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 The mosquito-borne infectious diseases like malaria and dengue are putative as 

important tropical infections and cause high morbidity and mortality around the 

world. In some cases, simultaneous coexistence of both the infections in one 

individual is seen which is very hard to distinguish as both diseases have almost 

similar symptoms. In this proposed article, dynamical system of non-linear 

differential equations is constructed with the help of mathematical modeling, 

which describe dynamics of the spread of these infectious diseases separately and 

concurrently. Basic reproduction number is evaluated to understand dynamical 

behaviour of the model. Local and global stability criteria have been deliberated 

rigorously. Control parameters are used to perceive effect of medication on these 

prevalent tropical diseases. Numerical simulations are used to observe effect of 

control parameters graphically.  
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1. Introduction 

The present era witneses the globalization of infectious 

diseases that occurs frequently by an unprecedented 

level. In this “globalized” environment of 

interdependent trade, travel, migration, and 

international economic markets, many factors now play 

an important role in the emergence and spread of 

infectious disease, which necessitates a coordinated, 

global response [17]. Mosquitoes are one of the 

deadliest insects in the world, with their ability to carry 

and spread disease to humans causes millions of deaths 

every year. Mosquito-borne infectious disease is 

accepted as one of the important tropical infections and 

is the focused topic in tropical medicine [23]. There are 

several tropical mosquito borne infections. Malaria and 

dengue are the two common mosquito infections that 

are easily spread and cause high morbidity and 

mortality for many patients around the world. Malaria 

is caused by Plasmodium parasites, which spreads 

through the bites of infected female Anopheles 

mosquitoes, called ‘malaria vectors’ [18]. Dengue is 

single positive-stranded RNA virus of the family 

Flaviviridae which is ingested by female mosquitoes 

(Aedes mosquito) during feeding [22]. The virus then 

infects the other mosquito and humans over its 

incubation period. Due to tremendous progress in 

malaria and dengue infection, the disease burden 

remains high mostly in subtropical and tropical areas 

[21]. 

Presence of infection in the body results in weakness in 

immune system, it increases the probability that 

individual gets infected by another infections. Hence 

there is a possibility that both malaria and dengue 

infection can be present in the individual at the same 

time (e.g., [4], [6], [8], [13], [21], [24], [30] or [13]). 

This scenario is called concurrent malaria-dengue 

infection. This overlapping of two different infections 

can result in more severe situations where both 

diagnosis and treatment of a patient may become 

difficult [10]. Initially, two cases of concurrent malaria 

and dengue infection were identified in July, 2005 and 

November, 2006 [4]. Malaria and dengue fever 

represent 2 major public health concerns in South 

America, whose 92% of area is covered by Amazon 

rain forest. According to the report in a French territory 

in South America, 0.99% from overall febrile patients 

are infected by malaria and dengue concurrently [4]. 

Malaria vectors and dengue vectors are habited in the 

forest [20] and in the city [7] respectively. Hence, 

overlapping of the habitat cannot be easily available 

and therefore concurrent malaria dengue infection 

cases are less in number. 

Mathematical models relevant to the concurrent 

infections helps the researchers, biologists and public 

http://www.ams.org/msc/msc2010.html
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health personnel to adopt improved and most effective 

strategies to control the diseases. Aldila D. and Agustin 

M. R. developed a nine-dimensional mathematical 

model to understand the spread of dengue and 

chikungunya in a closed population [1]. Isea R. & 

Lonngren K. E. presented two preliminary models that 

consist of the individual transmission dynamics of 

dengue, Chikungunya or Zika, and any possible co-

infection between two diseases in the same population 

[12]. Sharomi et. al. developed a deterministic model 

which incorporates many of the essential biological and 

epidemiological features of HIV and tuberculosis and 

the synergistic interaction between them [25]. Silva C. 

J. & Torres D. F. proposed a population and introduced 

optimal treatment strategies for co-infection 

transmission dynamics of TB and HIV [26]. 

Some cases are reported where patients have symptoms 

of malaria and dengue both at the same time. In such 

situations, higher mortality rate is observed. On the 

basis of this observation, a mathematical model is 

constructed in the present work. Also two optimal 

controls are applied in the model in such a way that it 

helps to analyse malaria-dengue concurrent case and 

effect of recovery rate on the disease transmission. The 

paper is organized as follows. The malaria-dengue 

model construction will be discussed in section 2. 

Section 3 focuses on formulating basic reproduction 

number for concurrent malaria-dengue infection, 

moreover the equilibrium points of the given model are 

calculated. Local and global stability of all four 

equilibrium points are proved in section 4. Optimal 

control theory is introduced and applied to the model in 

section 5. The model is analysed numerically and 

graphically in the next section which provides better 

explanation of the analytic results. 

