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 Renewable energy has become a prominent subject for researchers since fossil fuel 

reserves have been decreasing and are not promising to meet the energy demand 

of the future. Wind takes an important place in renewable energy resources and 

there is extensive research on wind speed modeling. Herein, one of the most 

commonly used distributions for wind speed modeling is the Weibull distribution 

with its simplicity and flexibility. Maximum likelihood (ML) method is the most 

frequently used technique in Weibull parameter estimation. Iterative techniques 

such as Newton-Raphson (NR) use random initial values to obtain the ML 

estimators of the parameters of the Weibull distribution. Therefore, the success of 

the iterative techniques highly depends on the initial value selection. In order to 

deliver a solution to the initial value problem, genetic algorithm (GA) is 

considered to obtain the estimators of the model parameters. The ML estimators 

obtained using the GA and NR techniques are compared with the method of 

moments (MoM) estimators via Monte Carlo simulation and wind speed 

applications. The results show that the ML estimators obtained using GA present 

superiority over MoM and the ML estimators obtained using NR.  
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1. Introduction 

The increase in population and the inadequacy of 

existing energy resources put the human being into the 

search of alternative energy resources over the course 

of human history. In the last decades, there is extensive 

research on renewable energy due to the decrease in 

fossil fuel reserves and the increase in environmental 

awareness. As a clean and never-ending resource, the 

wind has become an important energy resource and 

distinguished among the other renewable energy forms 

such as geothermal energy, hydro energy, solar energy, 

and biomass energy. 

Converting the kinetic energy carried by wind to 

electrical energy is a clean and economical way to 

produce energy. Once the wind plant is set up, the 

maintenance cost is relatively low compared to other 

energy plants. However, the wind turbines and 

installation costs are high, therefore the wind energy 

potential of a region should be carefully estimated to 

determine the proper turbine type. Wind speed is the 

key factor in determining the wind energy potential of 

a region [1-4]. Statistical distributions are used to 

model wind speed and estimate energy potential. The 

Weibull distribution is one of the most commonly used 

distributions in wind energy studies due to its simplicity 

and flexibility [1, 2, 4-10]. 

There are various techniques used in Weibull parameter 

estimation. Sohoni et al. [2] estimated the Weibull 

parameters using the method of moments (MoM). 

Seguro and Lambert [5] employed MoM, maximum 

likelihood (ML) method and modified maximum 

likelihood (MML) methods. They found that the ML 

method is more appropriate for the data sets in time 

series format. For the data sets in frequency distribution 

format, they recommended using MML method. Akgül 

et al. [6] compared the least square method, ML method 

and MML method. Although they found that ML is the 

most efficient method in overall, they mentioned that 

ML and MML has a similar efficiency for the large data 

sets, however, MML has less computational 

complexity. Arslan et al. [8] compared MoM, L-

Moments (L-Mom) method and ML method, and 

showed that L-Mom method is more efficient for small 

data sets where ML method is more efficient for larger 

data sets. Kaplan [10] found that graphical method 

provides more efficiency than MoM in Weibull 
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parameter estimation. Kollu et al. [11], Akpınar and 

Akpınar [12] used the ML method to estimate Weibull 

parameters in their studies. Teimouri et al. [13] 

compared their proposed L-moment estimator with 

several methods including the ML method, method of 

logarithmic moment, percentile method and MoM. 

They found that their proposed method and the ML 

method are the most efficient estimators. Akdağ and 

Dinler [14] proposed the power density method. They 

found it superior to commonly used methods including 

MoM and ML method. Saleh et al. [15] compared five 

different methods and recommended the mean wind 

speed method and the ML method for fitting Weibull 

distribution. Azad et al. [16] found MoM and ML 

method more efficient among several methods. 

Recently, Usta et al. [17] proposed a new estimation 

approach based on moments for estimating the Weibull 

parameters.  

