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In this paper, we derive some new soliton solutions to (2 + 1)-Boiti-Leon
Pempinelli equations with conformable derivative by using an expansion tech-
nique based on the Sinh-Gordon equation. The obtained solutions have differ-
ent expression such as trigonometric, complex and hyperbolic functions. This
powerful and simple technique can be used to investigate solutions of other
nonlinear partial differential equations.
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1. Introduction

Partial differential equations play an important
role in interpretation and modeling of many phe-
nomena appearing in applied mathematics and
physics including flu d mechanics, electrical cir-
cuits, diffusion, damping laws, relaxation pro-
cesses, optimal control theory, solid mechanics,
propagation of waves, chemistry, biology, and
so on. Therefore, seeking solutions for partial
differential equations is an important aspect of
scientifi research.
Besides, many scientists have focused on new
find ngs to the nonlinear partial differential equa-
tions, such as traveling wave solutions, complex
funtions, trigonometric functions, Jacobi ellip-
tic functions, and so on. For constructing such
solutions, there exist numerous efficient tech-
niques. For example, Sumudu homotopy pertur-
bation transform method [1]- [4], Lie symmetry
method [5], tan(φ(ξ)/2)− expansion method [6,7],
generalized trigonometry functions [8], Riccati
equation expansion technique [9], Jacobi elliptic
function technique [10] and extended Jacobian

elliptic function technique [11], etc. For more in-
formations about the analytical methods, we refer
the reader to the following references [12]- [20].

In this article, we adopt a transformation method
based on a sinh-Gordon expansion equation to ob-
tain new soliton solutions of Boiti-Leon Pimpinelli
equations (BLP) with conformable derivative.
For more details on BLP equation we refer the
reader to the references [21]- [23].
On the other hand, the following equation

∂2u

∂x∂t
= α sinhu, (1)

is called Sinh-Gordon equation and arises in var-
ious areas of nonlinear sciences, where α is an
arbitrary constant.
Using the traveling wave transformation

{

u(x, t) = U(ξ)
ξ = µ (x + y − λt) ,

(2)

equation (1) is converted to
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∂2U

∂ξ2
= −

α

µ2λ
sinhU, (3)

where the coefficients µ and λ stands for the wave
number and wave speed, respectively. Now, inte-
grating (3) yields to

(

d

dξ

1

2
U

)2

= −
α

µ2λ
sinh2

(

1

2
U

)

+ c, (4)

where c is an integration constant. Consider the
following

c = 0, α = −µ2λ and
1

2
U = w,

equation (4) takes the form

dw(ξ)

dξ
= sinhw(ξ). (5)

To construct Jacobi elliptic function solutions, we
convert equation (3) into the following

d2w

dξ2
=

1

2
sinh 2w, (6)

under the assumptions φ = 2w and − α
µ2λ

= 1.

Equation (6) can be also written as

(

dw

dξ

)2

= sinh2w + c, (7)

which can be used in the adopted method, where
c is an integration constant. Therefore, Equation
(7) has the following solutions

sinh [w(ξ)] = cs(ξ;m), (8)

cosh [w(ξ)] = ns(ξ;m), (9)

where m is the modulus of the Jacobian elliptic
functions :

cs(ξ;m) =
cn(ξ;m)

sn(ξ;m)

ns(ξ;m) =
1

sn(ξ;m)
,

with the properties

d cs(ξ;m)

dξ
= − ns(ξ;m) ds(ξ;m),

d ns(ξ;m)

dξ
= − cs(ξ;m) ds(ξ;m).

Substitution of (8) and (9) in (7) reveals that the
constant c must satisfy

c = 1 −m2, (10)

which is used throughout this work.

The plan of this paper is as follows: In sec-
tion 2 some properties of conformable derivative
are given. In section 3, we describe the sinh-
Gordon expansion technique. Section 4 is de-
voted to construct exact solutions of (2+1)-Boiti-
Leon Pimpinelli equations with time-conformable
derivatives. Finally, a conclusion is given in sec-
tion 5.

