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We focus on the importance of pyroptosis and superinfection on the mainte-
nance of the human immunodeficiency virus (HIV) latent reservoir on infected
patients. The latent reservoir has been found to be crucial to the persistence
of low levels of viral loads found in HIV-infected patients, after many years
of successfully suppressive anti-retroviral therapy (ART). This reservoir seems
to act as an archive for strains of HIV no longer dominant in the blood, such
as wild-type virus. When a patient decides to quit therapy there is a rapid
turnover and the wild-type virus re-emerges. Thus, it is extremely important
to understand the mechanisms behind the maintenance of this reservoir. For
that, we propose a fractional order model for the dynamics of HIV, where
pyroptosis and superinfection are considered. The model is simulated for bio-
logical meaningful parameters and interesting patterns are found. Our results
are interpreted for clinical appreciation.
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1. Introduction

HIV is associated with impairment and destruc-
tion of the immune system’s response, mostly by
depletion of CD4+ T cells. HIV infects several
types of these cells, but its primary targets are
the CD4+ T helper cells. The depletion of these
cells may have destructive effects in immune reg-
ulation [1]. These include reduced antibody de-
velopment capacity for new attackers, abnormal
function of macrophages and decrease in produc-
tion of chemical messengers.

A fraction of HIV infected CD4+ T cells enter
a latency state. In this state, the cells do not
produce new virus. HIV can remain inside these
cells for years, forming reservoirs, which consti-
tute major obstacles for the eradication of HIV.
Cells in the latent state escape treatment for HIV.
Current anti-retroviral drugs can suppress HIV to

undetectable levels, but cannot completely erad-
icate it [2]. Latently infected cells may be in-
fected by HIV, although with slower kinetics than
activated T cells. Productive superinfection of
these latent cells would eliminate virus genome
through cell death. A similar effect may be ob-
tained from the induction of pyroptosis of latent
cells, in cell-to-cell transmission. Pyroptosis is
a process which leads to the destruction of la-
tent T cells, by causing an intensely inflammatory
form of programmed cell death, where cytoplas-
mic contents and pro-inflammatory cytokines are
released [3].

Mathematical models have largely been used to
predict the dynamics of infections. In 2006,
Kim et al [4] study the factors influencing the
persistence of the latent reservoir and of low vi-
ral load in HIV infected patients, under anti-
retroviral therapy (ART). They consider that T
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cells can undergo bystander proliferation, without
producing active virus, and assume that the latent
cells’ activation rate decreases with time on ART.
The results of the model point to a combined con-
tribution of intrinsic physiological patients’ pa-
rameters, such as the minimum activation rate or
the net regeneration rate of latently infected cells,
to explain the persistence of the latent reservoir
and of low viral loads. In 2009, Rong et al [5]
review several mathematical models for HIV dy-
namics proposed in the literature. They focus on
the quantitative events underlying HIV latency,
on the reservoir stability, on the low-level viremia
persistence and on the emergence of intermittent
viral blips. The authors also distinguish treat-
ment options for each case. In 2015, Wang et
al [6] develop a mathematical model to study the
pyroptosis mechanism, a programmed cell death,
and show how pyroptosis explains the slow time
scale of CD4+ T cells depletion and its contribu-
tion to the persistence of latently infected cells.
Conway et al [7] describe a mathematical model
for the dynamics of HIV to capture the interac-
tions between target cells, productively infected
cells, latently infected cells, virus, and cytotoxic
T lymphocytes (CTLs). The model provides a
CTL response interval for which patients either
present viral rebound or post-treatment control,
depending on the size of the latent reservoir when
treatment finishes. Outside this interval, for lower
values, the patients always rebound and for higher
values the patients behave as elite controllers. In
2017, Wodarz et al [8] use mathematical models
to explain the fundamental mechanisms of the size
and of the composition of the latent reservoir in
HIV infection. The analysis of the model sug-
gests that though pyroptosis/superinfection are
significant factors that influence the dynamics of
latency, additional mechanisms might also play
a significant role. In particular, abortative in-
fections, higher activation status of cells due to
high virus load, the carrying capacity of the la-
tent reservoir.

1.1. Fractional calculus

Many mathematical models have a close proxim-
ity to reality, however, they are not able to de-
scribe it perfectly. Therefore, there is a need to
build more accurate models, with the aim of pro-
viding better fittings to real data. As such, the
Fractional Calculus is one of the most precise tools
to refine the description of a series of phenomena
present in the most diverse areas of knowledge,
namely in engineering, physics, biology, and oth-
ers [9–14].

