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1. Introduction

Most numerical methods are established on the
basis of polynomials. One of these methods is
Sinc methods. Frank Stenger firstly introduced
the Sinc methods in his works [1, 22] to determine
the solutions of some differential equations. The
actual detailed analysis on Sinc functions were
firstly made by Whittaker in the papers [20-21].
Lund has some works on two-point boundary-
value problems [7, 9]. Lewis, Lund and Bowers
investigated the parabolic and hyperbolic prob-
lems in [6, 12]. In [4] Bowers and Lund worked
on singular Poisson and elliptic problems. Nu-
merical solutions of the problems are found by
means of SGM. Lund, Bowers and McArthur in-
troduced the Symmetric SGM in [8]. A kind of
Sinc methods which is called Sinc Domain De-
composition Method is illustrated in [10, 11, 14,
and 15]. Moreover, iterative methods for symmet-
ric Sinc-Galerkin systems are considered in [3, 16,
and 17]. Some applications in the various areas
of the science and engineering can be seen in [2,
5, 13, 18 and 19]. In the work of Morlet, Lybeck
and Bowers in [15], a Volterra integro-differential
equation is investigated via the Sinc-collocation

method. In paper [1], Stenger made some ap-
plications with SGM for the approximate solu-
tions of ODEs and some elliptic and parabolic
PDEs. Koonprasert developed a fully SGM for
some complex-valued PDEs with time-dependent
boundary conditions in [5]. In the work of Stenger
[23], some problems related to medical problems
are taken and numerical results are found using
Sinc methods. In [24], a new algorithm based on
Sinc method is applied for the solution of a nonlin-
ear set of PDEs. A new SGM is illustrated for the
numerical solutions of convection diffusion equa-
tions on half-infinite intervals in [25]. The work
in [26] Gamel, Behiry and Hashish dealed with
the SGM for solving nonlinear ODEs with vari-
ous boundary conditions. In [27], sinc-Galerkin
method is also applied to a class of the second-
order nonlinear ODEs. In the work [28], Zamani
focused on some differential operators in one di-
mension and a Helmholtz eigenvalue problem in
two dimensions. In [29], authors use sinc-Galerkin
method to obtain approximate solution of frac-
tional partial differential equations. In [30,32]
Sinc methods is also applied for the solution of the
second-order ODEs with homogeneous Dirichlet-
Type boundary conditions. In [31], sinc-Galerkin
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method is used for solving fractional boundary
value problems approximately. In this paper, we

use sinc-Galerkin method to obtain approximate
solution of a class of hyperbolic partial differen-
tial equations. The rest of this paper is organized
as follows. In section 2, we give some definitions
and theorems for sinc methods. In section 3, some
test problems are given to compare the ability of
present methods by using tables and graphics. Fi-
nally, in section 4, the paper is completed with a
conclusion.

2. Sinc-Galerkin method

2.1. Sinc-Approximation formula for

hyperbolic

We consider the following hyperbolic partial dif-
ferential equation.

utt − uxx = F (x, t),
u(0, t) = u(1, t) = 0, 0 < x < 1,
u(x, 0) = 0, t > 0,
ut(x, 0) = 0, t > 0.

(1)

To determine the approximate solution of this
equation, Sinc-Galerkin method is used. For the
equation given above, the sinc-Galerkin method
can be developed in both space and time direc-
tion as following:

In general, approximations can be constructed for
infinite, semi-infinite, and infinite intervals and
both spatial and time spaces will be introduced.

Let us define the function φ as

φ(z) = ln

(

z

1− z

)

. (2)

Here φ is a conformal mapping from DE , the eye-
shaped domain in the z plane, onto the infinite
strip, DS where

DE =

{

z = x+ iy :

∣

∣

∣

∣

arg

(

z

1− z

)∣

∣

∣

∣

< d ≤ π

2

}

. (3)

This is shown in Figure 1.

Figure 1. The connection between
eye shape domain and the infinite
strip [32].