2. Mathematical modeling 

The environmental stress also damages the immune 

system and makes the individual weak to resist various 

kinds of infections. Motivated from this concurrent 

disease problem, we have proposed a compartmental 

model to analyze the spread of malaria and dengue 

infections individually and concurrently. The model 

subdivides the human population ( )N into four 

mutually-exclusive compartments, namely susceptible 

individuals ( )S , malaria infected individuals ( )M , 

dengue infected individuals ( )D and corresponding to 

two infectious agent class of recovered individuals is

( )R . Total recruitment rate in class of susceptible at 

time t is B . Susceptible individuals are infected by 

malaria infection with transmission rate 1 . The disease 

transmission from the class of susceptible individuals 

to the class of dengue infected individuals is taken as a 

saturated form with disease transmission rate 2 and  

3  be the reciprocal of the half saturation constant. 

Therefore, from compartment S to D the disease 

transmission form is taken as 2

31

SD

D



+
. The parameter 

4  represents the rate of the malaria infection giving 

rise to the dengue infection due to weak immunity. 5  

and 6 are the rates at which the population infected by 

malaria and dengue are recovered respectively.   is 

assumed as a natural death rate and D be the dengue 

infection related death rate. 

In Figure 1 the schematic diagram of the transmission 

of disease is shown. Here a concurrent disease case in 

which individual first get affected by dengue and then 

by malaria is ignored.
 

 

Figure 1. Schematic diagram of malaria-dengue model 

On the basis these assumptions and figure 1, we 

formulate our model as: 

2
7 1

3

1 54

2
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3
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1
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1

D
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dt D
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SM M MMD
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   
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+
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           (1) 

The initial conditions of the system (1) are (0) 0S  , 

(0) 0M  , (0) 0D  , (0) 0R  . 

3. Basic reproduction number ( 0R ) and 

equilibrium 

EnvironmentsNote that S M D R N+ + + = and all the 

compartments are taken positive. Summing all the 

equations of the system (1) gives, 

( ) ( ) 0D

d
S M D R B S M D R D

dt
 + + + = − + + + − 

Hence, ( )limsup
t

B
S M D R

→
+ + +   

Therefore, the feasible region for system (1) is: 

( ) ( )/ ;

0, 0, 0, 0

B
S M D R S M D R

S M D R



 
+ + + + + +  

 =  
     

 (2) 
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Clearly the point ( )0 0 ,0,0,0E S= , where 0

B
S


=  is an 

equilibrium point of the system (1), which is called a 

disease free equilibrium point. The model has three 

more equilibrium points as follows, 

I. Dengue free equilibrium point ( )1 1 1 1, ,0,E S M R=

where, 5

1

1

S
 



+
= , 7 1

1

1

( )k
M

 

 

+
= , 

5 1

1

1

k
R



 
=  and 

2

1 5

1

5 7

( )

( )

B
k

   

   

− −
=

+ +
 

II. Malaria free equilibrium point

( )2 2 2 2,0, ,E S M R= where, 2 2 7( )M k  = + , 

2 6 2R k= , where 

(

)
7 6 3

2

3 6 6 6

2

6 2

( ) ( ) ( )

( ) ( )

( )

D D

D D

D
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6 2

2

7 3 3 6 2

2 6
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( ) ( 1) ( )
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III. Endemic equilibrium point 

( )* * * * *, , ,E S M D R= , where 

* 4 3 5

1

k
S
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

+ +
= , *

3D k= , 
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Since the threshold parameter is useful in 

characterizing the spread of an infectious disease. Here, 

we use the next generation matrix ([9], [28], [3]) to 

obtain the expression of basic reproduction number 0R  

for concurrent malaria-dengue infection. 

Let ( )X S M D R= + + + , then system (1) can be 

written as ( ) ( )X X X = −F V  such that, 

1

2
4
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V  

Let matrices  and  are be the Jacobian of F and 

V respectively around disease free equilibrium point

0( )E : 

1

2
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0 0 0 0

0 0 0 0

B
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, 

5

6

5 6 7

1 2
7

0 0 0

0 0 0

0

D

B B

 

  
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Here, the matrix  is related to the rate of increase of 

new individual in compartment and to the rate of the 

diseases transmission in compartments. 

The next generation matrix 1( )K −= have non 

negative eigenvalues. The basic reproduction number 

0R  for the model is the spectral radius of 1( )K −=

, which is: 

1 2
0

5 6( ) ( )D

B B
R

 

      
= +

+ + +
              (3) 

4. Stability analysis 

This section includes stability results of all the 

equilibrium points of the proposed malaria-dengue 

model. 

4.1. Local stability 

Local stability of all the equilibrium points has been 

established by following theorems. 

Theorem 1. The disease free equilibrium point 0E  of 

model is locally asymptotically stable if it satisfy 

following two conditions.  

I. 1
5

B
 


 +  
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II. 2
6D

B
  


 + +  

Proof. Jacobian matrix of the model around point 0E  is: 

( )

1 2
7

1

5

0

2
6

5 6 7

0 0 0

0 0 0

0

D

B B

B

J E
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 
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Eigenvalues of the matrix ( )0J E  are 0

1 = − , 

0 1
2 5

B
  


= − − , 

0 2
3 6D

B
   


= − − − ,  

0

4 7( )  = − + .  

Clearly all the eigenvalues are negative if 

1
5

B
 


 +  and 2

6D

B
  


 + + , hence disease 

free equilibrium point is locally asymptotically stable 

under these conditions. 