There are several and important definitions for a
fractional order derivative. The most well-studied
are the Riemann-Liouville (RL), the Grünwald-
Letnikov (GL), and the Caputo formula (C). We
consider the interval (0, t) instead of (a, t), for
simplification. Now, let y(τ) be a smooth function
in every interval (0, t), t ≤ T. The RL definition
reads:

Dα
RLy(t) =

{

1
Γ(m−α)

dm

dtm

∫ t

0
y(τ)

(t−τ)α+1−m , m− 1 ≤ α < m
dmy(t)
dtm

, α = m

The Caputo definition is written as:

Dα
Cy(t) =

{

1
Γ(m−α)

∫ t

0
ym(τ)

(t−τ)α+1−m , m− 1 ≤ α < m
dmy(t)
dtm

, α = m

The GL definition is equivalent to the RL formula
and is based on finite differences. It is given by:

Dα
GLy(t) = lim

h→0
h−α

∑n
k=0(−1)k Γ(α+1)

k!Γ(α−k+1)y(x− kh), nh = x.

Diethelm [10] demonstrates that a non-integer or-
der model simulates the dynamics of data from
the 2009 outbreak of dengue fever, on the Cape
Verde islands, more accurately than an integer
first order model. The author also shows that the
dynamics of the human and of the mosquito pop-
ulations are modeled by different orders of the
fractional derivative. In 2017, Pinto et al [11]
study a fractional order model for HIV infec-
tion where the dynamics of the latent CD4+ T
cells, macrophages and cytotoxic T lymphocytes
(CTLs) are considered. The simulations of the
model suggest that the order of the fractional de-
rivative is associated to a decrease in the severity
of the disease. Namely, are observed decreased
values of infected CD4+ T cells and virus with
α. Moreover, the results of the simulations of the
model for relevant parameters, such as the frac-
tion of uninfected CD4+ T cells that become la-
tently infected, and the CTLs proliferation rate
due to infected CD4+ T cells, are biologically ac-
ceptable, for all values of α. Arshad et al [13]
present a non-integer order mathematical model
for HIV infection, to study the degree of T cell
depletion caused by viral cytopathology. The re-
sults of the model point to the use of the frac-
tional derivative as a parameter to vary to pro-
vide better fits to the data of each HIV infected
individual. Each individual has its own specifici-
ties which are better captured by a non-integer
model. Moreover, these models can help doctors
choosing the optimal dosage and verify its effects
for each individual.
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With the aforesaid ideas in mind, in this paper, we
propose a fractional order model for HIV dynam-
ics, where latency, pyroptosis and superinfection
are considered. The model is given in Section 2.
Its reproduction number and the stability of the
disease-free equilibrium are done in Section 3. In
Section 4, we analyze the global stability of the
disease free equilibrium, and the sensitivity anal-
ysis is done in Section 5. In Section 6, we simulate
the model for epidemiologically relevant parame-
ters and discuss the results. Finally in Section 7,
we state the main conclusions of this work.

2. The model

The uninfected CD4+ T cells, T (t), are produced
at rate s and die at rate d. These cells prolifer-
ate exponentially at a rate r, until reaching the
carrying capacity K. They are infected by HIV
or by infected CD4+ T cells at rates β and β1,
respectively. A fraction, (1−q), of infected CD4+

T cells becomes latently infected, L(t), and the
other fraction, q, is actively infected, I(t). The
latently infected CD4+ T cells become produc-
tively infected at a rate g and die at a rate aL.
The latently infected cells can be successfully su-
perinfected by productive virus at rate fqβ. As
the productive infection rate of latently CD4+ T
cells is lower than that of infected CD4+ T cells,
we considered the parameter f < 1. When in-
fected by CD4+ T cells, the latently CD4+ T
cells die by pyroptosis, which is a form of cell
death. Thus, cell-to-cell transmission contributes
for cells’ death at rate β1. The infected CD4+ T
cells, I(t), die at a rate aI . HIV, V (t), is pro-
duced by the infected CD4+ T cells at a rate p
and is cleared at a rate c. The nonlinear system
of fractional-order differential equations describ-
ing the dynamics of the model is given by:

dαT
dtα

= sα − dαT + rαT
(

1− T
K

)

− βαTV − βα
1 TI

dαL
dtα

= (1− q)(βαTV + βα
1 TI)− aαLL− fqβαLV

−βα
1 LI − gαL

dαI
dtα

= q(βαTV + βα
1 TI)− aαI I + fqβαLV + gαL

dαV
dtα

= pαI − cαV

(1)

where α ∈ (0, 1] is the order of the fractional de-
rivative, and ·α represents the · to the power of
α. When α = 1, then the model is the integer or-
der counterpart. The fractional derivative of the
proposed model is used in the Caputo sense.

3. Reproduction number

In this section, we compute the reproduction
number of model (1), R0, and the local stability of
its disease-free equilibrium. The basic reproduc-
tion number is defined as the number of CD4+ T
cells which are infected by one single cell entering
a completely susceptible population. We begin
by computing the reproduction number of system
(1), R0. We use the next generation method [15].

