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This study addresses the stochastic multi-item capacitated lot-sizing problem.
Here, it is assumed that all items are produced on a single production resource
and unmet demands are backlogged. The literature shows that the determin-
istic version of this problem is NP-Hard. We consider the case where period
demands are time-varying random variables. The objective is to determine
the minimum expected cost production plan so as to meet stochastic period
demands over the planning horizon. We extend the mixed integer program-
ming formulation introduced in the literature to capture the problem under
consideration. Further, we propose a fix-and-optimize heuristic building on
an item-period oriented decomposition scheme. We then conduct a numerical
study to evaluate the performance of the proposed heuristic as compared to
the heuristic introduced by Tempelmeier and Hilger [16]. The results clearly
show that the proposed fix-and-optimize heuristic arises as both cost-efficient
and time-efficient solution approach as compared to the benchmark heuristic.
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1. Introduction

The capacitated lot-sizing problem (CLSP) is con-
cerned with the determination of optimal produc-
tion schedule and corresponding quantities so as
to minimize total cost under given production ca-
pacity requirement over a discrete and finite plan-
ning horizon. This problem is encountered in
many industrial applications and has often been
considered as one of the major challenges in pro-
duction planning process.

Due to its practical relevance, CLSP and its ex-
tensions have been extensively investigated in the
literature over last several decades (see e.g. [1,2]).
Nevertheless, in the majority of studies, period
demands over the planning horizon are assumed
to be deterministic and time-varying. The un-
capacitated lot-sizing problem is shown to be
polynomially solvable under mild conditions [3].

Yet, the problem becomes more challenging when
a capacity restriction on a production resource
is of concern. The single-item CLSP is investi-
gated by Florian et al. [4] and shown that it falls
into the class of NP-hard problems. Also, some
special cases, where the problem under consid-
eration becomes polynomially solvable, are pre-
sented by authors. Then, the multi-item CLSP
is also demonstrated to be NP-Hard, even under
the conditions where single item counterpart of
the problem is polynomially solvable [5]. Hence,
the literature provides a variety of heuristic ap-
proaches especially for solving multi-item CLSP.
For a more detailed discussion on the solution
approaches of both deterministic single-item and
multi-item CLSP, interested readers are referred
to the surveys of Karimi et al [6], Robinson et
al. [7], Buschkuhl et al. [8] and Brahimi et al. [9].
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In most of the industrial production practices,
period demands are indeed not known with cer-
tainty. Instead, decisions are made based on de-
mand forecasts which are subject to uncertainty.
As such, neglecting uncertainty and relying on de-
terministic production planning approaches may
lead to cost inefficiency and low degree of cus-
tomer satisfaction in practice [10]. Therefore, em-
bedding demand uncertainty into lot-sizing prob-
lems is essential, nonetheless, it is challenging. A
classification on how to capture uncertainty in lot-
sizing problems is provided by Bookbinder and
Tan [11]. These strategies mainly characterize
the inventory control rules as to when production
decisions are made. Among these is the static
uncertainty strategy where production schedule
and corresponding quantities are made at the be-
ginning of the planning horizon. Put in other
words, this strategy suggests that the timing and
the quantity of replenishments are set once for
all, and thus, known before the planning horizon
starts. In particular, this strategy may be ap-
pealing for production systems where advanced
information on production decisions is required
(e.g. MRP systems) [12]. In [13], the stochas-
tic CLSP with static uncertainty strategy under
β service level (fill rate criterion) constraints is
addressed and a heuristic method, referred to as
ABCβ heuristic, is developed. Then, a column-
generation based heuristic approach is proposed
by Tempelmeier [12] for the very problem. It is
shown that the column generation based heuris-
tic is superior to the ABCβ heuristic in terms of
expected cost criterion. The same problem under
δ service level constraints is investigated and two
linear mathematical formulations are developed
by Helber et al. [14]. The proposed formulations
are then solved via the fix-and-optimize heuris-
tic approach introduced in [15]. This heuristic
simply aims to decompose a mixed integer pro-
gramming (MIP) problem with large number of
binary variables into a number of tractable sub-
problems and to solve the resulting sub-problems
in an iterative fashion. Then, the problem under
β service level constraints is addressed by Tem-
pelmeier and Hilger [16] once again and a fix-and-
optimize heuristic is proposed. The cost perfor-
mance of the proposed fix-and-optimize heuristic
is investigated in a numerical study where the
ABCβ heuristic ( [13]) and the column gener-
ation heuristic ( [12]) are used as benchmarks.
It is observed that the fix-and-optimize solution
approach exhibits a better performance as com-
pared to the ABCβ heuristic in all settings. It
is also shown that the fix-and-optimize heuris-
tic outperforms the column generation approach