A more general form of the sinc basis according
to intervals can be given as following way

S(m,hx) ◦ φ(x) = Sinc

(

φ(x)−mhx
hx

)

,

m = −Nx, . . . , Nx,

S(k, ht) ◦ γ(t) = Sinc

(

γ(t)− kht
ht

)

, (4)

k = −Nt, . . . , Nt,

where

Sinc(z) =

{

sin(πz)
πz , z 6= 0
1 , z = 0

(5)

and

Sinc(k, h)(z) = Sinc

(

z − kh

h

)

=

{

sin(π z−kh
h )

π z−kh
h

, z 6= kh

1, z = kh
, (6)

and the conformal maps for both direction as fol-
lows

{

φ(x) = ln
(

x
l−x

)

, x ∈ (0, l)

γ(t) = ln(t) , t ∈ (0,∞),
(7)

are used to define the basis functions on the inter-
vals (0, l) and (0,∞) respectively. hx, ht > 0 rep-
resents the mesh sizes in the space direction and
the time direction respectively. The sinc nodes
xi and tj are chosen so that xi = φ−1(ihx),tj =

γ−1(jht). Here the function x = φ−1(x) = ex

1+ex

is an inverse mapping of φ = φ(x).

We may define the range of φ−1on the real line as

Γ1 =
{

φ−1(u) ∈ DE : −∞ < u <∞
}

. (8)

For the evenly spaced nodes {kh}∞k=−∞ on the real
line, the image which corresponds to these nodes
is denoted by

xk = φ−1(kh) =
ekh

1 + ekh
(9)

where 0 < xk < 1, for all k.

The sinc basis functions in (4) do not have a de-
rivative when x tends to 0 or 1. We modify the
sinc basis functions as
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S(m,hx) ◦ φ(x)
φ′(x)

=
Sinc

(

φ(x)−mhx
hx

)

φ′(x)
(10)

where

1

φ′(x)
= x(1− x). (11)

The modified sinc basis functions is shown in Fig-
ure 2.

Figure 2. The modified sinc basis on
(0, 1) [32].

For the transient space, we generate an approxi-
mation via defining the function

w = γ(r) = ln(r). (12)

Here, w is a conformal mapping from DW , the
wedge-shaped domain in the r-plane onto the in-
finite strip, DS , where

DW =
{

r = t+ is : |arg (r)| < d <
π

2

}

. (13)

For the SGM, the basis functions are determined
from composite translated functions,

S(k, ht) ◦ γ(t) = Sinc

(

γ(t)− kht
ht

)

,

k = −Nt, ....., Nt. (14)

The functions are given in Figure 3 for real values
of t.

Figure 3. Adjacent members of
S(k, h) ◦ γ(t) when k = −1, 0, 1 and
h = π

8 on (0,∞) [7].

In (14), w = γ(r) and γ−1(w) = r = ew. We may
define γ−1on the real line as

Γ2 =
{

γ−1(u) ∈ Dw : −∞ < u <∞
}

. (15)

For the evenly spaced nodes {kh}∞k=−∞ on the real
line, the image which corresponds to these nodes
is denoted by

tk = γ−1(kh) = ekh, (16)

where 0 < tk < ∞, for all k. A list of conformal
mappings may be found in Table 1 below, [9].

Table 1. Conformal mappings and
nodes for several subintervals of R.

(a, b) φ(z) zk

a b ln
(

z−a
b−z

)

a+bekh

1+ekh

0 1 ln
(

z
1−z

)

ekh

1+ekh

0 ∞ ln (z) ekh

0 ∞ ln (sinh(z)) ln
(

ekh +
√

e2kh + 1
)

−∞ ∞ z kh

−∞ ∞ sinh−1(z) kh

Definition 1. Let B (DE) be the class of func-
tions F that are analytic in DE and satisfy

∫

ψ(L+u)
|F (z)| dz → 0, as u = ∓∞, (17)

where

L =
{

iy : |y| < d ≤ π

2

}

, (18)

and on the boundary of DE satisfy
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T (F ) =

∫

∂DE

|F (z)dz| <∞. (19)

The proof of following theorems can be found in
[1].