The disease-free equilibrium of model (1) is given
by:

P0 = (T0, L0, I0, V0)

=





Kα

[

rα−dα+
√

(rα−dα)2+ 4rαsα

K

]

2rα , 0, 0, 0





(2)

Using the notation in [15] on system (1), matri-
ces for the new infection terms, F , and the other
terms, V , are given by:

F =





0 (1− q)βα
1 T0 (1− q)βαT0

0 qβα
1 T0 qβαT0

0 0 0





V =





gα + aαL 0 0
−gα aαI 0
0 −pα cα





The associative basic reproduction number is
written as:

R0 = ρ(FV −1) =
T0(pαβα+cαβα

1
)(qaα

L
+gα)

cαaα
I
(gα+aα

L
) (3)

where ρ indicates the spectral radius of FV −1.

The linearization matrix of model (1) around the
disease-free equilibrium, P0, is:

M1 =





−
√

(rα − dα) + 4rαsα

K
0 −βα

1 T0 −βαT0

0 −aαL − gα (1− q)βα
1 T0 (1− q)βαT0

0 gα qβα
1 T0 − aαI qβαT0

0 0 pα −cα





Stability of P0 can be determined using the fol-
lowing lemmas:

Lemma 1. (Theorem 2, [16])

Let α
(

= p
q

)

where p, q ∈ Z+ and gdc(p, q) = 1.

Define M = q, then the disease-free equilibrium
P0 of the system (1) is asymptotically stable if
|arg(λ)| > π

2M for all roots λ of the following equa-
tion

det
(

diag
[

λMαλMαλMαλMα
]

−M1

)

= 0

Lemma 2. The disease-free equilibrium P0 of the
system (1) is unstable if R0 < 1.
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Proof. Expanding,

det
(

diag
[

λMαλMαλMαλMα
]

−M1

)

= 0

we have the following equation in terms of λ:

[

λMα +
√

(rα − dα) + 4rαsα

K

]

[

λ3Mα + (aαL + gα + aαI + cα − qβα
1 T0)λ

2Mα

+(cα(aαL + gα + aαI ) + (aαL + gα)aαI − T0(β
α
1 (qc

α + qaαL + gα) + βαqpα))λMα

+(aαL + gα)aαI c
α(1−R0)] = 0

(4)

Now arguments of the roots of the equation,

λMα +
√

(rα − dα) + 4rαsα

K
= 0, are given by:

arg(λk) =
π

Mα
+ k

2π

Mα
>

π

M
>

π

2M

where k = 0, 1, .., (Mα− 1).

Thus, using Lemma 1, we show that the disease-
free equilibrium, P0, of system (1) is stable if all
roots of the polynomial:

λ3Mα + (aαL + gα + aαI + cα − qβα
1 T0)λ

2Mα (cα(aαL + gα + aαI ) + (aαL + gα)aαI

−T0(β
α
1 (qc

α + qaαL + gα) + βαqpα))λMα + (aαL + gα)aαI c
α(1−R0) = 0

(5)

have argument greater than π
2M , for R0 < 1.

Finally, using Descartes’ rule of signs in equation
(5), we find that there is exactly one sign change
for R0 > 1. Thus there is exactly one positive
real root of the aforesaid equation for which the
argument is less than π

2M . We concluded that,
if R0 < 1, the disease-free equilibrium P0 of the
system (1) is stable. �

4. Global stability of the disease-free

equilibria

In this section, we compute the global stability of
the disease-free equilibrium of the model (1). We
rewrite model (1) as:

dαX
dtα

= F (X,Z)

dαZ
dtα

= G(X,Z), G(X, 0) = 0
(6)

where X = T and Z = (L, I, V ), with X ∈ R+

being the number of uninfected CD4+ T cells and
Z ∈ R3

+ denoting the number of latent and in-
fected CD4+ T cells, and virus.

The disease-free equilibrium is writ-
ten as U = (X⋆, 0), where X⋆ =




Kα

[

rα−dα+
√

(rα−dα)2+ 4rαsα

K

]

2rα , 0



.

The conditions (H1) and (H2) must be met to
guarantee the global asymptotic stability of the
disease-free equilibrium of the model (1):

(H1) : For dαX
dtα

= F (X, 0),
X⋆ is globally asymptotically stable

(H2) : G(X,Z) = AZ − Ĝ(X,Z), Ĝ ≥ 0,
for (X,Z) ∈ Υ1

(7)

where A = DZG(X⋆, 0) is a M-matrix (the off-
diagonal elements of A are non-negative) and Υ1

is the region where the model makes biological
sense. If the system (6) satisfies the conditions in
(7) the following theorem holds.