It is seen from the previous studies that the ML method 

is one of the most frequently used parameter estimation 

methods for the Weibull distribution. Due to the 

nonlinear nature of the log-likelihood function of the 

Weibull distribution, numerical methods such as 

Newton-Raphson (NR) should be employed. However, 

when the iterative techniques are employed, the success 

of the technique highly depends on the initial value 

selection. This study departs from the literature by 

delivering a solution to the initial value problem by 

using genetic algorithms (GA), which is a heuristic 

search algorithm and uses a set of solution (search 

space) instead of single points, for ML estimation of the 

Weibull parameters. GA is a useful approach in the 

solution of optimization problems and applied in 

various studies such as signal control optimization [18] 

or optimization of mixture parameters of high-

performance concrete [19]. In parameter estimation, 

GA was previously used for negative binomial gamma 

mixture distribution [20], skew-normal distribution 

[21] and nonlinear regression [22]. Parameter 

estimation of Weibull distribution using GA was 

introduced by Thomas et al. [23] for breakdown times 

of insulating fluid dataset. GA presented a comparable 

good performance based on the maximization of the 

log-likelihood function. With this motivation, the 

applicability of GA is used in wind speed data 

modeling. To the best our knowledge, this is the first 

time GA is used to estimate the parameters of Weibull 

distribution in wind speed distribution modeling. 

Observations were obtained from an existing wind farm 

and different meteorological stations. The efficiency of 

ML method estimation using GA was compared with 

ML estimation using NR, and MoM. Mean absolute 

error (MAE), bias and Kolmogorov-Smirnov (K-S) test 

were used as decision criteria. The remainder of this 

paper is structured as follows: Section 2 gives basic 

information about the Weibull distribution, Section 3 

gives detailed information about the parameter 

estimation methods, Section 4 presents the simulation 

experiments and wind speed data analysis. Section 5 

includes the conclusion. 

2. Weibull distribution 

The probability density function (pdf) and cumulative 

distribution function (cdf) of Weibull distribution are 

respectively given by: 

𝑓(𝑣; 𝑘, 𝑐) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1

exp [− (
𝑣

𝑐
)

𝑘

] ,   𝑣, 𝑘, 𝑐 > 0 (1) 

and 

𝐹(𝑣; 𝑘, 𝑐) = 1 − exp [− (
𝑣

𝑐
)

𝑘

] ,   𝑣, 𝑘, 𝑐 > 0 (2) 

where 𝑣 is the wind speed, 𝑘 and 𝑐 are the Weibull 

shape and scale (dimensionless) parameters 

respectively. Probability density plots for some 

different parameter values are given in Figure 1. 

 
Figure 1. Probability density plots of the Weibull distribution 

for different parameters. 

 

3. Parameter estimation methods 

3.1. Method of moments estimation 

MoM is based on equating sample moments with 

theoretical moments of respective distribution. To 

estimate the parameters of the Weibull distribution, 

coefficient of variation of the sample should be 

calculated and set equal to the theoretical coefficient of 

variation as follows [8]: 

𝐶�̂�𝑀𝑜𝑀 = [
(∑ 𝑣𝑖

2𝑛
𝑖=1 )𝑛

(∑ 𝑣𝑖
𝑛
𝑖=1 )2

− 1] = [
Γ (

2
𝑘

+ 1)

[Γ (
1
𝑘

+ 1)]
2 − 1] (3) 

where 𝑛 is the number of data points, Γ is the gamma 

function. When the shape parameter 𝑘 is obtained from 

the Equation (3), scale parameter 𝑐 can be calculated 

by: 

�̂� = [

1
𝑛

(∑ 𝑣𝑖
𝑛
𝑖=1 )

Γ (
1
𝑘

+ 1)
]. (4) 
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3.2. Maximum likelihood estimation 

The ML method is based on the maximization of the 

log-likelihood function of the underlying distribution. 

The log-likelihood function of the Weibull distribution 

is given as follows: 

ln 𝐿(𝑣; 𝑘, 𝑐) = 𝑛 ln 𝑘 − 𝑛𝑘 ln 𝑐

+ (𝑘 − 1) ∑ ln 𝑣𝑖

𝑛

𝑖=1

− 𝑐−𝑘 ∑ 𝑣𝑖
𝑘 .

