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 Intravoxel incoherent motion (IVIM) modeling offers the parameters f, D and D* 

from diffusion MR signals as biomarkers for different lesion types and cancer 

stages. Challenges in fitting the model to the signals using the available 

optimization algorithms motivate new studies for improved parameter estimations. 

In this study, one thousand value sets of f, D, D* for human breast tissue are 

assembled and used to generate five thousand diffusion MR signals considering 

noise-free and noisy situations exhibiting signal-to-noise ratios (SNR) of 20, 40, 

80 and 160. The estimates of f, D, D* are obtained using Levenberg-Marquardt 

(LM), trust-region (TR) and particle swarm (PS) algorithms. On average, the 

algorithms provide the highest fitting performance for the noise-free signals 

(R2
adj=1.000) and great fitting performances for the noisy signals with SNR>20 

(R2
adj>0.988). TR algorithm performs slightly better for SNR=20 (R2

adj=0.947). 

TR and PS algorithms achieve the highest parameter estimation performance for 

all the parameters, while LM algorithm reveals the highest performance for f and 

D only on the noise-free signals (r=1.00). For the noisy signals, performances 

increase with an increase in SNR. All algorithms accomplish poor performances 

for D* (r=0.01-0.20) while TR and PS algorithms perform same for f (r=0.48-0.97) 

and D (r=0.85-0.99) but remarkably better than LM algorithm for f (r=0.08-0.97) 

and D (r=0.53-0.99). Overall, TR and PS algorithms demonstrate better but 

indistinguishable performances. Without requiring any user-given initial value, PS 

algorithm may facilitate improved estimation of IVIM parameters of the human 

breast tissue. Further studies are needed to determine its benefit in clinical practice. 
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1. Introduction 

Diffusion-weighted MR imaging traces random 

displacements of water within living tissues using the 

exponential decay of the diffusion signal amplitude 

with respect to the degree of field gradient encoding 

exposed to the tissues during imaging [1]. This imaging 

technique uses no ionizing radiation and requires no 

contrast agent administration to the patient for 

quantitative tissue characterization and therefore has 

become a very popular medical imaging technique in 

diagnosis and treatment of cancer [2, 3]. To assess the 

volume fraction of incoherently flowing blood in the 

tissue, the diffusion coefficient of water in the tissue 

and the sum of the pseudo-diffusion coefficient 

associated to the motion effect and the diffusion 

coefficient of water in blood, the diffusion MR signal 

of the tissue needs be processed using intravoxel 

incoherent motion (IVIM) model [4]. This process 

conventionally involves nonlinear least squares fitting 

of a bi-exponential decay function to the diffusion MR 

signal [5]. Among the optimization strategies proposed 

for the fittings, the Levenberg-Marquardt and the trust-

region optimization algorithms stand forward due to 

their easy implementation.  

The Levenberg-Marquardt algorithm [6] uses a search 

direction that is a cross between the Gauss-Newton 

direction and the steepest descent direction that reveals 

increased robustness. However, the algorithm does not 

consider any boundary constraints and therefore an 

estimate may be out of physiologically acceptable 

range. The trust-region algorithm [7] inherited from the 

Levenberg-Marquardt algorithm employs a search 

space restricted to a subset of the domain of a cost 

function. The algorithm offers estimates within 

acceptable ranges by incorporating boundary 

constraints that can be determined easily from the 

http://www.ams.org/msc/msc2010.html
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recent research on breast diffusion MR imaging. Both 

algorithms suffer from the same concern: the initial 

value of any model parameter to be estimated should be 

pre-selected correctly to minimize the possible 

disruptive effect of local minima during fitting. The 

selection process is quite complicated and requires 

decent experience on excessive trials with different 

values. There is a need for an optimization algorithm 

that requires no user given initial values and that 

utilizes boundary constraints. Such an algorithm holds 

a priceless potential to improve the use of IVIM 

modeling in distinguishing different lesion types and 

cancer stages of the human breast tissue. 

