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 In the last few decades, stiff differential equations have attracted a great deal of 

interest from academic society, because much of the real life is covered by stiff 

behavior. In addition to importance of producing model equations, capturing an 

exact behavior of the problem by dealing with a solution method is also handling 

issue. Although there are many explicit and implicit numerical methods for solving 

them, those methods cannot be properly applied due to their computational time, 

computational error or effort spent for construction of a structure. Therefore, 

simulation techniques can be taken into account in capturing the stiff behavior. In 

this respect, this study aims at analyzing stiff processes through stochastic 

approaches. Thus, a Monte Carlo based algorithm has been presented for solving 

some stiff ordinary differential equations and system of stiff linear ordinary 

differential equations. The produced results have been qualitatively and 

quantitatively discussed. 
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1. Introduction 

Differential equations are used to model real-life 

systems by conserving their physical structures. There 

are different types of differential equations which have 

been named by according to their characteristics. Stiff 

differential equations are one of those. While 

developing a model of a system, it is necessary to 

consider suddenly occurred reactions with small time 

steps without neglecting that the system continue to 

behave over the whole-time interval. Stiff equations 

represent unstable behaviors for very small values. In 

other words, a model contains a point which decays or 

grows very rapidly than others. Despite natural 

restrictions of physical systems represented by stiff 

Ordinary Differential Equations (ODEs), they are 

commonly used in modelling various problems, 

through chemical reactions, while creating electrical 

circuits or studying in control theory etc. Not only 

modelling a stiff behavior but also solving the model 

accurately play a key role for capturing real-life 

behavior. 

Stiffness was firstly named by Curtiss and Hirschfelder 

[1] in 1952. Although this explanation leads to be 

realized that almost all real-life problems include stiff 

property, the first efficient algorithm for solving the 

model equations was suggested relatively late, in 1976 

by Shampine and Gear [2]. Finding exact solution for 

stiff problems is generally limited to simple cases and 

conventional numerical methods have to be 

reconstructed with small time steps for these types of 

problems. However, the increased number of steps 

might possibly cause an accumulation of error. This 

fact gives rise to a necessity of alternative approaches 

for stiff equations. In the last few decades, various 

implicit and explicit methods related to stiffness have 

been developed. 

The explicit methods find a solution by using the 

current time information to produce later time 

information. However, implicit ones use the current 

and later time information at the same time. While 

analyzing stiff behavior, it should be taken into 

consideration how much small changes in the current 

time information affects the later time. Explicit 

methods generally do not work efficiently for catching 

the changing behavior in small step sizes or if they do, 

it converges very slowly than expected [3]. If the initial 

conditions cause a divergence in the solution, an 

explicit method requires impractically small step sizes 

to control the convergence. Although the implicit ones 

need more computation and requires sensitive 

implementations, they are properly applied to many 

stiff problems.  

http://www.ams.org/msc/msc2010.html
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Even though an application area of numerical methods 

has a broad range, they are occasionally suffering from 

their restrictions. They may be seen to be efficient for 

the aim of the solving the problems iteratively, but 

these methods cannot be a first choice considering their 

computational time, computational error or effort spent 

for construction of a stiff structure. At this point, new 

approaches such that simulation techniques emerge by 

paying attention to these corresponding issues [4-5]. 

The Monte Carlo Method (MCM) is one of the basic 

simulation techniques [6-8]. It has been generally 

defined as a random sampling method for solving any 

model. Since this method uses basically random 

variables to represent the behavior of physical 

processes, it is classified as a stochastic approach.  

The MCMs can be applied to a wide range of problems 

in three different ways; sampling, estimation and 

optimization [9-10]. This classification depends on aim 

and a way of building algorithm. If a researcher wants 

to use simulation to mimic the nature of the system by 

creating objects or unreal systems, sampling methods 

are more useful than the rest. Therefore, random 

sampling and estimation techniques are used in this 

study to observe the behavior of the stiff differential 

equations. 

2. Implementation of the method 

The main intention of this study is to capture the exact 

behavior of stiff differential equations by using 

simulation techniques. To achieve this, differential 

equations are described by using integrals since the 

Monte Carlo integration is based on random sampling 

[11-13]. This randomness comes from uniformly 

distributed pseudorandom numbers selected by a 

sample space. The method is named by rejection 

sampling which is used for generating random 

variables 𝑋 with density function 𝜌. The main 

advantage of using rejection sampling is that sampling 

can be used even if the density function cannot be 

integrated analytically. 

