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Abstract. This article proposes a new method for treating the computational problem in discrete time

linear multi-periodic repetitive control systems, where the reference signal includes several periodic

components with already known periods. As periods get large, the computational problem becomes

prominent. This work thus investigates the frequency contents of reference signals, where the order

of original repetitive controller is lowered by considering only a reduced number of poles, namely, the

most important contributors to the total energy of the multi-periodic reference signal. A lower order

multi-periodic repetitive controller is designed which assures BIBO stability of the closed-loop system,

and approximate tracking is achieved. Finally, experimental tests on a non-minimum phase spring

mass damper system demonstrate the effectiveness of this new controller.
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1. Introduction

Many signals associated with engineering are pe-
riodic, or at least they can be approximated by
a periodic signal over a large time interval. This
is true, in many tracking problems, the desired
output or disturbance input is often composed of
a periodic component with an already known pe-
riod. In these cases, if one merely applies the
standard feedback controllers such as PID,LQR
or H∞ methods, the result will often have steady

state tracking errors. In order to track or re-
ject such periodic signals, internal model princi-
ple (IMP) [1] instead requires one to tailor the de-
sign by including a model of reference/disturbance
signals in the controller and design the system
for closed loop stability. In other words, per-
fect tracking in the steady state can be accom-
plished only if a generator of that signal is in-
cluded in the stable closed-loop system. Such a
generator is termed as an internal model and the
controller method is termed as repetitive control
or RC, which has been widely applied in rolling
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process [2], disc file servo system [3], robot manip-
ulator [4], position control system [5], steel casting
process [6, 7], magnet power supply [8] and many
other areas [9, 10, 11].

Of these works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
all have developed full order repetitive controller
models based IMP, which is an essential require-
ment for perfect tracking. However, in many situ-
ations, including a full (or complete) order inter-
nal model is neither necessary nor computation-
ally effective due to their practical requirements.
In these circumstances, turn to find lower order
approximate internal models have become an in-
teresting area for RC study. Although they can-
not yield perfect tracking but they often require
much less computation effort and in many cases
yield near perfect tracking results. Previous re-
searches on this subject are not many but a few
publications are given in [12, 13, 14].

Hillerstrom’s paper [14] is a representative
work on low order repetitive controller design.
Their design is based on finding and consider-
ing the dominating harmonics of disturbance sig-
nals while the non-dominating ones are unconsid-
ered. In their work, it is argued that sensitivity
depends more on pole locations, with the poles
more clustered, sensitivity becomes larger. It also
mentioned that poles with larger number of har-
monics on unit circle cause less sensitivity issues.
Moreover, to ease the oscillation problem caused
by discarding the high frequency components, a
low-pass filter is introduced in the feedback path
of the model to reduce the oscillations. This low-
pass filter together with a lower order repetitive
model assures asymptotic perfect tracking.

More recently, it has come to our notice that
Wang et al. [15] have proposed a repetitive predic-
tive controller based on frequency decomposition
method, where a frequency sampling filter model
is used to select the dominant frequency mod-
els, and Laguerre functions are applied to design
the repetitive predictive controller. Their method
show clear evidence of reducing controller algo-
rithm complexity.

The present work will also be based on fre-
quency analysis but will be approached from a
different point of view. A few notable differences
between this paper and these of [14, 15] will be: 1.
Hillerstrom et al. illustrate that there are dom-
inating and non-dominating frequency parts of a
periodic signal. However, they did not set forward

a proper method to detect and separate these dif-
ferent frequency components, but only related the
sensitivity to pole locations. 2. As claimed in
Remark 2 of [14], the disturbance model there
was selected to exactly match the disturbance sig-
nals, so it showed asymptotic perfect tracking. In
practical situations, however, the energy of distur-
bance signal might not be concentrated to only a
few frequencies but spread over all the frequency
interval. e.g. square signals or triangular sig-
nals. In these cases, a detection tool also has to
be found. 3. [14] only considered rejecting sin-
gle periodic disturbance signals while it did not
deal with tracking reference signals and multi-
periodic cases. This work is thus aimed at solving
the above three problems. 4. Wang et al. [15]
used a frequency sampling filter model to select
the dominant frequency components and designed
the controller based on Laguerre functions, while
the present work will approach the high computa-
tional problem from energy analysis of reference
signals and the controller design is to be based on
classical optimal control.

This paper is organized as follows: Section 2
reviews the earlier work by [16] and defines the
problem. In Section 3, energy analysis of peri-
odic and multi-periodic reference signals are in-
vestigated, and a low order multi-periodic repet-
itive control (MPRC) controller is designed for
tracking multi-periodic signals purposes, with mi-
nor mathematical modifications, this method can
also be extended to reject multi-periodic distur-
bance signals. Section 4 applies this new low order
controller to a non-minimum phase spring mass
damper system to demonstrate the effectiveness
of the new MPRC controller and the impact of
choosing different number of dominating poles on
ultimate tracking performance is also illustrated.
Finally, Section 5 concludes this paper and possi-
ble further research work is directed.

