
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.10, No.2, pp.218-225 (2020)

http://doi.org/10.11121/ijocta.01.2020.00827

RESEARCH ARTICLE

Modified operational matrix method for second-order nonlinear

ordinary differential equations with quadratic and cubic terms
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1. Introduction

Nonlinear differential equations and the related
initial and boundary value problems play an im-
portant role in astrophysics, physics and engineer-
ing. In recent years, to solve these problems both
analytically and numerically which have applica-
tions in various branches of pure and applied sci-
ences, several numerical and analytical methods
have been given. But it may not be possible to
find the analytical solutions of such problems for
all coefficient functions.

These type of mathematical models can be de-
scribed by particular names such as Riccati equa-
tion, nonlinear equations of motion, Duffing’s
equation, Van Der Pol’s equation, the equation of
motion with quadratic damping, Emden’s equa-
tion, Liouville’s equation [1–5].

In this study, we consider the second-order nonlin-
ear ordinary differential equations with quadratic
and cubic terms:

2∑

k=0

Pk(x)y
(k)(x) +

2∑

p=0

p∑

q=0

Qpq(x)y
(p)(x)y(q)(x)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x)

=g(x), 0 ≤ x ≤ b < ∞,

(1)

with the mixed conditions

1∑

k=0

(akjy
(k)(0) + bkjy

(k)(b)) = λj , j = 0, 1, (2)

where Pk(x), Qpq(x), Qpqr(x) and g(x) are func-
tions defined on the interval 0 ≤ x ≤ b < ∞;
akj , bkj and λj are appropriate and real constants;
y(x) is an unknown function to be determined [6].
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In this study, we develop a new numerical meth-
ods to find the approximate solutions of Eq. (1)
in the truncated Laguerre series form

y(x) ∼= yN (x) =

N∑

n=0

anLn(x), 0 ≤ x ≤ b < ∞,

(3)

where an, n = 0, 1, ..., N,N ≥ 2 are the unknown
Laguerre coefficients and Ln(x), n = 0, 1, ..., N are
the Laguerre functions of first kind defined by

Ln(x) =
n∑

k=0

(−1)k

k!

(
n

k

)
xk, 0 ≤ x ≤ b < ∞. (4)

2. Operational matrix relations

Firstly, let us write Eq. (1) in the form

L[y(x)] +N2[y(x)] +N3[y(x)] = g(x), (5)

where the linear ordinary differential part

L[y(x)] =
2∑

k=0

Pk(x)y
(k)(x), (6)

the nonlinear quadratic part

N2[y(x)] =
2∑

p=0

p∑

q=0

Qpq(x)y
(p)(x)y(q)(x), (7)

and the nonlinear cubic part

N3[y(x)] =
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x).

(8)

2.1. Matrix representation of linear

ordinary differential part

Now, we consider Eq.(1) and find the matrix
forms of each term in the equation. So, we con-
vert Laguerre polynomial solution (3) to the ma-
trix form as

y(x) = y(0)(x) ∼= L(x)A,

y(1)(x) = L(x)CA,

y(2)(x) = L(x)C2A,

(9)

where

L(x) =
[
L0(x) L1(x) · · · LN (x)

]
,

C =




0 −1 −1 · · · −1
0 0 −1 · · · −1
...

...
...

. . .
...

0 0 0 · · · −1
0 0 0 · · · 0



,

A =
[
a0 a1 · · · aN

]T
.

2.2. Matrix representation of nonlinear

quadratic part

Now, we consider matrix representation of non-
linear quadratic part. So, we define the matrices
with related to (7) and (9)

(y(0)(x))2 = L(x)L(x)A,

y(1)(x)y(0)(x) = L(x)CL(x)A,

(y(1)(x))2 = L(x)CL(x)CA,

y(2)(x)y(1)(x) = L(x)C2L(x)CA,

y(2)(x)y(0)(x) = L(x)C2L(x)A,

(y(2)(x))2 = L(x)C2L(x)C2A,

(10)

where

L(x) = diag
[
L(x) L(x) · · · L(x)

]
,

C = diag
[
C C · · · C

]
,

A =
[
a0A a1A · · · aNA

]T
.