in settings where either production capacity is
tight or a limited number of items are of concern.
Recently, the stochastic multi-item CLSP consid-
ering sequence-dependent changeovers under fill
rate constraints is addressed in [17]. Apart from
the above mentioned studies, there is a sizeable
literature adopting static uncertainty strategy to
control inventory/production decisions in vari-
ous production/manufacturing systems (see e.g.
[18], [19], [20], [21], [22], [23], and [24]). Among
those, an extended MIP formulation for a single-
item, stochastic CLSP under α service level con-
straints is proposed by Tunc [23]. It is shown that
this formulation has a very tight linear relaxation
that provides a far superior computational per-
formance as compared to traditional period based
formulations present in the literature. It should
also be remarked that there are number of re-
cent studies addressing the stochastic multi-item
CLSP with setup carryovers ( [25]), energy con-
cerns ( [26]), and rolling horizon framework under
service level constraints ( [27], [28]).

Here, we investigate a finite horizon, periodic re-
view, stochastic multi-item CLSP under static un-
certainty strategy. More specifically, we consider
a multi-item production system where items share
a single production resource with a finite capac-
ity. For each item, a production firm faces time-
varying stochastic period demands over the plan-
ning horizon. The aim is to determine the produc-
tion schedule and corresponding production quan-
tities of each item under the maximum available
production capacity so as to minimize the total
expected cost over a finite planning horizon. The
total expected cost is comprised of the fixed setup
cost, variable production cost, inventory holding
cost and backlogging cost.

The contribution of the current study is multi-fold
as provided in the following:

• We extend the MIP models proposed in
[23] and [29] so as to capture multi-item
case and backlogging cost of stockouts.
• We propose a fix-and-optimize heuristic

essentially built on that of Tempelmeier
and Hilger [16]. In particular, we in-
troduce and adopt a novel decomposi-
tion scheme within the proposed fix-and-
optimize heuristic. The proposed heuris-
tic relies on the extended MIP formulation
whereas that of Tempelmeier and Hilger
employs the MIP formulation developed
earlier in the literature.
• We conduct an extensive numerical study

to evaluate the computational perfor-
mance of the proposed heuristic against
the fix-and-optimize heuristic presented in
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Tempelmeier and Hilger [16]. The numer-
ical study demonstrates that the proposed
heuristic is more time-efficient and yields
better cost solutions as compared to the
solutions obtained with the heuristic pro-
vided by Tempelmeier and Hilger [16] in
all instances tested.

The remainder of the paper is structured as fol-
lows. In the following section, we define the prob-
lem under consideration. Section 3 presents the
complete MIP model. In Section 4, we explain the
fix-and-optimize heuristic proposed for the prob-
lem. Next, we provide the results obtained by the
proposed heuristic and compare it to the results
of [16]. Finally, In Section 6, we summarize our
main findings and provide directions for future re-
search.

2. Problem definition

We consider a firm producing N items on a single
production resource over a finite planning hori-
zon of T discrete time periods. For each period
t, the total production quantity of all items is
limited with the maximum available capacity Ct.
We assume that period demands are independent,
but not necessarily identically distributed, ran-
dom variables over the planning horizon. We let
dpt denote the random demand of an item p in pe-
riod t and assume that dpt follows a known prob-
ability distribution function. For convenience, to-
tal random demand up to and including period
t of an item p, i.e.

∑t
i=1 dpi, is denoted as Dpt.

A fixed setup cost K incurred in each production
period for each item. Demand not satisfied is as-
sumed to be backlogged with a unit backlogging
cost b. Similarly, there is a holding cost h charged
for each unit of excess production over demand at
the end of each period. For the sake of simplic-
ity, we assume that production quantities are re-
ceived instantaneously and unit production costs
are negligible. The problem aims to determine
production periods and corresponding production
quantities for each item so as to minimize the to-
tal expected cost. Also, these decisions are made
at the beginning of the planning horizon following
the static uncertainty strategy.