Theorem 2. The dengue free equilibrium point 1E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 5( )B    +  

II. 2 5 1( ) ( )D     +  + and 6 5B    

Proof. Jacobian matrix of the model around point 1E  

is: 

( )

1 5 2 7

4 1
1

1

1

4 1
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1
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0 0
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0 ( )

D

n n n

n
n
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Where, 

2
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B
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+ +
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+
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Eigenvalues of the Jacobian matrix ( )1J E  are: 

1

1 = − , ( )1
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1
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Where, 1 7 1 7( )( )B    = + + , 
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Eigenvalues 1

2 and 1

3 are complex when 2 is negative, 

real part of both these eigenvalues are negative and 

when 2 is positive, real part of both the eigenvalues 1

2

and 1

3 are negative when ( )1 2 0 −  , 

 i.e ( )2

1 2 0 −   
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Hence, real part of eigenvalues 1

2 and 1

3 are negative 

when 1 5( )B    + . 
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7 4 2 5 1
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4 0   when 2 5 1( ) ( )D     +  + and 6 5B  

. Clearly, all the eigenvalues are negative under these 

conditions. Hence, the theorem. 

Theorem 3. The malaria free equilibrium point 2E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 3 2

2 7 4 5
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n k

k
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
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Proof. Jacobian matrix of the model around point 2E  
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4
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Where, ( ) 3 2

1 2 3x x a x a x a = + + +  

1 7 5 6 63 Da n n   = + − + + − , 
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2 7 6 6 6 7

5 7 6

( )( ) ( )( )

( )( 2 )

Da n

n n

        

   

= + + + − + + +

+ − + −
, 

3 6 7 6 7 7 6 5

2

5

( )( ( ) ( )) ( )

( )

Da n n

n

         

 

= − + + + + −

+ −
 

( )

(

)

(

)

1 2 3

7 6 6 7 6

6 6 6 6 7

7 6 7 7 7

5 6 7 7 6

7 6 6 5 6

6 5 6 5 6 7 5

( ) ( ) ( )( )

( ) ( 2 ) ( ) ( )( )

( )( 2 ) ( )

( ) (2 2 ) ( ) 2 ( )

(5 8 ) ( )( 2 )

4 ( ) ( )(

D D D

D D D

D D D

D D

D

a a a

n

n

n n n

n n n n n n

         

        

          

        

     

  

−

= + + + + +

+ − + + + + +

+ + + + + + +

+ − + + + + +

+ + + + + −

+ − + + + 7 6

2 2

5 6 6

)

2 ( 2 )

n

n n n + + −

 

1 3, 0a a   and 1 2 3a a a  if 6n  , 6 5n   and 

2 2

5 6 62n n n+  . Hence, by applying Routh-Hurwitz 

criteria we can say all real roots of ( )Ch x are negative 

under these conditions. 

Theorem 4. The endemic equilibrium point *E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 3 2

2 7 4 5

4

( )
n k

k
n


    + +  +  

II. 6n  , 6 5n   and 2 2

5 6 62n n n+   

Proof. Jacobian matrix of the model around point *E  

is 
*( ) [ ]ijJ E x= . 

Where,
*

* 2
11 1 *

3 1

D
x M

D


 


= − − −

+
, *

12 1x S= − ,

*

2
13 * 2

3( 1)

S
x

D





−
=

+
, 14 7x = , *

21 1x M= ,  

* *

22 4 1 5x D S   = − + − − , *

23 4x M= − , 24 0x = , 

*

2
31 *

3 1

D
x

D




=

+
, *

32 4x D= , 34 0x = , 41 0x = , 42 5x =  

*
*2

33 4 6* 2

3( 1)
D

S
x M

D


   


= + − − −

+
, 43 6x = , 

44 7x  = − −  

The characteristic equation of matrix *( )J E is
* 4 3 2

1 2 3 4( ) 0Ch x x b x b x b x b= + + + + = . 

Where, 1 44 33 22 11b x x x x= − − − − ,  

2 11 22 11 33 11 44 12 21 13 31 22 33

22 44 32 23 33 44

b x x x x x x x x x x x x

x x x x x x

= + + − − +

+ − +
, 

3 11 22 33 11 22 44 11 23 32 11 33 44

12 21 33 12 21 44 23 31 21 13 32 14 42

31 13 22 31 14 43 13 44 22 33 44 23 32 44

( ) ( )

( )

b x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x x

= − − + −

+ + − − −

+ − − − +

4 11 44 22 33 23 32 13 44 12 23 13 22

21 32 13 44 14 43 21 33 14 42 12 44

14 31 22 43 23 42

( ) ( )

( ) ( )

( ).

b x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x

= − + −

+ − + −

+ −

 

2 0b   when 22x , 33x are negative.  

22 0x   * *

1 5 4S D    + +  and  

33 0x  
*

*2
4 6* 2

3( 1)
D

S
M

D


   


+  + +

+
. 