2.3. Matrix representation of nonlinear

cubic part

Let us consider (8) as

N3[y(x)] =
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x)

+Q000(x)y
(0)(x)y(0)(x)y(0)(x)

+Q100(x)y
(1)(x)y(0)(x)y(0)(x)

+Q110(x)y
(1)(x)y(1)(x)y(0)(x)

+Q111(x)y
(1)(x)y(1)(x)y(1)(x)

+Q200(x)y
(2)(x)y(0)(x)y(0)(x)

+Q210(x)y
(2)(x)y(1)(x)y(0)(x)

+Q211(x)y
(2)(x)y(1)(x)y(1)(x)

+Q220(x)y
(2)(x)y(2)(x)y(0)(x)

+Q221(x)y
(2)(x)y(2)(x)y(1)(x)

+Q222(x)y
(2)(x)y(2)(x)y(2)(x).
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So, we define the matrices as

(y(0)(x))3 = L(x)L(x)L(x)A,

y(1)(x)(y(0)(x))2 = L(x)CL(x)L(x)A,

(y(1)(x))2y(0)(x) = L(x)CL(x)CL(x)A,

(y(1)(x))3 = L(x)CL(x)CL(x)CA,

y(2)(x)(y(0)(x))2 = L(x)C2L(x)L(x)A,

y(2)(x)y(1)(x)y(0)(x) = L(x)C2L(x)CL(x)A,

(11)

y(2)(x)(y(1)(x))2 = L(x)C2L(x)CL(x)CA,

(y(2)(x))2y(0)(x) = L(x)C2L(x)C2L(x)A,

(y(2)(x))2y(1)(x) = L(x)C2L(x)C2L(x)CA,

(y(2)(x))3 = L(x)C2L(x)C2L(x)C2A,

where

L(x) = diag
[
L(x) L(x) · · · L(x)

]
,

C = diag
[
C C · · · C

]
,

A =
[
a0A a1A · · · aNA

]T
.

3. Method of solution

Now, we define the collocation points as

xi =
b

N
i, i = 0, 1, N ; 0 ≤ x0 < x1 < ... < xN = b.

(12)

We substitute the collocation points (12) into Eq.
(1), we have the system of matrix equations for
i = 0, 1, ..., N ,

2∑

k=0

Pk(xi)y
(k)(xi) +

2∑

p=0

p∑

q=0

Qpq(xi)y
(p)(xi)y

(q)(xi)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(xi)y
(p)(xi)y

(q)(xi)y
(r)(xi)

=g(xi), 0 ≤ x ≤ b < ∞,

or briefly,

2∑

k=0

PkY
(k) +

2∑

p=0

p∑

q=0

QpqY
(p,q)

+
2∑

p=0

p∑

q=0

q∑

r=0

QpqrY
(p,q,r)

= G, 0 ≤ x ≤ b < ∞,

(13)

where

Pk = diag
[
Pk(x0) Pk(x1) · · · Pk(xN )

]
,

Qpq = diag
[
Qpq(x0) Qpq(x1) · · · Qpq(xN )

]
,

Qpqr = diag
[
Qpqr(x0) Qpqr(x1) · · · Qpqr(xN )

]
,

and

Y(k) =




y(k)(x0)

y(k)(x1)
...

y(k)(xN )


 , G =




g(x0)
g(x1)

...
g(xN )


 ,

Y(p,q,r) =




y(p)(x0)y
(q)(x0)y

(r)(x0)

y(p)(x1)y
(q)(x1)y

(r)(x1)
...

y(p)(xN )y(q)(xN )y(r)(xN )


 ,

Y(p,q) =




y(p)(x0)y
(q)(x0)

y(p)(x1)y
(q)(x1)

...

y(p)(xN )y(q)(xN )


 .

