
      Corresponding Author. Email: rkarthiekeyan@gmail.com 
 
                                                                                      17 

 

 

 
 

Anti-Synchronization of Tigan and Li Systems with Unknown Parameters 

via Adaptive Control 
 

Sundarapandian VAIDYANATHAN
a

 and Karthikeyan RAJAGOPAL
b
 

 
a

Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University - India 

Email: sundarvtu@gmail.com 
b

School of Electronics and Electrical Engineering, Singhania University - India 

Email: rkarthiekeyan@gmail.com 

 

(Received October 29, 2011; in final form December 21, 2011) 

 

Abstract. In this paper, the adaptive nonlinear control method has been deployed to derive new results 

for the anti-synchronization of identical Tigan systems (2008), identical Li systems (2009) and non-

identical Tigan and Li systems. In adaptive anti-synchronization of identical chaotic systems, the 

parameters of the master and slave systems are unknown and the feedback control law has been derived 

using the estimates of the system parameters. In adaptive anti-synchronization of non-identical chaotic 

systems, the parameters of the master system are known, but the parameters of the slave system are 

unknown and accordingly, the feedback control law has been derived using the estimates of the 

parameters of the slave system. Our adaptive synchronization results derived in this paper for the 

uncertain Tigan and Li systems are established using Lyapunov stability theory.  Numerical simulations 

are shown to demonstrate the effectiveness of the adaptive anti-synchronization schemes for the 

uncertain chaotic systems addressed in this paper. 
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1. Introduction 

Chaotic systems are nonlinear systems that are 

highly sensitive to initial conditions. This 

sensitivity is popularly known as the butterfly 

effect [1]. The first chaotic system was discovered 

by Lorenz [2] when he was studying weather 

patterns. 

Since the pioneering work by Pecora and 

Carroll [3] chaos synchronization and anti-

synchronization problems have been studied 

extensively and intensively in the chaos literature 

[3-31].  

Chaos theory has been applied successfully to 

a variety of fields such as physical systems [4], 

chemical systems [5], ecological system [6], secure 

communications [7-8], etc. 

 

 

In the last two decades, various schemes have 

been applied for chaos synchronization such as the 

OGY method [9], the active control method  

[10-17], the adaptive control method [18-23], the 

time-delay feedback method [24], the backstepping 

design method [25-26], the sampled-data feedback 

synchronization method [27], the sliding mode 

control method [28-31] and others.  

In most of the chaos synchronization 

approaches, the master-slave or drive-response 

formalism is used. If a particular chaotic system is 

called  a master or drive system and another chaotic 

system is called a slave or response system, then 

the goal of anti-synchronization is to use the output 

of the master system to control the slave system so 

that the states of the slave system have the same 

amplitude but opposite signs as the states of the 

master system asymptotically. 
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In this paper, we discuss the anti-

synchronization of identical hyperchaotic Tigan 

systems [32], identical Li systems [33], and non-

identical Tigan and Li systems. Our 

synchronization results are established using the 

Lyapunov stability theory [34].  

In adaptive synchronization of identical 

chaotic systems, the parameters of the master and 

slave systems are unknown and we devise 

feedback control laws using the estimates of the 

system parameters.  

In adaptive synchronization of non-identical 

chaotic systems, the parameters of the master 

system are known, but the parameters of the slave 

system are unknown and we devise feedback 

control laws using the estimates of the parameters 

of the slave system. 

This paper has been organized as follows. In 

Section 2, we discuss the adaptive anti-

synchronization of identical Tigan systems [32]. In 

Section 3, we discuss the adaptive anti-

synchronization of identical Li systems [33]. In 

Section 4, we discuss the adaptive anti-

synchronization of non-identical Tigan and Li 

systems. In Section 5, we summarize the main 

results obtained in this paper. 

 

2. Adaptive Anti-Synchronization of Identical 

Tigan Systems 

This section details the adaptive anti-

synchronization of identical Tigan systems [32], 

when the parameters of the master and slave 

systems are unknown. 

