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1. Introduction

As the most basic nonlinear optimization problem
with continuous variables, unconstrained opti-
mization naturally arises in many disciplines such
as regression, image and signal processing, phys-
ical systems, optimal control and so on. Even,
based on penalization schemes, constrained non-
linear programming problems can be reformu-
lated as unconstrained problems [1]. Generally,
the problem can be defined as minimization of an
objective function that depends on real variables
without any restriction on their values.

Among the efficient tools for solving uncon-
strained optimization problems there are the trust
region (TR) methods and the line search (LS)
techniques [1]. In each iteration of a TR method,
a neighborhood is defined around the available
approximation of the solution, called the trust re-
gion, and then, an approximation of the objec-
tive function is minimized within the region to
achieve the new estimation. The term used for
the method originates from the fact that a local
approximation is trusted as the predictor of the

objective function behavior. In another guideline,
in each iteration of an LS method a search direc-
tion is defined at the available approximation of
the solution and then, the objective function is
minimized along the given direction to achieve the
new estimation. As known, an LS method often
requires more iterations to find a minimizer of the
objective function than does a TR method, while
computing the successive approximations of the
solution more quickly.

To evaluate acceptability level of the local approx-
imate model of the objective function in an arbi-
trary iteration of a TR method, a ratio is defined
often by dividing the distance of the objective
function values to the distance of their local ap-
proximations in the recent iterates. When the TR
ratio is small, the approximate model is found to
be a poor predictor of the objective function be-
havior. In such situation, the model should be
resolved in a smaller region. However, when the
TR ratio is large enough, the approximate model
is found to be a locally suitable predictor of the
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objective function behavior. So, the generated es-
timation of the solution should be accepted and
the region can be enlarged in the next iteration.
It is worth noting that to decrease computational
cost of the TR methods, the LS techniques can
be effectively employed in the case where the TR
ratio is small, as an alternative of resolving the
approximate model in a reduced neighborhood.
A review of the literature reveals an abundance
of the studies on the TR methods; see for exam-
ple [2–4] and the references therein.

Here, based on the simulated annealing strategy,
we develop a randomized TR–LS method. The
method is discussed in details in the next section.
We provide a test bed to shed light on the ad-
vantages of our heuristic algorithm in Section 3.
Finally, in Section 4 we come out with concluding
remarks.

2. A randomized trust region line

search algorithm

Consider the unconstrained optimization prob-
lem min

x∈Rn
f(x) in which the objective function

f : Rn → R is assumed to be continuously dif-
ferentiable. Iterative formula of the optimization
algorithms is generally in the following form:

x0 ∈ R
n, xk+1 = xk + sk, k = 0, 1, ...,

where sk is the step taken from xk. In a TR
method, often sk is an approximate solution of
the following subproblem, being a local quadratic
approximation of the objective function:

min
s∈Rn

mk(s) = fk + gTk s+
1

2
sTBks,

s.t. ||s|| ≤ ∆k,
(1)

where fk = f(xk), gk = ∇f(xk), Bk is an approx-
imation of the Hessian ∇2f(xk), ∆k > 0 is the
TR radius and ||.|| stands for the Euclidean norm.
Meanwhile, in an LS method we have sk = αkdk
where dk ∈ R

n is a descent search direction and

αk ≈ argmin
α>0

f(xk + αdk),

is called the step length.

To describe our randomization scheme, we use
the framework of the TR–LS algorithm proposed
in [2]. Firstly, we adopt the adaptive choice of the
TR radius suggested in [5], that is

∆k = −
gTk qk

qTk Bkqk
||qk||, (2)

in which Bk is a positive definite quasi–Newton
approximation of the Hessian and qk ∈ R

n is a
vector parameter satisfying the angle condition

[1], i.e.

−
gTk qk

||gk|| ||qk||
≥ τ, (3)

for some constant τ ∈ (0, 1]. To evaluate local
consistency between the objective function and
the quadratic model (1), we apply the following
traditional TR ratio [1]:

ρk =
fk − f(xk + sk)

mk(0)−mk(sk)
. (4)

Now, for a prespecified constant µ ∈ (0, 1), if ρk is
large enough in the sense that ρk > µ, then we set
xk+1 = xk+ sk. Otherwise, to avoid resolving the
TR subproblem (1), we set xk+1 = xk + sk with
a specific probability which depends on the value
of ρk, or (similar to the approach of [2]) we use
the Armijo–type LS procedure proposed by Wan
et al. [6] as follows:

Line search 2.1. Let Lk be an approximation
of the Lipschitz constant of the gradient and set

βk = −
gTk sk

Lk||sk||2
. The step length αk is the largest

quantity in {tiβk}
∞

i=0 which satisfies the following
inequality:

f(xk + αksk) ≤ fk + σαk(g
T
k sk −

1

2
αkrLk||sk||

2),

where t ∈ (0, 1), σ ∈ (0, 1/2), and r ∈ [0,+∞)
are real constants.

