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1. Introduction

In many branches of science, mathematical mod-
els of physical processes require differential equa-
tions and nowadays, it is verified that some of
these models can be better defined by fractional
order equations due to the material and heredi-
tary properties. Consequently, too many applica-
tions of the fractional order differential equations
exist (see [1–5]). Unfortunately, model equations
are usually in complex nature and involves non-
linear terms, therefore, analytical solutions can
not easily be obtained. As a result, we still need
more powerful numerical or approximate meth-
ods. Nowadays, many researchers are studying
on numerical or approximate solutions of the frac-
tional order equations and some new techniques
have been introduced or adopted with the existent
ones for ordinary case. For instance, finite differ-
ence [6–10], fractional linear multistep methods
[11–13], Adomian decomposition [14–16], varia-
tional iteration method [16–18], differential trans-
form or Taylor collocation method [19, 20] and
spectral method [21–24] can be cited here. For

some classes of fractional differential equations,
Kumar and Agarwal mentioned about polynomial
approximation methods and detailed information
can be found in [25–27]. There are also some
other studies which worth to cite here [28–30].
These are some valuable studies on fractional par-
tial differential equations. In the recent years,
many works have also been published on solv-
ing fractional differential equations but most of
them have been concerned with a single term and
the order is less than one. However, here, we
adopt the Hermite Collocation method (HCM)
for obtaining solutions to higher order multi-term
fractional differential equations with variable co-
efficients. This technique evaluates an analyt-
ical solution in the form of a truncated Her-
mite series with unknown coefficients. In many
physical problems, orthogonal functions or poly-
nomials are used as a basis for obtaining solu-
tions to the problems. On the other hand, the
orthogonal Hermite polynomials are extensively
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used in some problems of hydrodynamics and me-
teorology [31]. The present method uses Her-
mite polynomials smilar to the Taylor colloca-
tion method and so is called Hermite Collocation
Method which was first developed for higher-order
linear Fredholm integro differential equation [32].
Using this method has advantages on some par-
tical types of physical processes as we mentioned
above.

The second section of this study involves prelimi-
nary definitions and related theorems of the frac-
tional calculus. In section 3, we recall the funda-
mental properties of the Hermite series and mak-
ing adaptation of the method to the fractional
order equation. Section 4 deals with the error
bounds for the calculations and the section 5 in-
volves some illustrative examples. Finally, we
conclude the research with some highlights.

2. Preliminary information and

notations

We start with the definition of Caputo derivative
which was first introduced by Caputo ( [33]). This

derivative is preferred by many researches to make
it easier to incorporate the initial and bound-
ary conditions to the problem. Therefore, all the
derivatives will be defined as Caputo derivatives
throughout this study.

Definition 1. [1] Let f ∈ ACn[a, b] then, the
Caputo fractional derivative of a function f of or-
der α > 0 is defined by

(CDα
a f)(x) =

1

Γ(n− α)

∫ x

a

(x− t)n−α−1(
d

dt
)nf(t)dt,

(1)

where Γ is the gamma function and n− 1 < α <
n, n ∈ N .

Additionally, we can state the Caputo fractional
derivative of a power function as follows. Let
α ≥ 0, and f(x) = (x − c)β for some β ≥ 0.
Letting c is any number, then

CDα
a f(x) =







0, if β ∈ {0, 1, 2, ..., n− 1} and β < n,

Γ(β+1)
Γ(β+1−α)

(x− c)β−α,
β ∈ N and β ≥ n or,
β /∈ N and β. > n− 1

(2)

Some properties of the Caputo derivative can be
given as follows:

Lemma 1. [1] Let α > 0 and let y ∈ L∞(a, b) or
C([a, b]). Then, (CDα

a I
αy)(x) = y(x), where Iα

defines the integral operator.

Lemma 2. [1] Let α > 0 and n = [α] + 1 where
[α] is the integer part of α. If y ∈ ACn([a, b]) or
y ∈ Cn([a, b]), then

(IαCDα
a y)(x) = y(x)−

∑n−1
k=0

y(k)(a)
k! (x− a)k.

Theorem 1. [34] For every α, β ∈ R+ the fol-
lowing relation holds,

CDαC
a Dβ

af(x) =
C Dα+β

a f(x).