 

2.1. Theoretical Results 

As the master system, we consider the Tigan 

dynamics described by 

 

       

1 2 1

2 1 1 3

3 3 1 2

( )

( )

x a x x

x c a x ax x

x bx x x

 

  

  

                                (1) 

 

where 1 2 3, ,x x x are the state variables and 

, ,a b c are unknown parameters of the system. 

As the slave system, we consider the 

controlled Tigan dynamics described by 

 

     

1 2 1 1

2 1 1 3 2

3 3 1 2 3

( )

( )

y a y y u

y c a y ay y u

y by y y u

  

   

   

                         (2) 

 

where 1 2 3, ,y y y are the state variables and 

1 2 3, ,u u u  are the nonlinear control inputs to be 

designed. 

The Tigan systems (1) and (2) are chaotic 

when the parameter values are chosen as 

 

      2.1,  0.6,   30a b c                        

  

The strange chaotic attractor of the system (1) 

is depicted in Figure 1. 

 

 
Figure 1. Strange Attractor of the Tigan System 

  

The anti-synchronization error is defined as 

 

        ,    ( 1,2,3).i i ie y x i                              (3) 

  

The error dynamics is obtained as 

 

        

1 2 1 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )

( )

.

e a e e u

e c a e ay y ax x u

e be y y x x u

  

    

    

           (4) 
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We define the adaptive control functions as 

  

 

1 2 1 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ( )

u t a e e k e

u t c a e ay y ay y k e

u t be y y x x k e

   

     

   

  (5) 

  

where ˆˆ ˆ, ,a b c are estimates of , , ,a b c respectively 

and 1 2 3, ,k k k are positive constants. 

Substituting (5) into (4), the closed-loop error 

dynamics is obtained as 

  

  

1 2 1 1 1

2 1 1 1 3 1 3

2 2

3 3 3 3

ˆ( )( )

ˆ ˆ( ) ( )( )

        

ˆ( ) .

e a a e e k e

e c c e a a e y y x x

k e

e b b e k e

   

     



   

       (6) 

  

We define the parameter estimation errors as 

  

    ˆˆ ˆ,   ,   .a b ce a a e b b e c c                    (7) 

  

Using (7), the error dynamics is simplified as 

 

     

1 2 1 1 1

2 1 1 1 3 1 3 2 2

3 3 3 3

( )

( )

.

a

c a

b

e e e e k e

e e e e e y y x x k e

e e e k e

  

    

  

        (8) 

  

For the derivation of the update law for 

adjusting the estimates of parameters, the 

Lyapunov method is used. 

We consider the quadratic Lyapunov function 

defined by 

        2 2 2 2 2 2

1 2 3

1
,

2
a b cV e e e e e e               (9) 

 which is a positive definite function on 
6.R  

  

We note that 

 

      ˆˆ ˆ,   ,   a b ce a e b e c                         (10) 

  

Differentiating (9) along the trajectories of (8) 

and noting (10), we find that 

  

  

2 2 2

1 1 2 2 3 3

2

1 2 1 3 1 3

2

3 1 2

ˆ      ( )

ˆ ˆ      

a

b c

V k e k e k e

e e e y y x x a

e e b e e e c

   

     
 

       
   

             (11) 

  

In view of (11), the estimated parameters are 

updated by the following law: 

 

    

2

1 2 1 3 1 3 4

2

3 5

1 2 6

ˆ ( )

ˆ

ˆ

a

b

c

a e e y y x x k e

b e k e

c e e k e

    

  

 

                  (12) 

  

where 4 5 6, ,k k k are positive constants. 

 Now, we state and prove the following result. 

Theorem 1. The identical uncertain Tigan systems 

(1) and (2) are globally and exponentially anti-

synchronized by the adaptive control law (5), where 

the update law for the parameter estimates ˆˆ ˆ, ,a b c is 

given by (12) and , ( 1,2, ,6)ik i  are positive 

constants. The errors for parameter estimates 

, ,a b ce e e decay to zero exponentially as .t   

Proof. This result is a simple consequence of the 

Lyapunov stability theory.  