The particle swarm optimization algorithm [8] 

performs search behavior of a swarm of particles 

hovering through a multidimensional search space. The 

algorithm eliminates the need for user given initial 

values while making use of boundary constraints. It has 

been suggested to optimize several tasks in medicine, 

such as medical image segmentation, image 

enhancement and image registration [9-11]. However, 

to the best of our knowledge, its use in fitting diffusion 

MR signals to the IVIM model has not yet been 

explored.  

In the current study, a particle swarm optimization 

algorithm is proposed and compared with the 

Levenberg-Marquardt and the trust-region optimization 

algorithms in least squares fitting of the IVIM model to 

breast diffusion MR signals. 

2. Materials and methods 

2.1. Synthetic diffusion MR signal generation 

using intravoxel incoherent motion model 

The intravoxel incoherent motion (IVIM) model 

expresses the attenuation in the diffusion MR signal 

strength acquired for a specific diffusion weighting 

determined by a b-value, s(b), with respect to the signal 

strength captured without any diffusion weighting, s(0). 

The model is formulated using a bi-exponential decay 

function giving a normalized diffusion signal [12]: 

( ) *( )
1 exp exp

(0)

bD bDs b
f f

s

− −= − +           (1) 

Here f, D and D* are the three free model parameters. f 

represents the volume fraction of incoherently flowing 

blood in the tissue. Meanwhile, D denotes the diffusion 

coefficient of water in the tissue and D* is the sum of 

the pseudo-diffusion coefficient associated to the IVIM 

effect and the diffusion coefficient of water in blood.  

Using the IVIM model, synthetic diffusion MR signals 

of human breast tissue are generated by Monte Carlo 

trials performed 1000 times in the current study. During 

each trial, values for the model parameters are first 

determined randomly using the pre-defined mean and 

standard deviation values for each parameter 

considering the malignant and the benign lesions, the 

cysts and the healthy glandular tissue of the human 

breast reported in the literature [13]: f= 0.10±0.03, D= 

1.38±0.25µm2/ms and D*= 110±20µm2/ms. Next, the 

synthetic noise-free diffusion signal is generated with 

ten different b-values of 0, 30, 70, 100, 150, 200, 300, 

400, 500, 800s/mm2 [14] using the determined 

parameter values.  Finally, the noisy forms of the signal 

are obtained by adding Gaussian noise at four different 

signal-to-noise ratios (SNR) of 20, 40, 80 and 160 (The 

SNR is defined as the ratio of the normalized diffusion 

signal strength obtained without any diffusion 

weighting to the standard deviation of the noise [14]). 

2.2. Nonlinear least squares fitting  

The diffusion MR signals obtained are fitted to the 

IVIM model using the bi-exponential decay function in 

a nonlinear least squares fashion. The process involves 

minimizing the difference between the signal fed to 

fitting and the signal predicted during fitting:  

( )( ) ( )
22

1 2
ˆmin min

n

i ii
s s r

=
− =

 
            (2) 

Here, β = [f, D, D*]. is and ˆ ( )is   denote the signal 

strength given and the signal strength predicted using a 

set of values for β for the i-th b-value respectively. n is 

the total number of b-values considered for the 

diffusion signal. In the current study, the nonlinear least 

squares fittings are performed by using three different 

optimization algorithms, namely Levenberg-

Marquardt, trust-region and particle swarm.    

2.2.1. Levenberg-Marquardt algorithm 

The Levenberg-Marquardt (LM) algorithm [6] uses a 

search direction that is a cross between the Gauss-

Newton direction and the steepest descent direction and 

therefore offers increased robustness: 

( )T T

k k k k k kJ J I d J r+ = −                  (3) 

Here Jk and λk are the Jacobian matrix of derivatives of 

the residuals with respect to β and the Marquardt 

parameter both for the k-th iteration. dk is a direction of 

descent satisfying βk+1= βk+dk. λ is updated from 

iteration to iteration; increasing the value has the effect 

of changing both the direction and the length of the shift 

vector. In the current implementation, λ is initially set 

to 0.01. After an iteration, if the difference takes a lower 

value, λ is decreased by a factor of 10; otherwise, it is 

increased by a factor of 10 for the next iteration. The 

iteration is stopped when the gradient of the difference 

reaches its minimum of 10-12 or the change in model 

parameters for finite difference gradients reaches its 

minimum of 10-9. No bound constraints are considered 

during iterations; however, the optimization is started 

with 0.10, 1.38µm2/ms and 110µm2/ms as the initial 

values for f, D and D* respectively.  