By the other hand, we can write following matrix
forms of the nonlinear quadratic and nonlinear
cubic parts from (8) and (9) for p, q, r = 0, 1, 2

Y(0,0) = L∗

(0,0)A, Y(1,0) = L∗

(1,0)A,

Y(1,1) = L∗

(1,1)A, Y(2,0) = L∗

(2,0)A,

Y(2,1) = L∗

(2,1)A, Y(2,2) = L∗

(2,2)A,

and

Y(0,0,0) = L∗

(0,0,0)A, Y(1,0,0) = L∗

(1,0,0)A,

Y(1,1,0) = L∗

(1,1,0)A, Y(1,1,1) = L∗

(1,1,1)A,

Y(2,0,0) = L∗

(2,0,0)A, Y(2,1,0) = L∗

(2,1,0)A,

Y(2,1,1) = L∗

(2,1,1)A, Y(2,2,0) = L∗

(2,2,0)A,

Y(2,2,1) = L∗

(2,2,1)A, Y(2,2,2) = L∗

(2,2,2)A,

where
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L∗

(0,0) =




L(x0)L(x0)
L(x1)L(x1)

...
L(xN )L(xN )


 ,

L∗

(1,0) =




L(x0)CL(x0)
L(x1)CL(x1)

...
L(xN )CL(xN )


 ,

L∗

(1,1) =




L(x0)CL(x0)C
L(x1)CL(x1)C

...
L(xN )CL(xN )C


 ,

L∗

(2,0) =




L(x0)C
2L(x0)

L(x1)C
2L(x1)
...

L(xN )C2L(xN )


 ,

L∗

(2,1) =




L(x0)C
2L(x0)C

L(x1)C
2L(x1)C
...

L(xN )C2L(xN )C


 ,

L∗

(2,2) =




L(x0)C
2L(x0)C2

L(x1)C
2L(x1)C2

...

L(xN )C2L(xN )C2


 ;

L∗

(0,0,0) =




L(x0)L(x0)L(x0)

L(x1)L(x1)L(x1)
...

L(xN )L(xN )L(xN )



,

L∗

(1,0,0) =




L(x0)CL(x0)L(x0)

L(x1)CL(x1)L(x1)
...

L(xN )CL(xN )L(xN )



,

L∗

(1,1,0) =




L(x0)CL(x0)CL(x0)

L(x1)CL(x1)CL(x1)
...

L(xN )CL(xN )CL(xN )



,

L∗

(1,1,1) =




L(x0)CL(x0)CL(x0)C

L(x1)CL(x1)CL(x1)C
...

L(xN )CL(xN )CL(xN )C



,

L∗

(2,0,0) =




L(x0)C
2L(x0)L(x0)

L(x1)C
2L(x1)L(x1)
...

L(xN )C2L(xN )L(xN )



,

L∗

(2,1,0) =




L(x0)C
2L(x0)CL(x0)

L(x1)C
2L(x1)CL(x1)

...

L(xN )C2L(xN )CL(xN )



,

L∗

(2,1,1) =




L(x0)C
2L(x0)CL(x0)C

L(x1)C
2L(x1)CL(x1)C

...

L(xN )C2L(xN )CL(xN )C



,

L∗

(2,2,0) =




L(x0)C
2L(x0)C2L(x0)

L(x1)C
2L(x1)C2L(x1)

...

L(xN )C2L(xN )C2L(xN )



,

L∗

(2,2,1) =




L(x0)C
2L(x0)C2L(x0)C

L(x1)C
2L(x1)C2L(x1)C

...

L(xN )C2L(xN )C2L(xN )C



,

L∗

(2,2,2) =




L(x0)C
2L(x0)C2L(x0)C2

L(x1)C
2L(x1)C2L(x1)C2

...

L(xN )C2L(xN )C2L(xN )C2



.