We know that V as defined in (9) is a positive 

definite function on 
6.R  

 Substituting (12) into (11), we obtain 

  
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 ,a b cV k e k e k e k e k e k e         (13) 

  

which is a negative definite function on 
6.R  

  

Hence, by the Lyapunov stability theory [34], 

it follows that ( ) 0ie t  exponentially as 

t  for 1,2,3i  and 0, 0, 0a b ce e e   as 

.t   

This completes the proof.   
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2.2. Numerical Results 

For the numerical simulations, the fourth-order 

Runge-Kutta method with time-step 
610h  is 

used to solve the two systems of differential 

equations (1) and (2) with the adaptive nonlinear 

controller (5) and update law of estimates (12). 

 We take  

    4ik  for 1,2, ,6.i   

 The parameters of the Tigan systems are 

chosen so that the system (1) and (2) are chaotic, 

i.e. 

 2.1,   0.6a b  and 30.c   

 The initial values of the parameter estimates 

are chosen as  

ˆˆ(0) 1,   (0) 2a b  and ˆ(0) 5.c   

 The initial values of the master system (1) are 

chosen as  

1 2(0) 7,   (0) 12x x  and 3(0) 8.x   

The initial values of the slave system (2) are 

chosen as  

1 2(0) 4,   (0) 8y y   and 3(0) 7.y   

Figure 2 shows the anti-synchronization of the 

Tigan systems (1) and (2).  

Figure 3 shows the time-history of the anti-

synchronization errors 1 2 3., ,e e e   

Figure 4 shows the time-history of the 

parameter estimates ˆˆ ˆ, , .a b c  

Figure 5 shows the time-history of the 

parameter estimation errors , , .a b ce e e  

Figure 6 shows the time-history of the applied 

control inputs 1 2 3, , .u u u    

 

 

   Figure 2. Anti-Synchronization of Identical Tigan 

Chaotic Systems 

 
 

 Figure 3. Time History of the Error States 1 2 3, ,e e e  

 

 

  Figure 4. Time History of the Estimates ˆˆ ˆ, ,a b c  
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Figure 5. Time History of the Estimation Errors  

  

  

 
 Figure 6. Time History of the Applied Control Inputs 

1 2 3, ,u u u   

 

3. Adaptive Anti-Synchronization of Identical 

Li  Systems 

 

This section details the adaptive anti-

synchronization of identical Li systems [33], when 

the parameters of the master and slave systems are 

unknown. 

 

3.1. Theoretical Results 

As the master system, we consider the Li  

dynamics described by 

 

        

1 2 1

2 1 3 2

3 1 2 3

( )x x x

x x x x

x x x x



 

 

 

  

                                   (14) 

 

where 1 2 3, ,x x x  are the state variables and 

, ,   are unknown parameters of the system. 

 

As the slave system, we consider the controlled Li 

dynamics described by 

 

      

1 2 1 1

2 1 3 2 2

3 1 2 3 3

( )y y y u

y y y y u

y y y y u



 

  

  

   

                          (15) 

 

where 1 2 3, ,y y y  are the state variables and 

1 2 3, ,u u u  are the nonlinear control inputs to be 

designed. 

 The Li systems (14) and (15) are chaotic 

when the parameter values are chosen as; 

 

       5,   16,   1.                

           

 The strange chaotic attractor of the system 

(14) is depicted in Figure 7. 

 

 
Figure 7. Strange Attractor of the Li System 

  

The anti-synchronization error is defined as 

 

        ,    ( 1,2,3).i i ie y x i                            (16) 
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The error dynamics is obtained as 

 

     

1 2 1 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

( )

2 .

e e e u

e e y y x x u

e e y y x x u



 

  

    

     

              (17) 

 

 We define the adaptive control functions as 

  

     

1 2 1 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( ) ( )

( )

ˆ( ) 2

u t e e k e

u t e y y x x k e

u t e y y x x k e



 

   

   

    

         (18) 

  

where  ˆˆ ˆ, ,    are estimates of  , , ,    

respectively and 1 2 3, ,k k k are positive constants. 

