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 This paper proposes a new dispersion-convection-reaction model, which is called 

the gKdV-Fisher equation, to obtain the travelling wave solutions by using the 

Riccati equation method. The proposed equation is a third-order dispersive partial 

differential equation combining the purely nonlinear convective term with the 

purely nonlinear reactive term. The obtained global and blow-up solutions, which 

might be used in the further numerical and analytical analyses of such models, are 

illustrated with suitable parameters. 
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1. Introduction 

This study focuses on the travelling wave solutions of 

a newly introduced dispersion-convection-reaction 

model 

( )1n n

t x xxxu u u u ru u + + = − ,                                (1) 

where 0n  ,   is a parameter for the purely nonlinear 

convection term,   is a parameter for the linear 

dispersion term and r  is a parameter for the purely 

nonlinear reaction term. One can easily obtain the 

talented equations, such as the generalized KdV 

(gKdV) equation [1-9] and the dispersive-Fisher 

equation [10] by taking 0r =  and 0 =  in Eq. (1), 

respectively. There have been many cooperative 

combinations of dispersion with the different terms, 

such as dissipation, convection, diffusion and reaction 

[11-15]. Here, by combining the gKdV equation [2-8] 

with the Fisher-type (or KPP-type) nonlinearity [16-

23], we call Eq. (1) as the gKdV-Fisher equation. 

Recently, Galaktionov has focused on the higher-order 

versions of the KPP (or Fisher) type problem in the 

parabolic, dispersive and hyperbolic equations, see [21-

23] for fruitful discussions. Fortunately, the third-order 

dispersive partial differential equation including the 

Fisher-type nonlinearity 

( )1t xxxu u u u= + − ,                                                    (2) 

with two travelling wave solutions 
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has been proposed in [10]. More recently, the exact 

travelling waves of the KdV-Burgers-Fisher equation 

( )1t x xx xxxu uu u u ru u  + − + = − ,                          (3) 

have been investigated in [24]. 

We would also like to remind the neighbouring 

nonlinear parabolic equation, which is a diffusion-

convection-reaction model and called the generalized 

Burgers-Fisher equation [25,26], 

( )1n n

t x xxu u u vu ru u+ − = − ,                                  (4) 

with the exact solution 
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In the next section, we use the Riccati equation method 

[27-36] to reveal the travelling wave solutions of the 

gKdV-Fisher equation, which are the cooperative 

results of the proposed combined model. Here, it is 

reasonable to expect kink and antikink wave solutions 

because of the reaction term in the proposed equation. 

2. Method and application 

Let us first take the wave variable 
0kx wt = + +  and 

( )( , )u x t u =  in Eq. (1) to obtain the reduced 

nonlinear ODE as 

( )3 1 0n nwu ku u k u ru u   + + − − = .                    (5) 

The solution of Eq. (5) is assumed to be expressed as  

0

M
i

i

i

u a z
=

= ,                                                                (6) 

where the parameters, 
0a , , 

Ma  and M , can be 

determined later and ( )z z =  is the solution of the 

following classical Riccati equation [27-35]: 

21z z = − ,                                                                  (7) 

which has the forms 

tanh( )z =  and coth( )z = .                                    (8) 

Here, using the advantage of the Riccati equation, 

higher-order derivatives of Eq. (7) can be obtained as 

32 2z z z = − + ,                                                          (9) 

2 42 8 6z z z = − + − .                                                (10) 

If we next substitute Eq. (6) with Eqs. (7), (9) and (10) 

into Eq. (5) and balance z  with 
nz z , we have 

3 1M nM M+ = + +  resulting in 
2

M
n

= .               (11) 

In order to obtain the positive integer M  values for Eq. 

(6), we use the transformation 

2

nu v=                                                                       (12) 

in Eq. (5), which yields 

2 2 2 4 3 2 2 3 22 2 2 6wn v v kn v v k n v v k n vv v      + + −  

( ) ( )
3 33 3 2 312 4 12k nvv v k n v k n v     + + −  

3 3 3 5 0rn v rn v− + = .                                                  (13) 

If we now apply the same procedure by using the 

expression for v  as 

0

M
i

i

i

v a z
=

=                                                                (14) 

in Eq. (13) with Eqs. (7), (9) and (10), and balancing 

the highest power of z , we have 1M = , which yields 

the solution of Eq. (13) to be in the form 

0 1v a a z= + .  (15) 

Let us next use Eq. (15) in Eq. (13) and collect the 

coefficients for the same powers of z  as follows: 

0 :z  3 3 2 3 2 2 2 4 3 5

1 0 1 0 1 04 4 2a k n k n a a kn a a n ra  − + +  

   3 3 3 3 3 3 2 2

1 1 0 0 112 8 2 0a k n a k n ra n wa a − + − + = , 

1 :z  3 2 2 2 3 2 3 4 2 2

0 1 0 1 0 1 0 14 8 5 4k n a a kn a a n ra a n wa a + + +  

   3 2 3 2

0 1 0 124 3 0k na a n ra a− − = , 

2 :z  3 2 2 3 3 2 2 4 3 3

0 1 1 0 1 116 4 2 24k n a a a k n kn a a a k   − − −  

   2 2 3 3 3 2 3 3 2 3

0 1 0 1 1 112 10 12 2kn a a n ra a a k n n wa + + + +  

        3 2 2 2

0 1 0 13 2 0n ra a n wa a− − = ,                                    (16) 