Now, let us define interval [i, j) as production cy-
cle for item p if i and j are consecutive production
periods for item p. That is, a production order
takes place in i and j but not in between. Then,
we can derive an expression for the expected to-
tal cost belonging to item p within this production
cycle as follows;

K +

j−1∑
t=i

[
h(y − EDpt) + (h+ b)E(y −Dpt)

−]
(1)

where y is the cumulative production quantity of
item p in interval [1, i], E is an expectation op-
erator, and E(y − Dpt)

− represents the expected
magnitude of stockouts of item p in period t. It
is also well-known that E(y−Dpt)

− is referred to
as the first-order loss function (see e.g. [30]).

Here, we remark that Eq. (1) is non-linear since
it includes the first-order loss function which
is known to be a decreasing, non-negative val-
ued, and convex function [31]. Therefore, one
needs to tackle this non-linearity while building
its MIP formulation. A common way to han-
dle this issue in relevant literature is to use a
piecewise linear approximation of the original loss
function (see e.g. [32], [33], [34]). To do so,
one is required to have a finite number of lin-
ear functions whose pointwise maximum could
provide a piecewise linear approximation of the
convex first-order loss function. Now, consider
a set of intercept and slope pairs, i.e. Yt =
{(α1, β1), (α2, β2), . . . , (αm, βm)} in order to de-
fine m linear functions. Then, a piecewise linear
approximation of the first-order loss function for
an item p in any period t can be represented as
E(y−Dpt)

− ≈ max(α,β)∈Yt{α+β(y−EDpt)}. We
hereby assume that the number of linear segments
are given and corresponding slope and intercept
values are available. In order to demonstrate the
piecewise linear approximation approach given
above, we give the following illustrative example.
We also refer the interested readers to [35], [36],
[37] for more detailed discussion on the loss func-
tion and its piecewise linearization.

Example. We now illustrate the approximation
of an expected total cost of an item over a produc-
tion cycle by replacing the first-order loss function
in Eq (1) with its piecewise linear approximation.
More specifically, we consider a production cycle
comprising 3 discrete time periods in the illus-
trative example considered. It is assumed that
demands in each period are normally distributed
with mean values E dt ∈ {30, 100, 50} and fixed
coefficient of variation ρ = 0.2. Other cost pa-
rameters are K = 250, h = 1, b = 10. In Fig.
1, we show the approximation of a cost function
with four line segments. The expected total cost
is equal to 534.696 whereas the approximated cost
is 510.183. Note that the piecewise linearization
yields better results when the number of line seg-
ments are increased.
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Figure 1. Piecewise linearization of
the expected production cycle cost.

3. Model formulation

In the context of the static-uncertainty strategy,
we aim to determine all decisions regarding to
the production of N items at the beginning of
the planning horizon. Therefore, the solution of
this problem corresponds to a production sched-
ule and respective production quantities for each
item. Here, we present the following decision vari-
ables in order to construct the MIP model.

xpij: binary variable that takes the value of 1 if
[i, j) is a production cycle for item p and
0, otherwise;

qpij: expected cumulative production quantity
up to ith period (including period i) if
[i, j) is a production cycle for item p and
0, otherwise

Hpijt: approximate loss function value of an item
p at period t if [i, j) (i ≤ t and j > t) is a
production cycle for item p and 0, other-
wise.

Now, we provide the complete MIP formulation
of the problem below.

min
N∑
p=1

T∑
i=1

T+1∑
j=i+1

(
Kxpij +

j−1∑
t=i

(h (qpij − EDptxpij)

+(h+ b)Hpijt)

)
(2a)

subject to,

t−1∑
i=1

xpit =

T+1∑
j=t+1

xptj , p ∈ [1, N ], t ∈ [2, T ],

(2b)

T+1∑
j=2

xp1j = 1, p ∈ [1, N ], (2c)

T∑
i=1

xpi,T+1 = 1, p ∈ [1, N ], (2d)

qpij ≤

(
i∑
t=1

Ct

)
xpij , (2e)

p ∈ [1, N ], i ∈ [1, T ], j ∈ [i+ 1, T + 1],

N∑
p=1

T+1∑
j=2

qpij ≤ C1, (2f)

N∑
p=1

 T+1∑
j=t+1

qptj −
t−1∑
i=1

qpit

 ≤ Ct, (2g)

t ∈ [2, T ],

t−1∑
i=1

qpit ≤
T+1∑
j=t+1

qptj , p ∈ [1, N ], t ∈ [2, T ], (2h)

Hpijt ≥ αxpij + β (qpij − EDptxpij) , (2i)

p ∈ [1, N ], i ∈ [1, T ], j ∈ [i+ 1, T + 1],

t ∈ [i, j − 1], (α, β) ∈ Yit,
Hpijt ≥ 0, qpij ≥ 0, xpij ∈ {0, 1}. (2j)