3 0b  when 
* *

* 4 2
1 7 *

3

( )
1

D M
M

D

 
  


− 

+
,  

* *

2 4
7 5* 2

3( 1)

S D

D

 
 




+
 and 

*

2 7

7 6* 2

3

( )

( 1)

S

D

  
 



+


+
. 

4 11 44 22 33 23 32 13 44 12 23 13 22

21 32 13 44 14 43 21 33 14 42 12 44

14 31 22 43 23 42

( ) ( )

( ) ( )

( )

b x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x

= − + −

+ − + −

+ −

 

and 4 0b  when,  

( )
*

* * * *2
1 4 4 1 5* 2

3( 1)

S
S M D S

D


     


 − + +

+
, 

*

2 7

7 6* 2

3

( )

( 1)

S

D

  
 



+


+
, *

7 5 1 7( )S     + ,  

( )* * *

4 5 4 1 5 6M D S       − + + . 

4.2. Global stability 

To perform the global stability analysis of the disease 

free equilibrium we use the method developed by [5]. 

4.2.1. Global stability of disease-free equilibrium 

point ( 0E ) 

The model system can be written as follows: 

(0)

0 (0) (0)

(0)

0 (0) (0) 0 (0)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

   (4) 

Here 
0

(0) (0) 1( )X X X=   represents the number of 

uninfected individuals and   
0 0 0 3

(0) 0 1 2 3( , , )Z Z Y Y Y= 

denotes the number of infected individuals. According 

to this notation the disease-free equilibrium point is 

denoted by 0 0( ,0)E S= . 

Now as per the method given in [5], following two 

conditions will ensure global stability of the disease-

free equilibrium point. 

[H1] 
(0)

0 (0)( ,0)
dX

F X
dt

= , 0 0( ,0)E X= is globally 

asymptotically stable. 

[H2] 
0

2 3

0 (0) (0) 1 2 3 0 (0) (0)

3

ˆ( , ) ( , )
1

DS
G X Z B M B D B R G X Z

D

 



 
= + − + − 

+ 

, where 0 (0) (0)
ˆ ( , ) 0G X Z  for (0) (0)( , )X Z  . 

Here, ( )1 0 0 ,0MB D G X= , ( )2 0 0 ,0DB D G X=  and

( )3 0 0 ,0RB D G X= are matrix with non-negative off 

diagonal entries. 

Lemma 1. The fixed point 0 0( ,0)E S= is a globally 
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asymptotically stable equilibrium of the system, 

provided 0 1R  and assumptions [H1] and [H2] are 

satisfied. 

Theorem 5. For 0 1R  , the disease free equilibrium 

point is globally asymptotically stable. 

Proof. we begin by showing [H1] as 

0 (0)( ,0) [ ]F X B S= −  and
(0) ( ) ( ) 0Ch   = + = is the 

characteristic polynomial of its Jacobian matrix. Since 

the polynomial have a negative root, 0 0( ,0)E S= is 

globally asymptotically stable. 

Now, we have 

( ) ( )2 0

0 (0) (0) 1 0 7

3

2
1 0 0

3

( , ) ( )
1

( ) ( )
1

D

S
G X Z S M D R

D

D
M S S S S

D


     








 
= − + − + − + 

+ 

 
− − + − − 

+ 

 

2 3 0

1 2 3 0 (0) (0)

3

ˆ ( , )
1

DS
B M B D B R G X Z

D

 



 
= + − + − 

+ 

 

Here, 0
ˆ ( , ) 0G X Z   hence, the conditions (H1) and 

(H2) stated above are satisfied. 

4.2.2. Global stability of dengue-free equilibrium 

point ( 1E ) 

The model system can be written as 

(1)

1 (1) (1)

(1)

1 (1) (1) 1 (1)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

             (5) 

Here 
1 1 1 3

(1) (1) 1 2 3( , , )X X X X X=  represents the 

number of uninfected individuals and 
1

(1) 1 1( )Z Z Y=  denotes the number of infected 

individuals. According to this notation the Dengue free 

equilibrium point is denoted by 
1

1 (1)( ,0)E X= , where 

1

(1) 1 1 1( , , )X S M R= . 

The following two conditions will ensure global 

stability of the dengue-free equilibrium point: 

[H3] 
(1)

1 (1)( ,0)
dX

F X
dt

= , 
1

1 (1)( ,0)E X= is globally 

asymptotically stable. 

[H4] 2 3 1

1 (1) (1) 4 1 (1) (1)

3

ˆ( , ) ( , )
1

DS
G X Z B D G X Z

D

 


= − −

+
, 

where 
1 (1) (1)
ˆ ( , ) 0G X Z  for 

(1) (1)( , )X Z  . 

Here ( )1

4 1 (1) ,0DB D G X= is a M-matrix. 

Lemma 2. The fixed point 
1

1 (1)( ,0)E X= is a globally 

asymptotically stable equilibrium of the system, 

provided 0 1R  and assumptions [H3] and [H4] are 

satisfied. 

Theorem 6. For 0 1R  , the disease-free equilibrium 

point is globally asymptotically stable when 

4 1D S  . 

