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1. Introduction

Many mathematical models of natural and ap-
plied sciences phenomena such as fluid mechan-
ics, hydrodynamics, electromagnetics and various
areas of physics are based on hyperbolic partial
differential equations. Modeling some of these
phenomena, imposing nonlocal conditions may be
more accurate than classical conditions. Nonlo-
cal boundary condition is a relation between the
values of unknown function on the boundary and
inside of the given domain. Over the last decades,
boundary value problems with nonlocal boundary
conditions have become a rapidly growing area of
research. Such types of boundary conditions are
encountered in applications including thermoelas-
ticity [1], climate control systems [2] and financial
mathematics [3]. Boundary value problems for
parabolic, elliptic and equations of mixed types
are actively studied by many scientists for decades
(see [4]- [27]). Stability has been an important re-
search area in the development of numerical meth-
ods. Particulary, in this work stability analysis
is performed by suitable unconditionally stable
difference schemes with an unbounded operator.

Some results of this paper, without proof, are pre-
sented in [27].

In the present paper, third and fourth order of
accuracy stable difference schemes for approxi-
mately solving the multipoint nonlocal boundary
value problem (NBVP)





∂2u(t,x)
∂t2

−
m∑
r=1

(ar(x)uxr)xr = f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(0, x) =
n∑

j=1
αju (λj , x) + ϕ(x), x ∈ Ω,

ut(0, x) =
n∑

j=1
βjut(λj , x) + ψ(x), x ∈ Ω

(1)

for the multidimensional hyperbolic equation with
the Neumann boundary condition

∂u(t, x)

∂~n
|x∈S = 0, x ∈ S

or mixed conditions

u(t, x)|x∈S1
= 0,

∂u(t, x)

∂~n
|x∈S2

= 0,
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x ∈ S, S = S1 ∪ S2

are considered.

Here

Ω = {x = (x1, · · ·, xm) : 0 < xj < 1, 1 ≤ j ≤ m}

is the unit open cube in the m-dimensional
Euclidean space R

m, with boundary S, Ω =
Ω ∪ S and ar(x) (ar(x) ≥ a > 0, x ∈ Ω),
ϕ(x), ψ(x)

(
x ∈ Ω̄

)
, f(t, x) (t ∈ (0, 1), x ∈ Ω) are

given smooth functions.

2. Stability Estimates for High Order

Difference Schemes

In the present section the third and the fourth
order absolutely stable difference schemes and
stability estimates for the solutions of these dif-
ference schemes are presented. These difference
schemes are obtained in [18]. The discretization
of problem (1) with Neumann condition or mixed
conditions is carried out in two steps. In the first
step, the grid sets are defined as

Ω̃h = {x = xr = (h1r1, . . . , hmrm),

r = (r1, · · ·, rm), 0 ≤ rj ≤ Nj ,

hjNj = 1, j = 1, · · ·,m} ,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S,

and difference operator Ax
h is given by the formula

Ax
hu

h
x = −

m∑

r=1

(
ar(x)u

h
xr

)

xr,jr
(2)

acting in the space of grid functions uh(x) for
all x ∈ Sh. Note that Ax

h is a self-adjoint posi-
tive definite operator in L2(Ω̄h) with the domain

D (Ax
h) =

{
u (x) ∈W 2

2h

(
Ω̃h

)
, ∂u
∂−→n

= 0 on Sh

}
.

The spaces L2h = L2(Ω̃h), W
1
2h = W 1

2h

(
Ω̃h

)
and

W 2
2h =W 2

2h

(
Ω̃h

)
of the grid functions

ϕh(x) = {ϕ(h1r1, . . . , hmrm)}

are defined on Ω̃h, equipped with norms

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=



∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣
2
h1 . . . hm




1/2

,

∥∥∥ϕh
∥∥∥
W 1

2h

=
∥∥∥ϕh

∥∥∥
L2h

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xr,jr

∣∣∣∣
2

h1 . . . hm




1/2

,

and

∥∥∥ϕh
∥∥∥
W 2

2h

=
∥∥∥ϕh

∥∥∥
L2h

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xr

∣∣∣∣
2

h1 . . . hm




1/2

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xrxr,jr

∣∣∣∣
2

h1 . . . hm




1/2

,

respectively.

Using difference operator Ax
h the following NBVP





d2vh(t,x)
dt2

+Ax
hv

h(t, x) = fh(t, x),
0 < t < 1, x ∈ Ωh,

vh(0, x) =
n∑

j=1
αjv

h (λj , x) + ϕh(x), x ∈ Ω̃h,

dvh(0,x)
dt =

n∑
j=1

βjv
h
t (λj , x) + ψh(x), x ∈ Ω̃h

(3)

is obtained.

