ ) holds

for all T in time interval (T̂ , T̄ ); we refer to such
time horizon(i.e. T̄ ) as critical time horizon.

In the following it will be shown that the set
of all critical time horizons within time interval
(0,+∞) is a finite set, and as result there exists a
time horizon that for greater time horizons Av(T )
remains unchanged.

Proposition 1. The function f(T ) = Mav(T )(T )
is the minimum of functions {Ma(T )|a ∈ A}; i.e.
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Mav(T )(T ) = min
a∈A
{Ma(T )|a ∈ A} ∀T.

Since all functions Ma(T ) are increasing, con-
tinuous, piecewise linear and convex, then for each
critical time horizon T̄ , there exists at least a pair
of links a and a′ which Ma(T ) crosses Ma′(T ) at
T̄ . We refer to a time horizon as crossing point
if there exist at least two links a, a′ ∈ A such that
Ma′(T ) and Ma(T ) crosses each other at this time
horizon. By this definition it can be implied that
the set of critical time horizons is a subset of all
crossing point.

Theorem 4. Given a network G =
(N,A,u, τ , s, t) there exist a time horizon T̃ such

that Av(T ) = Av(T̃ ) holds for all T > T̃ .

Proof. For each a ∈ A, Ma(T ) is a continu-
ous, increasing, piecewise linear and convex func-
tion. In each break point of Ma(T ), optimal solu-
tions set of MCCP(ea, T ) changes (see Murty[14]).
According to Assumption 1, feasible region of
MCCP(ea, T ) is a closed convex set and since its
feasible region does not depend on T then the set
of extreme points of MCCP(ea, T ) is finite which
implies that the number of break points of Ma(T )
is finite. As a result there exist a time horizon
Ta that Ma(T ) is linear for time horizons greater
than Ta; in other words Ma(T ) has no break point
for T ≥ Ta. Let Tmax = maxa{Ta|a ∈ A}, then for
each a ∈ A, Ma(T ) is linear for T ≥ Tmax. This
implies that the set of functions {Ma(T )|a ∈ A}
cross each other in finite number of points for
T ≥ Tmax. Specially there exists a time horizon T̃

and a link a′ whichMa′(T ) = min{Ma(T ) : a ∈ A}
for all T ≥ T̃ , and Ma′(T ) does not crosses none of
functions {Ma(T ) : ∀a ∈ A, a 6= a′}. According to
Proposition 1, this implies that there exists a crit-
ical time horizon that Av(T ) remains unchanged

for all T ≥ T̃ . This completes the proof. �

4. k-Most Vital Links Over Time

Problem

We have discussed in detail the SMVLOT problem
in the previous section. The SMVLOT problem is
a special case of KMVLOT problem with k = 1. In
this section all of demonstrated results in Section
3 will be generalized to KMVLOT problem. Given
G and T , the k-most vital links of G correspond-
ing to T are those k links whose removal from the
network results the greatest decrease in value of
maximum flow over time through network up to
time horizon T . The model (11) can be extended
to find k most vital links over time as follows.

min
φ,α,µ

∑

a∈A

uaµa

s.t.

µa + αat − αah + Tφa ≥ −τa, ∀a ∈ A, (16)

αt − αs ≥ T,
∑

a∈A

φa = k,

µa ≥ 0, φa ∈ {0, 1}, ∀a ∈ A.

Let Φ(k) = {φ ∈ {0, 1}|A| :
∑

a∈A φa = k},
replacing Φ by Φ(k) in (15), a basic Benders de-
composition algorithm can be extended for solv-
ing (16).

Some results same as that of Theorem 3, Theo-
rem 4 and Corollary 1 hold for k-most vital links
over time problem. In other words, there exists a
time horizon T̃ that for time horizons greater than
T̃ , k most vital links of network does not change
over time; and M(T, k) is an increasing, contin-
uous, piecewise linear and quasi-convex function
with respect to T , where M(T, k) denotes the
value of maximum flow that can be sent from s to t
up to time horizon T through network G in which
k most vital links corresponding to time horizon
T are blocked. These can be proved simply same
as proof of Theorem 4 and Theorem 3.2
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Figure 2. Sioux-Falls Network
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Table 1. Each of three column has three sub-columns, first sub-column denotes link ID, second
one the capacity of link and third one traverse time of corresponding link.