3. Hermite-collocation method for

fractional order differential

equations

This section deals with the establishment of the
theory of HCM for solving following multi-term
fractional differential equations with variable co-
efficients,

m∑

k=0

Pk(x)
CDkα

a y(x) = g(x), (3)

where a ≤ x ≤ b, n − 1 < mα < n (0 < α < 1),
n > 1, nǫN , Pk(x) and g(x) continuous on a ≤
x ≤ b. Initial conditions are:

CDjy(a) = λj , j = 0, 1, 2, ...,mα− 1. (4)

In Eqs.(3)-(4), Dα
a or, for convenience Dα defines

the Caputo derivative of order α and ,mα − 1 is
an integer number. We approximate the solution
of the form as the following truncated Hermite
series,

y(x) =

N∑

k=0

akHk(x
α), (5)

where ak are unknown Hermite coefficients and
N ∈ N+ which satisfies N ≥ mα. To obtain the
solution of Eq.(3) of the form Eq.(5), we first de-
fine the collocation points as xi = a + ( b−a

N )i (
i = 0, 1, 2, ...N, and x0 = a, xN = b). Now, letting
that H(xα) = [H0(x

α) H1(x
α) H2(x

α)...HN (xα)]
, A = [a0 a1 a2...aN ]T then, Eq.(5) is written in
matrix form as follow:

[y(x)] = H(xα)A. (6)
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Eventually, at collocation points, Eq.(6) is shown
by [y(xi)] = H(xαi )A.

3.1. Fractional hermite collocation

method

The Hermite polynomials of degree n are gener-
ated by the very well known formula,

Hn(x) =
[|n2 |]∑

n=0
(−1)m n!

(n−2m)!m!x
n−2m −∞ < x <

∞ , n = 0, 1, 2..., N .
Now we can define them in matrix notation (see
[32])as below. If N is an odd number, then the
matrix notation of Hermite polynomials is writ-
ten as










H0(x
α)

H1(x
α)

...
HN−1(x

α)
HN (xα)










︸ ︷︷ ︸

HT (xα)

=















20 0 . . . 0 0

0 21 . . . 0 0
...

...
...

...
...

(−1)(
N−5

2
) 2

0

0!

(N − 1)!
(
N−1

2

)
!

0 . . . 2N−1 0

0 (−1)(
N−1

2
) 2

1

1!

N !
(
N−1

2

)
!

. . . 0 2N















︸ ︷︷ ︸

F










1
x
α

...

x
α(N−1)

x
αN










︸ ︷︷ ︸

XT (xα)

, (7)

if N is even then it follows,










H0(x
α)

H1(x
α)

...
HN−1(x

α)
HN (xα)










︸ ︷︷ ︸

HT (xα)

=















20 0 . . . 0 0
0 21 . . . 0 0
...

...
...

...
...

0 (−1)(
N−2

2 ) 2
1

1!

(N − 1)!
(
N−2
2

)
!

. . . 2N−1 0

(−1)(
N−4

2 ) 2
0

0!

N !
(
N
2

)
!

0 . . . 0 2N















︸ ︷︷ ︸

F










1
xα

...

xα(N−1)

xαN










︸ ︷︷ ︸

XT (xα)

.

(8)

Consequently, we can write the above matrices
shortly,

HT (xα) = FXT (xα),

or
H(xα) = X(xα)F T . (9)

More generally, if we show that

X(xα) =
[

(x− c)0(x− c)1α · · · (x− c)(N−1)α(x− c)Nα

]

,

then, the substitution of Eq.(9) into Eq.(6) yields,

y(x) = X(xα)F TA. (10)

3.2. Caputo derivatives of operational

matrix

Now, we need to determine any kα th order Ca-
puto fractional derivatives of Eq.(10) by the fol-
lowing procedure,

CDkαy(x) =C DkαX(xα)F TA. (11)

CDkαX(xα) = [CDkα(x− c)0 CDkα(x− c)1α

· · ·C Dkα(x− c)(N−1)α CDkα(x− c)Nα]
(12)












CDα(x− c)0
CDα(x− c)1α
CDα(x− c)2α

...
CDα(x− c)(N−1)α

CDα(x− c)Nα












︸ ︷︷ ︸
CDkαXT (xα)

=











0 0 0 · · · 0 0 0
Γ(α+ 1) 0 0 · · · 0 0 0

0 Γ(2α+1)
Γ(α+1) 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 0 Γ(Nα+1)
Γ((N−1)α+1) 0











︸ ︷︷ ︸

B












(x− c)0

(x− c)1α

(x− c)2α

...