𝑛

𝑖=1
 

(5) 

By maximizing the log-likelihood function, taking 

derivative respect to each of the parameters and 

equating them to zero, the ML estimators of the shape 

and the scale parameters will be obtained as follows: 

�̂� = [
∑ 𝑣𝑖

�̂� ln 𝑣𝑖
𝑛
𝑖=1

∑ 𝑣𝑖
�̂�𝑛

𝑖=1

−
∑ ln 𝑣𝑖

𝑛
𝑖=1

𝑛
]

−1

 (6) 

and 

�̂� = [
1

𝑛
∑ 𝑣𝑖

�̂�
𝑛

𝑖=1
]

1

�̂�
. (7) 

ML estimator of the shape parameter 𝑘 includes 

nonlinear function, therefore, it can be solved by 

numerical techniques such as NR algorithm, Nelder-

Mead algorithm, simulated annealing algorithm or GA. 

In this study, we used the NR algorithm and the GA in 

the maximization of the log-likelihood function given 

in Equation (5). 

3.2.1. Newton-Raphson algorithm 

The steps of the NR algorithm are summarized in [21] 

as follows: 

1. Determine the initial values 𝑘(0) and 𝑐(0) for 𝑘 

and 𝑐. 

2. Compute the vector 𝑈(𝑘(𝑚), 𝑐(𝑚)) and 

𝑉(𝑘(𝑚), 𝑐(𝑚)) for 𝑚 = 0, 1, … where 𝑈 and 𝑉 

are defined by: 

𝑈 = (
∂ln 𝐿

𝜕𝑘
,

∂ln 𝐿

𝜕𝑐
)  

and  

𝑉 = [

∂2ln 𝐿

𝜕𝑘2

∂2ln 𝐿

𝜕𝑘𝜕𝑐

∂2ln 𝐿

𝜕𝑘𝜕𝑐

∂2ln 𝐿

𝜕𝑐2

]. 

3. Compute the values of 𝑘 and 𝑐 at (𝑚 + 1)th 

iteration by using the following equation: 

[𝑘(𝑚+1)

𝑐(𝑚+1)
]

= [𝑘(𝑚)

𝑐(𝑚)
] − 𝑉−1(𝑘(𝑚), 𝑐(𝑚))𝑈(𝑘(𝑚), 𝑐(𝑚)) 

4. Repeat the iterations until the convergence 

criterion is satisfied. 

NR is a fast-converging powerful algorithm, however, 

it is dependent on the initial guess. Therefore, we 

considered the GA in the maximization of the log-

likelihood function of the Weibull distribution. 

3.2.2. Genetic algorithm 

GA is a heuristic search algorithm motivated by the 

principles of biological evolution of species, to obtain 

the estimators of the model parameters. Unlike the 

conventional optimization techniques, GA uses a set of 

initial solutions which are called as chromosome. A 

flowchart of GA is presented in Figure 2. The steps of 

the GA in this study are summarized as follows: 

1. A range of possible solutions (search space) 

was defined as arbitrarily for both shape and 

scale parameters. A sensitivity analysis was 

carried out to determine the initial population 

size where it was taken 6, 10, 15,  and 20 

respectively. Most efficient outcomes were 

obtained when the initial population size was 

set to 6, therefore, initial population size was 

set to 6.  

2. Each set of possible solutions is evaluated 

using the fitness function. The log-likelihood 

function of the Weibull distribution is the 

fitness function in this study. 

3. The best solution in each iteration is kept as 

parent chromosome. 

4. New offsprings are reproduced by crossover 

and mutation with the rate of 0.8 and 0.1 

respectively. The size of the population 

including original parents, crossover and 

mutation offsprings is equal to the initial 

population size in step 1. 

5. New population is evaluated as in step 2. Steps 

3-5 are repeated. 

The algorithm stops if the decision criterion is satisfied 

or the maximum number of iterations is achieved. A 

flowchart of the study is given in Figure 2. 

  

 

Figure 2. Flowchart of the GA used in this study. 
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Table 1. Parameter estimations, MAE and bias values for different simulation scenarios. 