The objective function (2a) minimizes the sum
of expected total costs over the planning hori-
zon for each item. Notice that the total expected
cost expression vanishes if the corresponding [i, j)
is not a production cycle for item p. As such,
this expression indeed sum up the total expected
costs of valid production cycles, i.e. correspond-
ing xpij = 1. Constraints (2b)–(2d) are the con-
ventional flow conversation equations. In par-
ticular, constraint (2b) guarantees that, for any
item p, if a production cycle ends at any period t
then the subsequent cycle must start in t. For
a given item, constraint (2c) states that there
should be a production cycle starting at the very
first period. In a similar manner, (2d) ensures



A fix-and-optimize heuristic for the capacitated multi-item stochastic lot-sizing problem 45

that the last production cycle of any item has to
end when the planning horizon is over. The con-
straint (2e) ensures that qpij takes a positive value
only when [i, j) is a production cycle for item p.
Constraints (2f) and (2g) state that the total pro-
duction quantity of all items in period t is ca-
pacitated and can not exceed the given capacity
limit Ct. Constraint (2h) guarantees that the cu-
mulative production quantity of an item must be
non-decreasing throughout the planning horizon.
As discussed in the earlier section, a lower bound
on the approximate loss function value Hpijt is set
with constraint (2i). Notice that the lower bound
is established only if the [i, j) is a production cy-
cle, whereas the expression vanishes, otherwise.

4. Fix-and-optimize heuristic

As we mentioned earlier, single-item CLSP is a
challenging problem even when period demands
are assumed to be deterministic. Naturally, the
problem becomes even more challenging as sto-
chastic demands and multiple items are of con-
cern. The difficulty in solving the proposed math-
ematical model mainly springs from the abun-
dance of the binary setup variables in use. At
this point, the fix-and-optimize approach arises
as a promising heuristic as it aims to find a near-
optimal solution to an MIP formulation by solv-
ing series of sub-problems in an iterative fashion.
A sub-problem is the reduced form of the origi-
nal problem where a set of decision variables are
fixed in value whereas the remaining set are left
to be optimized. As such, fix-and-optimize heuris-
tics often provide high quality solutions especially
when the binary decision variables are vast. Also,
it is known for its ease of implementation, and
thus, has been commonly adopted in various lot-
sizing problems over the last decade (see e.g. [15],
[14], [16]). We hereby employ the variant of the
fix-and-optimize heuristic proposed by Sahling et
al. [38]. Furthermore, we provide a novel item-
period oriented decomposition scheme employed
within the adopted fix-and-optimize heuristic.

We can briefly summarize how the adopted fix-
and-optimize heuristic works as follows. In each
iteration, the binary decision variables are divided
into two sets, i.e. set of variables fixed (SF) and
set of variables to be optimized (SO). Then, all
continuous variables and SO are optimized with
a set of fixed values for SF obtained from pre-
vious iterations. The sub-problems generated in
each iteration are formulated as MIP models and
solved by off-the-shelf MIP solvers. In the next
iteration, SF and SO are updated and then the
same steps are followed until the heuristic reaches
to a termination criteria. For more information

on the fix-and-optimize heuristic, the reader can
be referred to the studies of Pochet and Wolsey
[39] and Sahling et al. [38]. In what follows, we
provide details of the proposed fix-and-optimize
heuristic.

4.1. Item-period oriented decomposition
scheme

We propose an item-period oriented decomposi-
tion scheme for generating the sub problems (i.e.
SF and SO) in each iteration. This decomposition
scheme focuses on both items and time periods.
In particular, it decomposes the entire set of items
and the complete planning horizon into subsets of
items and time windows. Here, the decomposed
items and/or periods set the binary variables to
be optimized. The decomposition scheme is char-
acterized by the following input parameters; the
number of items to be optimized (wit) in each it-
eration, the number of periods considered in each
time window (wper), and the rate of overlapping
time periods to be optimized within two consec-
utive iterations (ort). Subsets of items and time
windows are generated once the input parame-
ters are given. For simplicity, we do not consider
all possible subsets of items in our item decom-
position scheme and restrict our attention solely
on the subsets of items with consecutive indices
where overlapping is not allowed. For the sake
of brevity, we refer subsets of items as item win-
dows and denote them as intervals – [i, j] for any
given i ≤ j. For instance, let us consider an il-
lustrative toy example where the length of the
planning horizon is 4 periods and the number of
items is 4. Also, let the decomposition scheme be
wit = 2, wper = 2 and ort = 0.5. Then, we have
three different time windows as, [1, 2], [2, 3], and
[3, 4], and two different subsets of items as [1, 2]
and [3, 4].