2. Background and problem definition

As a starting point, consider a linear time invari-
ant (LTI) discrete time SISO system:

x(t+ 1) = Ax(t) +Bu(t), x(0) = xo

y(t) = Cx(t)
(1)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are state
matrices of appropriate dimension. x(·) ∈ Rn,
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u(·) ∈ R and y(·) ∈ R are states, input and out-
put respectively. Alternatively, (1) can also be
represented by its transfer function expression as:

Y (z) = G(z)U(z) (2)

where G(z) is the transfer function model.
The reference signal r(·) ∈ R1×n is a discrete

time multi-periodic signal with a linear combina-
tion of periodic components with different funda-
mental frequencies fj = 2π

Njh
representing large

periods of Nj times the ‘sampling period’ h, or it
can be expressed as a time series:

r(t) =
M∑

j=1

rj(t), rj(t) = rj(t−Nj)

1 ≤ j ≤ M, t ≥ 0

(3)

where N is defined as the total period (or sum of
individual periods) and the connection between N
and its individual periods Nj is met by:

N =

j=M
∑

j=1

Nj , 1 ≤ j ≤ M (4)

Define the “annihilating polynomial” P (z−1) (z
is the complex variable) as below:

P (z−1) =
M∏

j=1

(1− z−Nj ) = 1 +
N∑

j=1

αjz
−j (5)

where αj is the coefficient of “annihilating poly-
nomial” P (z−1). If the linear forward shift opera-
tor ∆ is defined by the operation on the sequence
f(t)−∞<t<∞ with ∆f(t) = f(t+1) and its inverse

(backward shift operator) as ∆−1f(t) = f(t− 1),
then for multi-periodic signals over −∞ < t < ∞,
the following equation is held:

P (∆−1)r(t) = 0 (6)

The proof of (6) is simple so it is omitted here.
It is noted that P (z−1) may not be the minimum
“annihilating polynomial” but can be replaced by
a minimal one if the integers Nj are relatively
prime. It can be obtained from any annihilat-
ing polynomial by replacing multiple roots with a
single simple root.

Given ∆−1 being the backwards shift operator,
for any time series signal v(t), the following rela-
tion is held:

ν̃(t) = (P (∆−1)ν)(t) = ν(t) +
N∑

j=1

αjν(t− j)

(7)

In [16], Owens et al. applied an internal model
for a ‘typical’ discrete time MPRC system, where
the MPRC model is integrated into the original
system by having it’s z-transfer function as:

U(z)

E(z)
=

M∑

i=1

αi

1−W (z)z−Ni
(8)

W (z) is a low-pass filter being an exact internal
model by choosing its value as 1 but only an ap-
proximate internal model otherwise. αj is the co-
efficient of the “annihilating polynomial” that will
be defined in the sequel. A block diagram of this
MPRC model is in Figure 1
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Figure 1. Owens’ internal model

The main contribution of [16] is applying the
condition (6) met by multi-periodic reference sig-
nal r(t) to convert the original tracking prob-
lem between input controller u(t) and output y(t)
into an LQR problem between a transformed con-
troller ũ(t) and error signal e(t). By meeting the
controllability and observability of this new rep-
resentation, optimal control method was used for
designing the MPRC law. After a mathematical
manipulation, the augmented state-space repre-
sentation derived in [16] has the following form:
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(
x̃(t+ 1)
Ψ(t+ 1)

)

︸ ︷︷ ︸

Z(t+1)

=

(
A O

−F2C F1

)

︸ ︷︷ ︸

Π

(
x̃(t)
Ψ(t)

)

︸ ︷︷ ︸

Z(t)

(9)

+

(
B
O

)

︸ ︷︷ ︸

Γ

ũ(t)

e(t) =
(
−C F3

)

︸ ︷︷ ︸

Ω

(
x̃(t)
Ψ(t)

)

︸ ︷︷ ︸

Z(t)

(10)

or simply as:

Z(t+ 1) = ΠZ(t) + Γũ(t)

e(t) = ΩZ(t)
(11)

where Π ∈ R(n+N)×(n+N), Γ ∈ R(n+N)×1,
Ω ∈ R1×(n+N), Z(·) ∈ Rn+N , output e(·) ∈ R

and ũ(·) ∈ R.

The parameter α is defined by

α = (αN , αN−1, . . . , α2, α1)
T

and F1,F2,F3 in (9) are identified by:

F2 =
(
0 0 · · · 0 1

)T
; F3 = −αT ;

F1 =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 · · · · · · 0 1
−αN · · · · · · −α2 −α1










= F0 − F2α
T

F0 =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 · · · · · · 0 1
0 · · · · · · · · · 0










and

Ψ(t) =








e(t−N)
e(t−N + 1)

...
e(−1)








where Ψ(t) is built from the past values of track-
ing errors. x̃(t), ũ(t), ỹ(t) and ẽ(t) are constructed
from transformed operation on the original plant
as defined in (7) with:

x̃(t) = P (∆−1)x(t)

ũ(t) = P (∆−1)u(t)

ỹ(t) = P (∆−1)y(t)

ẽ(t) = P (∆−1)(r(t)− y(t)) = −ỹ(t)

which states tracking errors as well as state vec-
tors are both needed for −N ≤ t ≤ −1, they
are arbitrary as far as the control input u(t),
−N ≤ t ≤ −1 is arbitrary.

As regard to the augmented state space repre-
sentation (11), if the following two conditions in
Lemma 1 are held, controllability and observabil-
ity of (9) is guaranteed:

Lemma 1. (Owens et al.[16]) Given the new
state-space representation (9), assume the orig-
inal system with plant G(z) is both controllable
and observable. Under these conditions, the aug-
mented state-space representation (9) is both con-
trollable and observable if the following conditions
are satisfied:
• The numerator of the original plant’s transfer
function G(z), does not have any common factor
with the polynomial:

ρ(z) = zNP (z−1) = zN + α1z
N−1 + · · ·+ αN

= zN +ΣN−1
j=0 zjαN−j .