Theorem 1. Let Γbe (0, 1), F ∈ B (DE), then
for h > 0 sufficiently small

∫

Γ

F (z)dz − h

∞
∑

j=−∞

F (zj)

φ′(zj)
=
i

2

∫

∂D

F (z)k(φ, h)(z)

sin(πφ(z)/h)
dz,

≡ IF , (20)

where

|k(φ, h)|z∈∂D =

∣

∣

∣

∣

e

[

iπφ(z)
h

sgn(Imφ(z))
]
∣

∣

∣

∣

z∈∂D

= e
−πd
h . (21)

For the SGM, the infinite quadrature rule must be
truncated to a finite sum; the following theorem
demonstrates the conditions under which expo-
nential convergence results.

Theorem 2. If there exist positive constants
α, βand C such that

∣

∣

∣

∣

F (x)

φ′(x)

∣

∣

∣

∣

≤ C

{

e−α|φ(x)|, x ∈ ψ((−∞,∞))

e−β|φ(x)|, x ∈ ψ((0,∞)),
(22)

then the error bound for the quadrature rule (20)
is

∣

∣

∣

∣

∣

∣

∫

Γ

F (x)dx− h
N
∑

j=−N

F (xj)

φ′(xj)

∣

∣

∣

∣

∣

∣

≤C
(

e−αNh

α
+
e−βNh

β

)

+ |IF | . (23)

The infinite sum in (20) is truncated with the use
of (21) to arrive at this inequality (23). Making
the selections

h =

√

πd

αN
, (24)

N ≡
∥

∥

∥

∥

αN

β
+ 1

∥

∥

∥

∥

, (25)

where ‖.‖ is integer part of statement, then

∫

Γ

F (x)dx = h

N
∑

j=−N

F (xj)

φ′(xj)
+O

(

e−(παdN)1/2
)

. (26)

Theorems 1 and 2 can be used to approximate
the integrals that arise in the formulation of the
discrete systems.

2.2. Discrete solutions scheme for

hyperbolic PDEs

In ordinary differential equations

Lu = f, (27)

on Γ1, sinc solution is assumed as an approximate
solution um in the form of series whichm = 2N+1
terms

um(z) =
N
∑

j=−N
cjS(j, h) ◦ φ(z). (28)

The coefficients {cj}Nj=−N are determined by or-

thogonalizing the residual Lu− f with respect to
the sinc basis functions {Sj}Nj=−N where Sj(z) =

S(j, h) ◦ φ(z). An inner product for two contin-
uous function such as f1 and f2 can be given by
the following formula

〈f1, f2〉 =
∫

Γ
f1f2wdz, (29)

where w is the weight function and chosen de-
pending on boundary conditions. If we implement
above inner product rule in orthogonalization this
yields the discrete sinc-Galerkin system

∫

Γ
(Lum − f) (z)S(k, h) ◦ φ(z) · w(z)dz = 0,

−N ≤ k ≤ N. (30)

Now, we are going to derive discrete sinc-Galerkin
system for PDEs. Let we assume umz ,mt is the
approximate solution of equation (1). Then, the
discrete system takes the following form

umz ,mt(z, t) =
N
∑

j=−N

N
∑

k=−N
cjkS(j, h) ◦ φ(z)

· S(k, h) ◦ γ(t). (31)

The coefficients {cjk}Nj,k=−N are determined by

orthogonalizing the residual Lumz ,mt − f with re-

spect to the sinc basis functions {SjSk}Nj,k=−N
where SjSk(z, t) = S(j, h) ◦ φ(z)S(k, h) ◦ γ(t) for
−N ≤ j, k ≤ N. In this case the inner product
takes the following form

〈f1, f2〉 =
∫

Γt

∫

Γz

f1(z, t)f2(z, t)w(z, t)dzdt. (32)



254 A. Secer / IJOCTA, Vol.8, No.2, pp.250-258 (2018)

The choice of the weight function w(z, t) in the
double integrand depends on the boundary con-
ditions, the domain, and the partial differential
equation. Therefore the discrete Galerkin system
is