As seen, the distinct feature of our algorithm is
that we may accept a trial step sk even when
ρk < µ, despite the classical TR algorithms for
which such trial steps are rejected and the sub-
problem (1) is resolved with a smaller radius, or
an LS strategy is employed. So, we need to define
a reasonable probability for the mentioned ran-
domized part of the algorithm. In this context,
we apply the probabilistic approach of the simu-
lated annealing (SA) strategy.

Among the earliest and most popular metaheuris-
tic techniques of optimization, there is the simu-
lated annealing (SA) algorithm. The method ori-
gins from the successful annealing process of the
materials which involves the cautious control of
the cooling schedule [7]. SA is a local search al-
gorithm capable of escaping from local optima by
use of random hill–climbing moves in the search
process [8,9]. It is very efficient in practice [9,10]
and well–developed in theory [11, 12].

To provide a detailed description of the SA
method [8], note that similar to the TR technique,
at the iteration t of the method a neighborhood
Nt is defined around the iterate xt. Then, a neigh-
bor y ∈ Nt is randomly selected. If y is better
than xt (often in the cost function point of view,
i.e. f(y) < f(xt)), then we move to y in the sense
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that we set xt+1 = y. However, when xt is better
than y, we move to y with the probability

pt = e−
d(xt,y)

T , (5)

and stay in xt otherwise, where T is a positive
constant commonly called the temperature and
d(xt, y) is a nonnegative function which demon-
strates the measure of unfitness of the feasible so-
lution y in contrast to xt.

The temperature T controls the likelihood of cost
increases in the sense that when T is small, cost
increases are highly unlikely while when T is large,
the value of d(xt, y) has an insignificant effect on
the probability pt and any particular transition.
In order to guarantee the global convergence with
probability one, the temperature needs to be de-
creased logarithmically with the iteration number
t [13], making the process too slow. In practice,
the temperature is usually updated by

T ← λT, (6)

with a prespecified constant 0≪ λ < 1 [11].

In order to allow probable moves to some inferior
solutions as well as to reduce the effect of unsuc-
cessful iterations (with ρk < µ), we apply the SA
scheme in our algorithm. In this context, when at
the kth iteration of the algorithm the TR ratio is
negative or a small positive number near to zero,
we may accept the trial step sk. More exactly,
if ρk < µ, then we set xk+1 = xk + sk with the
following probability:

pρk = e−
µ−ρk

T , (7)

and stay in xk otherwise, where T is the tem-
perature. Considering (4) and (5), here we set
d(xk, y) = µ − ρk with y = xk + sk. As seen,
the given probability is small when ρk ≪ µ or the
temperature T is small.

Here, based on the above preliminaries, we are in
a position to describe the algorithm in details.

Algorithm 2.1. (A randomized trust region line
search algorithm (RTRLS))

Step 0: {Initialization} Choose an initial
point x0 ∈ R

n, a symmetric positive defi-
nite matrix B0 ∈ R

n×n, and the constants
t ∈ (0, 1), σ ∈ (0, 1/2), r ∈ [0,+∞),
µ ∈ (0, 1], L0 > 0, ǫ > 0, and T0 > 0
as the initial temperature. Compute f0,
and set k = 0 and T = T0.

Step 1: {Stopping criterion} If ||gk|| < ǫ,
then stop.

Step 2: Choose qk satisfying (3) and com-
pute ∆k by (2).

Step 3: Solve the subproblem (1) to find the
trial step sk.

Step 4: Compute ρk by (4). If ρk ≥ µ,
then set xk+1 = xk+sk, and goto Step 6;
otherwise, with the probability pρk given
by (7) set xk+1 = xk + sk and goto Step
6.

Step 5: Find the step length αk using Line
search 2.1 and set xk+1 = xk + αksk.

Step 6: Compute the new Hessian approxi-
mation Bk+1 by a quasi–Newton updating
formula. Set k = k+ 1, decrease the tem-
perature T and goto Step 1.

Note that if the temperature is decreased loga-
rithmically, then, based on the classical conver-
gence properties of the SA [13] and the conver-
gence analysis conducted in [5], with probability
one Algorithm 2.1 can be globally convergent.