2.2.2. Trust-region algorithm 

The trust-region (TR) algorithm [7] is inherited from 

LM algorithm and potentially offers better and faster 

solutions especially when the fitting process is far from 

the correct solution. Let ∆k be the two-norm of the 

solution to Eq. 3 updated by each iteration according to 

standard rules, then dk may be the solution as follows: 
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In the current implementation, the TR algorithm 

considers the same stopping criteria and the same initial 

values set for the LM algorithm. Besides, the algorithm 

also makes use of lower and upper limits for the 

parameters set as 0≤ f≤ 0.25, 0.25≤ D≤ 3.50 (×µm2/ms) 

and 25≤ D*≤ 250 (×µm2/ms).  

2.2.3. Particle swarm algorithm 

The particle swarm (PS) algorithm [8] performs search 

behavior of a swarm of particles hovering through a 

multidimensional search space to find a solution. 

During this search, a particle iteratively adjusts its 

velocity (v) and position (x) according to 

1 1 1 2 2( ) ( )b ba

k k k kv wv c r x x c r x x+ = + − + −    (5a) 

1 1k k kx x v+ += +                          (5b) 

Here, w is an inertia weight that balances the global 

search and local search while c1 and c2 are two scaling 

factors and r1 and r2 are the randomly generated 

numbers uniformly distributed between 0 and 1. xb and 

xba denote respectively the best previous position of the 

particle and the best position among all the particles 

that gives the minimum difference.  μ presents the 

flying time for the particle. In the current 

implementation, the number of particles in the swarm 

is set to 100 while μ= 1, w= 1.1 and c1=c2= 1.49. The 

lower and the upper limits for the parameters are set to 

the values considered for the TR algorithm. The 

iteration is stopped when the gradient of the difference 

reaches its minimum of 10-12. 

2.3. Performance assessment 

Success of each optimization algorithm studied is 

assessed with respect to the model fitting and the 

parameter estimation performances. The model fitting 

performance is measured by goodness-of-fit given by 

adjusted R-squared [15]: 
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       (6) 

Here, n and m represent respectively the number of 

diffusion signal strength measurements and the number 

of parameters within the model fitted (for the current 

study, n= 10 and m= 3). s denotes the average of the 

diffusion signal strength for different b-values.                 

R2
adj ranges from 0 to 1 with a higher value indicating a 

better fit (i.e. better similarity between the diffusion 

signal predicted by the estimated parameter values and 

the diffusion signal given by the ground truth parameter 

values for a specific noise level). To assess the 

parameter estimation performance of the optimization 

algorithms, correlations between the estimates by the 

algorithms and the true simulated values are measured 

by Person’s correlation coefficient (r). The coefficient 

value ranges between -1 and +1 and a higher absolute 

value designates a better estimate. The fitting 

algorithms are numerically implemented and 

performance metrics are computed using the existing 

libraries of MATLAB (v8.2; Natick, MA) on a standard 

PC (Intel i5-4460 3.20GHz processor, 6GB memory 

and 64-bit OS). 

3. Results 

A total of one thousand different value sets for f, D and 

D* are synthetically generated to mimic the diffusion 

characteristics of the human breast tissue regarding to 

the IVIM model. Statistical summary for each 

parameter is as shown in Table 1. The value sets are 

used to simulate diffusion MR signals considering 

noise-free and noisy imaging conditions with four 

different levels of SNR (i.e. 20, 40, 80 and 160) 

resulting in the generation of five thousand synthetic 

breast diffusion MR signals in total.  

Table 1. Statistics for the IVIM model parameters                         

f, D and D* simulated. 

Parameter Mean ± SD Min - Max 

f 0.10 ± 0.03 0.01 - 0.21 

D 1.38 ± 0.25 0.51 - 2.25 

D* 110 ± 20 49 - 181 

       Units of D and D* are µm2/ms and f is dimensionless. 