In the next step problem (3) is replaced by the
third order of accuracy difference scheme





τ−2
(
uhk+1(x)− 2uhk(x) + uhk−1(x)

)
+ 2

3A
x
hu

h
k(x)

+1
6A

x
h

(
uhk+1(x) + uhk−1(x)

)
+ 1

12τ
2 (Ax

h)
2 uhk+1(x)

= fhk (x), f
h
k (x) =

2
3f

h(tk, x) +
1
6

(
fh(tk+1, x)

)

+fh(tk−1, x)
)
− 1

12τ
2
(
−Afh(tk+1, x) + fhtt(tk+1, x)

)
,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ Ωh,

uh0(x) =
n∑

j=1
αj

{
uh[λj/τ ]

(x)

+τ−1
(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)
(λj − [λj/τ ]τ)

+3
2

(
f[λj/τ ] −Ax

hu
h
[λj/τ ]

(x)
)
(λj − [λj/τ ]τ)

2

+7
6

(
f

′

[λj/τ ]
− τ−1Ax

h

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
))

× (λj − [λj/τ ]τ)
3
}
+ ϕh(x), x ∈ Ωh,(

I + τ2 (Ax
h)

4
)
τ−1

(
uh1(x)− uh0(x)

)

=
n∑

j=1
βj

{
τ−1

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)

+
(
f[λj/τ ] −Ax

hu
h
[λj/τ ]

(x)
)
(λj − [λj/τ ]τ)

+ 1
2!

(
f ′[λj/τ ]

− τ−1Ax
h

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
))

× (λj − [λj/τ ]τ)
2 + 1

3!

(
f

′′

[λj/τ ]
−Ax

hf[λj/τ ]

+(Ax
h)

2 uh[λj/τ ]
(x)
)
(λj − [λj/τ ]τ)

3
}
+ ψh(x),

x ∈ Ωh, f
h
1,1 (x) =

1
2f

h (0, x) + τ
6f

h
t (0, x) .

(4)

Theorem 1. Let τ and |h| be sufficiently small
numbers. Then, the solution of difference scheme
(4) satisfies the following stability estimates:
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max
0≤k≤N

∥∥∥uhk
∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uhk
∥∥∥
W 1

2h

≤M1

[
max

1≤k≤N−1

∥∥∥fhk
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ϕh

∥∥∥
W 1

2h

+τ
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥fh1,1

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥τ−2
(
uhk+1 − 2uhk + uhk−1

)∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uhk
∥∥∥
W 2

2h

≤M1

[∥∥∥fh1
∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fhk − fhk−1

)∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W 1

2h

+
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥ϕh

∥∥∥
W 3

2h

+ τ
∥∥∥fh1,1

∥∥∥
W 1

2h

]

where M1 does not depend on τ, h, ϕh(x),
ψh(x), fh1,1 and fhk , 1 ≤ k < N.

This theorem is proved in [25] under the following
assumption

n∑

k=1

|αk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
3

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3
}

+

n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3
}

+
1

2

n∑

k=1

|αk|
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

12

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4

+
7

36

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
6
}
< 1.

(5)

In the third step replacing problem (3) by the
fourth order of accuracy difference scheme prob-
lem





τ−2
(
uhk+1(x)− 2uhk(x) + uhk−1(x)

)
+ 5

6A
x
hu

h
k(x)

+ 1
12A

x
h

(
uhk+1(x) + uhk−1(x)

)
− 1

72τ
2 (Ax

h)
2 uhk(x) +

τ2

144 (A
x
h)

2
(
uhk+1(x) + uhk−1(x)

)
= fhk (x), f

h
k (x) =

5
6f

h(tk, x)

+ 1
12

(
fh(tk+1, x) + fh(tk−1, x)

)
+ τ2

72

(
−Ax

hf
h (tk, x) + fhtt (tk, x)

)

− τ2

144

(
−Ax

h

(
fh (tk+1, x) + fh (tk−1, x)

)

+fhtt (tk+1, x) + fhtt (tk−1, x)
)
, x ∈ Ωh,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

uh0(x) =
(
I − iτ

2 (Ax
h)

1/2 + τ2

12 (A
x
h)

3
)−1

n∑
k=1

αk

{((
λk

τ − [λj/τ ]
)
− 7τ2

6 A
x
h

(
λk

τ − [λj/τ ]
)3)

×
(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)
+

(
1− 3τ2

2 A
x
h

(
λk

τ − [λj/τ ]
)2

+ τ4

24 (A
x
h)

2
(
λk

τ − [λj/τ ]
)4)

uh[λj/τ ]
+ 3τ2

2

(
λk

τ − [λj/τ ]
)2
f[λj/τ ]