Proof. we begin by showing [H3] as 

7 1

1 (1) 1 5

5 7

( ,0)

B R SM S

F X SM M M

M R R

  

  

  

+ − − 
 

= − −
 
 − − 

 and 

3 2

(1) 1 2 3( ) ( ) 0Ch c c c   = + + + = is the  

characteristic polynomial of its Jacobian matrix.  

Where, 1 4 1 1 5 7( ) 3c D S M     = − + + + + , 

2 4 1 7 1 7 4 5

2

1 5 7

( )( 2 ) ( )( )

2 ( ) 2 ( )

c D S M D

M

       

      

= − + + + +

+ + + + +

( )3 7 4 1 1 4 5

2 3

1 5 7 1 7

( ) ( )

( ) ( ) .

c D S MD

M M

        

       

= + − + +

+ + + + +
 

(

) (

)

1 2 3 4 1

7 4 1 5 7

1 4 5 7 1 5 1

2

7 1 5 7 5

2 2 2 2

1 4 5 1 7

1 5 5 4 1 4

( )

( ) ( 2 2 4 )

( ) ( 2 ) (3 )

( 4 )( ) 2 ( 2 )

( ) ( )

( ) 2

c c c D S

D M

M D M M

M

M D S

M D DM

 

      

       

       

     

      

− = −

+ + + + +

+ + + + +

+ + + + + +

+ + + +

+ + +

1 2, 0c c  and 1 2 3 0c c c−  if 4 1D S  . 

With the help of Routh-Hurwitz criteria it is clear that 

all the roots of the characteristic polynomial have 

negative real part when 4 1D S  , hence

1

1 (1)( ,0)E X= is globally asymptotically stable under 

this condition. 

Now, 

2 1
1 (1) (1) 4 1 6

3

2
1 4 1

3

2 3 1

5 1 (1) (1)

3

( , ) ( )
1

( ) ( )
1

ˆ ( , )
1

D

S
G X Z M D

D

D
S S D M M

D

DS
B D G X Z

D


   








 



 
= + − − + 

+ 

 
− − + − 

+ 

 
= − − 

+ 

 

Here, 1
ˆ ( , ) 0G X Z   hence, the conditions (H3) and 

(H4) stated above are satisfied. 

4.2.3. Global stability of malaria-free equilibrium 

point ( 2E ) 

The model system can be written as: 

(2)

2 (2) (2)

(2)

2 (2) (2) 2 (2)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

             (6) 

Here 
2 2 2 3

(2) (2) 1 2 3( , , )X X X X X=  represents the 

number of uninfected individuals and 
2

(2) 2 1( )Z Z Y=  denotes the number of infected 

individuals. According to this notation the Dengue free 

equilibrium point is denoted by 
1

2 (2)( ,0)E X= , where 
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1

(2) 2 2 2( , , )X S D R= . 

The following two conditions will ensure global 

stability of the malaria-free equilibrium point: 

[H5] 
(2)

2 (2)( ,0)
dX

F X
dt

= , 
1

2 (2)( ,0)E X= is globally 

asymptotically stable. 

[H6] 
2 (2) (2) 5 2 (2) (2)

ˆ( , ) ( , )G X Z B M G X Z= − , where 

2 (2) (2)
ˆ ( , ) 0G X Z  for (2) (2)( , )X Z  . 

Here ( )1

5 2 (2) ,0MB D G X= is a M-matrix. 

Lemma 3. The fixed point 
1

2 (2)( ,0)E X= is a globally 

asymptotically stable equilibrium of the system, 

provided
0 1R  and assumptions [H5] and [H6] are 

satisfied. 

Theorem 7. For
0 1R  , the disease-free equilibrium 

point is globally asymptotically stable if

2
62

3(1 )
D

S

D


  


 + +

+
. 

Proof. we begin by showing [H5] as: 

2
7

3

2
2 (2) 6

3

6 7

1

( ,0) ( )
1

D

SD
B R S

D

SD
F X D D

D

D R R


 




  



  

 
+ − − +

 
 

= − − + 
+ 

 − −
 
 

 and 

3 2

(2) 1 2 3( ) ( ) 0Ch d d d   = + + + = is the 

characteristic polynomial of its Jacobian matrix.  

Where, 
1 7 8 9d n n n= + + , 

2 9 7 8 7 6 6( )( ) ( ) ( )D Dd n n n n      = + + + + − + +  

and
3 7 9 9 6 8 9( )( )Dd n n n n n     = − + + +  

where, 2
7

31

D
n

D





= +

+
, 

 2
8 62

3(1 )
D

S
n

D


  



−
= + + +

+
 and

9 7n  = + . 

( )
1 2 3 7

7 8 6 6 9

7 8 9 8 9 7 8

2

7 9 7 9 8 8 9

( )

( )( ) ( )

( ) ( )

( ) ( )

D

d d d n

n n n

n n n n n n n

n n n n n n n



    





− = −

+ + + + +

+ + + +

+ + + +

 

Clearly, 
7n   hence

3 0d  and
1 2 3 0d d d−  . 

1 0d 

if 2
62

3(1 )
D

S

D


  


 + +

+
. 

