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Since the need to investigate many aspects of q-difference equations cannot be
ruled out, this article aims to explore response of the mechanism modelled by
linear and nonlinear q-difference equations. Therefore, analysis of an important
bundle of nonlinear q-difference equations, in particular the q-Bernoulli differ-
ence equation, has been developed. In this context, capturing the behaviour of
the q-Bernoulli difference equation as well as linear q-difference equations are
considered to be a significant contribution here. Illustrative examples related
to the difference equations are also presented.
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1. Introduction

Discretization of differential equations is an essen-
tial and necessary step in capturing the discrete
behavior of the processes governed by the corre-
sponding equations. One can consider an equally
effective q-discretization based on geometric pro-
gression rather than conventional discretization
regarding arithmetic progression. This approach
gives rise to q-difference equations in which dif-
ferential equations are encountered as q → 1.
q-Difference equations are important models for
representing a large number of physical events en-
countered in various fields of science [1–8]. The q-
difference equations were considered at the begin-
ning of the nineteenth century [9–14]. Interested
readers can check references [15–19] for historical
development of the subject. Although there are
important studies in the literature [20–26] on lin-
ear and nonlinear q-difference equations, the need
to investigate many aspects of these topics can-
not be ignored. Note that, especially, analysis of
the nonlinear q-difference equations is still in the
initial stages and many aspects of this analysis
need to be discovered. Therefore, albeit small, an

important bundle of nonlinear q-difference equa-
tions, in particular q-Bernoulli difference equa-
tion, will form the main backbone of this study.
To the best knowledge of the authors, the anal-
ysis of most nonlinear q-difference equations is
yet to be developed. Therefore, the q-Bernoulli
difference equation, as well as linear q-difference
equations, has been considered in order to make
a significant contribution here.

2. Preliminaries

Let us recall some basic concepts of q-calculus
[17–19,27].

For 0 < q < 1, we define the q-derivative of a real
valued function f(x) as

Dqf(x) =
f(qx)− f(x)

(q − 1)x
, Dqf(0) = lim

x→0
Dqf(x).

The higher order q-derivatives are given by

D0
qf(x) = f(x), Dn

q f(x) = DqD
n−1
q f(x),

where n ∈ N.
*Corresponding author
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The formulas for the q-derivative of a sum, a prod-
uct and a quotient of functions are, respectively;

Dq

(
f(x) + g(x)

)
= Dq(f(x)) +Dq(g(x))

Dq

(
f(x)g(x)

)
= f(qx)Dq(g(x)) + g(x)Dq(f(x))

Dq

(f(x)

g(x)

)
=
g(x)Dq(f(x))− f(x)Dq(g(x))

g(x)g(qx)

The q-analogue of any real number t is defined

as [t]q = 1−qt
1−q and in the case, if t is a positive

integer we have [t]q = 1−qt
1−q = 1 + q + · · · + qt−1.

Furthermore, the q-analogue of factorial, denoted
by [n]q!, is defined as

[n]q! =

{
1 if n = 0,

[n]q[n− 1]q . . . [1]q if n = 1, 2, . . . .

The q-analogue of (a+ x)n, denoted by (a+ x)nq ,
is defined as

(a+x)nq =

{
1 n = 0,∏n−1
m=0(a+ xqm) n = 1, 2, . . . ,

(1)

and it is also defined for any complex number α
as

(a+ x)αq =
(a+ x)∞q

(a+ qαx)∞q
,

where (a + x)∞q := limn→∞
∏n
m=0(a + xqm) and

the principal value of qα is taken and it is assumed
that 0 < q < 1. The q-Taylor series expansion of
(1) about x = 0 is

(a+ x)nq =
n∑
k=0

(
n

k

)
q

an−kxkq(
k
2) (2)

where (
n

k

)
q

=
[n]q!

[k]q![n− k]q!

are called q-binomial coefficients. Formula (2) is
called Gauss’s q-binomial formula. The interested
reader can find some important identities involv-
ing q-binomial coefficients in [28].

Two q-exponential functions are defined as

exq =
1

(1− (1− q)x)∞q
=

∞∑
n=0

1

[n]q!
xn, |x| < 1.

(3)

Exq = (1 + (1− q)x)∞q =

∞∑
n=0

1

[n]q!
xnq(

n
2), x ∈ C.

(4)

One can see that exqE
−x
q = 1 and exq−1 = Exq .

The q-derivative of these two q-exponential func-
tions can be found as follows:

Dqe
ax
q = a eaxq .

DqE
ax
q = a Eaqxq .