+7τ3

6

(
λk

τ − [λj/τ ]
)3
f ′[λj/τ ]

+ τ4

24

(
λk

τ − [λj/τ ]
)4
f ′′[λj/τ ]

− τ4

24A
x
h

(
λk

τ − [λj/τ ]
)4
f[λj/τ ]

}
+ ϕh(x), x ∈ Ω̃h,

τ−1
(
uh1(x)− uh0(x)

)

=
(
I − τ2

12A
x
h

)(
I + iτ

2 (Ax
h)

1/2 + τ2

12 (A
x
h)

3
)−1

×
n∑

k=1

βk

{(
1
τ − τ

2A
x
h

(
λk

τ − [λj/τ ]
)2

+ τ3

24 (A
x
h)

2
(
λk

τ − [λj/τ ]
)4)(

u[λj/τ ] − u[λj/τ ]−1

)

+

(
−Ax

hτ
(
λk

τ − [λj/τ ]
)
+ τ3

6 (Ax
h)

2
(
λk

τ − [λj/τ ]
)3)

u[λj/τ ]

+τf[λj/τ ]

(
λk

τ − [λj/τ ]
)
+ τ2

2 f
′
[λj/τ ]

(
λk

τ − [λj/τ ]
)2

+ τ3

6 f
′′
[λj/τ ]

(
λk

τ − [λj/τ ]
)3

+ τ4

24f
′′′

[λj/τ ]

(
λk

τ − [λj/τ ]
)4

− τ3

6 A
x
hf[λj/τ ]

(
λk

τ − [λj/τ ]
)3

− τ4

24A
x
hf

′
[λj/τ ]

(
λk

τ − [λj/τ ]
)4}

+ ψh(x), x ∈ Ω̃h.

(6)

is obtained.

Theorem 2. Let τ and h be sufficiently small
numbers. Then, solution of difference scheme (6)
obeys the following stability estimates:

max
1≤k≤N

∥∥∥∥∥
uhk + uhk−1

2

∥∥∥∥∥
W 1

2h

+ max
1≤k≤N−1

∥∥∥∥∥
uhk+1 − uhk−1

2τ

∥∥∥∥∥
L2h

≤M1

[
max

1≤k≤N−1

∥∥∥fhk
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ϕh

∥∥∥
W 1

2h

+ τ
∥∥∥fh2,2

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥τ−2
(
uhk+1 − 2uhk + uhk−1

)∥∥∥
L2h

+ max
1≤k≤N−1

∥∥∥∥∥
uhk+1 − uhk−1

2τ

∥∥∥∥∥
W 1

2h

+ max
1≤k≤N

∥∥∥∥∥
uhk + uhk−1

2

∥∥∥∥∥
W 2

2h

≤M1

[∥∥∥fh1
∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fhk − fhk−1

)∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W 1

2h

+
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥fh2,2

∥∥∥
W 1

2h

]
.
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Here M1 does not depend on τ, h, ϕh(x), ψh(x),
fh2,2 and fhk , 1 ≤ k < N.

This theorem is proved in [25] under the following
assumption

{
n∑

k=1

|αk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
3

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3

+
1

24

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4
}

+
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3

+
1

24

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4
}

+
n∑

k=1

|αk|
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4

+
1

9

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
6

+
1

576

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
8
}
< 1. (7)

3. Numerical Analysis

In the present section some examples are pre-
sented to verify theoretical statements. Finite
difference method is used and symbolic computa-
tions are carried out by Matlab. Three problems
for one dimensional hyperbolic equations with the
Neumann boundary conditions and mixed type
boundary conditions are considered. Results of
numerical experiments are presented in tables and
are analyzed.
The grid set [0, 1]τ× [0, π]h of a family of grid
points depending on the small parameters τ and
h with

[0, 1]τ × [0, π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M,Mh = π}

is considered.

Example 1. Let us consider problem





∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ux(t, 0) = ux(t, π) = 0

(8)

for one-dimensional hyperbolic equation with con-
stant coefficients.

The exact solution of this problem is

u (t, x) = e−t sin2 x.

In approximately solving problem (8), third and
fourth order of accuracy difference schemes (4)
and (6) are used respectively.