• The original plant’s transfer function G(z) does
not have any pole at z = 0

There are a few classical control methods to
find the stabilizing controller for the augmented
system (9). Among these methods, optimal con-
trol is the one by solving the standard LQR prob-
lem on an infinite time interval [0,∞), which has
to solve a minimization problem to minimize the
following modified performance index (12). The
selection of this performance index is inspired
from a closely related area to optimal RC termed
as optimal iterative learning control (ILC) [17].
The result is stated in Theorem 1 as below:
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Theorem 1. (Owens et al. [16]) Given a con-
trollable and observable extended state-space rep-
resentation (9), the state feedback solution of the
optimal control problem obtained by minimizing

J =
∞∑

t=0

[eT (t)Qe(t) + ũT (t)Rũ(t)] (12)

subject to the extended state dynamics, stabilizes
the multi-periodic repetitive closed loop system in
the sense that limt→∞e(t) = 0 and limt→∞ũ(t) =
0.

As this is a classical infinity horizon lin-
ear quadratic regulation (LQR) problem with a
state feedback solution, Theorem 1 can be eas-
ily proved. The constant feedback gain is then
obtained by solving the well known discrete alge-
braic Riccati equation (DARE, [18]) for the solu-
tion

K =

(
K11 K12

K21 K22

)

(13)

Therefore, based on state matrices Π, Γ,Ω and
weighting matrices Q, R, the optimal input ũ(t)
is given by:

ũ(t) = −R−1(BT 0)

(
K11 K12

K21 K22

)(
x̃(t)
Ψ(t)

)

= −R−1BTK11x̃(t)−R−1BTK12Ψ(t)

Since ũ(t) = P (∆−1)u(t) = u(t)+
∑N

j=1 αju(t−

j), the actual form of multi-periodic repetitive
controller is given by:

u(t) =−
N∑

j=1

αju(t− j)−R−1BTK11x̃(t)

−R−1BTK12Ψ(t)

(14)

As t tends to infinity, both x̃(t) and Ψ(t) tend
to zero. i.e. The control law ensures asymptotic
zero tracking of the reference signal.

2.1. A Problem of Dimensionality

Although the structure of feedback controller (14)
appears to be simple, it is computationally ‘costly’
to solve the high order DARE when the period

of the reference signal is large. For instance,
for a second order discrete time system, if the
multi-periodic reference signal is formed by a lin-
ear combination of two periodic signals with pe-
riods 317 and 509 respectively, i.e. n = 2, N1 =
317 and N2 = 509. From equation (9), order of
the new state-space representation is n+N1+N2,
i.e. 828 × 828. In order to find the optimal con-
trol input ũ(k), high computational effort is in-
evitably required for solving DARE. Under these
situations, computational efficient methods must
be sought to deal with these high order tracking
problems.

The problem mentioned above shows that the
method proposed in [16] involves large computa-
tional problem as tracking reference signals con-
tain large periods, so its applicability is very much
restricted only to signals with small periods. To
resolve this restriction, next we will propose a
new method, where the main difference with the
previous method given in [16] is that, the new
one can be applied to track periodic and multi-
periodic signals even when large periods present in
reference signals, and the original high computa-
tional cost required by [16] can be largely reduced
in many tracking problems by choosing different
number of dominating poles.

3. Low order controller design for

discrete time linear MPRC systems

3.1. Motivation

In Section 2, it is shown that an exact ‘anni-
hilating polynomial’ of (5) can assure asymptotic
zero tracking error. i.e. e(t) → 0 as t goes to infin-
ity. However, as mentioned in the end of Section
2, computational problem occurs when individual
periods are large. One of the remedies here is to
turn to frequency analysis. In practical situations,
transfer function G(z) of the original system (1)
is often finite dimensional and the reference signal
r(t) may also be concentrated to some frequencies
rather than the whole band up to the Nyquist
frequency, both G(z) and r(t) have limited band-
width. Therefore, instead of applying the origi-
nal full order “annihilating polynomial” P (∆−1)
which contains all the frequency contents, these
bandwidth properties give the designer an oppor-
tunity to reduce the dimensionality problem by
designing a lower order ‘annihilating polynomial’,
the following work is thus motivated for this pur-
pose.
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As the internal model for MPRC systems, ze-
ros of the “annihilating polynomial” P (∆−1) are
evenly spread on the unit circle corresponding to
the frequency elements of a multi-periodic signal.
So the starting point will be based on spectral
analysis of the reference signal r(t) in frequency
domain, where DFT (Discrete Fourier transform)
analysis, which is computed by FFT (Fast Fourier
transform), is to be applied.

3.2. Frequency analysis of a multi-periodic

signal

First of all, as defined earlier, r(t) is a multi-
periodic reference signal in the form of (3) over
(−∞,+∞), with the relation between individual
periods Nj and sum of these periods N is held by
equation (4).

Periods Nj considered in this paper are to be
relatively prime, because the multi-periodic ref-
erence signal is usually not a periodic signal over
one period of each periodic component 1. In order
to apply frequency analysis on r(t), r(t) must be
considered over a period of Nr, where Nr is the
least common multiple (LCM) of each individual
period Nj defined by:

Nr = LCM(N1, N2, · · · , Nj)

1 ≤ j ≤ M
(15)

So the overall multi-periodic signal r(t) is still a
periodic one over the period Nr.