 �̂� �̂� 

𝒏 𝒌 Method Mean MAE Bias Mean MAE Bias 

20 

0.5 
MoM 0.6510 0.1637 0.1510 1.3549 0.5207 0.3549 

NR 0.5412 0.0840 0.0412 1.0823 0.3938 0.0823 
GA 0.5399 0.0829 0.0399 1.0570 0.3685 0.0570 

1 
MoM 1.1172 0.1905 0.1172 1.0221 0.1912 0.0221 

NR 1.0823 0.1680 0.0823 1.0114 0.1915 0.0114 
GA 1.0822 0.1679 0.0822 1.0114 0.1915 0.0114 

3 
MoM 3.2191 0.4729 0.2191 0.9975 0.0623 -0.0025 

NR 3.2470 0.5039 0.2470 0.9973 0.0640 -0.0027 

GA 3.1153 0.3413 0.1153 0.9949 0.0622 -0.0051 

6 
MoM 6.4952 1.0341 0.4952 0.9977 0.0312 -0.0023 

NR 6.4939 1.0077 0.4939 0.9978 0.0321 -0.0022 

GA 6.2305 0.6825 0.2305 0.9967 0.0312 -0.0033 

50 

0.5 
MoM 0.5818 0.1019 0.0818 1.2071 0.3412 0.2071 

NR 0.5172 0.0485 0.0172 1.0449 0.2514 0.0449 
GA 0.5171 0.0484 0.0171 1.0422 0.2486 0.0422 

1 
MoM 1.0532 0.1144 0.0532 1.0105 0.1221 0.0105 

NR 1.0345 0.0971 0.0345 1.0101 0.1235 0.0101 
GA 1.0344 0.0970 0.0344 1.0097 0.1231 0.0097 

3 
MoM 3.0866 0.2665 0.0866 0.9993 0.0391 -0.0007 
NR 3.1034 0.2912 0.1034 1.0007 0.0411 0.0007 

GA 3.0763 0.2593 0.0763 1.0000 0.0405 0.0000 

6 
MoM 6.1854 0.5747 0.1854 0.9993 0.0196 -0.0007 
NR 6.2069 0.5824 0.2069 1.0000 0.0205 0.0000 

GA 6.1526 0.5185 0.1526 0.9997 0.0203 -0.0003 

100 

0.5 
MoM 0.5495 0.0748 0.0495 1.1224 0.2469 0.1224 

NR 0.5086 0.0331 0.0086 1.0182 0.1675 0.0182 
GA 0.5085 0.0330 0.0085 1.0155 0.1645 0.0155 

1 
MoM 1.0282 0.0839 0.0282 1.0034 0.0870 0.0034 

NR 1.0172 0.0662 0.0172 1.0034 0.0832 0.0034 
GA 1.0172 0.0662 0.0172 1.0034 0.0832 0.0034 

3 
MoM 3.0470 0.1915 0.0470 0.9992 0.0280 -0.0008 
NR 3.0516 0.1985 0.0516 0.9999 0.0277 -0.0001 

GA 3.0112 0.1808 0.0112 0.9860 0.0140 -0.0140 

6 
MoM 6.0963 0.4120 0.0963 0.9994 0.0140 -0.0006 
NR 6.1032 0.3971 0.1032 0.9998 0.0139 -0.0002 

GA 6.0939 0.3868 0.0939 0.9997 0.0138 -0.0003 

500 

0.5 
MoM 0.5151 0.0369 0.0151 1.0339 0.1245 0.0339 

NR 0.5015 0.0140 0.0015 1.0029 0.0752 0.0029 
GA 0.5015 0.0140 0.0015 1.0029 0.0752 0.0029 

1 
MoM 1.0063 0.0366 0.0063 0.9974 0.0387 -0.0026 

NR 1.0031 0.0280 0.0031 1.0003 0.0376 0.0003 
GA 1.0031 0.0280 0.0031 1.0003 0.0376 0.0003 

3 
MoM 3.0090 0.0877 0.0090 0.9986 0.0126 -0.0014 
NR 3.0092 0.0840 0.0092 0.9999 0.0125 -0.0001 

GA 3.0092 0.0840 0.0092 0.9999 0.0125 -0.0001 

6 
MoM 6.0193 0.1887 0.0193 0.9993 0.0063 -0.0007 
NR 6.0184 0.1680 0.0184 0.9999 0.0063 -0.0001 

GA 6.0176 0.1666 0.0176 0.9999 0.0062 -0.0001 

4. Application 

4.1. Monte Carlo simulations 

In order to compare the parameter estimation methods 

for the Weibull distribution, a Monte Carlo simulation 

was conducted where the shape parameter is taken 0.5, 

1, 3 and 6 and the scale parameter was fixed to 1. The 

parameter sets used in the simulation can also be seen 

in Figure 1. The simulation was repeated 1000 times for 

each of the sample sizes of 20, 50, 100 and 500. MoM 

estimations were considered as the initial values for the 

NR. For the GA, the population size was chosen 6, 

mutation rate and crossover rate were fixed to 0.8 and 