In the first step, applying simple formulas

u(xn+1)−2u(xn)+u(xn−1)
h2 − u

′′

(xn) = O
(
h2
)
, (9)

35u(0)−104u(0+τ)+114u(0+2τ)−56u(0+3τ)+11u(0+4τ)
12τ2

− u
′′

(0) = O
(
τ3
)
, (10)

−5u(0)+18u(h)−24u(2h)+14u(3h)−3u(4h)
2τ3

− u
′′′

(0) = O
(
τ4
)
, (11)

and using difference scheme (4), the second or-
der of accuracy in t third order of accuracy in x
difference scheme
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uk+1
n −2uk

n+uk−1
n

τ2
− 2

3

(
uk
n+1

−2uk
n+uk

n−1

h2

)

−1
6

(
uk+1

n+1
−2uk+1

n +uk+1

n−1

h2 +
uk−1

n+1
−2uk−1

n +uk−1

n−1

h2

)

+ τ2

12

(
uk+1

n+2
−4uk+1

n+1
+6uk+1

n −4uk+1

n−1
+uk+1

n−2

h4

)
= ϕk

n,

ϕk
n =

{
2
3e

−tk + 1
6(e

−tk+1 + e−tk−1)

− τ2

12e
−tk+1

}
sin2 xn − 2

{
2
3e

−tk

+1
6(e

−tk+1 + e−tk−1) + τ2

3 e
−tk+1

}
cos 2xn,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,
xn = nh, 2 ≤ n ≤M − 2,Mh = π,

u0n − 1
8u

(N/2)
n − 1

8u
N
n

= (1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 xn, 0 ≤ n ≤M,
(u1n − u0n)

− τ2

12

(
(u1

n+1
−u0

n+1)−2(u1
n−u0

n)+(u1
n−1

−u0
n−1)

h2

)

+ τ4

144

[
(u1

n+2
−u0

n+2
)−4(u1

n+1
−u0

n+1)+6(u1
n−u0

n)
h4

+
−4(u1

n−1
−u0

n−1)+(u1
n−2

−u0
n−2

)

h4

]
= ϕN

n ,

ϕN
n = (−τ + τ2

2 − τ3

6 + τ4

6 ) sin
2 x

+( τ
3

6 + τ4

12 + 35
36τ

5 − 5
18τ

6 − 5
54τ

7) cos 2x

+( 1
10e

−1 + 1
10e

− 1

2 ), 2 ≤ n ≤M − 2

(12)

for the approximate solution of problem (8) is ob-
tained. By rearranging like terms of the problem,
the following linear system

AUn+2+BUn+1+CUn+DUn−1+EUn−2 = Rϕn,
(13)

2 ≤ n ≤M − 2

with (N + 1)× (N + 1) matrix coefficients

A =




0 0 0 0 . . . 0 0 0
0 0 x 0 ... 0 0 0
0 0 0 x . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . x 0 0
0 0 0 0 . . . 0 x 0
−r r 0 0 . . . 0 0 0




,

B =




0 0 0 . . . 0 0 0
y w v . . . 0 0 0

0 y w
. . . 0 0 0

...
...

. . .
. . .

...
...

...

0 0 0
. . . w v 0

0 0 0 . . . y w v
s −s 0 . . . 0 0 0




,

C =




1 0 0 . . . 0 −1
8 0 . . . 0 −1

8
l n m 0 . . . 0 0 0
0 l n m . . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 . . .
. . . n m 0

0 0 0 . . . . . . l n m
−t t 0 . . . . . . 0 0 0




,

D = B, E = A,

R =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




,

where the entries are

x =
τ2

12h4
, v = −

1

6h2
−

τ2

3h4
, w = −

2

3h2
,

y = −
1

6h2
,m =

1

τ2
+

1

3h2
+

τ2

2h4
,

n = −
2

τ2
+

4

3h2
, l =

1

τ2
+

1

3h2
,

r =
τ4

144h4
, s =

τ2

12h2
+

τ4

36h4

t = 1 +
τ2

6h2
+

τ4

24h4
,

and (N + 1)× 1 column matrices

ϕk
n =




ϕ0
n

ϕ1
n
...
ϕN
n




(N+1)×1

, 0 ≤ k ≤ N,

with

ϕ0
n = (1−

1

10
e−1 −

1

10
e−

1

2 ) sin2 (xn) , 0 ≤ n ≤M,

ϕN
n = {−τ +

τ2

2
−
τ3

6
+
τ4

6
} sin2 (xn)

+

{
τ3

6
+
τ4

12
+

35

36
τ5 }

−
5

18
τ6 −

5

54
τ7
}
cos 2xn

+(
1

10
e−1 +

1

10
e−

1

2 ) sin2 (xn)
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ϕk
n =

{
2

3
e−tk +

1

6
(e−tk+1 + e−tk−1)

−
τ2

12
e−tk+1

}
sin2 xn,

+2

{
2

3
e−tk +

1

6
(e−tk+1 + e−tk−1) +

τ2

3
e−tk+1

}
cos 2xn,

1 ≤ k ≤ N − 1,

Uk
s =




u0s
u1s
...
uNs




(N+1)×1

,

0 ≤ k ≤ N, s = n− 2, n− 1, n, n+ 1, n+ 2

is obtained.