Given v = 2π
Nr

as the fundamental frequency for

r(t), it is well known that any periodic signal r(t)
can be written in terms of an exponential Fourier
series representation:

r(t) =
∞∑

nv=−∞

R(n)ejnvt (16)

where R(n) denotes DFT coefficient for each fre-
quency over (−∞,+∞). However, as explained
earlier, many reference signals are often confined
to only a certain frequency band ωd ∈ [ωl, ωu]
(the lower bound ωl might be zero, but the up-
per bound ωu cannot be infinity) but not whole
frequency band up to Nyquist frequency; And
in some cases, some frequency components have
much dominated influences in certain selected fre-
quencies than the others over the whole frequency
region. In these situations, frequency analysis on

r(t) can often be separated into different groups
depending on their dominance.

Assume r(t) is represented by a sum of the
dominating multi-periodic signal rd(t) and a
non-dominating subordinate multi-periodic signal
rs(t), where rs(t) is assumed to be so small that
it can be ignored in controller design. Mathemat-
ically, it could be represented as:

r(t) =
∑

|nv|∈[−∞,∞]

R(n)ejnvt (17)

=




∑

|nv|∈ωd

R(n)ejnvt





︸ ︷︷ ︸

Dominating rd(t)

+




∑

|nv|/∈ωd

R(n)ejnvt





︸ ︷︷ ︸

Non−dominating rs(t)

The basis of controller design depends on the fol-
lowing two principles:

1. The effect of rs(t) is ignored. Given an ap-
proximate low order “annihilating polynomial”
Pr(∆

−1), design is based on poles of rd(t), i.e.
Pr(△

−1)rd(t) = 0. By ignoring the effect of rs(t),
Pr(∆

−1)r(t) ≈ 0.

2. The effect of rs(t) on closed loop performance
is checked afterwards.

To determine the dominating part rd(t), FFT
analysis of a multi-periodic reference r(t) will be
defined as below:

Definition 1. For a given discrete time multi-
periodic reference signal r(t) defined by (3), where
its individual periods are Nj , (1 ≤ j ≤ M), sum
of periods is N , and LCM is Nr defined by (15),
then Nr point DFT analysis of r(t) is given by:

R(n) =

t=Nr∑

t=1

r(t)e−j2π(n−1)
(t−1)
Nr

1 ≤ n ≤ Nr

(18)

and its inverse DFT is given by

r(t) =
1

Nr

n=Nr∑

n=1

R(n)ej2π(n−1)
(t−1)
Nr

1 ≤ t ≤ Nr

(19)

1It might become a single period signal if periods Nj are not co-prime
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If ~Rm is denoted as a vector of length Nr with
its elements as:

~Rm = [R(1), R(2), · · · , R(Nr)]
T (20)

By re-ordering the elements in (20), a newly

sorted vector ~Sm in its descending magnitude
value can be reshaped as follows:

~Sm = [S(1), S(2), · · · , S(Nr)]
T (21)

where |S(1)| ≥ |S(2)| ≥ · · · ≥ |S(Nr)|.

Equation (18) to (21) is a method to re-order
the frequency contents of reference r(t) in terms of
their magnitude value over a period of Nr. How-
ever, it is generally known that a signal is not only
decided by its magnitude value alone, but also its
strength value, which is its energy.

3.3. Energy analysis of a multi-periodic

signal

Mathematically, for a multi-periodic reference sig-
nal r(t) containing individual periods Nj , 1 ≤ j ≤
M . (Nr is the LCM of Nj), energy function of r(t)
over the LCM Nr is denoted as below:

E =

Nr−1∑

t=0

[r(t)]2 (22)

Parseval’s theorem states that the total energy
contained in a waveform r(t) summed across all
of time t is equal to the total energy of the wave-
form’s Fourier Transform R(n) summed across all
of its frequency components from [−π,+π] (Or Nr

points on the unit circle). Therefore, the following
relation is held:

E =

Nr−1∑

t=0

[r(t)]2 =
1

Nr

Nr−1∑

n=0

|R(n)|2

=
1

Nr

Nr−1∑

n=0

|S(n)|2

(23)

If m number of poles are selected from the vec-

tor ~S in (21), then the energy content Em corre-
sponding to these poles can be represented as:

Em =
1

Nr

m∑

i=0

|S(i)|2, 0 ≤ i ≤ m (24)

In order to scale the percentage of Em (24) over
the overall E in equation (23). ηm is defined as
such a measurement variable, where

ηm =
Em

E
, (25)

Define δ = 1 − ηm, δ > 0, which is the energy
difference. For 0 ≤ m ≤ Nr − 1, if 1 − ηm ≤ δ,
i.e. ηm is very close to 1, then only m number
of poles will be selected to construct a low or-
der “annihilating polynomial”, which will act as
an approximate m order controller model. This
controller will be applied to the original tracking
problem instead of the exact model (5), it is ex-
pected to result in an approximate but not perfect
tracking.

By combining the analysis made in Section 3.2
and Section 3.3, an algorithm is to be set up be-
low for constructing a new low order “annihilating
polynomial” model Pr(∆

−1).

Remark 1. The other method for energy analysis
of a multi-periodic reference signal can be carried
out by applying DFT to each of its periodic com-
ponent, in which case each component can also
be separated into a dominating ri d(t) and non-
dominating part ri s(t), and select the dominating
part for each periodic component ri(t). The differ-
ence between these two methods is that in the first
method developed in this section, 0 < m ≤ Nr,
while for the second method, 0 < m ≤ N . How-
ever, to compare the tracking performance in this
paper with that of [16] and from DFT analysis re-
sult of r(t), it is shown that only a maximum of
N number dominating poles from Nr is enough for
achieving perfect tracking. i.e. ηN = EN/E = 1.
This also accords to the idea of Owens et al. [16]
that selecting a total number of N poles yield per-
fect tracking. So from now on, m :∈ [0, N ].