ID u τ ID u τ ID u τ

1 25.9002 3.6 27 10 3 53 4.8240 1.2
2 23.4035 2.4 28 13.5120 3.6 54 23.4035 1.2
3 25.9002 3.6 29 4.8549 2.4 55 19.6799 1.8
4 4.9582 3 30 4.9935 4.8 56 23.4035 2.4
5 23.4035 2.4 31 4.9088 3.6 57 14.5648 1.8
6 17.1105 2.4 32 10 3 58 4.8240 1.2
7 23.4035 2.4 33 4.9088 3.6 59 5.0026 2.4
8 17.1105 2.4 34 4.8765 2.4 60 23.4035 2.4
9 17.7828 1.2 35 23.4035 2.4 61 5.0026 2.4
10 4.9088 3.6 36 4.9088 3.6 62 5.0599 3.6
11 17.7828 1.2 37 25.9002 1.8 63 5.0757 3
12 4.9480 2.4 38 25.9002 1.8 64 5.0599 3.6
13 10 3 39 5.0913 2.4 65 5.2299 1.2
14 4.9582 3 40 4.8765 2.4 66 4.8854 1.8
15 4.9480 2.4 41 5.1275 3 67 9.5992 1.8
16 4.8986 1.2 42 4.9248 2.4 68 5.0757 3
17 7.8418 1.8 43 13.5120 3.6 69 5.2299 1.2
18 23.4035 1.2 44 5.1275 3 70 5 2.4
19 4.8986 1.2 45 14.5648 1.8 71 4.9248 2.4
20 7.8418 1.8 46 9.5992 1.8 72 5 2.4
21 5.0502 6 47 5.0458 3 73 5.0785 1.2
22 5.0458 3 48 4.8549 2.4 74 5.0913 2.4
23 10 3 49 5.2299 1.2 75 4.8854 1.8
24 5.0502 6 50 19.6799 1.8 76 5.0785 1.2
25 13.9158 1.8 51 4.9935 4.8
26 13.9158 1.8 52 5.2299 1.2

5. Experimental Results

In this section we have examined basic Benders de-
composition algorithm and improved algorithm on
a real world network with 24 nodes and 76 links.
Our test network which is widely used in traffic as-
signment literature, is the network of Sioux-Falls
city streets. This network is shown in Figure 2.
In this figure, the numbers beside each link de-
notes the ID of corresponding link. We have used
this network because finding the most vital links
of network over time has some application on traf-
fic management. Table 1 represents the capacity
and traverse time of all links of Sioux-Falls net-
work. To find single most vital link over time
we used both basic and improved algorithms. We
have also compared both basic and improved al-
gorithms with branch and bound method on a
large scale random grid (40× 40) network with
1600 nodes and 3120 links. We have written the
code of both basic and improved algorithms in
MATLAB and for the branch and bound method
we have used LINGO. These numerical experi-
ments have been conducted with double precision

arithmetic on a Laptop computer with Intel(R)
Core(TM)2Duo CPU 2.00 GHz and 3 GB RAM,
using the Microsoft Window 7 operating system.

6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 405 01 0 01 5 02 0 02 5 03 0 03 5 04 0 0

T i m e H o r i z o n
M axi mumFl ow

Figure 3. Functions Ma(T ) and
Mav(T )(T ) for Sioux-Falls network
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In Table 2 we have found single most vital link, 2
most vital links and 3 most vital links over time for
(s, t) pair (16,22). First column of Table 2 shows
time horizons for which we have found most vital
links. Besides first column, Table 2 has 3 other
columns corresponding to k = 1, 2 and 3. In each
of these columns first sub-column shows k most
vital links with respect to time horizon T , and
second sub-column shows maximum flow that can
be sent from node 16 to node 22 up to time T

through the network in which k most vital links
are blocked.

Table 2 confirms the result of Theorem 4. Note
that, according to Table 2, the single most vi-
tal link (i.e. (16,18)) remains unchanged for all
time horizons greater than 85. In Section 4 it is
mentioned that a result same as Theorem 4 holds
for k-most vital links over time problem. Table 2
confirms this claim; that is, for all time horizons
greater than 85, two most vital links and for time
horizons greater than 155, three most vital links
remain unchanged.