 Substituting (18) into (17), the closed-loop 

error dynamics is obtained as 

  

   

1 2 1 1 1

2 2 2

3 3 3 3

ˆ( )( )

ˆˆ( ) 2( ) .

e e e k e

e k e

e e k e

 

   

   

 

     

               (19) 

  

We define the parameter estimation errors as; 

  

     ˆˆ ˆ,   ,   .e e e                    (20) 

 

 Using (20), the error dynamics is simplified as 

  

    

1 2 1 1 1

2 2 2

3 3 3 3

( )

2 .

e e e e k e

e k e

e e e e k e



 

  

 

   

                                (21) 

  

For the derivation of the update law for 

adjusting the estimates of parameters, the 

Lyapunov method is used. 

We consider the quadratic Lyapunov function 

defined by 

  

       2 2 2 2 2 2

1 2 3

1
,

2
V e e e e e e                  (22) 

  

which is a positive definite function on 
6.R  

  

We note that 

 

     ˆˆ ˆ,   ,   e e e                               (23) 

  

Differentiating (22) along the trajectories of 

(21) and noting (23), we find that 

  

2 2 2

1 1 2 2 3 3 1 2 1

2

3 3

ˆ( )

ˆ ˆ        2 .

V k e k e k e e e e e

e e e e



 



 

       
 

       
   

 (24) 

  

In view of (24), the estimated parameters are 

updated by the following law: 

 

    

1 2 1 4

3 5

2

3 6

ˆ ( )

ˆ 2

ˆ

e e e k e

e k e

e k e













  

 

  

                                    (25) 

  

where 4 5 6, ,k k k are positive constants. 

 Now, we state and prove the following result. 

 Theorem 2. The identical uncertain Li systems 

(14) and (15) are globally and exponentially anti-

synchronized by the adaptive control law (18), 

where the update law for the parameter estimates  

ˆˆ ˆ, ,   is given by (25) and , ( 1,2, ,6)ik i  are 

positive constants. The errors for parameter 

estimates , ,e e e   decay to zero exponentially as 

.t   

Proof. This resut is a simple consequence of the 

Lyapunov stability theory. We know that V as 

defined in (22) is a positive definite function on 
6.R Substituting (25) into (24), we obtain 

  
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 ,V k e k e k e k e k e k e           (26) 

  

which is a negative definite function on 
6.R   

Hence, by the Lyapunov stability theory [34], 

it follows that ( ) 0ie t  exponentially as t   

for 1,2,3i   and 0,e   0,e   0,e    as 

.t     
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3.2. Numerical Results 

For the numerical simulations, the fourth-order 

Runge-Kutta method with time-step 
610h  is 

used to solve the two systems of differential 

equations (14) and (15) with the adaptive nonlinear 

controller (18) and update law of estimates (25). 

 We take 4ik  for 1,2, ,6.i   

 The parameters of the Li systems are chosen 

so that the system (14) and (15) are chaotic, i.e.  

5,  16   and 1.   

 The initial values of the parameter estimates 

are chosen as  ˆˆ(0) 4,  (0) 5    and ˆ(0) 12.   