Then the fundamental matrix equation is gained
from (5)-(13)

2∑

k=0

PkLA+
2∑

p=0

p∑

q=0

QpqL
∗

(p,q)A

+
2∑

p=0

p∑

q=0

q∑

r=0

QpqrL
∗

(p,q,r)A

= G, 0 ≤ x ≤ b < ∞,

(14)

Briefly, we can write Eq.(14) as

WA+VA+ ZA = G, (15)

where
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W =

2∑

k=0

PkL = [wi,j ]; i, j = 0, 1, ..., N,

V =
2∑

p=0

p∑

q=0

QpqL
∗

(p,q) = [vi,j ](N+1)×(N+1)2 ,

Z =
2∑

p=0

p∑

q=0

q∑

r=0

QpqrL
∗

(p,q,r) = [zi,j ](N+1)×(N+1)3 ,

Moreover, fundamental matrix equation (15) can
be written in the augmented matrix form

[W;V;Z : G]. (16)

3.1. Matrix representation of the

conditions

Let us define the matrix form of the conditions
given by (2) can be written as

for j = 0, U0 = [y(0)(0)] = L(0),

for j = 1, U1 = [y(1)(0)] = L(0)C.

Then, we have

U =

[
U0

U1

]

2×(N+1)

,

O2 =

[
0 0 · · · 0
0 0 · · · 0

]

2×(N+1)2
,

O3 =

[
0 0 · · · 0
0 0 · · · 0

]

2×(N+1)3
,

or briefly,

[U;O2;O3 : λj ]. (17)

Consequently, in order to find the Laguerre coef-
ficients an, (n = 0, 1, ..., N) related with the ap-
proximate solution (3) of the problem (1)-(2), by
replacing the 2 row matrices (17) by the last 2
rows (or any 2 rows) of the augmented matrix
(16), we obtain new augmented matrix

[W̃; Ṽ; Z̃ : G̃]. (18)

Thence the unknown Laguerre coefficients are cal-
culated by solving (18) [7]- [8]. Therefore, the
Laguerre polynomial solution can be acquired as

yN (x) =
N∑

n=0

anLn(x).

4. Error analysis

Definition 1 (Residual function). We define the
residual function RN (xα) for x = xα ∈ [0, b]

RN (xα) =
2∑

k=0

Pk(xα)y
(k)(xα)

+
2∑

p=0

p∑

q=0

Qpq(xα)y
(p)(xα)y

(q)(xα)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(xα)y
(p)(xα)y

(q)(xα)y
(r)(xα)

−g(xα) ∼= 0

or

RN (xα) ≤ 10−kα , for kα ∈ Z
+.

Then |RN (xα)| is called as the residual function
on the interval [0, b].

Theorem 1. |RN (xα)| is the residual function on
the interval [0, b]. Then

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤
∫ b

0
|RN (x)| dx

So, that the upper bound of the mean error Rn is

|RN (x)| ≤

∫ b

0 |RN | (x)dx

b
= Rn.

Proof. In order to see the proof briefly, we con-
sider the Mean Value Theorem and the definition
below. Then

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤
∫ b

0
|RN (x)| dx

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤ b |RN (c)| , 0 ≤ c ≤ b

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤ b |RN (c)| ≤

∫ b

a

|RN (x)| dx

|RN (x)| ≤

∫ b

0 |RN | (x)dx

b
= Rn

�
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4.1. Algorithm

• Step 0. Input initial data:
Pk(x), Qpq(x), Qpqr(x) and g(x). Deter-
mine the mixed conditions.

• Step 1. Set N where N ∈ N.

• Step 2. Construct the matrices

L(x),C,L(x),C,L(x),C and G then
W,V,Z.

• Step 3. Define the collocation points
xi =

b
N
i, i = 0, 1, ..., N .

• Step 4. Compute [W;V;Z : G].

• Step 5. Compute [U;O2;O3 : λj ].

• Step 6. Construct the augmented matrix
[W̃; Ṽ; Z̃ : G̃].

• Step 7. Input: the augmented matrix ar-
guments, forward elimination, back sub-
stitution. Output: A (Solve the system
by Gaussian elimination method).