(x− c)(N−1)α

(x− c)Nα












︸ ︷︷ ︸

XT (xα)
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Consequently, one can write that CDαX(xα) =
X(xα)BT and the following theorem holds.

Theorem 2. Let X(xα) be the Hermite polyno-
mial vector, for any α > 0 , then we have,

CDkαy(x) = X(xα)(BT )kF TA,

Proof. By the help of Theorem 1, the successive
α th order Caputo fractional derivatives of X(xα)
become,

CDαCDαX(xα) = CDαX(xα)
︸ ︷︷ ︸

X(xα)BT

BT ,

CD2αX(xα) = X(xα)(BT )2,
...,

CDkαX(xα) = X(xα)(BT )k.

(13)

Hence, substitution of Eq.(13) into Eq.(11) gives,

CDkαy(x) = X(xα)(BT )kF TA. (14)

Eq.(14), is also shown by the following formula at
collocation points x = xi as,

CDkαy(xi) = X(xαi )(B
T )kF TA. (15)

Now, let recall the differential equation redefined
at collocation points as same as below,

m∑

k=0

Pk(xi)
CDkαy(xi) = g(xi), i = 0, 1, 2, . . . , N,

(16)

therefore, Eq.(16) is written in the following ma-
trix form:








Pk(x0) 0 · · · 0
0 Pk(x1) · · · 0
...

...
. . .

...
0 0 · · · Pk(xN )








︸ ︷︷ ︸

Pk

×








CDkαy(x0)
CDkαy(x1)

...
CDkαy(xN )








︸ ︷︷ ︸

Y kα

=








g(x0)
g(x1)

...
g(xN )








︸ ︷︷ ︸

G

.

In the compact form, Eq.(16) can be given as,

m∑

k=0

PkY
kα = G. (17)

On the other hand, we have by Eq.(15),








CDkαy(x0)
CDkαy(x1)

...
CDkαy(xN )








︸ ︷︷ ︸

Y kα

=








X(xα0 )
X(xα1 )

...
X(xαN )








︸ ︷︷ ︸

Xα

[
(BT )kF TA

]
,

where the matrix Xα is equivalent to

Xα =







X(xα
0 )

X(xα
1 )

...
X(xα

N )







︸ ︷︷ ︸

Xα

=








1 (x0 − c)1α · · · (x0 − c)(N−1)α (x0 − c)Nα

1 (x1 − c)1α · · · (x1 − c)(N−1)α (x1 − c)Nα

...
...

. . .
...

...
1 (xN − c)1α · · · (xN − c)(N−1)α (xN − c)Nα







.

Hence, we can rewrite Eq.(15) as follows,

Y kα = Xα(BT )kF TA. (18)

Finally, the substitution Eq.(18) into Eq. (17)
gives the fundamental matrix equation such as

m∑

k=0

PkX
α(BT )kF TA = G. (19)

Moreover, denoting

W =

m∑

k=0

Pk(x)X
α(BT )kF T ,

where W = [wij ] ( i, j = 0, 1, 2, . . . N ), then, Eq.
(19) is shown by,

W.A = G. (20)

Now, Eq. (20) generates an algebraic system
which consists of (N+1) rows and (N+1) columns.
Then, the augmented matrix of the system is writ-
ten by,
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[W ;G] =










w00 w01 · · · w0N ; g(x0)
w10 w11 · · · w1N ; g(x1)
...

...
...

... ;
...

w(N−1)0 w(N−1)1 · · · w(N−1)N ; g(xN−1)
wN0 wN1 · · · wNN ; g(xN )










(21)

This method can be modified to handle the initial
conditions defined at particular point a. There-
fore, we recall the initial Eq. (4),

CDjy(a) = λj , j = 0, 1, 2, . . .mα− 1.

Hence, substitution of these conditions into
Eq.(15) yields,

Xα(a)(BT )jF TA = λj . (22)

Therefore, defining Uj as,

Uj = Xα(a)(BT )jF T = [ uj0 uj1 uj2 · · · ujN ]

then, Eq.(22) can be shown by

UjA = λj , (23)

and corresponding augmented matrix is written
of the form,

[Uj ;λj ] , j = 0, 1, 2, . . . ,mα− 1,

and denoted by

[Uj ;λj ] =








u00 u01 · · · u0N ; λ0

u10 u01 · · · u1N ; λ1
...