With the help of Routh-Hurwitz criteria it is clear that 

all the roots of the characteristic polynomial have 

negative real part, hence
1

2 (2)( ,0)E X= is globally 

asymptotically stable. 

Now, 

( )

( )

2 (2) (2) 1 2 4 2 5

1 2 4 2

( , )

( ) ( )

G X Z S D M

S S D D M

   

 

= − − −

− − + −
 

5 2 (2) (2)
ˆ ( , )B M G X Z= −  

Here, 2
ˆ ( , ) 0G X Z   hence, the conditions (H5) and 

(H6) stated above are satisfied. 

4.2.4. Global stability of endemic equilibrium 

point (
*

E ) 

We analyze global stability of an endemic equilibrium 

point through a geometric approach described in [16], 

[27] and [15]. To use this method let we modify our 

system (1) as follow: 

7 6 5 2
1

7 3

1 54

2
4 6

3

( )

( ) 1

( )
1

D

D M SDdS
B SM S

dt D

dM
SM M MMD

dt

SDdD
MD D D

dt D

   
 

  

  


   



+
= + − − −

+ +

= − −−

= + − − +
+

(7) 

Let 
3K  be a simply connected open set and

1( )f C K . Further suppose that ( )t  be a solution to 

the following system, 

( )x f x =                                                                        

(7)Suppose ( )P x  be a matrix valued function on K

and let
1 [2] 1

fQ P P PM P− −= + . 

Here, the matrix fP is: 

( )
( )

( ) . ( ) . ( )
ij

ij ijf

P x
P x f x P f x

x

 
= =  

 
. 

Jacobian matrix of an arbitrary point is [ ]ijM c= : 

Where, 2
11 1

31

D
c M

D


 


= − − −

+
, 7 5

12 1

7

c S
 


 

= −
+

,  

( )
7 6 2

13 2

7 31

S
c

D

  

  
= −

+ +
, 

21 1c M= ,
23 4c M= − , 

22 1 4 5c S D   = − − − , 2
31

31

D
c

D




=

+
, 

32 4c = , 

( )
2

33 4 62

3

( )
1

D

S
c M

D


   


= + − − +

+
. 

The second additive compound matrix obtain from the 

Jacobian matrix M is
[2]M , 

( )
7 62

10 4 2

73

[2] 7 5

4 11 1

7

2
1 12

3

1

1

S
n M

D

M n S

D
M n

D

 


 

 
 

 






 
− − ++ 

 
= − 

+ 
 
 −

+  

 

Where 2
10 1 4 5 1

3

2
1

D
n S D M

D


    


= − − − − −

+
,  
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( )
2 2

11 4 6 12

33

2
11

D

S D
n M M

DD

 
    


= + − − − − −

++

, and 

( )
2

12 1 4 5 4 62

3

2
1

D

S
n S D M

D


      


= − − + + − − −

+

Next, consider the following system: 

( )( )
dz

t z
dt

=   (8) 

And if (8) is stable then also the second compound 

equation ( )[2] ( )
dz

M t z
dt

= is stable, moreover

belong to a set in which 
1P−

 is bounded. A set K is 

absorbing with respect to (7) if solution exist for all 

0t   and 1( , )x t K K  for all t , where 
1K  is any 

bounded subset of K . 

To prove global stability through this approach we use 

techniques developed in [19]. 

Let, 3

1
P I

D
= , where 

3I is an identity matrix of order 

3. Hence, 
1

3f

D
P P I

D

− 
= − . 

Next, 
1 [2] 1

fQ P P PM P− −= +  
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Where, 
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3
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1
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n S D M

D D


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
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( )
3 2 2

11 12

33
11

SD DD
n S

D DD

  
 




− = − − −
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3 2

12 1 4 52

31

SDD
n S D

D D

 
   



 −
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+
. 

Let we define the following norm function as described 

in [2] for some ( )1 2 3, ,z z z z= . 

 

 
1 3 2 3 2 3

1 3 2 2 3

max , 0

max , 0

z z z z if z z
z

z z z if z z

 + + 
= 

+ 

 

Now we explore the existence of some 0  , so that

D z z+  − . In this situation we have to analyses 

all eight possible cases. 

 

Case 1 If 
1 2 30 , ,z z z and 1 3 2 3z z z z+  + then

1 3z z z= + and ( )1 3 1 3D z D z z z z+ +
 = + = +  
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Case 2 If 
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Since 1 2z z , we get 
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Case 3 If 
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Case 4 If 
1 2 30 ,z z z  and 1 3 2 3z z z z+  + then

2 3z z z= + and 2 3D z z z+
 = +  
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Since 1 3 2z z z+  , we get 
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Case 6 If 
2 1 30 ,z z z  and 1 3 2z z z+   
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1 3

7

1 1

D z z z

SD D
M z

D D

S z



  
 

 

 


 

+
= =

 
+ − − − − 

+ + 

 
+ − 

+ 

 

Since 1 3 2z z z+  , we get 

( )

2 3 7 52

3 3 7

1 4

1 1

SD D

D DD z z

M S

   

   

  

+

 
− + + + +  

 − + + − 

 

Combining all the eight cases, we got four independent 

inequality which are used in following theorem that 

proves the global stability of endemic eqilibrium point. 