All the signals generated are fitted by using the IVIM 

model and by carrying out numerous nonlinear least 

squares fittings with LM, TR and PS based 

optimization algorithms. All of the optimization 

methods provide the highest fitting performance for the 

noise-free signals, (R2
adj=1.000). However, for the 

noisy signals, their performances decrease with the 

increase in noise level (see Table 2). The LM and the 

PS optimization algorithms provide almost the same 

very good fitting performances (R2
adj=0.947-0.999). 

Though, the TR algorithm offers the best performance 

among all of the algorithms (R2
adj=0.951-0.999). 

Table 2. Model fitting performances of the optimization algorithms assessed by R2
adj 

Algorithm SNR20 SNR40 SNR80 SNR160 

LM 0.947 ± 0.019 

(0.775-0.991) 

0.988 ± 0.005 

(0.954-0.998) 

0.997 ± 0.001 

(0.989-0.999) 

0.999 ± 0.000 

(0.997-1.000) 

TR 0.951 ± 0.017 

(0.775-0.991) 

* * 

 

* 

PS ** * * * 

 Results are the same for all the algorithms for the dedicated SNR value (*) and as the ones   

 for the LM algorithm (**).  
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However, for the signals having SNR≥ 40, very good 

fitting performances are attained by all the algorithms 

(R2
adj≥ 0.954). The LM, TR and PS algorithms require 

respectively 35ms, 39ms and 353ms on average for 

fitting the IVIM model to a noise-free signal. For a 

noisy signal, the average computation time for the LM, 

TR and PS algorithms increases respectively from 

40ms to 71ms, 42ms to 58ms and 356ms to 360ms with 

the decrease in SNR from 160 to 20. The PS algorithm 

always requires a considerably longer computation 

time when compared to the LM and the TR algorithms. 

Estimates of f, D and D* from all diffusion MR signals 

obtained by the LM, TR and PS algorithms are given in 

Table 3. For f and D, the same statistical measures (i.e. 

Mean±SD, the minimum and the maximum) are 

provided by all the algorithms. However, for D*, the 

LM algorithm often provides remarkably different 

statistical measures when compared to the TR and the 

PS algorithms that reveal indistinguishable measures. 

In addition, noise has a certain impact on the estimates 

by the algorithms; when the level of noise increases (i.e. 

SNR decreases), higher values for f, lower values for D 

and remarkably higher values for D* are estimated. 

Table 4 shows the results of parameter estimation 

performances of the optimization algorithms (i.e. the 

correlations between the estimated and the true 

simulated values for f, D and D*). For the noise-free 

signals, the strongest positive correlation exists for f 

and D (r=1.00) regardless of the optimization 

algorithm. However, for D*, very strong positive 

correlations are recognizable between the true 

simulated values and their estimates by the TR and the 

PS algorithms only (r=1.00). Besides, a very weak 

positive correlation is obtained for the LM algorithm 

(r=0.08).  For the noisy signals, varying positive 

correlations are observable for f, D and D*. When 

compared to the LM algorithm, the TR algorithm 

always offers better correlations. Besides, the TR and 

the PS algorithms demonstrate almost the same 

correlations. These algorithms permit very strong 

Table 3. Estimates of f, D and D* by the optimization algorithms. 

Parameter Algorithm SNR20 SNR40 SNR80 SNR160 Noise-Free 

f LM 0.16 ± 0.17 

(0.00 - 0.97) 

0.12 ± 0.08 

(0.00 - 0.94) 

0.10 ± 0.04 

(0.01 - 0.92) 

0.10 ± 0.03 

(0.01 - 0.22) 

0.10 ± 0.03 

(0.01 - 0.21) 

 TR 0.11 ± 0.06 

(0.00 - 0.25) 

0.10 ± 0.04 

(0.00 - 0.25) 

0.10 ± 0.03 

(0.00 - 0.24) 

* * 

 PS ** ** ** * * 

D LM 1.24 ± 0.43 

(0.00 - 2.33) 