Let for some 0 ≤ α < 1, the function |f(x)xα| is
bounded on the interval (0, A], then Jakson inte-
gral defines as∫

f(x)dqx = (1− q)x
∞∑
j=0

qjf(qjx),

converges to a function F (x) on (0, A] , which is a
q-antiderivative of f(x). For entire functions f(x)
one can easily see that this q-integral approaches
the Riemann integral as q → 1, and also that the
q-differentiation and q-integration are inverse to
each other

Dq

∫
f(x)dqx = f(x),∫

Dqf(x)dqx = f(x)− f(0).

Suppose 0 < a < b, the definite q-integral is de-
fined as

b∫
0

f(x)dqx = (1− q)b
∞∑
j=0

qjf(qjb),

and
b∫
a

f(x)dqx =

b∫
0

f(x)dqx−
a∫

0

f(x)dqx.

3. q-Difference equations

Since some natural processes are represented by
linear or mostly nonlinear q-difference equations,
a broad range of attention has been paid on the
discovery of the behavior of the corresponding
processes. In this context, we will first examine
linear models and then more realistic nonlinear
ones as follows.

3.1. First-order linear q-difference
equations

A first order q-difference equation is linear if it
has the form

Dqy(x) + p(x)y(x) = g(x) (5)

or
Dqy(x) + p(x)y(qx) = g(x) (6)

for some functions p(x) and g(x). Equation (5)
can be obtain from (6) by replacing x by q−1x
and then q by q−1 and vice versa. Therefore we
consider to solve a first order q-difference equa-
tion which is in the form of (5) and also p(x) be
polynomial function.

To easily solve the first order q-difference equa-
tions, we need to give the following definitions.
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Definition 1. For any arbitrary function f(x),

Aq(f(x)) =
∞∏
j=0

(1 + (1− q)f(qjx)),

Bq(f(x)) =
∞∏
j=0

1

(1− (1− q)f(qjx))
.

Remark 1. In particular, Aq(0) = Bq(0) = 1 and
for arbitrary c, Aq(cx) = Ecxq and Bq(cx) = ecxq .
In case of f(x) = xα, one can see that Aq(x

α) =

E
xα/[α]q
qα and Bq(x

α) = e
xα/[α]q
qα where α 6= 0. Note

that Aq(−f(x)) = 1/Bq(f(x)).

With the selections of f(x) = 1 and f(x) =
−1, one can see that Aq(1) =

∏∞
j=0(2 − q) and

Aq(−1) =
∏∞
j=0 q, respectively. Here

Aq(1) =


0 if q ∈ (1, 3),

1 if q = 1,

diverges otherwise,

and

Aq(−1) =


0 if q ∈ (−1, 1),

1 if q = 1,

diverges otherwise.

Proposition 1. For any non-constant function
f(x),

Dq

(
Aq(f(x))

)
=
f(x)

x
Aq(f(qx)),

Dq

(
Bq(f(x))

)
=
f(x)

x
Bq(f(x)).

Proof. Let us use the definition to find the q-
derivative of Aq(f(x)). Then

Dq

(
Aq(f(x))

)
=
Aq(f(qx))−Aq(f(x))

(q − 1)x

=

∏∞
j=1(1 + (1− q)f(qjx))

(q − 1)x

−
∏∞
j=0(1 + (1− q)f(qjx))

(q − 1)x

=
1− (1 + (1− q)f(x))

(q − 1)x

×
∞∏
j=1

(1 + (1− q)f(qjx))

=
f(x)

x
Aq(f(qx)).

In finding the q-derivative of Bq(f(x)), consider-
ation of the property Aq(−f(x)) = 1/Bq(f(x))

leads to

Dq

(
Bq(f(x))

)
= Dq

[
1

Aq(−f(x))

]
=

−DqAq(−f(x))

Aq(−f(x))Aq(−f(qx))
.

Substitution of the q-derivative of Aq(f(x)) in the
last result yields

f(x)
x Aq(−f(qx))

Aq(−f(x))Aq(−f(qx))
=
f(x)

x
Bq(f(x)).

�

A generalized approach is presented here for solv-
ing the first order q-difference equations in (5).
Let us then multiply Dqy(x) + p(x)y(x) = g(x)
by Aq(qxp(qx)) to reach

g(x)Aq(qxp(qx)) = Aq(qxp(qx))Dqy(x)

+ p(x)Aq(qxp(qx))y(x).

Notice that Dq

(
Aq(xp(x))

)
= p(x)Aq(qxp(qx)),

and thus

g(x)Aq(qxp(qx)) =Aq(qxp(qx))Dqy(x)

+ y(x)DqAq(xp(x)).

The left hand side of the last equation is the q-
derivative of Aq(xp(x))y(x). The corresponding
q-difference equation has become

Dq

(
Aq(xp(x))y(x)

)
= g(x)Aq(qxp(qx))

which can be q-integrated to obtain

Aq(xp(x))y(x) =

∫
g(x)Aq(qxp(qx))dqx+ c.