∫

Γt

∫

Γz

(Lumzmt − f) (z, t) · S(j, h) ◦ φ(z)

· S(k, h) ◦ γ(t) · w(z, t)dzdt = 0. (33)

2.3. Matrix representation of the

derivatives of sinc basis functions at

nodal points

The sinc-Galerkin method actually requires the
evaluated derivatives of sinc basis functions at
the sinc nodesz = zj . The rth derivative of
Sk(z) = S(k, h) ◦ φ(z)with respect toφ, evaluated
at the nodal point zj is denoted by

1

hr
δ
(r)
jk =

dr

dφr
(S(k, h) ◦ φ(z))

∣

∣

∣

∣

z=zj .

(34)

Here, for each k and j can be stored in a

matrixI(r) =
[

δ
(r)
jk

]

. For r = 0, 1, 2, ...

I(0) = δ
(0)
jk = [S(j, h) ◦ φ(x)]|x=xk

=

{

1, k = j
0, k 6= j,

(35)

I(1) = δ
(1)
jk = h

d

dφ
[S(j, h) ◦ φ(x)]

∣

∣

∣

∣

x=xk

=

{

0, k = j
(−1)k−j

(k−j) , k 6= j,
(36)

I(2) = δ
(2)
jk = h

d2

dφ2
[S(j, h) ◦ φ(x)]

∣

∣

∣

∣

x=xk

=

{

−π2

3 , k = j
−2(−1)k−j

(k−j)2 , k 6= j,
(37)

where

I(0)m =















1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

: : :
. . . :

0 0 0 ... 1















=
[

δ
(0)
jk

]

, (38)

I(1)m =















0 −1 1
2 ... 1

2N
1 0 −1 ... − 1

2N−1

−1
2 1 0 ... 1

2N−2

: : :
. . . :

− 1
2N

1
2N−1

1
2N−2 ... 0















=
[

δ
(1)
jk

]

, (39)

I
(2)
m =



















−

π2

3
2
12

−

2
22

... −

2
(2N)2

2
12

−

π2

3
2
12

... 2
(2N−1)2

−

2
22

2
12

−

π2

3
... −

2
(2N−2)2

: : :
. . . :

−

2
(2N)2

2
(2N−1)2

−

2
(2N−2)2

... −

π2

3



















=
[

δ
(2)
jk

]

. (40)

The chain rule has been used for the z-derivative
of product sinc functions. For example, when
Sj(z) = S(j, h) ◦ φ(z);

d (Sj(z)w(z))

dz
=

(

dSj(z)

dφ(z)
· dφ(z)
dz

)

w(z)

+ Sj(z)
dw(z)

dz
(41)

=
dSj(z)

dφ
φ′(z)w(z) + Sj(z)w

′(z),

and

d2 (Sj(z)w(z))

dz2
=

d

dz

(

dSj(z)

dφ
φ′(z)w(z) + Sj(z)w

′(z)

)

=
d2Sj(z)

dφ2
(φ′(z))

2
w(z) +

dSj(z)

dφ
φ′′(z)w(z) (42)

+ 2 · dSj(z)

dφ
φ′(z)w′(z) + Sj(z)w

′′(z).

Now, we are going to develop discrete form for
the equation (1). We choose for special case the
parameters as follows for the spatial dimension:

φ(z) = ln
(

z
1−z

)

,

wX(z) =
1

φ′(z) ,
1

φ′(z) = z(1− z),











(43)

and for the temporal space as;

γ(t) = ln (t) ,
wT (t) =

1
γ′(t) ,

1
γ′(t) = t.