3.4. A low order multi-periodic repetitive

controller design

Following the analysis from Section 3.2 and 3.3,
the main principle of this new method is that,
when a required small energy difference tolerance
δ is defined, only frequencies so that 1 − ηm ≥ δ
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are selected to construct a low order “annihilat-
ing polynomial” Pr(△

−1), those frequencies with
1 − ηm < δ are ignored first for design purposes.
The algorithm is summarized as follows:

Algorithm 1. A Low Order “Annihilating Poly-
nomial” for Discrete Time Multi Periodic Sys-
tems.

Given a reference signal r(t) defined by (3) with
its individual periods as Nj , 1 ≤ j ≤ M and the
sum of period N defined by (4). Nr is LCM of Nj

defined by (15).
1. Apply DFT analysis of r(t) over a period of

Nr to obtain Fourier coefficient vector ~Rm with
elements as (20). 0 ≤ n ≤ Nr − 1;

2. Re-order these elements in (20) by their

magnitude value to form a new vector ~S with its
elements re-arranged by their descending magni-
tude value as in (21);

3. Define the whole signal energy E (23) of a
reference signal over period Nr and calculate en-
ergy content Em by (24) for 0 ≤ m ≤ Nr − 1 of

the sorted new vector ~S;
4. Define a tolerance δ > 0 and calculate ηm

defined by (25) for 0 ≤ m ≤ N − 1; (Remark 1)
5. When 1 − ηm ≤ δ, then only m number

of poles are chosen to construct a new low order
“annihilating polynomial” with its z transform as

Pr(z
−1) = Πq∈ω(1− z−1ej

2π
Nr

q) (26)

= 1 +
m∑

i=1

γiz
−i

where ω : frequency contents of Em, and m poles

are chosen so that 1− Em−1

E
< δ and 1− Em

E
≥ δ.

Remark 2. For the tracking/servo problem, in
addition to the requirement of good matching be-
tween input and output, it is also known that at
least one integrator is needed for robust tracking
purposes. Meanwhile, since poles for a full or-
der internal (or annihilating) model P (z−1) al-
ways come in pairs and are conjugate to each

other, mathematically, if λk = ej
2π
Nr

k, then λ̄k =

ej
2π
Nr

(Nr−k) = e−j 2π
Nr

k, and integrator can be rep-
resented by 1

1−z−1 , the more accurate form of the
low order “annihilating polynomial” can be writ-
ten as:

Pr(z
−1) =

1

1− z−1

m−1
2∏

k=1

Pk m ≥ 3 (27)

where Pk = (1− z−1λ)(1− z−1λ̄) = 1− 2z−1hk +

z−2, hk = λ+λ̄
2 = cos( 2π

Nr
k).

Remark 3. Unlike the work [16], this low or-
der model may not always yield perfect tracking
for multi-periodic signals containing more com-
plex frequency contents, such as rectangular and
square signals. However, when a designated ηm or
δ is given, this lower order model can be applied
for tracking purposes even when the reference sig-
nal contains periods of very large value.

After designing such a low order “annihilating
polynomial” Pr(△

−1), take a very similar proce-
dure to that of [16], the original tracking prob-
lem between control u(t) and output y(t) is con-
verted into a non-standard LQR problem between
a transfomed reduced controller ũr(t) and error
e(t). Due to their similarities, the derivation pro-
cedure will be omitted. By the end of this deriva-
tion, a similar augmented state-space description
to (9) is established. The actually form of such a
description is to be given in (33), with the differ-
ence to (9) being that:
1. Extra terms F2Pr(∆

−1)r(t) and Pr(∆
−1)r(t)

are added to the benchmark solution in [16];
2. The order of the augmented description is re-
duced from n+N to n+m, where n is the order
of original discrete time system;
3. N and α in state matrices are replaced by m
and γ respectively.

In particular

Φ(t) =








e(t−m)
e(t−m+ 1)

...
e(t− 1)








(28)

An approximate multi-periodic RC controller is
therefore formed as follows:

ũr(t) = −R−1(BT 0)K

(
x̃r(t)
Φ(t)

)

(29)

= −R−1BT (K11x̃r(t) +K12Φ(t))

= −R−1BTK11x̃r(t)−R−1BTK12Φ(t)
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whereK is the optimal gain obtained from solving
the low order DARE.

If Fr and Ḡr are defined as Fr = −R−1BTK11,
Ḡr = −R−1BTK12 respectively, (29) changes to:

ũr(t) = Frx̃r(t) + Ḡr








e(t−m)
e(t−m+ 1)

...
e(t− 1)








(30)

Take z transform on (30), which yields

u(z) = Frx(z) + Tr(z)e(z) (31)

where Tr is represented by:

Tr(z) =
1

Pr(z−1)
Ḡr








z−m

z−m+1

...
z−1








(32)

So the state feedback Frx(z) is functioning as a
‘conditioning’ term of the plant to make the ‘clas-
sical error feedback’ term T (z)e(z) provide the re-
quired tracking performance. A block diagram of
such a MPRC control system is provided in Figure
2, where the approximate internal model 1

Pr(z−1)

in Figure 3 is included in Tr(z).

r(t) e(t) y(t)

x(t)

u(t)
T (z)r G(z)

State

Feedback

+

-

+

-

Figure 2. A block diagram of the
low order controller based MPRC sys-
tem

1

P (z  )
-1

r

Approximate

internal model

Figure 3. The low order internal
model inside Tr(z)

Remark 4. In the above procedure, the algorithm
design for a low order controller is aimed at track-
ing multi-periodic reference signals only. Never-
theless, this method could also be used when the
reference signal contains only a single period, with
the only difference being that, when the frequency
analysis of a reference signal is considered, the
least common multiple Nr for a multi-periodic ref-
erence signal is now to be replaced by N , where N
is the period. Therefore, our earlier work [13] for
tracking single period signals is also a special case
for multi-periodic cases.