...
...

... ;
...

u(mα−1)0 u(mα−1)1 · · · u(mα−1)N ; λmα−1







.

(24)

Now, if the mαth row of the the augmented ma-
trix Eq.(21 )of the system is replaced by the aug-
mented matrix of initial conditions Eq.(24), then
one can write the following matrix form,

[
∼

W ;
∼

G
]

=


















w00 w01 · · · w0N ; g(x0)
w10 w01 · · · w1N ; g(x1)
...

...
...

... ;
...

w(N−1−mα)0 w(N−1−mα)1 · · · w(N−1−mα)N ; g(xN−1−mα)
w(N−mα)0 w(N−mα)1 · · · w(N−mα)N ; g(xN−mα)

u00 u01 · · · u0N ; λ0

u10 u11 · · · u1N ; λ1
...

...
...

... ;
...

u(mα−1)0 u(mα−1)1 · · · u(mα−1)N ; λmα−1


















Hence, the system of algebraic equations are
shown by the following notation,

∼

WA =
∼

G. (25)

�

Remark 1. Now, let us consider the system
∼

WA =
∼

G.

If rank
∼

W = rank [
∼

W,
∼

G] = N+1, (i.e det(
∼

W ) 6=
0 ) then we can write

A = (
∼

W )−1
∼

G. (26)

Consequently, the Hermite coefficients ak (k =
0, 1, 2, ..., N) can be uniquely determined by
Eq.(25). As a result, the truncated Hermite series
is written as follows,

y(x) =
N∑

k=0

akHk(x
α). (27)

4. Error bounds

Eq.(27) is the approximate solution to Eq.(3) with
the initial conditions, Eq.(4). Therefore, substi-
tution the truncated Hermite series into the prob-
lem, we obtain the residuals;

∣
∣
∣
∣
∣

m∑

k=0

Pk(xi)
CDkαy(xi)− g(xi)

∣
∣
∣
∣
∣

at x = xi (−∞ < a ≤ x ≤ b < ∞), i =
0, 1, 2, . . . , N . Then, we call the error function
as E(xi) and this function should be less than
ǫ, which is a positive number and can arbitrarily
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be chosen as 10−kiα. As a result, error function
becomes, E(xi) ≤ 10−kiα where ki > 0 is any
constant. If the max(10−kiα) = 10−kα is desired
accuracy then, the truncation limit N is incerased
untill E(xi) approaches zero. Besides, the global
error function is defined as follows,

EN (x) =

m∑

k=0

Pk(x)
CDkαy(x)− g(x).

Consequently, the global error, EN (x) → 0 when
N is sufficiently large.

5. Illustrative examples

The method which was mentioned so far has been
used to solve multi term fractional order differ-
ential equations. To show the accuracy of the
method, the following examples have been solved.
All the numerical calculations have been per-
formed by using Matlab v7.5. and the results
have been given by Figure 1 for different val-
ues of α. The comparisons between exact and
Hermite polynomial solution approximation have
been made and shown by Table 1.

Example 1. First we consider Bagley-Torvik
equation [35];

D2y(x) +D3/2y(x) + y(x) = x+ 1, (28)

where α = 1/2,m = 4 and g(x) = x + 1. To find
HCM solution of the problem here, for conveni-
ance, we choose N = 2. Because the analytical
solution of the problem for α = 1 is easily ob-
tainable. Therefore, we only concentrate on the
different values of α. Hence,the approximate so-
lution can be written by the following truncated
Hermite series:

y(x) =
2∑

n=0

anHn(x
α). (29)

The coefficients of the differential equation are
P0(x) = P3(x) = P4(x) = 1, P1(x) = P2(x) = 0
Since N = 2 then, collocation points are taken as
{x0 = 0, x1 = 1/2, x2 = 1}. From the fundamental
matrix equation Eq.(19),one can write that

{P0X + P3X(BT )3 + P4X(BT )4}F TA = G.

After evaluating the matrices B and F and sub-
stituting them into the above equation, then, the
augmented matrix is obtained as follows,

W.A = G ⇒ [W ;G] =





1 0 −2 ; 1
1 1.4 0 ; 1.5
1 2 2 ; 2





Since det(W ) 6= 0, finding the solution of the sys-
tem defines the coefficients of the truncated series
as





a0
a1
a2



 =





1.5
0

0.25





Finally, substituting these coefficients into
Eq.(29),

y(x) = a0H0(x
α) + a1H1(x

α) + a2H2(x
α)

then, we obtain Hermite polynomial solution of
the problem as

y(x) =
3

2
+

1

4
(4xα − 2).