Let us then consider any first order differential equation 

in an implicit form: 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦) (1) 

where function 𝐹 represent an arbitrary function with 

variables. After modifying the equation in this form, the 

algorithm needs a reference number which is chosen to 

do comparison in the related steps of the algorithm. The 

first reference number is generated by using initial 

conditions 𝑋0 and 𝑌0 and this number should be revised 

for each iteration. The step size is determined by 

dividing uniformly the interval to 𝑚 points. Let us call 

this reference number as Classification Number (CN) 

defined as follows 

𝐶𝑁 ∶=  
𝑑𝑌

𝑑𝑋
= 𝐹(𝑋𝑛 , 𝑌𝑛) (2) 

where 𝑛 = 0,1, … , 𝑚. 

Next step, determination of upper and lower bounds for 

generating random numbers is expected to lead to more 

accurate estimation. The estimation can be made under 

the consideration of the physical realities of the 

problem. These bounds are determined by initial 

conditions. After determining an upper and a lower 

bound, random numbers can be created according to 

these bounds for making a comparison with the CN. To 

create random numbers, rand function of MATLAB 

can be used. This function generates different 

pseudorandom numbers between 0 and 1. They are 

known as pseudorandom since even if they act as a 

random number they are generated according to some 

artificial algorithm by the function. These random 

numbers between 0 and 1 are extended to the interval 

which determined by upper and lower bounds. 

Then the comparison starts with created N positive 

random variables and N negative random variables by 

using rand function with respect to the CN of the 

algorithm. The way of implementation is given in the 

following pseudocode. 

 

Pseudocode: Monte Carlo Based Algorithm for ODEs 

1. Consider the differential equation 
𝒅𝒀

𝒅𝑿
 as a function 𝑭(𝑿, 𝒀) and 

initial conditions as 𝑿𝟎 and 𝒀𝟎. 

2. Define ∶=  
𝒅𝒀

𝒅𝑿
= 𝑭(𝑿𝒏, 𝒀𝒏) . 

3. Find the upper and lower boundaries, U and L, for the 
classifying random numbers.  

4. Create N random numbers. 

5. Initialize 𝑿 = 𝑿𝟎 and 𝒀 = 𝒀𝟎 

6. while (𝑿 < 𝑿𝒇) 

7.      𝐶𝑁 = 𝐹(𝑋, 𝑌) 

8. if 𝑪𝑵 ≥ 0 then 

    S ← the value of the random numbers ≤ 𝑪𝑵 

          𝒀𝒌+𝟏 ← 𝒀𝒌 + 𝑼
𝑺

𝑵
∆𝑿 

9. Else 

    S ← the value of the random numbers ≥ 𝑪𝑵 

         𝒀𝒌+𝟏 ← 𝒀𝒌 − 𝑳
𝑺

𝑵
∆𝑿 

10. end if 

11. end while 

3. Illustrative examples 

In this section, the predicted results of various 

differential equations by applying the current algorithm 

have been illustrated. In the examples, 100000 random 

samples are chosen for each iteration in the algorithm 

and the increment of time is taken to be 0.001. To 

justify the predicted results, comparison is made with 

both the ode23s based on a modified Rosenbrock 

formula of order 2 and the fourth order Runge-Kutta 

Method (RK4) as well as available analytical solutions. 

The two results are compared with each other by using 

the absolute error. Qualitative and quantitative 

behaviors have been exhibited by comparing with 

computational costs in detail. To compute the results, 

the codes have been produced in MATLAB 2018a 
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installed on a computer which has the properties of 2.3 

GHz intel core i5 and 16 GB ram. 

3.1. Example 1 

Let us consider a first order stiff ODE with an initial 

condition, 

𝑑𝑦

𝑑𝑡
= −1000𝑦 + 3000 − 2000𝑒−𝑡 , 𝑦(0) = 0. (3) 

The exact solution of the differential equation is: 

𝑦(𝑡) = 3 − 0.998𝑒−1000𝑡 − 2.002𝑒−𝑡. (4) 

The Monte Carlo based algorithm is applied to 

Equation (3) by dividing the time axis uniformly. 

Qualitative results including the solution produced by 

the proposed algorithm, the exact solution and the 

absolute errors have been illustrated in Figure 1. The 

corresponding numerical results can be seen in Table 1.  

It can be easily observed in Figure 2 that the stiffness 

occurs between the points 0 and 0.006, near to initial 

value. The initial deviation dampens fast due to the 

large value of coefficients. Despite the fact that each 

trial uses different set of random numbers to predict the 

results, each trial indicates the common feature at this 

stiff point. So the quantitative results are also close to 

each other. Even though quantitative results have 

slightly little deflections, qualitative results can be seen 

in good agreement with the exact results. 