Therefore this equation can be solved for y:

y(x) = Bq(−xp(x))

∫
g(x)Aq(qxp(qx))dqx (7)

+ c Bq(−xp(x)).

In similar manner, equation (6) can also be solved.
Then let us multiply Dqy(x) + p(x)y(qx) = g(x)
by Bq(xp(x)). At the end of this process, the so-
lution for y is found to be:

y(x) = Aq(−xp(x))

∫
g(x)Bq(xp(x))dqx (8)

+ cAq(−xp(x)).

In order to illustrate the previous discussion, at-
tention can be paid on the following q-difference
equations:

Example 1. Let us consider the equation

Dqy(x)− y(x) = xm



Behaviour of the first-order q-difference equation 71

where m ≥ 0. Use of (7) for this equation gives
rise to the solution

y(x) = Bq(x)

∫
g(x)Aq(−qx)dqx+ c Bq(x)

= exq

∫
xmE−qxq dqx+ c exq

= exq Γq(m+ 1) + c exq

where Γq(m+ 1) =
∫
xmE−qxq dqx.

Example 2. One can now take

Dqy(x) + y(x) = αeβxq

where α, β are real numbers and β 6= −1. Utility
of (7) for the current equation leads to

y(x) = Bq(−x)

∫
g(x)Aq(qx)dqx+ c Bq(−x)

= α e−xq

∫
eβxq Eqxq dqx+ c e−xq

= α
β+1e

βx
q + c e−xq .

Example 3. Let us now take into account

x1−nDqy(x) + [n]q y(x) = 1

where n 6= 0. Consideration of (7) gives

y(x) = Bq(−[n]q x
n)

∫
xn−1Aq([n]q q

nxn)dqx

+c Bq(−[n]q x
n)

= e−x
n

qn

∫
xn−1E

(qx)n

qn dqx+ c e−x
n

qn

= 1
[n]q

+ c e−x
n

qn .

Example 4. Consider the following q-difference
equation

x1−nDqy(x) + y(x) = ax1−n

where n is a positive real number. Then again

y(x) = Bq(−xn)

∫
aAq(q

nxn)dqx+ cBq(−xn)

= a e
− xn

[n]q

qn

∫
E

qnxn

[n]q

qn dqx+ c e
− xn

[n]q

qn

= a e
− xn

[n]q

qn x
∞∑
k=0

(1− q)kqn
(1− qn)kqn(1− qn+1)kqn

× ((1− q)(qx)n)kqn(
k
2) + c e

− xn

[n]q

qn

= a e
− xn

[n]q

qn x 1φ1(q; q
n+1; qn,−(1− q)(qx)n)

+ c e
− xn

[n]q

qn

where rφs is a q-hypergeometric series (see [18],
page 4).

Example 5. Consider the following q-difference
equation

Dqy(x) + xn−1y(x) = xn−1
n−1∏
i=1

E
qixn

[n]q

qn

where n is a positive integer greater than 1. Thus

y(x) = Bq(−xn)

∫
xn−1

n−1∏
i=1

E
qixn

[n]q

qn Aq(q
nxn)dqx

+ cBq(−xn)

= e
− xn

[n]q

qn

∫
xn−1

n∏
i=1

E
qixn

[n]q

qn dqx+ c e
− xn

[n]q

qn

= e
− xn

[n]q

qn

∫
xn−1Eqx

n

q dqx+ c e
− xn

[n]q

qn

= e
− xn

[n]q

qn xn
∞∑
k=0

(qxn)k

[k]q![n(k + 1)]q
q(
k
2) + c e

− xn

[n]q

qn

= e
− xn

[n]q

qn xnE

(1−qn)qn

(1−q2n)qn
qxn

q + c e
− xn

[n]q

qn .

where E
[n]qx
q =

∏n−1
i=0 E

qix
qn and E

(a+b)qx
q =∑∞

k=0
(a+b)kq x

k

[k]q !
q(
k
2).

3.2. q-Bernoulli difference equations

This section is to focus on more natural pro-
cesses described by the q-difference equations in
the form,

Dqn−1y(x) + p(x)y(x) = g(x)

∞∏
j=0

y(qjx)

y(qn+jx)
(9)

and

Dqn−1y(x) + p(x)y(qn−1x) = g(x)

∞∏
j=0

y(qjx)

y(qn+jx)

(10)

where p(x) is a polynomial, g(x) is a continuous
function and n is any real number. Note that
n 6= 0 and n 6= 1. Notice also that, as q → 1,
those q-difference equations (9) and (10) lead to
the usual Bernoulli equations.

To solve q-difference equation (9), it is first di-

vided by
∏∞
j=0

y(qjx)
y(qn+jx)

,

Dqn−1y(x)
∞∏
j=0

y(qn+jx)

y(qjx)
+p(x)

∞∏
j=0

y(qn+jx)

y(qj+1x)
= g(x).