3 :z  3 2 2 2 3 2 2 4 3 3

0 1 0 1 0 1 18 8 8k n a a kn a a kn a a n ra  − + −  

        3 2 3 3 2 2 2

0 1 0 1 0 110 48 4 0n ra a k na a n wa a+ + − = , 

4 :z  3 3 2 3 2 2 2 4 3 2 3

1 0 1 0 1 14 12 12 2a k n k n a a kn a a n wa  − − −  

        2 5 3 4 3 3 3 3

1 0 1 1 12 5 12 24 0kn a n ra a a k n a k  + + + + = , 

5 :z  3 5 3 2 2 2 4 3 2

1 0 1 0 1 0 112 8 24n ra k n a a kn a a k na a  − − − , 

6 :z  3 3 2 2 5 3 3 3 3

1 1 1 14 2 12 8 0a k n kn a a k n a k   − − − − = . 

As the final step, solving the nonlinear system (16) for 

0a , 
1a  and nonzero k , w ,  ,  , r , n  parameters by 

using Maple, we have the following solutions for 

0  : 

( )
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u
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 (17) 

and 

( )
2

0

3,4

coth 1

2

nkx wt
u

+ +  
=  
 

, (18) 

where 

( ) ( )( )

( ) ( )
2

4 2 1 2

2 1 2

n n n
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( )

1

2 4

r n n
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+
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( )
( )( )

2 6 12

4 2 4

r n n n
w

n n

+ +
= 

+ +
. 

Figure 1 exhibits the long-time behaviour for the global 

solution 
1( , )u x t  of the gKdV-Fisher equation in Eq. 

(17) for the different values of the parameters, which 

represent kink and antikink waves. One can easily see 

that the propagations of waves are backward in Figure 

1-(b), i.e. , 0k w  , and forward in Figure 1-(a) and 

Figure 1-(c). Another global solution 
2 ( , )u x t  in Eq. 

(17) is displayed in Figure 2 for the given parameters, 

which also exhibit kink and antikink waves. 

On the other hand, the blow-up solutions 
3( , )u x t  and 

4 ( , )u x t  in Eq. (18) are displayed in Figure 3 and Figure 

4, respectively. 
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(a) 1 = − , 1 = , 5 3 12r = , 1n = , 
0 0 = . 

 

(b) 1 = , 1 = − , 5 3 12r = , 1n = , 
0 0 = . 

 

(c) 1 = − , 1 = , 6 6r = , 2n = , 
0 0 = . 

Figure 1. The solution 
1( , )u x t  of the gKdV-Fisher equation 

for the different suitable parameters. 

Because of the nature of the complex nonlinear 

phenomena, it is reasonable to find the blow-up 

solutions for the mix of the different entities with 

nonlinearity. Fortunately, we can reveal the cooperative 

combinations of dispersion, convection and reaction 

with the parameters in Eq. (19) for the global solutions 

of the gKdV-Fisher equation, which represent kink and 

antikink waves, see Figure 1 and 2. 

 

(a) 1 = − , 1 = , 5 3 12r = − , 1n = , 
0 0 = . 

 

(b) 1 = − , 1 = , 6 6r = − , 2n = , 
0 0 = . 

Figure 2. The solution 
2( , )u x t  of the gKdV-Fisher equation 

for the different suitable parameters. 

 

(a) 1 = − , 1 = , 5 3 12r = , 1n = , 
0 0 = . 

 

(b) 1 = − , 1 = , 6 6r = , 2n = , 
0 0 = . 

Figure 3. The solution 
3( , )u x t  of the gKdV-Fisher equation 

for the different suitable parameters. 
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(a) 1 = − , 1 = , 5 3 12r = − , 1n = , 
0 0 = . 

 

(b) 1 = − , 1 = , 6 6r = − , 2n = , 
0 0 = . 

Figure 4. The solution 
4( , )u x t  of the gKdV-Fisher equation 

for the different suitable parameters. 

3. Conclusion 

A nonlinear dispersion-convection-reaction model, 

called the gKdV-Fisher equation, has been introduced 

to investigate the travelling wave solutions. A classical 

and efficient the Riccati equation method has been used 

to investigate two new global and two new blow-up 

solutions. One can easily see that the reaction term in 

the proposed equation yields kink and antikink wave 

solutions, which can be used in the other various 

numerical and analytical investigations on the 

application of such combined model to scientific 

problems. Further research would be based on 

investigating N-soliton solutions of the third and higher 

odd-order PDEs including Fisher-type nonlinearity. 
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