From here, if we substitute α = 1 in y(x) then,
we obtain y(x) = x+1. This is the exact solution
of the problem for integer order case.

Figure 1. The solution curves of Ex-
ample 1 for different values of α. The
α values change from 0.5 to 1.

Example 2. Next we consider an initial value
problem which is studied in [36] where 0 ≤ x ≤ 1
and α ∈ (0, 1), β ≤ 0. Therefore, we can write the
equation as:
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Dαy(x) = βy(x) + g(x). (30)

We assume that β = −1 and g(x) = x2 + 2x2−α

Γ(3−α)

defined on [0,1] and the initial condition is y(0) =
0. If we apply the HCM for α = 1

2 and N = 4,
it is obvious that m is 2 and P0(x) = P1(x) =

1, P2(x) = 0. Therefore, we can write the follow-
ing fundamental matrix of Eq.(30) as,

{
P0X + P1XBT + P2X(BT )2

}
F TA = G.

Therefore, we can easily establish the system
WA = G and constitute [W ;G] matrix as,

[W ;G] =









1.0000 1.7725 −2.0000 −10.6347 12.0000 ; 0.0000
1.0000 2.7725 1.2568 −12.9760 −23.0721 ; 0.2506
1.0000 3.1867 3.1915 −10.9742 −37.7877 ; 0.7818
1.0000 3.5045 4.9088 −7.8548 −46.2706 ; 1.5397
1.0000 3.7725 6.5135 −4.0000 −50.0901 ; 0.0000









.

On the other hand, the augmented matrix, which
corresponds to initial condition, is obtained by
substitution the row,

y(0) = X(0)F TA = λ0 = 0,

or

y(0) =
[
1 0 0 0 0

]
F TA = 0.

Finally, we find that [U0;λ0] =
[
1 0 −2 0 12 ; 0

]
. Therefore, the aug-

mented matrix of the system,
∼

WA =
∼

G, is ob-
tained from Eq.(25) as follows,

[
∼

W ;
∼

G
]

=









1.0000 1.7725 −2.0000 −10.6347 12.0000 ; 0.0000
1.0000 2.7725 1.2568 −12.9760 −23.0721 ; 0.2506
1.0000 3.1867 3.1915 −10.9742 −37.7877 ; 0.7818
1.0000 3.5045 4.9088 −7.8548 −46.2706 ; 1.5397
1.0000 0.0000 −2.0000 0.0000 12.0000 ; 0.0000









Consequently, solution of the above system gives
the approximate solution of the problem as,

y(x) = 0, 986076x10−31x1/2+0, 104468x10−13x3/2+x2.

We note here that our solution is very close to
the exact solution, y(x) = x2, since the first two
terms vanishes (see Figure 2).

As a result of all these, the HCM solution is very
good approximation to the problem even for small
N . Table 1 lists both the exact solution and er-
ror function at particular x, corresponding to the
Example.

Table 1. The exact solution of Example 2 and error function E(xi) for HCM solution.

x values Exact Solution E(xi) For HCM solution, N = 4
0.0 0.0000 9.0206e-17
0.2 4.0000e-2 9.0206e-17
0.4 1.6000e-1 2.7756e-16
0.6 3.6000e-1 4.9960e-16
0.8 6.4000e-1 7.7716e-16
1.0 1.0000 1.1102e-15

In Figure 2, both the analytical and the HCM so-
lutions (for N = 2 and N = 4) are given. It is
clear that the series (for N = 4) and the analyti-
cal solution are identical.
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Figure 2. Comparison of Analytical
solution and HCM solution for Exam-
ple 2.

6. Conclusion

The objective of this study is to apply the HCM
method for solving higher order multi-term frac-
tional order differential equations. The motiva-
tion of this work is that obtaining considerable
simplifications in the solutions of the multi-term
fractional order differential equations by using
HCM, since the analytical solutions of such equa-
tions cannot easily be obtained. By using any
symbolic toolbox of Matlab programme, the Her-
mite polynomial coefficients of the solution can be
obtained easily. Illustrated examples determine
the reliability of the algorithm and give chance to
apply the method for wider classes of equations.
As a further work, the method will be considered
for solving nonlinear fractional order differential
equations.
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