 
Figure 1. Comparison of the MC prediction and the exact 

solution of equation (3) 

Computational time of the proposed algorithm is 

0.5548 s for this set of trial. Moreover, the accuracy is 

expected to be improved by reasonably decreasing the 

step size of the interval. However, the small step size 

leads a large number of comparisons in the algorithm, 

so that increasing the computational cost. Even if there 

are higher computational costs for some complex 

problems, it is seen that the proposed algorithm is the 

accurate solver as one of the simulation techniques. 

 

 

Table 1. Numerical results of Equation (3) 

Time t 
Predicted 

Results 

Exact 

Results 

Absolute 

Errors 

0.0005 0.49991771 0.39368315 0.10623456 

0.0010 0.75242301 0.63285732 0.11956569 

0.0015 0.87872659 0.77831685 0.10040974 

0.0020 0.94166335 0.86693539 0.07472796 

0.0025 0.97329583 0.92107792 0.05221791 

0.0030 0.98957043 0.95430951 0.03526092 

0.0035 0.99823965 0.97485776 0.02338189 

0.0040 1.00283457 0.98771300 0.01512157 

0.0045 1.00556209 0.99590198 0.00966011 

0.0050 1.00740685 1.00126055 0.00614630 

0.0100 1.01789819 1.01787492 0.00002327 

0.0150 1.02777839 1.02780559 0.00002720 

0.0200 1.03761332 1.03764225 0.00002893 

0.0250 1.04739166 1.04742956 0.00003789 

0.0500 1.09561564 1.09563869 0.00002305 

0.2500 1.44096991 1.44084083 0.00012908 

1.0000 2.26347104 2.26350536 0.00003432 

 

 

 

Figure 2. A closer view of Figure 1 

3.2. Example 2 

Let us now take a first order stiff ODE with an initial 

condition, 

𝑑𝑦

𝑑𝑡
= −1000𝑦 + sin 𝑡 , 𝑦(0) = 1/1000001. (5) 

Exact solution of the differential equation is then 

𝑦(𝑡) =
1000 sin 𝑡+cos 𝑡

1000001
. (6) 

The proposed algorithm is applied to Equation (5) by 

dividing the time axis uniformly. The comparison of 

predicted results with the analytical solution of 

Equation (5) is given Figure 3 and the corresponding 

absolute errors are shown in Figure 4. Quantitative 

results of Equation (5) are exhibited in Table 2.  
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Unlike Example 1, from Figure 3 it can be seen that the 

solutions already computed are much closer to the exact 

solution for all points in the range. It can be seen from 

the absolute errors that the results are very accurately 

predicted by the current algorithm. Computational cost 

of the present algorithm is 0.2913 s for this set of trial. 

Even if the computational time of the algorithm seems 

to be higher than its rivals depending on random 

numbers, its accuracy level is relatively in good 

agreement with available analytical solution.  

 

Figure 3. Comparison of the MC Prediction and the exact 

solution of equation (3)  

 
Table 2. Numerical results of the first order stiff differential 

equation (5) 

Time t 
Predicted 

Results 

Exact 

Results 

Absolute 

Errors 

0.0100 0.00000922 0.00001100 0.00000178 

0.0500 0.00004920 0.00005098 0.00000178 

0.1000 0.00009904 0.00010083 0.00000178 

0.2000 0.00019788 0.00019965 0.00000177 

0.3000 0.00029473 0.00029648 0.00000174 

0.4000 0.00038866 0.00039034 0.00000168 

0.5000 0.00047870 0.00048030 0.00000161 

0.6000 0.00056397 0.00056547 0.00000150 

0.7000 0.00064363 0.00064498 0.00000135 

0.8000 0.00071679 0.00071805 0.00000126 

0.9000 0.00078283 0.00078395 0.00000111 

1.0000 0.00084103 0.00084201 0.00000098 

3.3. Example 3 

Now take a first order stiff differential equation system 

with initial conditions 

 

𝑑𝑥

𝑑𝑡
= −80.6𝑥 + 119.4𝑦,            𝑥(0) = 1 

𝑑𝑦

𝑑𝑡
= 79.6𝑥 − 120.4𝑦,                𝑦(0) = 2 

(7) 

 

 

 

Figure 4. Absolute Errors of Equation (5) 

The Monte Carlo based algorithm is applied to 

Equation (7) by dividing the time axis uniformly. The 

comparison of the results of the current algorithm with 

the ode23s results and a closer view can be seen in 

Figures 5 and 6, respectively. The corresponding 

differences are illustrated in Figure 7. Quantitative 

results of Equation (7) are exhibited in Table 3. 