(44)
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The discrete form of equation (1) can be given the
following form

〈Lu− F, SkSl〉 =
∫

Γt

∫

Γz

(Lu− F )S(k, h) ◦ φ(z)

· wX(x)S(l, s) ◦ γ(t) · wT (t)dzdt

=

∫

Γt

∫

Γz

(utt − uxx − F )S(k, h) ◦ φ(z)

· wX(x)S(l, s) ◦ γ(t) · wT (t)dzdt. (45)

We solve this by taking our approximating basis
functions to be































Sk(x) = wXS(k, h) ◦ φ(x),
wX = 1

φ′(x) = x(1− x),

φ(x) = ln( x
1−x),

Sl(t) = wTS(l, s) ◦ γ(t),
wT = 1

γ′(t) = t,

γ(t) = ln(t).

(46)

If we apply sinc-quadrature rules on the definite
integral given (45) by using (46) we can get a
matrix system. For this purpose, let Am(u) be
a diagonal matrix, whose diagonal elements are
u(x−N ), u(x−N+1), ..., u(xN ) and non-diagonal el-
ements are zero. Then (45) reproduces following
matrixes accordingly:

C =













A1

A2

A3

A4

A5













(47)

where

A1 = c−N,−N c−N,−N+1 c−N,−N+2 . . . c−N,N ,

A2 = c−N+1,−N c−N+1,−N+1 c−N+1,−N+2 . . . c−N+1,N ,

A3 = c−N+2,−N c−N+2,−N+1 c−N+2,−N+2 . . . c−N+2,N ,

A4 =
...

...
...

. . .
...,

A5 = cN,−N cN,−N+1 cN,−N+2 . . . cN,N ,

and























B = −2hI
(0)
m (Am(wX)) + I

(1)
m (Am(w

′
X)) +

I
(2)
m

h ,

G = Am(wT )
[

sI
(0)
m − I1m

]

,

D = hAm(
wX

φ′ ),

E = sAm(
wT

γ′ ).

(48)

Also, for the right side function F given equation
(1) can be written as following matrix form;

F =













B1

B2

B3

B4

B5













(49)

where

B1 = F−N,−N F−N,−N+1 F−N,−N+2 . . . F−N,N ,

B2 = F−N+1,−N F−N+1,−N+1 F−N+1,−N+2 . . . F−N+1,N ,

B3 = F−N+2,−N F−N+2,−N+1 F−N+2,−N+2 . . . F−N+2,N ,

B4 =
...

...
...

. . .
...,

B5 = FN,−N FN,−N+1 FN,−N+2 . . . FN,N ,

Therefore, we arrive at a matrix system for equa-
tion (1) as follows:

D−1BC + CGE−1 = F (50)

Finally, by using Maple Computer Algebra Soft-
ware, the matrix system (50) can be solved by
using LU or QR decomposition method and can
be found unknown coefficients. After calculation
of C we get approximate solution as follows:

ux,t =

N
∑

j=−N

N
∑

k=−N

cjkS(j, h)◦φ(x)·S(k, h)◦γ(t). (51)

3. Numerical Examples

In this section, the presented method will be
tested on two different problems.

Example 1. The following hyperbolic equation
given

∂2

∂t2
u (x, t)− ∂2

∂x2
u (x, t) = f(x, t), (52)

where

f (x, t) =
e−t

(

A+ t2
(

12− 11x− 8x2 + 4x3
))

4
√
t
√
1− x

,

and A = 3(−1 + x)2x− 12t(−1 + x)2x.

The exact solution of equation (52) given as fol-
lows

u (x, t) = t3/2e−tx(1− x)3/2. (53)

For the equation (52), we choose sinc components
here in below:
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h = s = 0.75√
N
, xk =

ekh

1+ekh
, tl = esl, φ(x) = ln

(

x
1−x

)

,

γ(t) = ln(t), wX = 1
φ′(x) , wT = 1

γ′(t) .

(54)

In the light of the above parameters, the numeri-
cal results obtained by SGM for equation (52) are
indicated in Table 2 and Table 3. Moreover, the
graphs of the exact and the approximate solutions
for different values are showed in Figure 4, 5 and
Figure 6.

Table 2. Numerical results for N = 5.

t x Exact
Sol.

Num.
Sol.

