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Nonlinear equations arise frequently while modeling chemistry, physics, econ-
omy and engineering problems. In this paper, a new iterative approach for
finding a solution of a nonlinear equations system (NLES) is presented by
applying a linearization technique. The proposed approach is based on com-
putational method that converts NLES into a linear equations system by using
Taylor series expansion at the chosen arbitrary nonnegative initial point. Us-
ing the obtained solution of the linear equations system, a linear programming
(LP) problem is constructed by considering the equations as constraints and
minimizing the objective function constructed as the summation of balanc-
ing variables. At the end of the presented algorithm, the exact solution of
the NLES is obtained. The performance of the proposed approach has been
demonstrated by considering different numerical examples from literature.
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1. Introduction

Numerical analysis and computers are intimately
related with each other regarding to solve mathe-
matical problems. With the development of com-
puters, numerical methods have been increased
for solving scientific and engineering problems.
The numerical methods are used to find approxi-
mate solution of such problems because it is not
possible to obtain exact solution by using alge-
braic processes. One of the most important issues
for solving NLES in science and engineering is to
find a solution that is frequently arising in op-
timization and computational mathematics. Be-
cause NLESs cannot be solved as easily as linear
systems, iterative methods are improved as a new
class of numerical solution methods.

Iterative method is a procedure repeated over and
over again to find either the root of an equation or
the solution of an NLES. In numerical methods,
the sequence of approximate solutions converges

to the root of the system. If the convergence rate
of an iterative method is rapid, then a solution
may be found in less iterations compared with
other methods. As the iterations begin to have
successive same values, this is an indication that
the obtained solution is the exact solution of the
NLES. However, when the obtained solution of
the system does not converge, it is indicated that
there is an error in the computations or there is
no solution. Therefore, an NLES has finite or infi-
nite number of solutions or no solution. There are
numerous conventional methods to solve NLESs
having algebraic and transcendental equations.
One of the most popular and traditional numer-
ical methods is Newton method which is widely
used for finding roots of the NLES. This method
is based on Taylor series expansion of a function,
and converges rapidly to the exact solution of the
NLES. It can be presented as an advantage that
Newton method requires less iterations to reach
the solution compared to other known methods.
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Another advantage of the Newton method is the
framework is clear, and therefore it can be used to
solve a variety of problems. On the contrary, due
to the difficulty in computation of both Jacobian
matrix and its inverse at each iteration. Using
the Newton method would be time-consuming re-
garding to the size of the system. To avoid these
impracticabilities, some developments and modi-
fications are made to the Newton method, such
as Quasi-Newton method, Dimension Reducing
method, Modified Reducing Dimension method
and Perturbed Dimension Reducing method.

Grapsa and Vrahatis [1] reviewed a class of meth-
ods for solving NLESs and optimization problems
named Dimension Reducing methods. Frontini
and Sormani [2] extended to p-dimensional case
the modification of Newton method. This method
is used to solve NLES and compared with Newton
method and Halley-Chebyshev method. Babo-
lian et al. [3] extended the Adomian decomposi-
tion method for solving the NLES. Nie [4] trans-
formed the NLES into a constrained nonlinear
optimization problem and used null space algo-
rithm to solve the problem. Also, Nie [5] proposed
a new approach by converting an NLES into a
constrained nonlinear programming problem, and
solved this problem by using a line search se-
quential quadratic programming approach. Jafari
and Daftardar-Gejji [6] suggested a modification
of Adomian decomposition method and demon-
strated that series solution obtained converges
faster than that of standard Adomian decomposi-
tion method. Darvishi and Barati [7] presented an
iterative third-order Newton-type method based
on Adomian decomposition method for solving
NLESs. Golbabai and Javidi [8] considered ho-
motopy perturbation method to construct an it-
erative method for solving the NLES, compared
the results with that of the revised Adomian de-
composition method in [6] obtained, and showed
the accuracy and fast convergence of the proposed
method. Biazar and Ghanbary [9] constructed
a new iterative approach based on the concept
of Jacobi method and presented the effectiveness
of the proposed method as the number of equa-
tions and variables increases. Grosan and Abra-
ham [10] proposed a novel approach transforming
NLES to a multiobjective optimization problem
and revealed that it deals with the large scale
system of equations. Hosseini and Kafash [11]
presented an algorithm based on Adomian de-
composition convergence basis method for solv-
ing functional equations. Gu and Zhu [12] pre-
sented an effective filter algorithm for solving both