2. Conformable derivative

Recently, Khalil and his co-workers [24] presented
a novel derivative called conformable. This sec-
tion is devoted to provide some properties on it.

Definition 1. The conformable derivative with
order α for a function f : [0,∞) → R is given by

Tα(f)(t) = lim
ǫ→0

f
(

t + ǫt1−α
)

− f(t)

ǫ
(11)

where t > 0, α ∈ (0, 1).

Now, we recall some of its properties :

Tα (af + bg) = aTα(f) + bTα(g) for all real con-
stant a and b,

Tα (fg) = fTα(g) + gTα(f),

Tα (tr) = rtr−α for all r,

Tα

(

g
f

)

= fTα(g)−gTα(f)
f2 ,

Tα(C) = 0. Where C is a constant.

Moreovere, if f is differentiable, then

Tα(f) = t1−αdf

dt
(t).

Theorem 1. Suppose that f : [0,∞) is dif-
ferentiable and conformable-differerentiable with
order α and the function g is also differentiable.
Then, we have the next property

Tα (fog) = t1−αg′(t)f ′(g(t)). (12)

3. Description of the method

The analytical method, called sinh-Gordon equa-
tion expansion technique [25], is an efficient tool
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to construct new explicit solutions for many prob-
lems arising in various branches of sciences and
engineering. The algorithm of this method is
based on equation (6) or equation (7) and it can
be described as follows

• Consider the following nonlinear equation
in the sense of conformable derivative:

N
(

u, Tα
t u, T

α
x u, T

α
y u, ...

)

= 0. (13)

• Using the following transformation

u(x, y, t) = U(ξ), ξ = µ

(

xα

α
+

yα

α
− λ

tα

α

)

.

Equation (13) is converted to an ordinary
differential equation

Q
(

U,U
′

, µU
′

,−λU
′

, U
′′

, µ2U
′′

, ...
)

= 0. (14)

• Now, we assume that the solution of (14)
is as follows

U(w) = A0+
n
∑

i=1

coshi−1w [Ai sinhw + Bi coshw] ,

(15)

where w = w(ξ) satisf es (6) or (7) and
(10), Ai, Bi for i = 0, 1, 2, ..., n, are con-
stants to be f xed later.

• By virtue of the balance principle, we take
the nonlinear terms and the highest-order
derivatives in (14) to determine the value
of integer n. Now, let the coefficients of
sinhiw coshj w that have same power to
be zero, to get a system of equations with
the unknowns:

µ, λ, Ai and Bj for i = 0, 1, ..., n.

• Finally, we solve the obtained system
with Maple software, then we substitute
A0, A1, B1, ..., An, Bn, µ and λ in (15).

Remark 1. When m → 1, we have

cs(ξ,m) → csch(ξ), ns(ξ,m) → coth(ξ), (16)

Similarly, when m → 0, it comes

cs(ξ,m) → cot(ξ), ns(ξ,m) → csc(ξ). (17)

4. Application of the method

In this section, we apply the above described
method to solve the (2+1)-Boiti-Leon Pempinelli
equations def ned as follows [26]:







Tα
t uy = (u2 − ux)xy + 2vxxx,

Tα
t vy = vxx + 2uvx.

(18)

Accordingly, we consider the following wave trans-
formation























u(x, y, t) = U(ξ),

v(x, y, t) = V (ξ),

ξ = µ
(

x + y − λ tα

α

)

,

(19)

where λ, µ are constants to be f xed later.
The previous wave transformation reduces (20) to
the following system of ODEs







































































Tα
t (uy) = −λµ2U ′′,

(u2 − ux)xy = µ2
[

(U2)′′ − µU ′′′
]

,

2vxxx = 2µ3V ′′′,

Tα
t v = −λµV ′,

vxx = µ2V ′′,

2uvx = 2µUV ′.

