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 In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) 

equation are obtained by using the modified expansion function method (MEFM). 

When the obtained solutions are commented, trigonometric functions including 

hyperbolic features are obtained. The 2D and 3D graphics of the solutions have 

been investigated by selecting appropriate parameters. All the obtained solutions 

provide the MBQ equation. In this work, all mathematical calculations are done 

with Wolfram Mathematica software.  
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1. Introduction 

The solution of nonlinear partial differential equations 

has a measure in real life. For this reason, many 

methods have been developed and applied to solve 

these equations. Some of these, respectively the trial 

equation method [1], the new function methods [2-6], 

the extended trial equation method [7], Kudryashov 

method [8], the sine-Gordon expansion method  [9-10] 

and so on. In this study, we apply the modified 

expansion function method (MEFM) [11-13] to solve a 

nonlinear MBQ equation and find new interactions 

among travelling wave solutions. Boussinesq–type 

equations of higher order in dispersion as well as in 

nonlinearity are reproduced for wave–current 

interaction over an unbalanced bottom. There are 

various methods in the literature to obtain the solution 

of the equation. Some of those; tanh method, the 

modified decomposition method and bilinearization 

method 

In Section 2, Information about the modified expansion 

function method will be given.  

In Section 3 the modified expansion function method is 

applied to the MBQ equation and the new exact wave 

solution to this problem is obtained. The 2D and 3D 

graphics of the solutions were drawed by using the 

Mathematica software program.  

The modified Boussinesq equation can be defined as 

follows [14-16], 

 

( )2 0.
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2. Modified Expansion Function method 

In this part, we will be given information about MEFM. 

Consider the following nonlinear partial differential 

equation (NPDE): 

( )( )2 2
, , , 0,, , , ,,tt

xx
P u u u u u u u uxx xxt xxttu

x t
=               (2) 

where = ( , )u u x t  is unknown function, P  is a 

polynomial in ( , )u x t  and its derivatives. 

The general form of the nonlinear partial differential 

equation (2) is given above. By applying wave 

conversion to NPDE expression (3), the general form 

of the following nonlinear ordinary differential 

equation (4) is obtained. 

Step 1: Consider the following travelling wave 

transformation: 

( )( , ) = ( ), .u x t u x ct  = −                                     (3) 

Substituting Eq. (3) into Eq. (2), gives the following 

nonlinear ordinary differential equation (NODE); 
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Step 2: We assume the following solution; 
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where , , (0 , 0 ).A B i m j ni j       

m , n  are positive integers that can be obtained by 

using the balancing principle.  
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Eq.(6) has the following families of solutions [17]:   
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Family 5: When, 0, 0k = = , 
2

4 0,k − =  

( ) = ( ),ln EE   +                                             (11) 

Where, EE is a integral constant. 

Step 3: By substituting Eq. (5) and its derivatives into 

Eq. (4), we get algebraic equation system. This system 

was solved by using the Mathematica software program 

and then the solutions of the MBQ equation were 

obtained. 

3. Application 

In this section, the modified expansion function method 

will be used to obtain solutions of the MBQ equation. 

Consider the following travelling wave transformation: 
 

( )( , ) = ( ), .u x t u x ct  = −                                (12) 

the following nonlinear ordinary differential equation 

is obtained, 

( )2 2 2 2
2 2 0.1au u c uc  + − =−                      (13) 

If the balancing procedure is applied to equation (13), 

we get 2n m= + equality. 

Choosing 1,m =  we get 3.n = Eq. (5) for m and n values 

is obtained as follows; 
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If Eq. (14) is regulated according to the necessary term 

in equation (13), then the following system of algebraic 

equations is obtained which consists of the coefficients 

of 
( )

.e
 −

 

Some suitable coefficients obtained by using the 

Mathematica package program are given below. 
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Substituting these coefficients into Eq. (14), the 

following solutions: 
 

Family 1: When, 0k  ,
2

4 > 0,k − solution of 

equation (1), 

(15) 
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Figure-1. The 3D, density graphic and 2D surfaces of Eq. 

(15) in 2, 0.2, 4, 0.5,c a = = = = 1, 0.75EE = = and 

1t =  

 

Family 2: When, 0k  , 
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 Figure-2. The 3D, density graphic and 2D surfaces of Eq. 

(16) in 2, 0.2, 4, 0.5,c a = = = = 1, 0.75EE = = and 

1t = . 
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Figure-3. The 3D, density graphic and 2D surfaces of Eq. 

(17) in 0.5, 0, 4, 0.5,c a = = = = 1, 0.75EE = = and 

1t = . 

 

According to Family-4, the solution does not exist. 
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Figure-4. The 3D, density graphic and 2D surfaces of Eq. 

(18) in 0, 0, 4c = = = 0.5, 1, 0.75a EE= = = and 1t = . 
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Substituting these coefficients into Eq. (14), the 

following solutions: 

Family 1: When, 0k  ,
2

4 > 0,k − we get 
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Figure-5. The 3D, density graphic and 2D surfaces of Eq. 

(19) in 0.2, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 

1t = . 
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Figure-6. The 3D, density graphic and 2D surfaces of Eq. 

(20) in 0.5, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 

1t = . 
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Family 3: 0, 0k =  , 2
4 > 0,k −  

(21) 
 

 

 

 

Figure-7. The 3D, density graphic and 2D surfaces of Eq. 

(21) in 0, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 1t = . 

Family-4 and Family-5, the solution does not exist. 

4. Conclusion 

In this study, we obtained some travelling wave 

solutions of Boussinesq equation by using modified 

expansion function method. The results show that the 

modified expansion function method is a suitable 

mathematical method for solving nonlinear partial 

differential equations. The resulting solutions were 

checked with the Mathematica software. These 

solutions have been obtained by MEFM for the first 

time in the literature. 
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