the nonlinear systems of equalities and inequali-
ties. They transformed the system into a non-
linear programming problem, and used the non-
monotone technique and the global line search
strategy in the algorithm. Vahidi et al. [13] im-
plemented the restarted Adomian decomposition
method for solving the NLESs and showed that
the proposed method converges to the exact so-
lutions more rapidly than the Adomian decom-
position method. Sharma and Gupta [14] pre-
sented two iterative methods for solving NLES.
One of the methods is a third-order method hav-
ing two-steps which are the Newton iteration and
the weighted-Newton iteration, respectively. The
other method is a fifth and sixth-order method
having three-steps of which the first two steps are
same as that of third-order method and third step
is the weighted-Newton iteration again. Wang
and Pu [15] proposed a nonmonotone filter trust
region method to solve the NLES. The system
is converted to a nonlinear programming prob-
lem in which some equations are treated as con-
straints whereas the others are taken as objec-
tive function. Zhang [16] reviewed some meth-
ods, especially iterative methods, of solving sys-
tem of nonlinear equations in the technical re-
port. Dhamacharoen [17] proposed a new hy-
brid method having less computations than oth-
ers. This hybrid method is composed of two meth-
ods that are the Newton method and the Broyden
method. The proposed method is compared with
the Newton method and the Darvishi−Barati
method [7], and it is seen that the number of
computations is fewer than the compared ones
even if it requires more iterations to reach the
solution. Izadian et al. [18] proposed a new ap-
proach combining Newton method and Homotopy
Analysis method to solve the algebraic and tran-
scendental equations system. The main purpose
of this combined approach is to accelerate the
rate of convergence and to obtain the local con-
vergence. Narang et al. [19] presented a fourth
order two parameter Chebyshev-Halley like two-
point family for solving the nonlinear equations
of large-scale systems. Saheya et al. [20] pre-
sented an improved Newton method based on it-
erative rational approximation model. Wang and
Fan [21] presented two high computational effi-
cient derivative-free iterative methods. The meth-
ods have low computational cost by reducing the
number of lower-upper decomposition of matrix
in each iteration. Xiao and Yin [22] presented
a technique using the extended Newton iteration
for increasing the order of convergence for iter-
ative methods. They applied the proposed tech-
nique to several known methods and obtained new
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methods having higher order of convergence. Bal-
aji et al. [23] solved the NLES by using the inte-
grated restarted Adomian decomposition method
and Adomian decomposition method. Madhu et
al. [24] proposed a new method which is an im-
provement of double-step Newton method. It is
two-step fifth-order method in which two func-
tions and two first order Frechet derivatives are
used. Sharma and Arora [25] proposed Newton-
like iterative methods of fifth and eighth-order of
convergence to solve NLESs.

There are numerious traditional approaches such
as Muller method and the Secant method for solv-
ing NLESs, however, these methods have many
shortcomings. The methods are very sensitive
to the choice of initial values and may show os-
cillatory behavior or even diverge in the case of
closeness between the initial value chosen and the
root of the system [26]. Moreover, most of these
methods require continuously differentiable non-
linear equations. To avoid the negative aspects of
the traditional methods, some approaches based
on metaheuristic optimization methods such as
Genetic Algorithm, Particle Swarm Optimization,
Simulated Annealing have been presented. These
methods are used with no assumptions about
the function being optimized such as smoothness,
convexity or differentiability. Dai et al. [27] mixed
Genetic Algorithm and quasi-Newton method for
solving NLES. Hirsch et al. [28] proposed a mod-
ified metaheuristic GRASP method in which all
roots are found through the multiple minimiza-
tions of an objective function to find all real solu-
tions of NLES. Pourjafari and Mojallali [26] pro-
posed a novel optimization-based method finding
all real and complex roots of a system.

In this paper, we introduce a new iterative ap-
proach to solve an NLES as an optimization prob-
lem. By means of the first order Taylor series
expansion and by choosing an arbitrary nonnega-
tive initial point, a system of linearized equations
is solved at each iteration. New variables are ob-
tained by adding balancing variables to the ini-
tial solution of the system of linearized equations,
and then Maclaurin series expansion is used to
linearize the NLES reconstructed by substituting
these new variables in the system. At each iter-
ation, a LP problem is constructed of which the
linearized equations are considered as constraints
whereas the objective function is the minimiza-
tion of the summation of balancing variables. The
iterative approach is processed until all ballancing
variables are zero, and the optimal solution of the
NLES is found.

The organization of the paper is as follows. In
Section 2, some brief information is given. In sec-
tion 3, the proposed approach is presented. In
Section 4, some numerical examples and results
are demonstrated and the paper ends with con-
clusion at Section 5.