(20)

Then, the new system becomes
{

−λµ2U
′′

= µ2(U2)
′′

− µ3U
′′′

+ 2µ3V
′′′

,

−λµV
′

= µ2V
′′

+ 2µUV
′

.
(21)

After simplif cation, we get

− λU
′′

= (U2)
′′

− µU
′′′

+ 2µV
′′′

, (22)

− λV
′

= µV
′′

+ 2UV
′

. (23)

integrating equation (22) twice and taking zero as
constants of integration, yields to

V
′

=
U

′

2
−

U2 + λU

2µ
. (24)

Injecting equation (24) into equation (23), gives
the following nonlinear differential equation

µ2U
′′

− 2U3 − 3λU2 − λ2U = 0. (25)
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Now, balancing the terms U
′′

and U3, yields
n = 1. Therefore, the solutions of equation (25)
is converted to the following form

U(ξ) = A0 + A1 sinh (w (ξ)) + B1 cosh (w (ξ)) .
(26)

Substituting (26) into (25), we get a set of alge-
braic equations for λ, µ,A0, A1, and B1 as follows































































eq1 = −6A1
2B1 − 2B1

3 + 2B1 µ
2,

eq2 = −2A1
3 − 6A1B1

2 + 2A1 µ
2,

eq3 = −6A0A1
2 − 6A0B1

2 − 3A1
2λ− 3B1

2λ,
eq4 = −12A0A1B1 − 6A1B1 λ,
eq5 = B1 cµ

2 − 6A0
2B1 − 6A0B1 λ + 6A1

2B1

−2B1 µ
2 −B1 λ

2,
eq6 = A1 cµ

2 − 6A0
2A1 − 6A0A1 λ + 2A1

3

−A1µ
2 −A1 λ

2,
eq7 = −2A0

3 − 3λA0
2 + 6A0A1

2 − λ2A0

+3λA1
2.

(27)

Solving the set of above equations, we get

Case I:











A0 = −λ
2 , B1 = λ√

2m2+2
,

µ = − λ√
2m2+2

, A1 = 0.

By using (28) and (26), we attain

U1(ξ) = −
1

2
λ +

λ ns (ξ,m)
√

2m2 + 2
, (28)

and

V1(ξ) = −1/4 λm2ξ√
2m2+2

− 1/2 λ dn(ξ,m)cn(ξ,m)√
2m2+2sn(ξ,m)

−1/2 λE(sn(ξ,m),m)√
2m2+2

+ 1/4 λ ξ√
2m2+2

+1/2 λ√
2m2+2sn(ξ,m)

.

(29)

where ξ = µ
(

x + y − λ tα

α

)

.

Case II:











A0 = −λ
2 , A1 = λ√

2m2−4
,

µ = − λ√
2m2−4

, B1 = 0.
(30)

From (30) and (26), yields

U2(ξ) = −
1

2
λ +

λ cs (ξ,m)
√

2m2 − 4
, (31)

and

V2(ξ) = −1/2 λm2cn(ξ,m)sn(ξ,m)√
2m2−4((dn(ξ,m))2−1)

+ 1/8 λ2ξ
µ

+1/4 λ2
√
2m2−4 ln(ns(ξ,m)−ds(ξ,m))

µ (m2−2)

+1/4 λ2ds(ξ,m)cs(ξ,m)
µ (m2−2)ns(ξ,m)

+ 1/4 λ2E(sn(ξ,m),m)
µ (m2−2)

−1/2 λ2 ln(ns(ξ,m)−ds(ξ,m))

µ
√
2m2−4

,

(32)

where ξ = µ
(

x + y − λ tα

α

)

.