Theorem 8. For
0 1R  , the endemic equilibrium point

*E is globally asymptotically stable if the following 

inequality holds 

( )1 2 3 4max , , ,     −  

Where, 

( )

2 3 7 52
4

3 3 7

1
2 3

4 52

3

,
1 1

max

1

SDD

D D

SD
D

D

   
 

   


 
  



 
− − − + + + 

=  
 − − − −
 + 

 

( )
( )

( ) 

2
2 1 4 5 4

3

2 3 7 6

6 12

73

4 5

( )
max

1

(1 )
,

1
D

S D
S D M

D

S D
S M

D

D M


     



   
  

 

  

 +
= − − − − −

+

−
− − − + +

++

− + − −

 

( )2 3 7 52
3 1 4

3 3 71 1

SDD
M S

D D

   
   

   
= + − + + − +

+ + +
 

( )2 3 7 52
4 1 4

3 3 71 1

SD D
M S

D D

   
   

   
= − + − + + −

+ + +

And  is a positive number. 
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5. Optimal control 

Mosquitoes are the most prolific killers of humans in 

the animal kingdom. One of the most ancient and 

deadly diseases that mosquitoes transmit are malaria 

and dengue. It has been hypothesized due to influences 

on immune responses that infection with malaria can 

alter to the course of infection of the dengue. An 

effective way to protect the people from dengue who 

are already affected by malaria is to control vector. 

Also medication pays a major role to control spread of 

vector borne diseases. 
In present dynamical model, two bounded Lebesgue 

integrable controls are introduced say
1u and

2u . 
1u  

control is to minimize concurrent infection cases by 

vector control and 
2u  is a treatment control which helps 

to improve recovery rate. After applying control system 

(1) will take form as follow: 

2
7 1

3

1 54 1

2
4 1 6 2

3

6 2 5 7

1

( ) ( )
1

( )

D

SDdS
B R SM S

dt D

dM
SM M MMD u M

dt

SDdD
MD u M u D D

dt D

dR
u D M R R

dt


  



  


   



   

= + − − −
+

= − −− −

= + + − + − +
+

= + + − −

 

The objective function ( , )iJ u  for the mathematical 

model along with the optimal control is given by: 

2 2 2 2 2 2

1 2 3 4 1 1 2 2
0

( )
T

J A S A M A D A R w u w u dt= + + + + +  

Here, denotes set of all compartmental variables.
iA

are small positive constants to keep a balance in the size 

of the respective compartments.
1w and

2w are positive 

weight parameter which is associated with the control

1u and
2u . The objective of our work is to maximize the 

total number of recovered individual by optimizing 

control variables
1u and

2u .  

As, the weight parameters 
1w and 

2w  are constant of 

the control rates applied as vector control and treatment 

control, from which the optimal control condition is 

normalized. Now, we will calculate the values of 

control variables from 0t =  to t T=  such that 

( )  1 2 1 2( ), ( ) ( , ) / ( , )iJ u t u t optimum J u u u =    

Where   is a smooth function on the interval [0,1] . The 

optimal controls denoted by *

1u and *

2u  are founded by 

accumulating all the integrands of equation (4) using 

the lower bounds and upper bounds respectively with 

the results of Fleming and Rishel [11].  

 

 

 

 

 

 

 

 

To optimize controls using the Pontryagin’s principle 

we construct a Lagrangian function consisting of state 

equations and adjoint variables 
1 2 3 4, , ,     as follows: 

( )

2 2 2 2 2 2

1 2 3 4 1 1 2 2

2
1 7 1

3

2 1 54 1

( , )

1

L A A S A M A D A R w u w u

SD
B R SM S

D

SM M MMD u M


   



   

 = + + + + +

 
+ + − − − 

+ 

+ − −− −

 

) (

)

2
3 4 1 6 2

3

4 6 2 5

7

( )
1

( ) ( )D

SD
MD u M u D

D

D u D M

R R


  



    

 


+ + + − +

+

− + + + +

− −

 

The partially differentiation of the Lagrangian function 

with respect to each compartmental variable gives the 

adjoint equation variables 
1 2 3 4( , , , )iA    =  

corresponding to the system: 

1 1 1 2 1

2
1 3 1

3

2 ( )

( )
1

L
A S M

S

D

D

   


  




= − = − + −



+ − +
+

 

2

2 1 2 1 2 3 4 1

3 1

2 4 5 2

3

2 ( ) ( )( )

( )
1

L

M

A M S D u

S

D



     

 
    




= −



= − + − + − +

+ − + −
+

 

2
3 3 1 3 2

3

2 3 4 3 4 6 2

3

2 ( )
(1 )

( ) ( )( )

( )D

SL
A D

D D

M u


  



     

  


= − = − + −

 +

+ − + − +

+ +

 

4 4 4 1 7 42 ( )
L

A R
R

     


= − = − + − +


 

The necessary conditions for Lagrangian function L  to 

be optimal are, 
1 0u =  and 

2 0u = . Hence we get, 

( )1 2 3

1

1

2
u M

w
 = − , ( )2 3 4

2

1

2
u D

w
 = −  

Formulated required optimal controls are: 

( )2 3*

1 1 1

1

max ,min ,
2

M
u a b

w

  −  
=   

   
 

( )3 4*

2 2 2

2

max ,min ,
2

D
u a b

w

  −  
=   

   
 

Thus, analytical results for optimized controls have 

been visualised in simulation part. 
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6. Numerical simulation 

Bifurcation analysis helps to demonstrate the 

qualitative information about the equilibrium point. 