2. Preliminaries

In this section, some definitions are given related
with the proposed approach. In this paper, it is
assumed that each equation in the NLES are con-
tinuously differentiable.

Definition 1. [29] An NLES is a set of equations
as follows:

f1 (x1, ..., xn) = 0
f2 (x1, ..., xn) = 0

...
fm (x1, ..., xn) = 0

where (x1, ..., xn) ∈ Rn is a vector, xj ∈ R,
(j = 1, ..., n) and each fi (x), (i = 1, ...,m) is a
nonlinear real function.

Definition 2. A solution of an NLES having
m equations in n variables is a point A =
(a1, ..., an) ∈ Rn such that

f1(a1, ..., an) = · · · = fm(a1, ..., an) = 0.

Definition 3. A function f is continuously dif-
ferentiable if and only if the first (and possibly
higher) order derivative of f is continuous.

Definition 4. [29] Taylor series expansion gen-
erated by f(x) at x = a is

f(x) = f(a) + f ′(a)(x− a)

+
1

2!
f ′′(a)(x− a)2

+ · · ·+
1

n!
f (n)(a)(x− a)n + . . . .

For linearization,

f(a) + f ′(a)(x− a) = 0

is considered. Accordingly, the first two terms of
Taylor series expansion generated by f(x1, ..., xn)
at A = (a1, ..., an), i.e.

f(A)+
∂

∂x1
f(A)(x1−a1)+· · ·+

∂

∂xn
f(A)(xn−an) = 0

linearizes the function f in n variables.

Definition 5. [29] A set of vectors converges if
the norm is zero, i.e.
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|xk − xk−1|| =

=
√

(xk1 − xk−1
1 )2 + · · ·+ (xkn − xk−1

n )2 = 0

where k is the number of iterations. The vector
x = (x1, ..., xn) is the root of the function if it sat-
isfies that |fi(x)| < ǫ, i = 1, ...,m where ǫ ≥ 0 is
a given tolerance.

3. The proposed approach

A linearization method based on Taylor series ex-
pansion is adopted. Each nonlinear multi vari-
able function of the NLES given in Definition 2.1
is considered as fi(x1, ..., xn), (i = 1, ...,m) and
A = (a1, ..., an) is a nonnegative chosen point.
By using the linear terms of Taylor series gener-
ated at the point A as presented in Definition 2.4,
each original nonlinear equation of the NLES is
reduced to a linear equation. Because the higher
order terms will be close to zero while xj is suffi-
ciently close to aj , we omit them to obtain the
approximation. Thus, by using the expansion,
each nonlinear function fi in n variables is lin-
earized and a linear equations system is obtained.
Using the linear equations system obtained, the
algorithm generated to solve NLES is presented
below.

Step 1. Load an NLES having m equations in n
variables such that

f1(x1, ..., xn) = 0
f2(x1, ..., xn) = 0

...
fm(x1, ..., xn) = 0.

(1)

Step 2. Choose any initial arbitrary nonnegative
point such that A = (a1, ..., an).

Step 3. Linearize each equation in (1) by gener-
ating Taylor series expansion at the chosen point
A, and construct a linear equations system having
m equations in n variables as follows

f1(A) +
n
∑

i=1

∂f1(A)
∂xi

(xi − ai) = 0

f2(A) +
n
∑

i=1

∂f2(A)
∂xi

(xi − ai) = 0

...

fm(A) +
n
∑

i=1

∂fm(A)
∂xi

(xi − ai) = 0.

(2)

Step 4. Solve the linearized equations system
(2), and obtain a solution (x̄1, ..., x̄n).

Step 5. Consider the solution (x̄1, ..., x̄n) and in-
troduce new variables x̄j , (j = 1, ..., n) by adding

balancing variables

x̄j = x̄j + uj − vj (3)

where uj and vj , (j = 1, ..., n) are nonnegative and
defined as 0 ≤ uj ≤ 1 and 0 ≤ vj ≤ 1.

Step 6. Substitute the new variables (3) in the
NLES (1).

Step 7. Linearize the NLES obtained in Step 6
by generating Maclaurin series expansion.

Step 8. Construct a LP problem such that

Min
∑n

j=1(uj + vj)

s.t.
f1L(uj , vj) = 0
f2L(uj , vj) = 0
...
fmL(uj , vj) = 0

(4)

where the subscript L defines the linearization,
and solve (4).

Step 9. If all uj and vj , (j = 1, ..., n) are zero,
x̄j , (j = 1, ..., n) is a solution for the NLES (1),

and STOP. Else, determine x̄j , assign x̄j to x̄j ,

go to Step 5, and continue.