Case III:











A0 = −1
2 λ, A1 = 1

2
λ√

2m2−1
,

B1 = 1
2

λ√
2m2−1

, µ = λ√
2m2−1

.
(33)

By using (33) and (26), we get

U3(ξ) = −
1

2
λ +

1

2

λ cs (ξ,m)
√

2m2 − 1
+

1

2

λ ns (ξ,m)
√

2m2 − 1
,

(34)

where ξ = µ
(

x + y − λ tα

α

)

.

Remark 2. The expression of V3 is too long to
be mentionned here.

If m → 0, the following solitary wave solutions
of (20) are generated from (28),(31) and (34),
namely

U4(ξ) = −
1

2
λ +

1

2
λ csc (ξ)

√
2, (35)

V4(ξ) = 1
4 λ csc (ξ)

√
2 − 1

8 λ
√

2ξ

−1
2 λ ln (csc (ξ) − cot (ξ))

−1
4

λ
√
2 cos(ξ)
sin(ξ) − 1

2 λ ln (csc (ξ) + cot (ξ)) ,

(36)

U5(ξ) = −
1

2
λ−

1

2
iλ cot (ξ) , (37)
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V5(ξ) = −1
4 iλ ξ −

1
8 iλ π + 1

4 iλ arccot (cot (ξ))

+1
4 λ ln

(

(cot (ξ))2 + 1
)

+ 1
2 λ ln (sin (ξ)) ,

(38)

U6(ξ) = −
1

2
λ−

1

2
iλ cot (ξ) −

1

2
iλ csc (ξ) , (39)

V6(ξ) = 1
4 iλ ξ −

3
8 iλ cot (ξ) + 1

8 iλ π

−1
4 iλ arccot (cot (ξ)) − 1

4 iλ csc (ξ)

−
1

4
iλ

sin(ξ)

− 1

8
iλ cos(ξ)

sin(ξ) + 1
4 λ ln (csc (ξ) − cot (ξ))

+1
4 λ ln (csc (ξ) + cot (ξ)) ,

(40)

where ξ = µ
(

x + y − λ tα

α

)

.

If m → 1, we get from (28),(31) and (34), new
solutions of (20)

U7(ξ) = −
1

2
λ +

1

2
λ coth (ξ) , (41)

V7(ξ) = −1/4λ ξ + 1/8λ ln (cosh (ξ) − sinh (ξ))

+3/8λ ln (cosh (ξ) + sinh (ξ)) ,
(42)

U8(ξ) = −
1

2
λ−

1

2
iλ csch (ξ)

√
2, (43)

V8(ξ) = −1/4 iλ
√

2csch (ξ) − 1/8 iλ
√

2ξ+

λ arctanh
(

eξ
)

+ 1/4 iλ
√
2 cosh(ξ)

sinh(ξ) +

1/2λ ln
(

cosh(ξ)−1
sinh(ξ)

)

.

(44)

U9(ξ) = −
1

2
λ+

1

2
λ csch (ξ) +

1

2
λ coth (ξ) , (45)

V9(ξ) = 1/4λ csch (ξ) + 1/4λ ξ + 3/8λ coth (ξ)

+λ /8 ( ln (coth (ξ) − 1) − ln (coth (ξ) + 1))

−1/2λ arctanh
(

eξ
)

+ 1/8 λ cosh(ξ)
sinh(ξ)

+1/4 λ (cosh(ξ))2

sinh(ξ) − 1/4λ sinh (ξ)

−1/4λ ln
(

cosh(ξ)−1
sinh(ξ)

)

,

(46)

where ξ = µ
(

x + y − λ tα

α

)

.

5. Conclusion

In this paper, we have obtained some new solitary
wave solutions to the (2 + 1)-dimensional-Boiti-
Leon Pempinelli equations with time-conformable
derivative. It is clear to see that our obtained
solutions through the suggested method are in-
teresting and new comparing to the existing lit-
erature. Moreover, the obtrained solitons have
various structures such hyperbolic, trigonometric
and complex, which signif es that they have an
important physical meanings.
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