As seen in the corresponding figures, the deviations 

originating near to the initial conditions have arisen 

rapidly. Two different equations behave separately; one 

is increasing while the other one is decreasing. Though 

the solution remains close to the referenced solution 

curves in a large scale of vertical axis, the deviations 

may occur. However, the qualitative and quantitative 

results can be seen in good agreement with the ode23s 

results. 

Even though ode23s is commonly accepted as one of 

the most suitable methods for properly capturing stiff 

behavior, the current method is seen to be as suitable as 

the ode23s. To support this, another suitable method, 

RK4 can be applied to this example. The difference 

between results of the simulation technique and the 

RK4 results are seen to be relatively small. Therefore, 

it has been claimed that the approach has ability to 

capture the stiff behavior. The predicted results have 

reasonable agreement with the results of ode23s and 

RK4 according to the Figure 8 and Table 3 and the 

differences between the predicted and ode23s 

solutions. 

The computational costs of the current algorithm, 

ode23s and RK4 are 0.4214, 0.0180 and 0.1835 s, 

respectively. Despite the relatively higher 

computational cost of the proposed algorithm, the rest 

of its advantages is taken us to see attractiveness of the 

approach. In this respect, the computational cost can be 

sacrificed in simulation techniques in case of especially 

discrete and continuous methods have serious lack of 

accuracy or not existing solution for intricate problems. 
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Figure 5. Comparison of the MC prediction results and the 

ode23s results of the first order stiff differential equation 

system (7) 

 

Figure 6. A closer view of Figure 5 

 
Figure 7. Differences between the MC prediction results 

and the ode23s results of Equation (7) 

 
Figure 8. Comparison of the MC results with the ode23s 

and RK4 results for the system of differential equations (7) 

 

Table 3. Comparison of the predicted results with the ode23s and RK4 results 

Time 𝒕 

Predicted 

results for 

𝒙(𝒕) 

ode23s 

solutions for 

𝒙(𝒕) 

RK4 

solutions for 

𝒙(𝒕) 

Predicted 

results for 

𝒚(𝒕) 

ode23s 

solutions for 

𝒚(𝒕) 

RK4 

solutions for 

y(𝒕) 

0.0010 1.15799020 1.14321714 1.15199238 1.83863000 1.85378436 1.82952707 

0.0050 1.52630360 1.49780400 1.50433322 1.45274000 1.48723344 1.42945587 

0.0100 1.69183400 1.67488571 1.66003934 1.26965000 1.29526379 1.24329043 

0.0500 1.70742880 1.71222798 1.67279687 1.13853200 1.14145986 1.11337548 

0.1000 1.62454282 1.62871297 1.59577436 1.08315800 1.08581070 1.06410479 

0.2000 1.46892028 1.47366156 1.45219073 0.97910000 0.98244072 0.96835941 

0.3000 1.32774952 1.33336946 1.32152638 0.88512200 0.88891302 0.88122894 

0.4000 1.20073072 1.20643333 1.20261887 0.80063000 0.80428888 0.80193825 

0.5000 1.08589966 1.09158143 1.09441035 0.72404000 0.72772096 0.72978193 

0.6000 0.98283910 0.98766339 0.99593815 0.65544800 0.65844226 0.66411805 

0.7000 0.88987552 0.89363829 0.90632622 0.59349800 0.59575886 0.60436243 

0.8000 0.80615050 0.80856434 0.82477734 0.53775800 0.53904289 0.54998347 

0.9000 0.73031200 0.73158939 0.75056602 0.48726200 0.48772626 0.50049739 

1.0000 0.66218674 0.66193829 0.68303204 0.44193800 0.44129220 0.45546393 

 



186                                          H. Uslu et al. / IJOCTA, Vol.10, No.2, pp.181-187 (2020) 

186 

4. Conclusions and recommendations 

In this study, a Monte Carlo based stochastic algorithm 

has been developed to discover the behavior of real-

world processes governed by stiff differential 

equations. All qualitative and quantitative results 

produced by the present algorithm have been seen to be 

in good agreement with the real environment. Despite 

the effect of randomness to error, the current procedure 

has been seen to produce highly acceptable results. 

Even if reconstructing the conventional methods with 

small time steps for stiff problems is affordable, 

simulation techniques can be better choices for 

challenging problems. In real-life problems, when there 

are sudden deviations in the consequences of random 

movements, it is necessary to consider the current 

stochastic approach that can handle the rapidly 

changing behavior. 
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