• Step 8. Put arguments an in the trun-
cated Laguerre series form.

• Step 9. Output data: the approximate
solution yN (x).

• Step 10. Construct y(x) is the exact so-
lution of (1).

• Step 11. Stop when RN (x) ≤ 10−k

where k ∈ Z
+. Otherwise, increase N and

return to Step 1.

5. Illustrative examples

In this section, some examples will be given to
show applicability of our method. All the prob-
lems have been calculated and plotted by using
Maple18 and MatlabR2014b.

Example 1. First, we consider the second-order
nonlinear ordinary differential equation with qua-
dratic terms

y′′(x) + 2y′(x) + y(x) + y2(x)− y′′(x)y′(x) = 12 exp(x) + 2

(19)

with the initial conditions

y(0) = 3, y′(0) = 2. (20)

The exact solution of (19)-(20) is y(x) = 1 +
2 exp(x).

Table 1. |RN | comparison of Exam-
ple 1. for different N values.

x |R2| |R4| |R5|
(0.0) 0.000000 0.000000 0.000000
(0.1) 0.341836E-4 0.530766E-5 0.450128E-6
(0.2) 0.280551E-3 0.281048E-4 0.194988E-5
(0.3) 0.971761E-3 0.563571E-4 0.318105E-5
(0.4) 0.236493E-3 0.671672E-4 0.339969E-5
(0.5) 0.474425E-2 0.525094E-4 0.365512E-5
(0.6) 0.842376E-2 0.476701E-4 0.530256E-5
(0.7) 0.137505E-2 0.162679E-3 0.552450E-5
(0.8) 0.211081E-1 0.617047E-3 0.104534E-4
(0.9) 0.309206E-1 0.177815E-2 0.808003E-4
(1.0) 0.436563E-1 0.420369E-2 0.282554E-3

Example 2. Now, we consider the second-order
nonlinear ordinary differential equation with cu-
bic terms,

y′′(x)− y′(x)(1− y2(x)) + y(x) = (2 + sin(x)) cos(x) sin(x) + 1

(21)

with the initial conditions

y(0) = y′(0) = 1. (22)

The exact solution of (21)-(22) is y(x) = 1 +
sin(x).

Table 2. |RN | comparison of Exam-
ple 2. for different N values.

x |R2| |R4| |R6|
(0.0) 0.000000 0.000000 0.000000
(0.1) 0.516658E-7 0.554530E-9 0.551083E-12
(0.2) 0.213306E-8 0.243668E-10 0.241721E-11
(0.3) 0.494797E-8 0.597486E-10 0.593143E-11
(0.4) 0.905816E-8 0.114974E-10 0.114344E-11
(0.5) 0.145574E-8 0.193316E-10 0.192602E-11
(0.6) 0.215357E-8 0.298030E-9 0.297203E-11
(0.7) 0.300782E-7 0.432339E-9 0.430863E-10
(0.8) 0.402643E-7 0.599433E-9 0.595716E-10
(0.9) 0.521673E-7 0.802455E-9 0.793115E-10
(1.0) 0.658529E-7 0.444952E-8 0.234134E-9

6. Conclusion

In this study, we introduce a matrix method de-
pending on Laguerre polynomials in order to solve
a class of second-order nonlinear ordinary differ-
ential equations having quadratic and cubic terms
numerically. Furthermore, the error analysis is
given to show the accuracy of the method. The
present method and its error analysis are applied
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on some illustrative examples which have been
shown by the tables.

The method has some significant advantages such
as;

• The present method has short and con-
cise computing procedure by writing the
algorithm in Maple18.

• The technique gives an alternative way of
solution to the second-order nonlinear or-
dinary differential equations which varies
the other methods in literature.

• The present method has sufficient results
when N is chosen large enough.

The method also can be developed and applied to
differential functional integral equations, nonlin-
ear functional integral equations and functional
systems but some modifications are required [9]-
[10].
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