The modified Gauss elimination method is used
and the following formula

Un = αn+1Un+1 + βn+1Un+2 + γn+1,

n =M − 2, ...2, 1, 0

is applied where αj , βj (j = 1, . . . ,M) are (N +
1)×(N+1) square matrices and γj are (N+1)×1
column matrices for the solution of difference
scheme (12). From that one can obtain formu-
las αn+1, βn+1, γn+1





βn+1 = −(C +Dαn + Eβn−1 + Eαn−1αn)
−1A,

αn+1 = −(C +Dαn + Eβn−1 + Eαn−1αn)
−1

×(B +Dβn + Eαn−1βn),
γn+1 = +(C +Dαn + Eβn−1 + Eαn−1αn)

−1

×(Rϕn −Dγn − Eαn−1γn − Eγn−1),
(14)

where n = 2 :M − 2 and

γ2 =




0
0
...
0


 ,

α2 =




4/5 0 . . . 0
0 4/5 . . . 0
...

...
. . .

...
0 0 . . . 4/5


 ,

β2 =




−1/5 0 . . . 0
0 −1/5 . . . 0
...

...
. . .

...
0 0 . . . −1/5


 .

In a similar manner the following formulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

× {R+Q(4I − αM−1)
−1γM−1} (15)

UM−1 = −(P +Q)−1R (16)

UM−2 = (4I − αM−2)
−1

× {(5I + βM−2)UM−1 + γM−2}, (17)

where

P =
1

6h
(11I + 9βM−1 − 2αM−2βM−1),

Q =
1

6h
(−18I + 9αM−1

−2(αM−2αM−1 + βM−2))

R =
1

6h
(9γM−1 − 2αM−2γM−1 − 2γM−2)

are obtained. The system

U0 = α1U1 + β1U2 + γ1 (18)

where

α1 =
−1

h
T−1, β1 = 0, γ1 =

h

2
T−1ϕ0

n

is used for the boundary condition ux(t, 0) = 0 of
third order of accuracy difference scheme. Here

T =




λ1 λ2 λ3 λ4 λ5 0 . . . 0
a b a 0 . . . . . . . . . 0

0 a b a 0 . . . . . .
...

... 0 a b a 0 . . .
...

... . . .
. . .

. . .
. . .

. . .
. . .

...
... . . . . . . 0 a b a 0
0 . . . . . . . . . 0 a b a
0 . . . 0 λ5 λ4 λ3 λ2 λ1




(19)

with



66 O. Yildirim / IJOCTA, Vol.9, No.1, pp.60-72 (2019)

λ1 =

(
−
1

h
−

35h

24τ2
+

5h2

12τ3

)
,

λ2 =

(
104h

24τ2
−

18h2

12τ3

)
,

λ3 =

(
−
114h

24τ2
+

24h2

12τ3

)
,

λ4 =

(
56h

24τ2
−

14h2

12τ3

)
,

λ5 =

(
−

11h

24τ2
+

3h2

12τ3

)
,

a = −
h

2τ2
, b =

(
−
1

h
+

h

τ2

)
.

In the next step difference scheme (6) and the for-
mulas

−3u (1) + 4u (1− h)− u (1− 2h)

2h
−u

′

(1) = O
(
h2
)
,

1

4τ3
(−17u (0) + 71u (0 + τ)− 118u (0 + 2τ)

+98u (0 + 3τ)− 41u (0 + 4τ) + 7u(0 + 5τ))

−u
′′′

(0) = O
(
τ3
)
,

u (0)− 2u (0 + τ) + u (0 + 2τ)

τ2
− u

′′

(0) = O
(
τ3
)

are used to obtain second order of accuracy in
t and fourth order of accuracy in x difference
scheme





uk+1
n −2uk

n+uk−1
n

τ2
− 5

6

(
uk
n+1

−2uk
n+uk

n−1

h2

)

− 1
12

(
uk+1

n+1
−2uk+1

n +uk+1

n−1

h2 +
uk−1

n+1
−2uk−1

n +uk−1

n−1

h2

)

− τ2

72

(
uk
n+2

−4uk
n+1

+6uk
n−4uk

n−1
+uk

n−2

h4

)

+ τ2

144

(
uk+1

n+2
−4uk+1

n+1
+6uk+1

n −4uk+1

n−1
+uk+1

n−2

h4

+
uk−1

n+2
−4uk−1

n+1
+6uk−1

n −4uk−1

n−1
+uk−1

n−2

h4

)
= ϕk

n,

ϕk
n =

{
(56 + τ2

72 )e
−tk

+( 1
12 − τ2

144)(e
−tk+1 + e−tk−1)