 The initial values of the master system (14) 

are chosen as  

1 2(0) 4,   (0) 8x x    and 3(0) 10.x   

The initial values of the slave system (15) are 

chosen as 

       1 2(0) 12,  (0) 15y y   and 3(0) 7.y   

  Figure 8 shows the anti-synchronization of 

the Li systems (14) and (15).  Figure 9 shows the 

time-history of the anti-synchronization errors 

1 2 3., ,e e e  Figure 10 shows the time-history of the 

parameter estimates ˆˆ ˆ, , .    Figure 11  shows the 

time-history of the parameter estimation errors 

, , .e e e    Figure 12 shows the time-history of the 

applied control inputs 1 2 3, , .u u u    

 
 
Figure 8. Anti-Synchronization of Identical Li Chaotic 

Systems 

 
Figure 9. Time History of the Error States 1 2 3, ,e e e  

 

 

Figure 10. Time History of the Estimates ˆˆ ˆ, ,    

 

 
 

Figure 11. Time History of the Estimation Errors  
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 Figure 12. Time History of the Applied Control Inputs 

1 2 3, ,u u u   

 

4. Adaptive Anti-Synchronization of Tigan and 

Li Chaotic Systems 

 

This section details the adaptive anti-

synchronization of Tigan and Li systems. Here, we 

consider the Tigan system [32] as the master 

system, whose parameters are known. Also, we 

consider the Li system [33] as the slave system, 

whose parameters are unknown. 

 

4.1. Theoretical Results 

As the master system, we consider the Tigan  

dynamics described by 

 

        

1 2 1

2 1 1 3

3 3 1 2

( )

( )

x a x x

x c a x ax x

x bx x x

 

  

  

                               (27) 

 

where 1 2 3, ,x x x are the state variables and , ,a b c  

are  known parameters of the system. 

 

As the slave system, we consider the 

controlled Li dynamics described by 

 

      

1 2 1 1

2 1 3 2 2

3 1 2 3 3

( )y y y u

y y y y u

y y y y u



 

  

  

   

                           (28) 

 

where 1 2 3, ,y y y are the state variables, , ,   are 

unknown parameters of the system and 1 2 3, ,u u u  

are the nonlinear control inputs to be designed. 

 The anti-synchronization error is defined as 

 

              ,    ( 1,2,3).i i ie y x i                       (29) 

  

The error dynamics is obtained as 

 

   

1 2 1 2 1 1

2 2 1 1 3 1 3 2

3 3 3 1 2 1 2 3

( ) ( )

( )

.

e y y a x x u

e y c a x y y ax x u

e y bx y y x x u



 

    

      

     

       (30) 

  

We define the adaptive control functions as 

  

  

1 2 1 2 1 1 1

2 2 1 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

ˆ( ) ( ) ( )

( ) ( )

ˆ ˆ( )

u t y y a x x k e

u t y c a x y y ax x k e

u t y bx y y x x k e



 

     

     

      

   (31) 

  

where  ˆˆ ˆ, ,    are estimates of  , , ,    

respectively and 1 2 3, ,k k k are positive constants. 

 Substituting (31) into (30), the closed-loop 

error dynamics is obtained as 

  

     

1 2 1 1 1

2 2 2

3 3 3 3

ˆ( )( )

ˆ ˆ( ) ( ) .

e y y k e

e k e

e y k e

 

   

   

 

    

                  (32) 

  

We define the parameter estimation errors as 

  

      

ˆ

ˆ

ˆ.

e

e

e







 

 

 

 

 

 

                                                   (33) 
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Using (33), the error dynamics is simplified as 

  

    

1 2 1 1 1

2 2 2

3 3 3 3

( )

.

e e y y k e

e k e

e e e y k e



 

  

 

  

                                   (34) 

 

 For the derivation of the update law for 

adjusting the estimates of parameters, the 

Lyapunov method is used. 

We consider the quadratic Lyapunov function 

defined by 

  

       2 2 2 2 2 2

1 2 3

1
,

2
V e e e e e e                  (35) 

  

which is a positive definite function on 
6.R  

 We note that 

 

     

ˆ

ˆ

ˆ.

e

e

e













 

 

 

                                                       (36) 

  

Differentiating (35) along the trajectories of 

(34) and noting (36), we find that 

  

      

2 2 2

1 1 2 2 3 3

1 2 1

3 3 3

ˆ        ( )

ˆ ˆ        .