3.5. Pole number choice vs tracking

accuracy

From equation (26) and (27), it is known that as
more dominating poles are selected from (21), the
closer of the low order “annihilating polynomial”
gets to its full order model P (∆−1), and track-
ing results get more accurate. When m = N ,
Pr(∆

−1) = P (∆−1), asymptotic perfect track-
ing is gained. However, choosing more poles also
reflect larger demand of energy content ηm (or
smaller value of δm), which also require more com-
putational effort. So there is always a tradeoff be-
tween pole number choice and tracking accuracy,
which can be summarized as follows:

(1) Good tracking accuracy requires choosing
more dominating poles, while

(2) Low computational effort needs choos-
ing less dominating poles, so a lower or-
der “annihilating polynomial” can be de-
signed.

These two points will be shown more intuitively
from the application examples in Section 4.

3.6. BIBO stability analysis

In this section, stability checking of closed loop
multi-periodic repetitive systems will be briefly
discussed. The result is summarized in Theorem
2 below:

Theorem 2. For a discrete time system (1), if
the reference signal r(t) is a multi-periodic signal
including several periodic components each hav-
ing large periods Ni, 1 < i < M , and the re-
duced “annihilating polynomial” Pr(△

−1) of or-
der m is obtained from Algorithm 1. Assume the
original system plant G(z) is both controllable and
observable, then the tracking error e(t) is bounded
if Pr(△

−1)r(t) is bounded. i.e. The closed loop
system meets BIBO stability.
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Proof. This proof is separated into two steps.
Step 1: Assume Pr(△

−1) is a complete “anni-
hilating polynomail” of reference signal r(t), i.e.
Pr(△

−1)r(t) = 0, −∞ < t < ∞. In this situa-
tion, proof is exactly matching to Appendix A of
Owens’ work in [16]. Therefore details of this part
is omitted for brevity.

By applying the derivation process in [16],
an augmented state-space representation resem-
bling a close match of (9) is derived, where
ũ(t) = Pr(△

−1)u(t), the initial condition Φ(0) =
{e(−m), e(−m+1), · · · , e(−1)}T , states are given
by x̃(t) = Pr(△

−1)x(t) and those ones defined in
(28).

Then from Theorem 1 in [16], the closed loop
repetitive system is asymptotically stable in the
sense of limt→∞ e(t) = 0 and limt→∞ ũ(t) = 0,
which means that all poles of the closed loop sys-
tem are inside the unit circle.

Step 2: If Pr(△
−1) is not a full order “annihi-

lating polynomial”, i.e. Pr(△
−1)r(t) 6= 0, −∞ <

t < ∞. Under this circumstance, derivation of an
augmented state-space representation is based on
the earlier assumption Pr(△

−1)r(t) ≈ 0. The dif-
ference being that, by the end of the derivation,
this augmented state-space description is a modi-
fied form of (9) but with the similar matrix forms
and states as Step 1, where it has the following
form:

Z(t+ 1) = ΠrZ(t) + Γrũr(t) + F2rPr(∆
−1)r(t)

e(t) = ΩrZ(t) + Pr(∆
−1)r(t)

(33)

Πr, Γr, F2r and Ωr have the similar forms as their
earlier defined counterparts Π, Γ, F2 and Ω ex-
cept for N and α in the latter matrices are now
replace by m and γ respectively. All the defini-
tions are the same as those in Step 1. From (33),
it is also possible to write error e(t) as follows:

e(t) =Ωr(zI −Πr +R−1ΓrK)−1F2rPr(∆
−1)r(t)

+ Pr(∆
−1)r(t)

From step 1, if reference signal r(t) could be
written as r(t) = rd(t)+(r(t)−rd(t)), where rd(t)
is the collection of dominating part of reference
signal r(t) that gives Pr(∆

−1)rd(t) = 0. Since
Ωr(zI −Πr +R−1ΓrK)−1 has all the poles inside
the unit circle, it is asymptotic stable. In addition

to this, as Pr(∆
−1)(r(t) − rd(t)) is bounded, the

closed loop tracking error is bounded. �

Remark 5. Although analysis is only consid-
ered for reference tracking only, it can be applied
straightforwardly to multi-periodic disturbance re-
jection with minor modifications. For a multi-
periodic disturbance signal d(t), if it is added to
the input signal u(t), the system representation is
then formed as:

x(t+ 1) = Ax(t) +B(u(t) + d(t)), x(0) = xo

y(t) = Cx(t)
(34)

Remark 6. For a system including both refer-
ence tracking and disturbance rejection, if both
reference and disturbance signals contain periodic
components of same or different periods Nj, the
low order controller scheme developed in this pa-
per can also be applied. The signals can be any
arbitrary ones as long as they are of periodic na-
ture.