}
sin2(xn)

+
{
(−5

3 + τ2

9 )e
−tk

−(16 + τ2

18 )(e
−tk+1 + e−tk−1)

}
cos 2xn

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,
xn = nh, 1 ≤ n ≤M − 1,Mh = π,

ϕ0
n = (1− 1

10e
−1 − 1

10e
− 1

2 ) sin2 (xn) ,
0 ≤ n ≤M,

(
u1n − u0n

)

− τ2

12

(
(u1

n+1
−u0

n+1)−2(u1
n−u0

n)+(u1
n−1

−u0
n−1)

h2

)

+ τ4

144h4

[
(u1n+2 − u0n+2)− 4

(
u1n+1 − u0n+1

)

+6
(
u1n − u0n

)
− 4

(
u1n−1 − u0n−1

)

+(u1n−2 − u0n−2)
]
= ϕN

n ,

ϕN
n =

(
−τ + τ2

2 − τ3

6 + τ4

24 − τ5

24

)
sin2 (xn)

+
(
τ3

6 − τ4

12 − 7
36τ

5 − 15
144τ

6

− 25
432τ

7 − 5
432τ

8
)
cos 2xn

+τ( 1
10e

−1 + 1
10e

− 1

2 ) sin2 (xn) ,
2 ≤ n ≤M − 2, 0 ≤ k ≤ N,

u01 − u00 =
h
2

(
45u0

0
−154u1

0
+214u2

0
−156u3

0
+61u4

0
−10u5

0

12τ2

)

− h2

64τ3

(
17u00 − 71u10 + 118u20

−98u30 + 41u40 − 7u50
)

uN1 − uN0 = h
212τ2

(
45uN0 − 154uN−1

0 + 214uN−2
0

−156uN−3
0 + 61uN−4

0 − 10uN−5
0

)

− h2

64τ3

(
17uN0 − 71uN−1

0 + 118uN−2
0

−98N−3
0 + 41uN−4

0 − 7uN−5
0

)
, uk1 − uk0

= h
2

(
uk+1

0
−2uk

0
+uk−1

0

τ2
− ϕk

0

)
, 1 ≤ k ≤ N − 1

(20)

for the approximate solution of problem (8). By
rearranging coefficients in the problem we have
again the (N + 1) × (N + 1) linear system (13)
with matrix coefficients

A =




0 0 0 . . . 0 0 0
x y x . . . 0 0 0

0 x y
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . y x 0

0 0 0 . . . x y x
−r r 0 . . . 0 0 0




,
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B =




0 0 0 . . . 0 0 0
v w v . . . 0 0 0

0 v w
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . w v 0

0 0 0 . . . v w v
s −s 0 . . . 0 0 0




,

C =




1 0 0 . . . 0 −1
8 0 . . . 0 −1

8
m n m 0 . . . 0 0 0
0 m n m . . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 . . .
. . . n m 0

0 0 0 . . . . . . m n m
−t t 0 . . . . . . 0 0 0




,

D = B, E = A,

R =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




,

and with entries

x =
τ2

144h4
, y = −

τ2

72h4
, v = −

1

12h2
−

τ2

36h4
,

w = −
5

6h2
+

τ2

18h4
,

m =
1

τ2
+

1

6h2
+

τ2

24h4
,

n = −
2

τ2
+

5

3h2
−

τ2

12h4
,

r =
τ4

144h4
, s =

τ4

36h4
+

τ2

12h2
,

t = 1 +
τ2

6h2
+

τ4

24h4
.

Here Uk
s and ϕk

n are defined as

Uk
s =




u0s
u1s
...
uNs




(N+1)×1

,

0 ≤ k ≤ N, s = n− 2, n− 1, n, n+ 1, n+ 2.

ϕk
n =




ϕ0
n

ϕ1
n

.
ϕN
n




(N+1)×1

, 0 ≤ k ≤ N,

ϕ0
n = (1−

1

10
e−1 −

1

10
e−

1

2 ) sin2 (xn) , 0 ≤ n ≤M,

ϕN
n =

(
−τ +

τ2

2
−
τ3

6
+
τ4

24
+
τ5

24

)
sin2 (xn)

ϕk
n =

{
(
5

6
+
τ2

72
)e−tk

+(
1

12
−

τ2

144
)(e−tk+1 + e−tk−1)

}
sin2(xn)

+

{
(−

5

3
+
τ2

9
)e−tk

−(
1

6
+
τ2

18
)(e−tk+1 + e−tk−1)

}
cos 2xn

+

{
τ3

6
−
τ4

12
−

7

36
τ5 −

15

144
τ6

−
25

432
τ7 −

5

432
τ8
}
cos 2xn

+(
1

10
e−1 +

1

10
e−

1

2 ) sin2 (xn) .