Figure 2 shows backward bifurcation diagram where 

0.12CR =  is a critical point from which system’s 

stability switches from unstable to stable state. If 

0CR R , then for the point of 
0R  backward bifurcation 

exists, moreover equilibrium coexist when 
0 1CR R   

[14], [29]. 

 

Figure 2. Bifurcation diagram for dengue infected 

individuals with 
0R  

 

Figure 3. Time series of solution of malaria-dengue model 

Figure 3 shows the flow of malaria-dengue model with 

time. It is observed that human immunity is more 

sensitive towards dengue compare to malaria infection 

moreover compare to dengue, recovery rate of malaria 

is higher. Hence we can say that medication is more 

effective on malaria infected compare to dengue 

infected. Compare to dengue, spread of malaria is easy 

to control by improving medication. Under proper 

medication both the diseases can be controlled in 7-8 

weeks. 

 

Figure 4. Variation in control variables with time 

Figure 4 shows change in both the control variables 

needs to be done to stabilize the model. It is observed 

that initially 35% and 13%,
1u and

2u  controls are 

needed to be applied respectively. 

 

Figure 5. Change in objective function with time 

Figure 5 gives change in objective function under 

influence of both the controls combine and individually 

which gives combine and individual effect of both the 

controls on malaria-dengue model. It is clearly visible 

that combine effect of controls gives more fruitful 

effect on the model compare to an individual effect. 

 

Figure 6. Impact of  
1u  control on class of malaria infected 

individuals 

The simulation in figure 6 interprets that that chances 

to get infected by malaria decreases by 50% after 

applying control
1u . 

 

(a) Impact of 
1u control 
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(b) Impact of 
2u control  

 

(c) Impact of both the controls 

Figure 7. Impact of controls on class of dengue infected 

individuals 

From figure 7(a) and 7(b), it is clear that for class of 

dengue infected individuals
2u control is more effective 

compare to
1u control moreover it is visualised in figure 

7(c) that combine effect of both the control is even 

more effective which shoews only medication is not 

enough to minimize dengue infaction case, different 

acts which minimize concurrent infaction case also 

have a significant effect. 

 

(b) Impact of 
1u control 

Figure 8 shows separate and combine effect of both the 

controls on class of recovered individuals. From figure 

8(c) we can observe better improvement in recovered 

class after applying both the controls at the same time. 

About 61% improvement is observed in recovery rate 

white applying both the control together. 

 
(b) Impact of 

2u control  

 

(c) Impact of both the controls 

Figure 8. Impact of controls on class of recovered 

individuals 

Also figure 8(a) and 8(b) deplicate that compare to 
1u  

control, 
2u control gives better result which suggest 

that madication plays a major contribution to control 

the concurrent infection. Hence better medication 

facility and avaibility is good approach to control 

outbreak of malaria-dengue infections in endemic 

areas. 

7. Conclusion 

The fight against most deadly mosquito-borne diseases 

malaria and dengue is a challenge to the world. In the 

present study, the system of dynamical model for two 

different mosquito borne diseases is studied through the 

use of mathematical modeling. Moreover, Optimal 

control theory is also applied on the model to visualise 

the effect of controles on it. The model have four 

equilibrium points for four different possible cases 

including disease free society, case when only one 

individual infection is present  and the case when both 

the diseases are present concurrently in society. It is 

proved that all four equilibrium points are local and 

globally asymptotically stable under some parametric 

conditions. The formula of basic reproduction number

0( )R  used to calculate threshold value of the model. In 

this article, the basic reproduction number is 

formulated for malaria and dengue combinely, hence it 
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is unaffected by parameter 4 . Threshold value 

increases as value of parameters 1 and 2 is increases, 

and it decreases as 5 and 6 increases. Which simply 

means threshold value can be controled by improving 

recovery rates of both the diseases. Bifurcation analysis 

indicates that minimum rate of diseases spread is 12%. 

Threshold value signifies that there is 14.9% chance to 

get infected by malaria and dengue concurrently. In 

numerical simulation we have observed the effect of 

optimal controls individually as well as concurrently 

and more stability is observed when we apply both the 

controls at same time. Also it is analysed that 61% 

improvement in recovery rate is observed under the 

effect of both optimal controls, which suggest that 

vector control by using insecticide, treated mosquito 

nets and indoor residual spraying and medication to 

improve recovery are the main way to prevent and 

reduce malaria and dengue transmission. 
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