3. Numerical experiments

Here, we present some numerical results obtained
by applying MATLAB 7.14.0.739 (R2012a) im-
plementations of RTRLS (Algorithm 2.1) and the
efficient accelerated nonmonotone TR–LS algo-
rithm proposed in [2] (in which Andrei’s initial
choice of the step length is employed [14]), here
called AccTRLS. The runs were performed on a
set of 84 unconstrained optimization test prob-
lems of the CUTEr collection [15] with the min-
imum dimension being equal to 50, as specified
in [3], using a computer Intel(R) Core(TM)2 Duo
CPU 2.00 GHz with 1.50 GB of RAM.

For both algorithms, we adopted the parameter
values suggested in [2] as well as the same stop-
ping criteria. In addition, for RTRLS we set
T0 = ||g0|| and in Step 4, we decreased T by (6)
with λ = 0.9, found to be appropriate. Among
the wide scope of the choices of qk satisfying (3),
here we set qk = −B−1

k gk. Similar to the approach
of [2], to compute the Hessian approximation we
used the scaled memoryless DFP formula where
its inverse can be effectively determined in a mem-
oryless form [1]. Also, we used the double Dogleg
method [1] to solve the subproblem (1).

Efficiency comparisons were drawn using the
Dolan–Moré performance profile [16] on the num-
ber of iterations, number of objective function
evaluations, number of gradient evaluations and
the running time. Performance profile gives, for
every ω ≥ 1, the proportion p(ω) of the test
problems that each considered algorithmic vari-
ant has a performance within a factor of ω of the
best. Figures 1–4 illustrate the results of compar-
isons. As seen, generally RTRLS outperforms Ac-
cTRLS. It is worth noting that in 64% of the itera-
tions RTRLS achieves the solution faster than Ac-
cTRLS. Thus, in general our randomized strategy
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based on the SA method turns out to be practi-
cally promising. Especially, it can be employed as
an alternative of the acceleration/nonmonotone
schemes used in the TR–LS algorithms.

Figure 1. Number of iterations per-
formance profiles

Figure 2. Number of objective func-
tion evaluations performance profiles

Figure 3. Number of gradient eval-
uations performance profiles

Figure 4. CPU time performance profiles

4. Conclusions

Employing the simulated annealing aspects in a
recent adaptive trust region line search method,
a heuristic algorithm has been suggested to be
used in unconstrained optimization. The method
can also be considered as a randomized version
of the trust region line search algorithm. Numer-
ical experiments showed that the proposed ran-
domization scheme can enhance efficiency of the
classical trust region line search algorithms; espe-
cially, it can serve as an alternative of the accel-
eration/nonmonotoe approaches used in the algo-
rithms.

As a future work, one can investigate possible em-
ploying of other metaheuristic algorithms in the
trust region line search methods. In addition, ef-
fect of such randomized schemes on the backtrack-
ing line search techniques can be studied.
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marking optimization software with perfor-
mance profiles. Mathematical Programming,
91(2, Ser. A), 201–213.

[17] Hager, W.W., & Zhang, H. (2002). Al-
gorithm 851: CG−Descent, a conjugate
gradient method with guaranteed descent.
ACM Transactions on Mathematical Soft-
ware, 32(1), 113–137.

Saman Babaie–Kafaki is a Professor in Depart-
ment of Mathematics of Semnan University, Iran.
He received his B.Sc. in Applied Mathematics from
Mazandaran University, Iran, in 2003, and his M.Sc.
and Ph.D. in Applied Mathematics from Sharif Uni-
versity of Technology, Iran, in 2005 and 2010, re-
spectively, under supervision of Professor Nezam
Mahdavi–Amiri. His research interests lie within nu-
merical continuous optimization, numerical linear al-
gebra and heuristic algorithms.

http://orcid.org/0000-0003-0122-8384

Saeed Rezaee received his B.Sc. in Applied Mathe-
matics from University of Hormozgan, Iran, in 2005,
his M.Sc. in Applied Mathematics from Sharif Uni-
versity of Technology, Iran, in 2010, and his Ph.D.
in Applied Mathematics (Operational Research) from
Semnan University, Semnan, Iran, in 2017. His M.Sc.
supervisor was Professor Nezam Mahdavi–Amiri and
his Ph.D. supervisor was Professor Saman Babaie–
Kafaki. His research interests lie within nonlinear pro-
gramming modelling and algorithms.

http://orcid.org/0000-0002-2636-3868

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

http://orcid.org/0000-0003-0122-8384
http://orcid.org/0000-0002-2636-3868
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. A randomized trust region line search algorithm
	3. Numerical experiments
	4. Conclusions
	Acknowledgements
	References