4. Application to A Physical Model

The experimental test-bed has previously been
used in a number of publications [15, 19] to eval-
uate RC related algorithms. The non-minimum
phase mass damper spring system contains a ro-
tary mechanical system of inertias, dampers, tor-
sional springs, a timing belt, pulleys and gears.
Figure 4 shows the non-minimum phase charac-
teristic of this test-bed, where θi and θo are the
input and output positions, J1 and Jg are inertias,
B is a damper, K is a spring and G represents the
gearing. A further spring mass-damper system as
in Figure 5 is connected to the input in order to
increase the relative degree and complexity of the
system.

qo

qi

JrBr

Kr

Jg

Gr

Figure 4. Non-minimum phase
characteristic
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Figure 5. Experimental test-bed

The system is modeled using a least-mean-
squares (LMS) algorithm to fit a linear model to
a great number of frequency response test results
[19], where the continuous system is given as fol-
lows:

y(t) =
1.202(4− s)

s(s+ 9)(s2 + 12s+ 56.25)
u(t) (35)

A PID loop is used around the plant to pro-
duce superior results. The PID gains are Kp =
137, Ki = 5 and Kd = 3. The system is sam-
pled using a zero order hold with a sampling fre-
quency of h = 25Hz, i.e. sampling time T =
1
25 = 0.04 sec, the discretized (or sampled) model
for closed loop feedback system of (35) and PID
loop is established having a state-space represen-
tation in the form of (1), where A, B, C are as
follows:

A =









4.2351 −1.7861 1.5012 −0.6295 0.4224
4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.25 0









B =
(
0.0625 0 0 0 0

)T

C =
(
0.0543 0.0150 0.0180 −0.0225 0.0119

)

As (AT B) is controllable and (CT AT ) is
observable, the augmented state space represen-
tation obtained in the form of (33) by ignoring
terms including Pr(∆

−1)r(t) is also controllable
and observable (Lemma 1). For simplicity, all the
experimental work carried out in this section will
assume zero initial conditions, i.e. x0 = 0.

4.1. Tracking a single periodic reference

The first experiment is to track a reference sig-
nal that contains only a single period. As indi-
cated in Remark 4, although Algorithm 1 is de-
signed for multi-periodic tracking circumstances,
it can easily be applied to single period track-
ing cases by setting N = N1 = Nr. The con-
tinuous reference signal is r(t) = sin(2π3 t) of pe-
riod 3 sec, t ∈ (−∞,+∞), (t is continuous). By
choosing the sampling frequency as h = 25Hz,
the sampled reference signal is r(t) = sin(2π75 t),
1 ≤ t < +∞ (t is a digital time), with sample
number N = 75. Weighting matrices are chosen
as R = 1 and Q = I.

Figure 6 displays a pole-zero map for the full
order “annihilating polynomial” in its z transfor-
mation as P (z−1) = 1 − z−75, where all 75 poles
evenly spread on the unit circle. Here ηi = 0.9999,
i.e. δ = 10−4, to meet the condition 1 − ηi ≥ δ,
Figure 7 shows that instead of choosing all 75
poles, only m = 3 poles inside the circle are re-
quired to be chosen. i.e. poles at λ0 = 1, λ1 =
0.9965 − 0.0837i and λ̄1 = 0.9965 + 0.0837i are
selected, where the first pole indicates the inte-
grator and the other two indicate the fundamen-
tal frequency of reference signal, in a conjugate
pair. Therefore, the low order “annihilating poly-
nomial” is designed as:

Pr(z
−1) = (1− z−1)(1− λ1z

−1)(1− λ̄1z
−1)

= 1− 2.9930z−1 + 2.9930z−2 − z−3

Pole−Zero Map

Real Axis
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0.8

1
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Figure 6. Pole-zero map of 1
P (∆−1)
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Figure 7. Energy ratio ηi over cho-
sen pole index i

The approximate optimal low order controller
(26), for which only a 5 order DARE is required
to be solved, is thus written by the following form:

u(z) = Frx(z) + Tr(z)e(z)

where:

Fr = [−39.6586 7.5295 −20.4157 27.0414 −17.1418]

Gr = [0.8982 − 1.8903 1.0000]

and the forward path transfer function is:

Tr(z) =
898.2− 1890z−1 + 1000z−2

1− 2.979z−1 + 2.965z−2 − 0.986z−3

Figure 8 shows the tracking error e(t) and
controller u(t) considered over a time of t ∈
[0, 20] sec. The results show that as time gets
larger, near perfect tracking is achieved with low
control effort.
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Figure 8. Tracking error e(t) and
control u(t) for Sinusoidal Signal

Alternatively, Figure 9 also shows the loga-
rithm error norm ||e(k)|| over a ‘cycle’ number
period N , where ||e(k)||) is defined as follows:

||e(k)|| =

√
∑k+N−1

t=k e2(t)

N
(35)

and t is a digital time index.
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Figure 9. Logarithm plot of Error
Norm ||e(k)||

Figure 9 also indicates that the new low or-
der controller effectively tracks the reference sig-
nal r(t) and drive error e(t) to near zero value.

4.2. Tracking multi-periodic signals

In order to test the low order multi-periodic repet-
itive controller on more general multi-periodic sig-
nals, and to excite more frequency contents, in the
second experiment, tracking is focused on a more
complex multi-periodic reference signal—signals
containing triangular periodic components. As-
sume the same experimental test-bed is used but
the reference signal contains two triangular peri-
odic components with periods T1 = 0.92 sec and
T2 = 1.16 sec respectively. A plot of r(t) is given
in Figure 10 over a time interval t ∈ [0, 30] sec.