1.34 ± 0.29 

(0.00 - 2.29) 

1.38 ± 0.25 

(0.47 - 2.27) 

1.38 ± 0.25 

(0.49 - 2.26) 

1.38 ± 0.25 

(0.51 - 2.25) 

 TR 1.35 ± 0.29 

(0.35 - 2.32) 

1.37 ± 0.26 

(0.43 - 2.29) 

* * * 

 PS ** ** * * * 

D* LM 2472 ± 4068 

(0 - 10669) 

3090 ± 4468 

(1 - 11685) 

2222 ± 3815 

(2 - 12162) 

1551 ± 3143 

(14 - 12234) 

384 ± 1483 

(49 - 10432) 

 TR 136 ± 105 

(25 - 250) 

142 ± 100 

(25 - 250) 

144 ± 91 

(25 - 250) 

143 ± 80 

(25 - 250) 

110 ± 20 

(49 - 181) 

 PS 138 ± 102 

(25 - 250) 

** ** ** ** 

Units of D and D* are [µm2/ms] and f is dimensionless. Results are the same for all the algorithms (*) and as the ones 

estimated by the TR algorithm (**).   

 

Table 4. Parameter estimation performances the optimization algorithms assessed by r 

Parameter Algorithm SNR20 SNR40 SNR80 SNR160 Noise-Free 

f LM 0.08 0.21 0.65 0.97 1.00 

 TR 0.48 0.73 0.90 0.97 * 

 PS ** ** ** ** * 

D LM 0.53 0.83 0.97 0.99 1.00 

 TR 0.85 0.95 0.99 0.99 * 

 PS ** ** ** ** * 

D* LM 0.01 0.03 0.05 0.14 0.08 

 TR 0.02 0.06 0.10 0.20 1.00 

 PS 0.04 ** ** ** ** 

Results are the same for all the algorithms (*) and as the ones estimated by the TR algorithm (**).     
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correlations for D from the noisy signals with SNR≥ 40 

(r≥ 0.95) meanwhile for f from the noisy signals with 

SNR≥ 80 (r≥ 0.90). However, for D*, they demonstrate 

very weak correlations (r= 0.02-0.20) as the LM 

algorithm does (r=0.01-0.14) regardless of the SNR.  

In a general sense, the TR and the PS algorithms 

provide better parameter estimates than the LM 

algorithm. However, the PS algorithm shows almost 

the same estimation performance as the TR algorithm. 

In contrast to the TR algorithm, the PS algorithm does 

not require any user-given initial value, therefore it 

offers a priceless tool in nonlinear least squares fitting 

of IVIM model to the diffusion MR signals of the 

human breast tissue especially for low SNRs. Scatter 

plots of the estimates by the PS algorithm against the 

true simulated values are presented in Figure 1. 

                     

                    

                    

                      

                     

 (a) (b)  (c) 

Figure 1. Scatter plots of (a) f, (b) D and (c) D* estimated by the PS algorithm against the true simulated values. 
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4. Conclusion 

The intravoxel incoherent motion (IVIM) modeling for 

the diffusion MR signals of the human breast tissue 

enables assessment of volume fraction of the 

incoherently flowing blood in the tissue (f), the 

diffusion coefficient of water in the tissue (D) and the 

sum of the pseudo-diffusion coefficient associated to 

the motion effect and the diffusion coefficient of water 

in blood (D*) as the potential biomarkers for different 

types of breast lesions and different stages of breast 

cancer. In the current study, the model fitting and the 

model parameter estimation performances of three 

optimization algorithms, namely Levenberg-Marquart 

(LM), trust-region (TR) and particle swarm (PS), in 

nonlinear least squares based fitting the IVIM model to 

the diffusion MR signals are investigated. 