In this decomposition scheme, item and time win-
dows are combined as follows. Let N and K re-
spectively denote the ordered set of item windows
and the ordered set of time windows. Then, we
also let the ordered set NK denote the cartesian
product of the associated sets, i.e. NK = N ×K.

Each item and time window combination (γ, τ) ∈
NK defines a sub-problem to be solved in each it-
eration of the proposed fix-and-optimize heuristic.
Furthermore, for any given sub-problem (γ, τ), we
define a set wγ,τopt that contains item and produc-
tion cycle triplets (p, i, j) that is related to both
item window γ and time window τ . That is,
wγ,τopt = {(p, i, j) : p ∈ γ, i ∈ τ, j − 1 ∈ τ, i < j}.
For convenience, we also define the complement of
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Figure 2. Example – fix-and-optimize heuristic with item-period oriented decomposition scheme.

wγ,τopt as wγ,τfix. The latter shows which binary vari-

ables are fixed, whereas the former refers which
variables are to be optimized. For any given it-
eration, one can formulate sub-problem (γ, τ) by
embedding the following constraints into the MIP
model given in Section 3

xpij = x̂pij ∀(p, i, j) ∈ wγ,τfix (3)

where x̂pij denotes the value of the binary setup
variable xpij in the best solution ever achieved
in earlier iterations of the algorithm. After fix-
ing the binary variables as shown in Eq. (3), a
limited number of binary variables provided in
the set wγ,τopt are optimized by means of the off-
the-shelf MIP solvers and then the minimum cost
setup pattern is obtained. Then, the next itera-
tion starts.

To better illustrate how the item-period oriented
decomposition scheme works, we provide Fig. 2
for the toy example given above. Here, for each
iteration, we have four boxes representing items;
and for each item, we have four boxes represent-
ing periods. Also, for any item, the gray boxes
stand for the periods where setup decisions are
optimized, whereas the rest represent the periods
in which setup decisions are fixed to the minimum
cost setup pattern obtained in earlier iterations
for the corresponding item.

4.2. The algorithm

We provide the basic structure of the adopted fix-
and-optimize heuristic with item-period oriented
decomposition in Algorithm 1. The algorithm
starts with an initial solution. This solution can
be found using one of the construction heuristics
in the literature. Nevertheless, since the aim is
to reduce the computational time, we use lot-for-
lot setup pattern as a starting point as it is the
case in [16]. Therefore, we first let xpii+1 = 1
for all p ∈ [1, N ] and i ∈ [1, T ], and refer this

partial solution as xinit. Given this setup pat-
tern, the initial problem is solved using function
SolveInitMIP(). This function receives xinit as
an input parameter and determines the optimal
lot sizes and then returns the objective function
value Zinit (line 2). Respectively in lines 3 and
4, the initial solution xinit and the objective func-
tion value Zinit are set as the best setup pattern
x∗ and the best objective value Z∗ achieved so
far.

After obtaining the initial solution, item-period
oriented decomposition scheme is applied through
function decompose() as described in Section 4.1.
Specifically, this function first determines the all
item and time windows based on the given in-
put parameters (i.e. wit, wper, ort). Then, it
generates a set NK that is comprised of all item
and time window combinations. Here, each ele-
ment in NK corresponds to a sub-problem and
we iteratively solve those (lines 6–13). In each
sub-problem, initially the associated sets wγ,τfix
and wγ,τopt are defined (line 7). Subsequently, the
current sub-problem is solved using the function
SolveMIP() based on the input parameters x∗,
wγ,τopt and wγ,τfix. This function operates as follows.