(11)

Substitution of v(x) =
∏∞
j=0

y(qn−1+jx)
y(qjx)

is used

to convert the above equation into a q-difference
equation in terms of v(x). Yet, one can find the
q-derivative of v(x) as follows

Dqv(x) = Dq

[ ∞∏
j=0

y(qn−1+jx)

y(qjx)

]

=

∞∏
j=0

y(qn+jx)
y(qj+1x)

−
∞∏
j=0

y(qn−1+jx)
y(qjx)

(q − 1)x
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=
qn−1 − 1

q − 1

y(x)− y(qn−1x)

(qn−1 − 1)x

∞∏
j=0

y(qn+jx)

y(qjx)

= −[n− 1]qDqn−1y(x)

∞∏
j=0

y(qn+jx)

y(qjx)
.

Now, plugging of this result and v(x) value into
equation (11) gives the following solvable linear
form,

−1

[n− 1]q
Dqv(x) + p(x)v(qx) = g(x). (12)

This linear q-difference equation is solved for v(x)
as previously carried out. Then the solution v(x)
is used to find the required solution y(x) to the
original q-difference equation by plugging v(x)
back into

v(x) =

∞∏
j=0

y(qn−1+jx)

y(qjx)
.

Let us rewrite it as

y(x) =

{
y(qn−1x)v(qx)v(x) n 6= 2,
1

v(x) n = 2.

Then the previous expression can be rewritten for
y(x) as follows

• For 0 < q < 1, n > 1 and n 6= 2;

y(x) = y(0)

∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

• For q > 1 and n < 1;

y(x) = y(0)

∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

• For n = 2;

y(x) =
1

v(x)

• Otherwise

y(x) = y(∞)

∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

In a similar way, the q-difference equation in (10)
is converted to the following q-difference equation
in terms of v(x)

−1

[n− 1]q
Dqv(x) + p(x)v(x) = g(x) (13)

and then the required solution is found to be

• For 0 < q < 1, n > 1 and n 6= 2;

y(x) = y(0)

∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

• For q > 1 and n < 1;

y(x) = y(0)
∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

• For n = 2;

y(x) =
1

v(x)

• Otherwise

y(x) = y(∞)
∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

Example 6. Let us take the following q-difference
equation with the initial value

Dqy(x) + y(qx) = x2y(x)y(qx), y(0) = q−1.

This is a particular case of the q-Bernoulli differ-
ence equation for n = 2. Let v(x) = 1

y(x) . Now

the q-difference equation is transformed, depend-
ing on v(x), to

Dqv(x)− v(x) = −x2.
Reconsideration of Example 1 gives the solution
v(x) as

v(x) = exq (c− [2]q).

Now plugging the obtained result into v(x) = 1
y(x)

with the initial value condition leads us to find
the solution as y(x) = q−1E−xq . Illustrative be-

haviour of the required solution y(x) = q−1E−xq is
presented as seen in Figure 1.

 

 

y 

x 

Figure 1. Behaviour of the response
for various q values in Example 6.

Example 7. Now let us consider the following
special case of the q-Bernoulli difference equation
with the initial value

D
q
1
2
y(x) + y(q

1
2x) = x2

∞∏
j=0

y(qjx)

y(q
3
2
+jx)

, y(0) = q.

Here, n = 3
2 . Let v(x) =

∏∞
j=0

y(q
1
2+jx)

y(qjx)
. Then the

Bernoulli equation in term of v(x) is transformed
to

Dqv(x)− v(x) = −x2
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and the solution v(x) is found to be

v(x) = exq (c− [2]q).

Following the previous procedure results in the so-
lution y(x) as

y(x) = y(0)
∞∏
j=0

v(qj(n−1)+1x)

v(qj(n−1)x)

= q
∞∏
j=0

exq
1
2 j+1

q

exq
1
2 j

q

= qE−xq E−xq
1
2

q .

Physical behaviour represented by the required so-

lution y(x) = qE−xq E−xq
1
2

q is depicted illustra-
tively in Figure 2.
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x 

Figure 2. Behaviour of the response
for various q values in Example 7.

4. Conclusions and Recommendation

The curiosity to explore many natural processes
led us to discover the behaviour represented by
linear and nonlinear q-difference equations. In
particular, some part of the natural behaviour
defined by the corresponding equations has been
observed. Note that, the explanatory behaviour
of the q-Bernoulli difference equation as well as
linear q-difference equations has been seen to be
significantly captured. For the sake of making
them understandable, some illustrative examples
have also been presented. In an upcoming study,
with the similar approach, more realistic events
taking place in more complex environments can
be analyzed.
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