0.1 respectively. ML estimations using NR and GA 

were obtained via “maxLik” [24] and “GA” [25] 
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packages of R software. Mean absolute error (MAE) 

and bias are chosen as goodness-of-fit criteria for 

comparing the efficiencies of the parameter estimation 

methods. MAE and bias for the parameters 𝑘 and 𝑐 are 

given by: 

𝑀𝐴𝐸(�̂�) =
1

𝑛
∑ |�̂�𝑖 − 𝑘|

𝑛

𝑖=1
 

 

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑛
∑ (�̂�𝑖 − 𝑘)

𝑛

𝑖=1
 

(8) 

and 

𝑀𝐴𝐸(�̂�) =
1

𝑛
∑ |�̂�𝑖 − 𝑐|

𝑛

𝑖=1
 

 

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑛
∑ (�̂�𝑖 − 𝑐).

𝑛

𝑖=1
 

(9) 

Smaller values the absolute value of the bias and MAE 

indicate higher efficiency. Parameter estimations, 

absolute value of the bias and MAE for each parameter 

estimation method can be seen in Table 1. Accordinly, 

best results are highlighted in bold.  

It is seen from the simulation results that the GA 

approach was more efficient than NR and MoM in the 

estimation of the shape and scale parameters according 

to MAE and bias criteria. For the sample size of 20, 50 

and 100, the GA approach provided the best efficiency 

for the shape parameter in each simulation scenario in 

terms of MAE and bias. For the sample size of 500, GA 

also provided the best efficiency for the shape 

parameter in each simulation scenario according to 

MAE. 

In the estimation of scale parameter for the sample sizes 

of 20,50 and 100, GA provided the highest efficiency 

according to at least one of the decision criteria in 

almost each simulation scenario. For the sample size of 

100, GA was the most efficient method in each 

simulation scenario according to MAE and bias. In 

overall, it can be said that GA is a very efficient method 

for small, moderate and large sample sizes. MAE and 

absolute values of the biases are also presented in 

Figures 3-6.

 

Figure 3. Comparison of the parameter estimation methods for 𝑘 according to MAE criterion. 

 

 

Figure 4. Comparison of the parameter estimation methods for 𝑐 according to MAE criterion. 
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Figure 5. Comparison of the parameter estimation methods for 𝑘 according to bias criterion 

 

 

Figure 6. Comparison of the parameter estimation methods for 𝑐 according to bias criterion.

Figure 3 presents the MAE values for the shape 

parameter k. GA presented more efficiency than NR 

and MoM in all simulation scenarios. NR was the 

second-best method. MAE values were decreased when 

the sample size was increased. However, when the 

value of the shape parameter was increased, MAE 

values were also increased. 

Figure 4 shows the MAE values for the scale parameter 

𝑐. GA was the most efficient method for the sample 

sizes of 20, 100 and 500.  MoM was the most efficient 

for the sample size of 50. MAE values were decreased 

when the value of the shape parameter was increased. 

Similarly, MAE values were also decreased when the 

sample size was increased. 