Theorem 1. The fixed point U = (X⋆, 0) is a
globally asymptotically stable equilibrium of the
system (6) provided that R0 < 1 and that the as-
sumptions in (7) are satisfied.

Proof. Let

F (X, 0) =
(

sα − dαT + rαT
(

1− T
K

))

(8)

and

A =





−gα − aαL (1− q)βα
1 T0 (1− q)βαT0

gα qβα
1 T0 − aαI qβαT0

0 pα −cα





(9)

and

Ĝ(X,Z) =





Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)





=









(1− q)T0

(

1− T
T0

)

(βα
1 I + βαV ) + fqβαLV + βα

1 LI

qT0

(

1− T
T0

)

(βα
1 I + βαV )− fqβαLV

0









(10)

Thus Ĝ1(X,Z), Ĝ2(X,Z) ≥ 0 and Ĝ3(X,Z) =

0 ⇒ Ĝ(X,Z) ≥ 0. Conditions in (7) are satisfied,
thus the disease-free equilibrium of the model (1)
is globally asymptotically stable for R0 < 1. �

5. Sensitivity analysis

In this section we compute the sensitivity indexes
of the reproduction number, R0 (1). Sensitivity
indexes are given in Table 1 and provide informa-
tion on the variation of the value of R0 as a func-
tion of each parameter. We follow the procedure
proposed in [17]. Generically, when R0 > 1, the
epidemics spreads, on the other hand, for R0 < 1
the epidemics halts.
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Table 1. Sensitivity indexes for rel-
evant parameters of model (1).

Parameter Sensitivity index sign
β +
β1 +
p +
q +
g +
c -
aL -
aI -

6. Numerical results

We simulate the model (1) for different values
of the order of the fractional derivative, α and
for epidemiologically valid parameters. The pa-
rameters used in the simulations, based on [7, 8],
are: s = 10 day−1, d = 0.015 day−1, r = 0.03
day−1, K = 1500 mm−3, β = 0.0001 mm3 day−1,
β1 = 0.0001 mm3 day−1, q = 0.95, g = 0.001
day−1, aL = 0.03 day−1, f = 1/7, aI = 0.45
day−1, p = 2000 day−1, c = 23 day−1, and the ini-
tial conditions are: T (0) = 700, L(0) = I(0) = 0
and V (0) = 10.

Fiures 1-3 depict the number of latently infected
cells in the cases of existence and absence of py-
roptosis/superinfection. It is observed a higher
number of latent cells when there is no pyropto-
sis/superinfection, for the three values of the or-
der of the fractional derivative, α. In both cases,
with and without pyroptosis, there is a first in-
crease in the number of latent cells towards a
peak and then a convergence to an asymptotic
state. Moreover, the behaviour with pyropto-
sis/superinfection at α = 1 shows a minimum
after the peak and then a rise to the equilibrium
state. This may be due to the variation of the HIV
viral load, which is related with the phenomenon
of pyroptosis/superinfection, as follows. The HIV
viral load increase from lower levels is followed by
the rise of the latent cells. When the HIV load
reaches its peak value, the number of latent cell
decreases due to cell death by pyroptosis or by su-
perinfection. As the viral load declines and tends
asymptotically to its equilibrium, the latent pool
rebounds and increases to some value. Lower vi-
ral loads are associated with less pyroptosis and
less superinfection, which translates in the per-
severance of the latent cells’ pool. This rebound
feature is rapidly forgotten for smaller values of
the order of the fractional derivative α, probably
due to the memory property, which causes tran-
sients to be faster in these systems than in integer
order ones.
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Figure 1. Number of latent
cells with and without pyropto-
sis/superinfection, for α = 1. Param-
eter values and initial conditions in
the text.
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Figure 2. Number of latent
cells with and without pyropto-
sis/superinfection, for α = 0.7.
Parameter values and initial condi-
tions in the text.
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Figure 3. Number of latent
cells with and without pyropto-
sis/superinfection, for α = 0.5.
Parameter values and initial condi-
tions in the text.
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7. Conclusion

We proposed a non-integer order mathematical
model for HIV infection to study the influence
of pyroptosis and superinfection on the mainte-
nance of the latent reservoir. We computed the
basic reproduction number and the stability of the
disease-free equilibrium. The simulations of the
model provide good agreement with experimen-
tal data available in the literature concerning the
maintenance of the latent reservoir. It is observed
that as HIV load increases from lower levels, the
latent cells’ population also rises. When the vi-
ral load reaches its peak, the number of latent
cells decreases, due to cell death by pyroptosis
and superinfection. As the viral load declines and
tends asymptotically to its equilibrium, the latent
pool rebounds and increases to some threshold.
Thus, pyroptosis and superinfection, are impor-
tant players in the perseverance of the latent cells’
pool in HIV infection.
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