It first fixes the value of binary setup variables
associated with wγ,τfix to the values in the best so-

lution achieved so far, i.e. x∗. Then, the resulting
sub-problem is solved via an MIP solver. Finally,
this function returns the optimal setup pattern x̃
and the corresponding objective function value Z̃
for the sub-problem under consideration (line 8).
In the inner loop (lines 9–12), the best objective
value Z∗ and the corresponding setup pattern x∗

is updated if the objective value obtained in the
current sub-problem Z̃ is less than Z∗. In the final
step of the each iteration, all variables previously
fixed are set free. The algorithm terminates when
all sub-problems are solved.
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Algorithm 1: Fix-and-optimize heuristic

Input : Problem parameters
Output: x∗, Z∗ ← best solution and the

best objective function value
found to the model given in
Section 3

1 Initialize xinit;

2 Zinit ← SolveInitMIP(xinit);

3 x∗ = xinit;

4 Z∗ = Zinit;

5 NK ← decompose(wit, wper, ort);

6 for (γ, τ) ∈ NK do
7 determine the sets wγ,τfix and wγ,τopt ;

8 (x̃, Z̃)← SolveMIP(x∗, wγ,τfix, w
γ,τ
opt);

9 if Z̃ ≤ Z∗ then
10 Z∗ = Z̃

11 x∗ = x̃

12 end

13 Unfix all previously fixed variables

14 end

5. Numerical study

In this section, we aim to conduct a numerical
study in order to show the performance of the pro-
posed heuristic – referred to as PH as compared to
that Tempelmeier and Hilger [16] – referred to as
TH. In what follows, we first present the design of
the numerical study and then provide a discussion
regarding our results and main findings.

In our test instances, we consider 32 discrete time
periods and 32 items. For each item, period de-
mands over the planning horizon are assumed to
be normally distributed random variables with
fixed coefficient of variation ρ = 0.2. The mean
demand values of each item are drawn from a dis-
crete uniform distribution on interval [1, 100]. We
have generated 3 random instances. We use the
same holding cost h = 1 and backlogging cost
b = 10 in all instances. Also, we consider four
fixed production costs K ∈ {250, 500, 1000, 2000}.
Following [16], we use three capacity factors ψ ∈
{1.1, 1.5, 2} in order to specify the capacity level
over the planning horizon. More specifically, the
capacity level can be calculated as follows.

C = ψ ×

N∑
k=1

T∑
t=1

E dkt

T

Note that the capacity level C gets tighter as the
value of capacity factor ψ decreases.

It should be remarked that the performance of
a fix-and-optimize heuristic strongly depends on
the decomposition scheme as it determines both
the size and number of sub-problems to be solved.
One would easily expect that the optimal solu-
tion of a sub-problem would approach to the op-
timal solution of the original problem as the size
of the sub-problem increases. As such, the so-
lution quality would improve as the size of sub-
problem increases. Yet, it could be very challeng-
ing to solve large sub-problems from the compu-
tational point of view. To be able to demonstrate
a detailed picture of how the proposed fix-and-
optimize heuristic performs with varying decom-
position schemes, we conduct a search on an ex-
tensive range of decomposition parameters. As
stated earlier, we characterize the decomposition
scheme with parameters (wit, wper, ort). More
specifically, as wit and/or wper increases, the
size of sub-problems increases. To control the
growth of the sub-problem size, we define a set
on wit×wper ∈ {8, 16, 32, 64, 128, 256, 512, 1024}.
In this set, we have excluded instances such as 2
and 4 since the resulting sub-problems are rather
trivial and we predict that the solution quality
of these cases would be poor. For values of wit
and wper, we use orders of 2 where we omit
cases larger than 32 (i.e. 25) due to the required
excessive computational complexity in resulting
sub-problems. Finally, we use the constant over-
lap rate ort = 0.5. This leads to 26 different
(wit, wper, ort) triplets in total. Table 1 presents
all the values of decomposition scheme used in the
numerical study.

Table 1. Parameters of the decom-
position scheme.

(wit, wper) (1,8), (2,4), (4,2), (1,16), (2,8),
(4,4), (8,2), (2,16), (4,8), (8,4),
(16,2), (2,32), (4,16), (8,8), (16,4),
(32,2), (4,32), (8,16), (16,8),
(32,4),(8,32), (16,16), (32,8),
(16,32), (32,16), (32,32)

ort 0.5

The fix-and-optimize heuristics are implemented
in Python where we use Gurobi v6.5.2 as MIP
solver. All numerical experiments are performed
on an Intel Core i7-5500 CPU with 8 GB RAM.
Since we may not be able to solve each sub-
problem to optimality within a reasonable time,
we impose a time limit for each-sub-problem. In
particular, the computational time required to
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Table 2. Results of the numerical study.