Our results from five thousand breast diffusion MR 

signals generated synthetically show that all the 

optimization algorithms achieve very good model 

fitting performances for both noise-free and noisy 

diffusion signals. However, computation time spent by 

all the algorithms for fitting the IVIM model increase 

with the increase in noise level. When compared to the 

LM and the TR algorithms, the PS optimization 

algorithm always requires a considerably longer 

computation time. On the other hand, our results also 

demonstrate that the optimization algorithms play a 

very important role in getting reliable and precise 

estimates of the three model parameters f, D and D*. On 

the noise-free signals, the LM, TR and PS algorithms 

all exhibit the highest performance in estimating f and 

D. However, for D*, most of the estimates by the LM 

algorithm are out of the physiologically acceptable 

range and therefore the algorithm shows a remarkably 

lower performance then the TR and PS algorithms both 

of which reveal the highest performance possible.  In 

presence of noise, the TR algorithm performs better 

than the LM algorithm; the PS algorithm possesses the 

same estimation performance as the TR algorithm.  The 

TR and the PS algorithms perform remarkably better in 

estimating f and D, especially in presence of high noise 

levels. However, their performances for f are not as 

good as for D.  In addition to these, all the three 

algorithms suffer from very poor performances in 

estimating D* regardless of the noise level. These 

findings verify the wide use of the estimates of D in 

recent research on quantitative diffusion weighted 

imaging, arising the question that f and D* may also 

offer valuable information under low noise conditions.  

Overall, the TR algorithm performs better than the LM 

algorithm while the PS algorithm shows almost the 

same performance as the TR algorithm.  Revealing a 

very good performance without requiring any user-

given initial value, the PS algorithm can be preferably 

used in nonlinear least squares fitting of the IVIM 

model to the diffusion MR signals of the human breast 

tissue, especially in presence of high levels of noise. 

The current study has some limitations. First of all, the 

results are from synthetic MR signals generated for the 

IVIM model parameters with certain mean and 

standard deviation values that satisfy ranges reported 

from a single-center study performed with a 3.0T MR 

scanner. Ranges recognized by different scanners at 

different centers may differ and therefore dissimilar 

MR signals can be of concern. Second, noisy MR 

signals are obtained for SNRs of 20, 40, 80 and 160 

using Gaussian noise. 3T MR scanners with optimized 

imaging protocols easily provide these high SNRs. 

However, lower SNRs may be experienced in some 

cases and for signals with SNR<5, it might be 

questionable to use of Gaussian noise instead of Rician 

noise. Another issue is that the mean values of the IVIM 

model parameters generated are later used as the user-

given initial values for the LM and the TR algorithms. 

For most of the fittings by these algorithms, the initial 

values might be very close to the solution of the model 

and this might minimize the disruptive effect of local 

minima during fitting while leading to convergence to 

a precise solution. Consequently, performances of the 

LM and the TR algorithms might be over assessed. In 

addition, current implementation of the PS algorithm 

consumes considerably large amount of time in fitting 

the IVIM model. The use of faster computers or 

programming techniques dedicated to PS optimizations 

might lead to much shorter computation time. On the 

other hand, adjusted R-squared measure gives almost 

the same model fitting performances for all the 

algorithms. The use of an alternative measure such as 

the Akaike Information Criterion or Bayesian 

Information Criterion may give remarkably different 

fitting performances.  

There are some issues awaiting further exploration and 

improvement. Noise has undesirable impact on most of 

the IVIM model parameter estimates limiting their use 

in the detection of different types of breast lesions and 

stages of breast cancer. To cope with this, an additional 

parameter estimation may be performed from a 

“reference” healthy tissue to get a normalized 

parameter that may be less corrupted by noise. Another 

solution may be the use of alternative fitting techniques 

less sensitive to noise then the least squares fitting. For 

instance, artificial neural networks can be developed to 

approximate the IVIM model parameters by 

approximating the bi-exponential decay function. On 

the other hand, improved methods based on least 

squares fitting such as segmented least squares fitting 

[16] or weighted least squares fitting may also be used 

to minimize the effect of noise [17].  

In conclusion, by facilitating the estimation of IVIM 

model parameters from diffusion MR signals of the 

human breast, the particle swarm optimization 

algorithm holds a priceless potential to improve 

quantitative characterization of human breast tissue. 

Further studies with real clinical data are needed to 

determine its benefit in distinguishing types of breast 

tissue and lesions in the diagnosis of breast cancer. 
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