The flowchart of proposed approach is given in
Figure 1.

4. Numerical experiments

Example 1 [7] Consider the following NLES:

x1 + 2x2 − 3 = 0
2x21 + x22 − 5 = 0.

(5)

Linearize each equation in (5) by generating
Taylor series expansion at arbitrary nonnegative
point A(3, 5). Thus, we have the following lin-
earized equations system as

x1 + 2x2 = 3
12x1 + 10x2 = 48.

(6)

The solution of linearized system (6) is (x1, x2) =
(4.7143,−0.8571). Then, introduce new variables
x1 = 4.7143 + u1 − v1, x2 = −0.8571 + u2 − v2,
respectively, and substitute these variables in the
NLES (5). After linearizing the NLES (5) by gen-
erating Maclaurin series expansion, the following
LP problem is constructed:
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Figure 1. The flowchart of finding solution of NLES.

Min
2
∑

j=1
(uj + vj)

s.t.
1(u1 − v1) + 2(u2 − v2)

+ f1L(0, 0, 0, 0) = 0

18.8572(u1 − v1)− 1.7142(u2 − v2)

+ f2L(0, 0, 0, 0) = 0.

(7)

Optimal solution of the LP problem (7) is found
as
(u1, v1, u2, v2) = (0, 2.0383, 1.0191, 0), and it is
used to determine new variables as x1 = 2.6760+
u1 − v1, x2 = 0.1620 + u2 − v2, respectively. This
approach is applied recurrently until all balancing
variables are found zero. The summarized results
are given in Table 1.

Table 1. Summarized Results of Ex-
ample 1 (k is the number of itera-
tions).

k xk1 xk2 ||xk − xk−1||
0 3.0000 5.0000 -
1 2.6760 0.1620 4.8488
2 1.7892 0.6054 0.9915
3 1.5192 0.7404 0.3019
4 1.4884 0.7558 0.0344
5 1.4880 0.7560 0.0004
6 1.4880 0.7560 0.0000

Example 2 [7] Consider the following NLES:

x21 + x22 + x23 − 1 = 0
2x21 + x22 − 4x3 = 0
3x21 − 4x22 + x23 = 0.

(8)

Linearize each equation in (8) by generating
Taylor series expansion at arbitrary nonnega-
tive point A(1, 1, 1). The solution of linearized
equations system is found as (x1, x2, x3) =
(0.8269, 0.7308, 0.4423). New variables are intro-
duced as x1 = 0.8269+u1−v1, x2 = 0.7308+u2−
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v2 and x3 = 0.4423 + u3 − v3, respectively. Con-
structed LP problems are solved until all balanc-
ing variables are found zero, and the desired so-
lution is obtained after four iterations. The sum-
marized results are given in Table 2.

Table 2. Summarized Results of Ex-
ample 2 (k is the number of itera-
tions).

k xk1 xk2 xk3 ||xk − xk−1||
0 1.0000 1.0000 1.0000 -
1 0.7114 0.6371 0.3457 0.8019
2 0.6984 0.6286 0.3426 0.0158
3 0.6983 0.6285 0.3426 0.0001
4 0.6983 0.6285 0.3426 0.0000

Example 3 [2] Consider the following NLES:

expx1 − x2 − 2 = 0
cosx1 + x2 − 1 = 0.

(9)

Figure 2. The graph of Example 3.

Linearize each equation in (9) by generating Tay-
lor series expansion at point A(0, π/2). The so-
lution of linearized equations system is found as
(x1, x2) = (1, 0). New variables are introduced as
x1 = 1 + u1 − v1 and x2 = 0 + u2 − v2, respec-
tively. The approach is processed and the solution
of (9) is found that is illustrated in Figure 2. The
summarized results are given in Table 3.

Table 3. Summarized Results of Ex-
ample 3 (k is the number of itera-
tions).

k xk1 xk2 ||xk − xk−1||
0 0.0000 π/2 -
1 0.8622 0.3438 1.4996
2 0.8503 0.3402 0.0124
3 0.8502 0.3402 0.0001
4 0.8502 0.3402 0.0000

5. Conclusion

In this paper, a linearization approach is proposed
to solve NLESs. Although our approach based on
linearization using Taylor series involves more it-
erations than many other methods used in the lit-
erature, the fundamental of the approach is based
on a very basic and important formation. There-
fore, this proposed approach can be used to have
less computational complexity and easier applica-
tion and to obtain more accurate results. Numer-
ical experiments are presented from the literature
to demonstrate the ability and accuracy of the
proposed approach for solving NLES.
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