Instance TH PH
GAP3

# ψ K DPAR TIME CTIME GAP1 DPAR TIME CTIME GAP2

1

1.1

250 (2,8) 276.2 281.3 0.04 (32,8) 157.9 600.4 -4.22 -0.56
500 (1,16) 265.0 289.6 0.00 (32,8) 301.5 600.5 -7.71 -0.90
1000 (1,16) 263.2 328.2 -0.17 (16,8) 223.4 600.6 -8.14 -1.53
2000 (1,16) 207.8 371.8 0.31 (8,8) 203.9 601.1 -5.65 -0.66

1.5

250 (1,16) 160.4 203.7 0.00 (32,16) 129.9 600.3 -4.68 -0.46
500 (1,16) 138.2 210.4 0.00 (32,16) 182.6 600.2 -6.38 -0.99
1000 (1,16) 109.8 220.5 0.00 (32,16) 207.7 600.2 -7.96 -2.31
2000 (1,16) 80.5 224.0 0.00 (16,16) 218.9 600.4 -7.05 -2.43

2

250 (1,16) 151.2 201.0 0.00 (32,16) 103.2 600.2 -3.09 -0.62
500 (1,16) 130.4 200.6 0.00 (32,16) 115.3 600.2 -5.11 -1.10
1000 (1,16) 100.2 205.1 0.00 (32,16) 127.1 600.2 -6.17 -1.62
2000 (1,16) 71.6 205.8 0.00 (32,16) 157.3 600.2 -6.34 -2.13

2

1.1

250 (1,16) 246.1 255.4 0.00 (16,8) 96.2 600.7 -4.22 -0.76
500 (1,16) 232.2 274.5 -0.01 (16,8) 161.3 600.6 -6.92 -1.27
1000 (1,16) 289.1 296.5 0.16 (8,16) 399.8 600.7 -8.33 -1.36
2000 (4,8) 587.9 205.7 -0.74 (8,8) 198.0 601.1 -5.96 -0.94

1.5

250 (1,16) 168.1 205.5 0.00 (32,16) 145.7 600.2 -3.93 -0.82
500 (1,16) 149.9 209.8 0.00 (32,16) 153.6 600.2 -6.17 -1.44
1000 (1,16) 115.3 219.8 0.00 (32,16) 171.6 600.2 -8.26 -2.19
2000 (8,8) 601.3 85.1 -0.17 (8,16) 189.8 600.7 -4.74 -1.51

2

250 (1,16) 158.5 200.2 0.00 (32,16) 123.6 600.3 -3.91 -0.51
500 (1,16) 134.6 202.1 0.00 (32,16) 117.4 600.2 -4.55 -0.81
1000 (1,16) 104.8 207.4 0.00 (32,16) 116.9 600.2 -6.28 -1.90
2000 (1,16) 74.8 214.1 0.00 (32,16) 146.3 600.2 -6.90 -2.18

3

1.1

250 (2,8) 289.7 282.2 0.00 (32,8) 157.8 600.4 -5.41 -0.85
500 (1,16) 270.9 296.7 -0.01 (32,8) 298.0 600.4 -8.27 -1.26
1000 (1,16) 249.0 325.9 0.00 (8,8) 196.0 601.1 -5.44 -0.53
2000 (1,16) 221.2 363.0 -0.03 (8,8) 208.1 601.1 -6.28 -0.23

1.5

250 (1,16) 169.6 205.7 0.00 (32,16) 126.4 600.2 -3.56 -0.44
500 (1,16) 140.7 210.3 0.00 (32,16) 151.6 600.2 -5.90 -0.83
1000 (1,16) 113.9 217.9 0.00 (32,16) 190.6 600.2 -7.90 -1.76
2000 (2,16) 600.8 212.9 -0.41 (8,16) 165.1 600.7 -5.03 -1.29

2

250 (1,16) 163.0 201.9 0.00 (32,16) 111.9 600.2 -3.90 -0.27
500 (1,16) 133.2 203.8 0.00 (32,16) 138.6 600.2 -5.73 -0.94
1000 (1,16) 100.8 204.3 0.00 (32,16) 120.1 600.2 -6.59 -1.69
2000 (1,16) 71.1 210.0 0.00 (32,16) 151.2 600.2 -8.06 -1.96

solve any sub-problem is limited with 600/` sec-
onds, where ` refers to the total number of sub-
problems generated by the corresponding decom-
position scheme. It should also be noted that
while employing piecewise linearization approach,
we have used 11 pieces (see e.g. [37]) to approxi-
mate the objective function values of formulation
in Eq (2) and the model presented in Tempelmeier
and Hilger [16].