Figure 5 presents the absolute value of bias for the 

shape parameter k. GA presented the most efficient 

results. MoM presented better results than NR on some 

occasions. Similar to the MAE values, absolute values 

of the bias were decreased when the sample size was 

increased. However, when the value of the shape 

parameter was increased, the absolute values of the bias 

were also increased 

Figure 6 shows the absolute values of bias for the scale 

parameter 𝑐. GA was more efficient than other methods 

for most of the time. NR was the second-best method. 

With the increase in the value of shape parameter and 

sample size, absolute values of bias were decreased. 

4.2. Wind speed analysis 

Wind speed observations obtained from three different 

locations, namely Belen Wind Farm (Belen), Gökçeada 

Meteorological Station (Gökçeada) and 

Datça/Deveboynu Feneri Meteorological Station 

(Datça) were used for the comparison of the parameter 

estimation methods. Belen data set was provided by 

Belen Electric Generation Co. Inc. Gökçeada and Datça 

data sets were provided by the Turkish State 

Meteorological Service. Information about the 

geographical coordinates of the stations, elevation, 

selected period of observations and collection process 
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are presented in Table 2. Accordingly, the wind speed 

data for the Belen Station were observed in 10-min 

basis. The wind speed data observed at other stations 

were collected on hourly basis. The descriptive 

statistics including mean, standard deviation, minimum 

and maximum for the data sets used in this study are 

presented in Table 3. It can be seen from Table 3 that 

the average and the maximum wind speed were 

observed at Datça station. 

 

Table 2. Geographical coordinates of the stations, selected period of observations and data collection process. 

Station Period of Observations Collection Basis Height Latitude Longitude Elevation 

Belen 01 Jan 2013 – 31 Dec 2014 10-min 80 m 36°28'42.2"N 36°12'45.0"E 744 

Gökçeada 01 Jan 2010 – 31 Dec 2017 Hourly 10 m 40°11'27.6"N 25°54'27.0"E 79 

Datça 01 Jan 2014 – 30 Apr 2017 Hourly 10 m 36°41'12.1"N 27°21'47.9"E 28 

 

Table 3. Descriptive statistics for the data sets. 

Station Year Mean Std. Dev. Min. Max. 

Belen 
2013 7.2949 3.3345 0.4 24.9 

2014 7.3790 3.2631 0.4 24.9 

Gökçeada 

2010 4.3956 3.0779 0.1 16.9 

2011 4.5014 2.7362 0.1 16.6 

2012 4.1776 2.6393 0.2 14.9 

2013 3.6880 2.4716 0.1 16.9 

2014 3.7678 2.5150 0.1 14.9 

2015 4.3323 2.6961 0.1 18.0 

2016 4.2892 2.8234 0.1 16.7 

2017 3.8563 2.6384 0.1 15.4 

Datça 

2014 6.9937 4.5638 0.3 28.9 

2015 7.6496 4.9330 0.4 28.9 

2016 7.8554 5.1781 0.2 33.7 

2017 7.3715 4.8864 0.2 24.2 

 

Weibull distribution is fitted at the monthly base for the 

Belen, Gökçeada and Datça data sets. To statistically 

test that monthly data sets come from Weibull 

distribution, the K-S test is separately applied to each 

data set. 

K-S test is used for testing if a sample distribution 

belongs to a population with a specific distribution. K-

S test statistic is the maximum difference between the 

empirical distribution 𝐹0(𝑥) and theoretical distribution 

𝑆𝑁(𝑥) [26].  

𝑑 = max |𝐹0(𝑥) − 𝑆𝑁(𝑥)| (10) 

After the K-S test process, monthly distributions that 

come from Weibull distribution are selected for further 

analysis (p-value>0.05). The parameter estimates and 

K-S test results for Belen, Gökçeada and Datça data 

sets are presented in Tables 4-6 respectively. 

 

Table 4. Parameter estimations and K-S goodness-of-fit test 

results for Belen data set. 

Date Method �̂� �̂� K-S p-value 

2014 - 

Feb 

MoM 2.1104 6.7724 0.0182 0.1381 

NR 2.1191 6.7779 0.0197 0.0875 

GA 2.0984 6.7646 0.0161 0.2438 

 

Table 4 shows that GA provides the best fit in terms of 

the K-S test for Belen data set. 