For simplicity, sampling frequency of h = 25Hz
is re-used, by which it gives N1 = 23 and N2 = 29.
The LCM of N1 and N2 is Nr = 677. Weight-
ing matrices Q and R are again chosen as Q =
I, and R = 1. The energy measurement value is
designated as ηm = 0.9998, i.e. tolerance value is
δ = 0.0002.

As the multi-periodic reference signal becomes
a single periodic signal over Nr, the complete
“annihilating polynomial” should be P (z−1) =
1 − z−677, or by the method introduced in [16],
it should at least have an order of P (z−1) =
(1− z−23)(1− z−29).
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Figure 10. A reference with two tri-
angular signals

Figure 11 is a pole-zero map for 1
P (z−1)

=
1

1−z−677 , given δ = 0.0002, Figure 12 indicates that
only m = 39 poles need to be selected, so that
1− ηi ≈ δ. These chosen pole positions are listed
in Table. 1 that are numbered counter-clockwise
from 0 to 676, where position 0 represents the pole
that intersects with positive real axis.
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Figure 11. Pole-zero map for 1
P (z−1)

Table 1. Poles selected from pzmap
Figure 11

638 29 644 23 0 69 598
87 580 621 46 92 575 522
145 609 58 203 464 115 552
138 529 483 184 116 551 406
261 230 437 319 348 506 161
232 435 493 174
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Figure 12. Energy Ratio Over Poles Choice

Based on these analysis, the low order “anni-
hilating polynomial” with an order of m = 39 is
designed and the low order controller can be ob-
tained by only solving a DARE of order 39, where
it bears its form as (31).
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Figure 13. Error e(t) and Control u(t)
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Figure 14. Error norm of e(k) over
cycle NO. k of period (LCM)

As expected, Figure 13 shows that error e(t) is
small and bounded as t → ∞, and only a small
control effort u(t) is required for achieving such a
purpose, where tracking 99.98% energy contents
of reference signal r(t) is achieved. Again, Figure
14 also shows logarithm plot of error norm ||e(k)||
to the ‘cycle’ No. of period N , the result indicates
bounded tracking error ||e(k)|| smaller than 10−1.
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4.3. Impact of poles number choice on

tracking performance

In this part, the impact of different number of

poles selection from ~S on ultimate tracking per-
formance is discussed. For simplicity, the above
multi-periodic reference signal is tracked but dif-
ferent number of poles are chosen. The results are
shown in Figure 15.
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||e
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m=35
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m=39

Figure 15. Comparison results of
||e(k)|| as poles number m is different

From Figure 15, it is seen that as the number
of dominating poles is selected as m=35,37 and 39
respectively, the logarithm error norm log||e(k)||
decreases, i.e. the more dominating energy con-
tents are chosen, the more accurate tracking result
is. Therefore, when m = N1 +N2 = 52 (apply an
exact model), it is expected to give an asymptotic
perfect tracking, which matches with the previous
work given in [16].

5. Conclusions and Future Research

In this paper, a new low order controller scheme
is developed for tracking problems in optimal
MPRC systems, where the high order DARE
causes the difficulty of designing a proper stabi-
lizing controller.

For solving this problem, frequency analysis of
reference signal is carried out, by which the mag-
nitude value is compared and re-ordered over the
frequency domain up to the Nyquist frequency.
Then, energy analysis on the multi-periodic refer-
ence signal is carried out to choose the dominat-
ing poles but disregard the non-dominating ones,
which depends on the requirement of different
tracking accuracy designated by ηm or an energy
tolerance δ. By doing so, a low order “annihilating
polynomial” Pr(∆

−1) is designed by Algorithm
1 and a corresponding low order MPRC law is
formed that can be applied to track any arbitrary

periodic signals with known large periods for dif-
ferent tracking accuracy purposes. The designed
low order control law also reduces the original high
computational requirement posed by solving high
order DARE and it also gives bounded tracking
error. To assess the effectiveness of this controller,
it is applied to a mass damper spring system and
experiments are carried out on tracking both sin-
gle and multi-periodic reference signals, and both
on a simple sinusoidal signal and the one that con-
tains triangular signal components. Experimental
results demonstrate that very accurate tracking
results are gained for both experiments. Mean-
while, the effect of pole number choice on track-
ing performance is also discussed, where as more
dominating poles are selected, tracking result gets
better.

Future work can be carried out in the following
areas.

1. Due to some practical reasons, in this paper,
only the model of a physical system is used to il-
lustrate validity of the new low order controller. It
is therefore recommended to give an experimental
validation in the near future.

2. Robust analysis. Due to the fact that the
designed low order controller scheme includes a
state-feedback term and the effect of a forward
element, as seen in Figure 2, it is necessary to an-
alyze the effect of the state-feedback and forward
terms on tracking performance.

3. The implementation of low order control law
still requires using an observer, even though this
will not affect the ultimate stability and track-
ing accuracy, it does affect transient performance.
This can be an open area.

4. Uncertainty of periods. Although the work
is concentrated for tracking reference signals with
already known periods, in some cases, periods are
not known in advance. So it is necessary to extend
the current research to those cases, in which case
adaptive control can be applied to RC/MPRC sys-
tems.

5. In both [16] and this work, the optimal-
ity method is applied to find the stabilizing con-
trol law. However, given the augmented state-
space representations (9) and (33), the stabiliz-
ing controller could be designed by methods other
than optimization, where the control law is not
an optimal one but nor does it need to solve the
DARE. Therefore, the computation problem can
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also be solved. Comparisons between these meth-
ods can be discussed based on their tracking per-
formances.
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