V k e k e k e

e e y y

e e e e y



 



 

   

   
 

       
   

       (37) 

  

In view of (37), the estimated parameters are 

updated by the following law: 

 

       

1 2 1 4

3 5

3 3 6

ˆ ( )

ˆ

ˆ

e y y k e

e k e

e y k e













  

 

  

                              (38) 

  

where 4 5 6, ,k k k are positive constants. 

 Now, we state and prove the following result. 

Theorem 3.  The Tigan system (27) with known 

parameters and the Li system (28) with unknown 

parameters are globally and exponentially anti-

synchronized by the adaptive control law (31), 

where the update law for the parameter estimates  

ˆˆ ˆ, ,   is given by (38) and , ( 1,2, ,6)ik i  are 

positive constants. The errors for parameter 

estimates , ,e e e   decay to zero exponentially as 

.t   

Proof. This resut is a simple consequence of the 

Lyapunov stability theory.  

We know that V as defined in (35) is a 

positive definite function on 
6.R  

 Substituting (38) into (37), we obtain 

  
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 ,V k e k e k e k e k e k e           (39) 

  

which is a negative definite function on 
6.R  

 Hence, by the Lyapunov stability theory [34], 

it follows that ( ) 0ie t  exponentially as 

t  for 1,2,3i  and 0,ae  0,be  0,ce   

as .t   This completes the proof.   

 

4.2. Numerical Results 

For the numerical simulations, the fourth-order 

Runge-Kutta method with time-step 
610h  is 

used to solve the two systems of differential 

equations (27) and (28) with the adaptive nonlinear 

controller (31) and update law of estimates (38). 

 We take  4ik    for  1,2, ,6.i   

 The parameters of the Tigan system (27) are 

chosen so that the system is chaotic, namely,  

2.1,a   0.6b  and 30.c   

 The parameters of the Li system (28) are 

chosen so that the system is chaotic, namely,  

5,  16   and 1.   

The initial values of the parameter estimates 

are chosen as  

 ˆ(0) 3,    ˆ(0) 1  and ˆ(0) 7.   

The initial values of the master system (27) are 

chosen as 

        1 2(0) 4,  (0) 8x x   and 3(0) 5.x   
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The initial values of the slave system (28) are 

chosen as 

    1 2(0) 6,  (0) 4y y    and 3(0) 9.y   

 Figure 13 shows the anti-synchronization of 

the Tigan system (27) and the Li system (28).  

Figure 14 shows the time-history of the anti-

synchronization errors 1 2 3., ,e e e   

Figure 15 shows the time-history of the 

parameter estimates ˆˆ ˆ, , .    

Figure 16 shows the time-history of the 

parameter estimation errors , , .e e e    

Figure 17 shows the time-history of the 

applied control inputs 1 2 3, , .u u u   

 
Figure 13. Anti-Synchronization of Non-Identical 

Tigan and Li Chaotic Systems 

 

 

 

Figure 14. Time History of the Error States 1 2 3, ,e e e  

  

Figure 15. Time History of the Estimates ˆˆ ˆ, ,    

 

 

 
 

Figure 16. Time History of the Estimation Errors  

  
Figure 17. Time History of the Applied Control Inputs 

1 2 3, ,u u u  
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5. Conclusion 

In this paper, the adaptive control method has been 

applied in the study of global chaos anti-

synchornization of identical Tigan systems [32] 

identical Li systems [33] and non-identical Tigan 

system with known parameters and the Li system 

with unknown parameters. For the adaptive anti-

synchronization of identical chaotic systems, it was 

assumed that the system parameters are unknown. 

For the adaptive anti-synchronization of different 

chaotic systems, it was assumed that the 

parameters of the master system are known, but the 

parameters of the slave system are unknown. Our 

therotical results have been fully established using 

the Lyapunov stability theory. Numerical 

simulations are also shown for the anti-

synchronization of identical and non-identical 

Tigan and Li chaotic systems to demonstrate the 

effectiveness of the adaptive anti-synchronization 

schemes derived in this paper. 
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