Table 5. Parameter estimations and K-S goodness-of-fit test 

results for Gökçeada data set. 

Date Method �̂� �̂� K-S p-value 

2010 - 

Oct 

MoM 1.5527 4.8650 0.0443 0.1074 

NR 1.5571 4.8752 0.0453 0.0947 

GA 1.4954 4.8088 0.0394 0.1990 

2011 - 

Apr 

MoM 1.9337 5.7312 0.0517 0.0423 

NR 1.9002 5.7122 0.0501 0.0537 

GA 1.9023 5.7247 0.0485 0.0673 

2011 - 

Nov 

MoM 1.7368 5.6574 0.0363 0.2998 

NR 1.7307 5.6551 0.0363 0.3004 

GA 1.7299 5.6507 0.0359 0.3144 

2012 - 

Dec 

MoM 1.8973 5.4681 0.0440 0.1123 

NR 1.8750 5.4574 0.0414 0.1562 

GA 1.8737 5.4526 0.0411 0.1615 

2013 - 

May 

MoM 1.6149 4.4635 0.0463 0.0829 

NR 1.6212 4.4682 0.0472 0.0724 

GA 1.6148 4.4237 0.0449 0.1001 

2015 - 

Jan 

MoM 1.5037 5.6700 0.0611 0.0401 

NR 1.5681 5.7215 0.0591 0.0518 

GA 1.5673 5.7129 0.0584 0.0562 

2015 - 

Feb 

MoM 1.7919 6.6341 0.0480 0.0982 

NR 1.7502 6.6019 0.0484 0.0937 

GA 1.7509 6.6086 0.0478 0.1016 

2015 - 

Apr 

MoM 1.4922 5.0242 0.0370 0.3096 

NR 1.4876 5.0285 0.0365 0.3268 

GA 1.4863 5.0104 0.0358 0.3493 

2015 - 

May 

MoM 1.6151 4.0105 0.0524 0.0919 

NR 1.5916 4.0010 0.0488 0.1374 

GA 1.5905 3.9947 0.0484 0.1435 

2015 - 

Oct 

MoM 1.9727 4.9659 0.0514 0.0485 

NR 1.9312 4.9455 0.0487 0.0711 

GA 1.9301 4.9435 0.0486 0.0721 

2015 - 

Nov 

MoM 1.5010 5.2991 0.0329 0.6387 

NR 1.5066 5.3106 0.0343 0.5861 

GA 1.5034 5.3074 0.0338 0.6027 

2016 - 

Jan 

MoM 1.3632 5.1459 0.0432 0.1321 

NR 1.3710 5.1638 0.0453 0.1004 

GA 1.3683 5.1604 0.0447 0.1089 

2016 - 

Mar 

MoM 1.5731 5.4328 0.0466 0.1599 

NR 1.5608 5.4299 0.0448 0.1946 

GA 1.5582 5.4213 0.0441 0.2078 

2016 - 

May 

MoM 1.6266 4.0770 0.0457 0.3642 

NR 1.6111 4.0731 0.0430 0.4399 

GA 1.6109 4.0723 0.0430 0.4422 
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Table 5. (continued) 

2016 - 

Jun 

MoM 1.8951 3.0578 0.0877 0.1657 

NR 1.8507 3.0452 0.0947 0.1096 

GA 1.8535 3.0461 0.0942 0.1128 

2016 - 

Nov 

MoM 1.5976 5.3758 0.0532 0.0355 

NR 1.5571 5.3534 0.0474 0.0810 

GA 1.5569 5.3533 0.0474 0.0814 

2017 - 

Dec 

MoM 1.9966 6.8246 0.0516 0.1153 

NR 1.9906 6.8205 0.0513 0.1186 

GA 1.9909 6.8219 0.0513 0.1197 

 

Table 6. Parameter estimations and K-S goodness-of-fit test 

results for Datça data set. 