In Figure 3 we have plotted all 76 functions
{Ma(T )|a ∈ A} for Sioux-Falls network. However,
for this network most of functions Ma(T ) coin-
cide with each other. In this figure we have plot-
ted the function Mav(T )(T ) with a green dashed
line. Notice that as Theorem 3 claims, the func-
tion Mav(T )(T ) is an increasing, piecewise linear,
continuous and quasi-convex function.

Our experiments showed that to plot func-
tion Mav(T )(T ) as minimum of functions Ma(T )
within time interval [6,25] takes 187.5723 seconds.
A same experiment showed that to plot func-
tion Mav(T )(T ) by applying branch and bound
method on (11) takes 10.3245 seconds while to plot
function Mav(T )(T ) using our improved algorithm
takes just 4.77 seconds. In each of these experi-
ments we selected step size 0.2 to plot functions
in MATLAB and LINGO.

Notice that for time horizon T = 150 sin-
gle most vital link is (16, 18) but the set of 3
most vital links for the same time horizon (i.e.
{(15, 22), (20, 22), (21, 22)}) does not contain the
link (16, 18). This observation demonstrates that
for fixed time horizon T , if a link belongs to the
set of k most vital links, it does not necessarily be-
long to the set of k + l most vital links over time
for l = 1, 2, · · · .

Our experiments confirmed the Corollary 1. We
fond that the interval (0,+∞) can be partitioned
into time intervals (0,7.2),(7.2, 7.8),(7.8,13.8533),
(13.8533,25.55) and (25.55,+∞) such that Av(T )
is constant for all T in each of these time intervals.

In Table 3 we have compared the basic Benders
decomposition algorithm, improved algorithm and

Branch and Bound (B&B) method with each
other. We obtained the results presented in Table
3 by applying the branch and bound method and
both of proposed algorithms in this paper on a grid
40×40 random network with 1600 nodes and 3120
links for (s, t) pair (1,1600). In this grid network
the shortest path length between node 1 and node
1600 is 419.2826. Therefore for given time hori-
zons greater than 419.2826 a positive flow arrives
to node 1600 up to given time horizon. In Table 3
we examined four-time horizons 420, 455, 480 and
500. For each of these time horizons we applied
branch and bound method, basic Benders decom-
position algorithm and improved Benders decom-
position algorithm on grid network. For each al-
gorithm we have recorded the algorithm running
time and number of iterations that each algorithm
performs to find SMVLOT of network for corre-
sponding time horizon. We have also recorded
Mav(T )(T ) for each algorithm to recognize possible
deviation of algorithms. As is clear from Table 3,
all of these methods converges without deviation
from optimal solution.

Table 3 demonstrates the efficiency of the both
basic and improved Benders decomposition algo-
rithms versus branch and bound method. Spe-
cially, the improved Benders decomposition algo-
rithm is rapidly convergent due to its fully com-
binatorial nature that solves no binary program-
ming problem analytically. The number of itera-
tions in both of Benders decomposition algorithms
are meaningful, which declares that in these algo-
rithms optimal solution achieved generating only
a small fraction of extreme points (i.e. X̂). As is
shown in Table 3, our experiments showed that for
time horizons near to the length of shortest path
branch and bound method is very time consuming.
For example when T = 420, the branch and bound
method finds the SMVLOT in grid network , after
27.56 minutes and performing 4126291 iterations.
Table 3 demonstrates the superiority of basic and
improved Benders decomposition algorithms in
contrast with branch and bound method. When
compared with improved Benders decomposition
algorithm, basic Benders decomposition algorithm
suffers from slow convergence. This is reasonable
since in each iteration the basic Benders decom-
position algorithm solves a binary linear program-
ming by analytical methods(we have used branch
and bound method).