In exactly the same manner as Example 1 the
linear system for the fourth order of accuracy dif-
ference scheme is solved with the following new
formulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

×
[
R+Q(4I − αM−1)

−1γM−1

]
, (21)

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1

× [(4I − αM−2)γM−1 − γM−2] (22)

UM−2 = (4I − αM−2)
−1 (23)

×{(5I + βM−2)UM−1 + γM−2}

where

P =
1

12h
[25I + 36βM−1 − 16αM−2βM−1

+3(αM−3αM−2βM−1 + βM−3βM−1)] ,
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Q =
1

12h
[−48I + 36αM−1

−16(αM−2αM−1 + βM−1)

+3(αM−3αM−2αM−1 + αM−3βM−2 + αM−1βM−3)] ,

R =
1

12h
[36γM−1 − 16(αM−2γM−1 + γM−2)

+3 (αM−3αM−2γM−1

+αM−3γM−2 + βM−3γM−1 + γM−3)] .

For the boundary condition ux(t, 0) = 0, the sys-
tem (18) with the matrix

T =




λ1 λ2 λ3 λ4 λ5 λ6 0 . . . 0
a b a 0 . . . . . . . . . . . . 0
0 a b a 0 . . . . . . . . . 0

0 0 a b a 0 . . . . . .
...

... . . .
. . .

. . .
. . .

. . . . . . . . .
...

0 . . . . . . . . . . . . a b a 0
0 . . . 0 λ6 λ5 λ4 λ3 λ2 λ1




(24)

and the new entries

λ1 =

(
−
1

h
−

45h

24τ2
+

17h2

24τ3

)
,

λ2 =

(
154h

24τ2
−

71h2

24τ3

)
,

λ3 =

(
−
214h

24τ2
+

118h2

24τ3

)
,

λ4 =

(
156h

24τ2
−

98h2

12τ3

)
,

λ5 =

(
−

61h

24τ2
+

41h2

24τ3

)
, λ6 = (

10h

24τ2
−

7h2

24τ3
),

a = −
h

2τ2
, b =

(
−
1

h
+

h

τ2

)

is considered.

Example 2. Consider





∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
u(t, 0) = ux(t, π) = 0, 0 ≤ t ≤ 1

(25)

for one dimensional hyperbolic equation.

Note that this problem is similar to Example 1,
with different mixed boundary conditions. Again
exact solution of the problem is

u (t, x) = e−t sin2 x.

In finding the approximate solution of problem
(25), the method of first example is applied.
Third and fourth orders of accuracy difference
schemes (4), (6) are used. Approximating the
boundary condition ux(t, π) = 0 the following for-
mulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3)]−1

×{R+Q(4− αM−1)
−1γM−1}

UM−1 = −(P +Q)−1R

UM−2 = (4I − αM−2)
−1 {(5I+βM−2)UM−1+γM−2}

where

P =
1

6h
(11I + 9βM−1 − 2αM−2βM−1)UM ,

Q =
1

6h
[−18I + 9αM−1

−2 (αM−2αM−1 + βM−2)]UM−1

R =
1

6h
(9γM−1 − 2αM−2γM−1 − 2γM−2),

for the third order of accuracy difference scheme
and

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

×{R+Q(4I − αM−1)
−1γM−1},

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1
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×[(4I − αM−2)γM−1 − γM−2]

UM−2 = (4I − αM−2)
−1 {(5I+βM−2)UM−1+γM−2},

where

P =
1

12h
[25I + 36βM−1 − 16αM−2βM−1

+3(αM−3αM−2βM−1 + βM−3βM−1)] ,

Q =
1

12h
[−48I + 36αM−1

−16(αM−2αM−1 + βM−1) + 3 (αM−3αM−2αM−1

+αM−3βM−2 + αM−1βM−3)] ,

R =
1

12h
[36γM−1 − 16(αM−2γM−1 + γM−2)

+3((αM−3αM−2γM−1

+αM−3γM−2 + βM−3γM−1 + γM−3)]

for the fourth order of accuracy difference scheme
are used. For the boundary condition u(t, 0) = 0
the following initial matrices

α1 =




0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0




(N+1)×(N+1)

,

β1 =




0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0




(N+1)×(N+1)

γ1 = γ2 =




0
0
...
0




(N+1)×1

,

α2 =




4/5 0 . . . 0
0 4/5 . . . 0
...

...
. . .

...
0 0 . . . 4/5




(N+1)×(N+1)

,

β2 =




−1/5 0 . . . 0
0 −1/5 . . . 0
...

...
. . .