Date Method �̂� �̂� K-S p-value 

2014 - 

Jan 

MoM 1.7162 6.0504 0.0570 0.0756 

NR 1.7787 6.0924 0.0566 0.0790 

GA 1.7672 5.9995 0.0490 0.1783 

2014 - 

Aug 

MoM 1.8009 8.4971 0.0446 0.1031 

NR 1.8379 8.5336 0.0461 0.0842 

GA 1.8373 8.5273 0.0457 0.0898 

2015 - 

Jan 

MoM 1.7307 10.8387 0.0431 0.1255 

NR 1.7483 10.8725 0.0437 0.1172 

GA 1.7501 10.9125 0.0422 0.1408 

2015 - 

Mar 

MoM 1.8631 9.6927 0.0409 0.1662 

NR 1.8842 9.7204 0.0418 0.1491 

GA 1.8683 9.7017 0.0409 0.1660 

2015 - 

Jun 

MoM 1.8422 7.4869 0.0348 0.3482 

NR 1.8781 7.5196 0.0418 0.1619 

GA 1.8051 7.5222 0.0363 0.2982 

2015 - 

Oct 

MoM 2.0635 8.5650 0.0463 0.0828 

NR 2.0843 8.5813 0.0493 0.0539 

GA 2.0452 8.5486 0.0435 0.1198 

2015 - 

Nov 

MoM 1.8870 9.2486 0.0440 0.1237 

NR 1.9013 9.2654 0.0467 0.0863 

GA 1.8814 9.2433 0.0430 0.1398 

2015 - 

Dec 

MoM 2.1032 10.2284 0.0383 0.2301 

NR 2.1241 10.2526 0.0407 0.1748 

GA 2.1181 10.2101 0.0372 0.2585 

2016 - 

Jan 

MoM 1.8773 10.8451 0.0279 0.6078 

NR 1.8728 10.8427 0.0278 0.6138 

GA 1.8451 10.8504 0.0257 0.7112 

2016 - 

Feb 

MoM 1.2831 9.1734 0.0370 0.3162 

NR 1.3318 9.2773 0.0442 0.1439 

GA 1.2793 9.1544 0.0359 0.3519 

2016 - 

May 

MoM 1.6948 8.4204 0.0314 0.4729 

NR 1.7220 8.4530 0.0365 0.2905 

GA 1.7033 8.3964 0.0308 0.4997 

2016 - 

Sep 

MoM 1.6449 8.8944 0.0478 0.0829 

NR 1.6563 8.9189 0.0505 0.0576 

GA 1.6342 8.7143 0.0433 0.1469 

2016 - 

Oct 

MoM 1.7423 9.4553 0.0403 0.1784 

NR 1.7605 9.4816 0.0442 0.1096 

GA 1.7254 9.4345 0.0368 0.2652 

2017 - 

Mar 

MoM 1.6872 7.9891 0.0400 0.1956 

NR 1.7152 8.0254 0.0425 0.1457 

GA 1.6913 8.0015 0.0399 0.1990 

 

It can be seen from Table 5 that GA provides the 

highest efficiency in 14 of 17 months in terms of the K-

S test results in Gökçeada data set. MoM provides the 

best fit in 3 months. 

Table 6 shows that GA provides the best fit in 12 of 14 

months. MoM is the second-best estimator and has the 

highest efficiency in 2 months for Datça dataset. 

5. Conclusion 

In this paper, we have obtained the ML estimators of 

the parameters of Weibull distribution using GA and 

NR techniques, and compared them with MoM. The 

efficiencies of the parameter estimation methods are 

evaluated based on MAE, bias and K-S test criteria. 

Results of the Monte Carlo simulation and real wind 

speed data analysis show that ML estimator using GA 

is more efficient than ML estimator using NR and MoM 

estimator in Weibull parameter estimation. 

Furthermore, it can be said that all data sets were 

observed in different geographical regions with 

different weather characteristics. GA showed 

superiority on these data sets including different types 

of weather conditions. Finally, arbitrary search spaces 

were used in this study which can be seen as a 

limitation. In the future works, we will focus on 

developing a data-based search space in GA for 

Weibull parameter estimation. 
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