For each test instance, we obtain the cost figures
and solution times for both heuristics using the

decomposition parameters given in Table 1. That
is, we run PH and TH 936 times (3× 3× 4× 26).
In Table 2, we present the results of the best solu-
tions obtained by using PH and TH with varying
decomposition parameters for each problem in-
stance. In Table 2, we report the following statis-
tics. DPAR represents the decomposition param-
eters (wit, wper) used to yield the best objective
value. TIME reports the computation time of the
associated heuristic with the pivot decomposition
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parameters (in seconds), whereas CTIME corre-
sponds to that of the other heuristic. GAP1 and
GAP2 show the percentage objective value differ-
ence between PH and TH with the same pivot
DPAR values. As such, GAP1 (GAP2) measures
how far off PH (TH) from TH (PH) where TH
(PH) reaches its best. Finally, GAP3 shows the
percentage cost gap between the best solutions
obtained by PH and TH. Let us respectively de-
note the cost figures obtained by PH and TH as
C(PH) and C(TH). Then, all GAP statistics are
calculated as follows.

100× C(PH) − C(TH)

C(TH)

Here, we remark that a negative GAP value im-
plies that PH exhibits better performance as com-
pared to TH in the instance under consideration.

The results of our numerical study show that PH
dominates TH in expected cost performance for
all instances tested. GAP3 clearly demonstrates
that PH always provide lower cost solutions in
their respective best settings. Even in the set-
tings favorable for TH, GAP1 reveals that PH per-
forms almost always better (or even) in expected
cost. Obviously, GAP2 becomes more dramatic
in settings favorable for PH. In line with earlier
expectations, the results show that high quality
solutions are always obtained in settings having
relatively large size sub-problems (wit × wper).
In most of the instances considered, TH yields
its best solutions with decomposition parameters
(1, 16). If we turn our attention to the settings
favorable for PH, it is observed that TH fails
to solve any sub-problem to optimality within a
given time limit when larger size of sub-problems
are of concern. This result confirms the earlier
findings indicating that the total number of bi-
nary variables to be optimized in a sub-problem
should be 40 at most while TH is considered (see
e.g. [16]). On the other hand, PH obtains its best
solutions mostly with decomposition parameters
(32, 16). This implies that PH can solve sub-
problems larger in size as compared to TH. From
the computational point of view, the search con-
ducted on the decomposition parameters reveals
that the computation time of PH mostly depend
on the wper value chosen. That is because the set
of binary variables to be optimized, wγ,τopt , grows
quadratically with wper, whereas it is linearly de-
pendent on wit.

If we just simply look at TIME and CTIME sta-
tistics, it appears that PH is more time-efficient
although we should admit that there exists some
instances where TH terminates faster. If we take

a closer look to the instances tested, it can be
observed (not very consistent though) that the
cost gap between two heuristics reach higher lev-
els as capacity factor and fixed ordering cost in-
crease. Consequently, we can conclude that the
PH arises as the promising MIP-based heuristic
that can solve large-sized realistic problem in-
stances within reasonable computational times.

6. Conclusion and future research
directions

In this paper, we consider a capacitated multi-
item stochastic lot-sizing problem. In particu-
lar, we extend the MIP models provided in [23]
and [29] to the setting in which multi-item and
backlogging cost are of concern. Nevertheless, the
MIP models are often fail to solve the problem
under consideration within a reasonable time as
is the case in the proposed formulation. There-
fore, we propose an item-period oriented decom-
position scheme and combine it with a fix-and-
optimize heuristic approach in order to obtain
fast and high quality solutions. We then com-
pare the performance of the proposed heuristic
with the heuristic presented in Tempelmeier and
Hilger [16]. The results clearly show that the
proposed heuristic yields lower cost solutions as
compared to the benchmark heuristic. We also
demonstrate that the proposed heuristic performs
very well for large-size problems as well. The re-
sults further reveal that the proposed heuristic
exhibits a very competitive performance even for
decomposition schemes where benchmark heuris-
tic reaches its best.

Several research directions could be considered for
future work. The extension of the model consid-
ered in this study to the case of setup carry-overs
appears to be very promising. Also, we use a lot-
for-lot setup pattern so as to obtain the initial
solution. Therefore, it would also be of interest
to combine the proposed heuristic with other well-
known construction heuristics. Another promis-
ing research avenue would be to analyse a pro-
duction system with multiple parallel machines
instead of assuming single production resource.
Finally, extending the mathematical model and
the heuristic proposed in this study to the multi-
level production systems may also be of interest.
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