6. Conclusion

In this paper we have introduced single and k-most
vital links over time problems and we have for-
mulated these problems as a mixed binary linear
programming problem. Due to special structure of
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Table 2. Most vital links over time for (s, t) pair (16,22).

k=1 k=2 k=3
time

horizon
av(T )

max
flow

vital
links

max
flow

vital
links

max
flow

T = 7.3 (15,22) 0.5076
(15, 22)
(20, 22)

0

T = 9.5 (15,22) 14.20
(15, 22)
(20, 22)

2.53
(15, 22)
(20, 22)
(16, 18)

0

T = 14 (18,20) 68.87
(16, 17)
(18, 20)

30.10
(16, 10)
(16, 17)
(18, 20)

0

T = 26 (15,22) 252.69
(15, 22)
(20, 22)

157.26
(15, 22)
(20, 22)
(21, 22)

69.85

T = 85 (16,18) 1155.44
(16, 17)
(16, 18)

746.17
(15, 22)
(20, 22)
(21, 22)

364.85

T = 150 (16,18) 2138.94
(16, 17)
(16, 18)

1389.73
(15, 22)
(20, 22)
(21, 22)

689.85

T = 155 (16,18) 2214.59
(16, 17)
(16, 18)

1439.22
(16, 8)
(16, 17)
(16, 18)

714.64

T = 200 (16,18) 2895.47
(16, 17)
(16, 18)

1884.76
(16, 8)
(16, 17)
(16, 18)

933.11

T = 500 (16,18) 7434.67
(16, 17)
(16, 18)

4854.98
(16, 8)
(16, 17)
(16, 18)

2389.59

T = 103 (16,18) 15000
(16, 17)
(16, 18)

9805.35
(16, 8)
(16, 17)
(16, 18)

4817.05

Table 3. Comparison of basic Benders decomposition algorithm, improved algorithm and
Branch and Bound(B&B) method on a 40× 40 grid network.

T = 420 T = 455
run time(min.) Mav(T )(T ) itrerations run time(min.) Mav(T )(T ) itrerations

B&B 27.56 3.3525 4126291 10.03 207.45 1507383
Basic Alg. 19.62 3.3525 162 6.81 207.45 43

Improved Alg. 3.34 3.3525 183 1.23 207.45 46

T = 480 T = 500
run time(min.) Mav(T )(T ) itrerations run time(min.) Mav(T )(T ) itrerations

B&B 7.37 495.74 1353420 9.17 623.93 1521196
Basic Alg. 5.23 495.74 48 6.81 623.93 57

Improved Alg. 1.34 495.74 50 1.73 623.93 68

single and k-most vital links over time problems,
we have proposed a basic Benders decomposition
algorithm for solving them. We have adopted an

iterative method to improve basic Benders decom-
position algorithm for determining single most vi-
tal link of network over time. The improved algo-
rithm solves no integer programming problem di-
rectly, therefore has a fully combinatorial nature.
We have also demonstrated that starting from zero
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the single and k-most vital links change over time
but there exists a time horizon T̃ such that most
vital links remain unchanged for time horizons
greater than T̃ . We have proved that the func-
tion of maximum flow over time between a pair
of nodes through a network in which k most vital
links over time are blocked, is an increasing, piece-
wise linear, continuous and quasi-convex function
with respect to time horizon. Finally we have ex-
amined our proposed algorithms and mixed binary
linear programming model on a small size and a
large scale network.

Since introduction of over time flows, this issue
has provided wide and extensive research area for
researchers. Due to their complexity, this kind of
flows has not been studied widely when compared
with static network flows. Therefore there exists a
wide research directions for future research in this
issue. We are pursuing issues of quickest flows over
time and finding its most vital links in an ongo-
ing work. As a research direction one can develop
algorithms for finding the critical time horizons
and specially greatest critical time horizon. The
model studied in this paper may be generalized to
a case that permits the flow to be stored at some
nodes which is a challenging issue in network flows
over time. As another potential for future research
this model can be extended to a special category of
flows over time in which network parameters are
a function of corresponding link flows (i.e. flow
dependent traverse times and capacities). This
work does not consider uncertainty in determin-
ing the most vital links of the network. Pursing
uncertainty issue in finding most vital links over
time problem and many other research directions
(e.g. determining KMVLOT in a network carrying
multi-commodity flows over time and earliest ar-
rival flows network, developing rapid algorithms)
remain potentials for future research.
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