Error

0.03 0.3 0.000885 0.002565 0.001679
0.6 0.000765 0.001809 0.001044
0.9 0.000143 0.001596 0.001453

0.06 0.3 0.002431 0.014390 0.011958
0.6 0.002100 0.014650 0.012549
0.9 0.000393 0.005685 0.005291

0.09 0.3 0.004335 0.018336 0.014000
0.6 0.003745 0.017395 0.013649
0.9 0.000702 0.007839 0.007137

Table 3. Numerical results for N = 20.

t x Exact
Sol.

Num.
Sol.

Error

0.03 0.3 0.000885 0.001020 0.000134
0.6 0.000765 0.000474 0.000291
0.9 0.000143 −0.000060 0.000203

0.06 0.3 0.002431 0.002705 0.000273
0.6 0.002100 0.001608 0.000492
0.9 0.000393 0.000033 0.000360

0.09 0.3 0.004335 0.004734 0.000399
0.6 0.003745 0.003049 0.000695
0.9 0.000702 0.000186 0.000515

Figure 4. Numerical Simulation of
equation (52) according to N = 5.

Figure 5. Numerical Simulation of
equation (52) according to N = 20.

Figure 6. Graph of exact solution of
equation (52).

Example 2. The following hyperbolic equation
given

∂2

∂t2
u (x, t)− ∂2

∂x2
u (x, t) = f(x, t), (55)

where

f (x, t) = e−t
(

B + t2
(

2 + x− x2
))

,

and B = −2 (−1 + x)x+ 4t (−1 + x)x.

The exact solution of equation (55) given as fol-
lows

u (x, t) = e−tt2 (1− x)x. (56)

For the equation (55), we choose sinc components
here in below:

h = s =
0.75√
N
, xk =

ekh

1 + ekh
, tl = esl,

φ(x) = ln

(

x

1− x

)

, γ(t) = ln(t), wX =
1

φ′(x)
,

wT =
1

γ′(t)
. (57)

According to the above parameters, the numeri-
cal solutions which are obtained by using the sinc-
Galerkin method for equation (55) are presented
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in Table 4 and Table 5 for different values. Also
the graphs of exact and approximate solutions for
different values are presented in Figure 7, 8 and
Figure 9.

Table 4. Numerical results for N = 5.

t x Exact
Sol.

Num. Sol. Error

0.03 0.3 0.000183 0.000078 0.000104
0.6 0.000209 −0.0023475 0.002556
0.9 0.000078 0.001439 0.001360

0.06 0.3 0.000711 0.003170 0.002458
0.6 0.000813 0.000211 0.000601
0.9 0.000305 0.003259 0.002954

0.09 0.3 0.001554 0.003741 0.002187
0.6 0.001776 −0.002408 0.004185
0.9 0.000666 0.005409 0.004743

Table 5. Numerical results for N = 20.

t x Exact
Sol.

Num. Sol. Error

0.03 0.3 0.000183 0.000180 2.86× 10−6

0.6 0.000209 0.000203 5.75× 10−6

0.9 0.000078 0.000077 1.52× 10−6

0.06 0.3 0.000711 0.000711 5.46× 10−7

0.6 0.000813 0.000811 2.43× 10−6

0.9 0.000305 0.000304 4.24× 10−7

0.09 0.3 0.001554 0.001554 5.03× 10−7

0.6 0.001776 0.001777 1.12× 10−6

0.9 0.000666 0.000666 2.11× 10−7

Figure 7. Numerical Simulation of
equation (55) according to N = 5.

Figure 8. Numerical Simulation of
equation (55) according to N = 20.

Figure 9. Graph of exact solution of
equation (55).

4. Conclusion

The SGM is operated to determine the approx-
imate solutions of second order PDEs. Accord-
ing to the obtained results in numerical exam-
ples, sinc-Galerkin method seems to be an effi-
cient method in the sense that selection parame-
ters and changing boundary conditions and also
giving different problems to the algorithms. The
accuracy of the solutions can be developed by in-
creasing the number of grid points N. In this work,
we improve a powerful algorithm for the solution
with SGM via Maple. Various PDEs are solved
in means of our technique in less than 20 seconds.
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