...
0 0 . . . −1/5




(N+1)×(N+1)

are used in the formulae which were presented in
(14).

Example 3. Consider the NBVP with mixed con-
dition



∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ux(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1

(26)

for one dimensional hyperbolic equation.

Note that this problem is similar to problem
of Example1 with different boundary conditions.
Exact solution of this problem is

u (t, x) = e−t sin2 x.

The approximate solution of problem (26) is ob-
tained by a similar procedure as in the first exam-
ple. Third and fourth order of accuracy difference
schemes (4), (6) are used and the system

U0 = α1U1 + β1U2 + γ1

with

α1 =
−1

h
T−1, β1 = 0, γ1 =

h

2
T−1ϕ0

n

is considered. Matrices T, λi, i = 1, ..., 6; a, b are
defined by (19) and (24) and are considered for
the boundary condition ux(t, 0) = 0. Approximat-
ing boundary condition u(t, π) = 0, the following
formulas





UM−2 = αM−1UM−1 + γM−1,
UM−3 = αM−2UM−2 + βM−2UM−1 + γM−2,
UM−3 = 4UM−2 − 5UM−1,

and

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1

×[(4I − αM−2)γM−1 − γM−2]

are used.

The errors for the approximations are computed
by the formula

EN
M = max

1≤k≤N−1

(
M−1∑

n=1

∣∣∣u (tk, xn)− Uk
n

∣∣∣
2
h

) 1

2

.
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Table 1. Error analysis for the approximate solutions of (8).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,000211 0,00006181 0,00002605

Fourth order of accuracy difference scheme 0,00009415 0,00001866 0,000005752

Table 2. CPU times for the approximate solutions of (8).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 2.3078 13.5915 68.6596

Fourth order of accuracy difference scheme 2.3473 13.5283 67.7495

Table 3. Error analysis for the approximate solutions of (25).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,0004817 0,0002047 0,0001138

Fourth order of accuracy difference scheme 0,00009781 0,00001979 0,00001954

Table 4. CPU times for the approximate solutions of (25).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 2.3031 13.5165 68.2402

Fourth order of accuracy difference scheme 1.7361 13.5241 68.8427

Table 5. Error analysis for the approximate solutions of (26).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,0037 0,0011 0,0004602

Fourth order of accuracy difference scheme 0,00009415 0,00001866 0,000005752

Table 6. CPU times for the approximate solutions of (26).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 1.7006 13.4295 68.1728

Fourth order of accuracy difference scheme 1.7401 13.4628 68.0591

Here u (tk, xn) represents exact solution and Uk
n

represents numerical solution at (tk, xn). We de-
note the third order of accuracy difference scheme
(4) as TO and the fourth order of accuracy dif-
ference scheme (6) as FO. Errors and the related
CPU times are represented in Table 1,3,5 and Ta-
ble 2,4,6 respectively, for different M and N val-
ues. The implementations are carried out by Mat-
lab 7.9.0 software package and obtained by a PC
System 64bit, Intel R Core TM i5 CPU, 3.20 GHz,
3.60Hz, 4000Mb of RAM.

The following conclusions can be noted from the
tables above for the comparison of the numerical
results presented in the tables.

• From Table 1 and Table 2, it can be no-
ticed that approximately the same accu-
racy is achieved by TO with data error
,N=40, M=1600 and by FO with data er-
ror N=30, M=900 in different CPU times;
68.6596s and 13.5283s, respectively. This
means the use of the difference scheme FO
accelerates the computation with a ratio
of more than 68.66/13.5≈5.08 times, that
is, FO is considerably faster than TO.

• In Table 3 and Table 4, almost the
same accuracy is achieved by TO with
error ,N=40, M=1600 and by FO with
error N=20, M=400 in different CPU
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times; 68.6596s and 13.5283s, respec-
tively, which means that the use of
the difference scheme FO accelerates the
computation with a ratio of more than
68.24/1.73≈39.44 times, which shows that
FO is faster than TO.

• In Table 5 and Table 6, it is noted that ap-
proximately similar accuracy is achieved
by TO with data error ,N=40, M=1600
and by FO with data error N=20, M=400
in different CPU times; 68.1728s and
1.7401s, respectively. This means that the
use of the difference scheme FO acceler-
ates the computation with a ratio of more
than 68.17/1.74≈39.17 times, that is, FO
is approximately faster than TO.

• It can be concluded from the tables that
numerical results become approximately
the same for larger N and M values
for each difference scheme in the reliable
range of the CPU times and this shows
that the approximate solutions of problem
(8), (25), (26) are accurate.

• In conclusion, the fourth order of accu-
racy difference scheme is more accurate
than the third order of accuracy difference
scheme when considering the CPU times
and the error levels.
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