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In this paper, third and fourth order of accuracy stable difference schemes
for approximately solving multipoint nonlocal boundary value problems for
hyperbolic equations with the Neumann boundary conditions are considered.
Stability estimates for the solutions of these difference schemes are presented.
Finite difference method is used to obtain numerical solutions.
results of errors and CPU times are presented and are analyzed.

Numerical

1. Introduction

Many mathematical models of natural and ap-
plied sciences phenomena such as fluid mechan-
ics, hydrodynamics, electromagnetics and various
areas of physics are based on hyperbolic partial
differential equations. Modeling some of these
phenomena, imposing nonlocal conditions may be
more accurate than classical conditions. Nonlo-
cal boundary condition is a relation between the
values of unknown function on the boundary and
inside of the given domain. Over the last decades,
boundary value problems with nonlocal boundary
conditions have become a rapidly growing area of
research. Such types of boundary conditions are
encountered in applications including thermoelas-
ticity [1], climate control systems [2] and financial
mathematics [3]. Boundary value problems for
parabolic, elliptic and equations of mixed types
are actively studied by many scientists for decades
(see [4]- [27]). Stability has been an important re-
search area in the development of numerical meth-
ods. Particulary, in this work stability analysis
is performed by suitable unconditionally stable
difference schemes with an unbounded operator.

Some results of this paper, without proof, are pre-
sented in [27].

In the present paper, third and fourth order of
accuracy stable difference schemes for approxi-
mately solving the multipoint nonlocal boundary
value problem (NBVP)

2u(t,x Ui
5 = X (an(e)ua, e, = f(1,2),
= (T1,...,xm) €Q, 0<t <1,
u(0,z) = Y aju(Nj,z) + o),z € Q, (1)
j=1

ur(0, ) = Zn:lﬁjut(/\j,x) +(x), 2 €Q
J=

for the multidimensional hyperbolic equation with
the Neumann boundary condition

ou(t, )
on

or mixed conditions

|x€S:O7$€ S

Ou(t, x)

u(t, z)|zes, =0, W’:LESQ =0,
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r€e S, S5=5US5
are considered.
Here

Q={r=(x1,- op):0<z; <1,1<j<m}

is the unit open cube in the m-dimensional
Euclidean space R™, with boundary S, Q =
QU S and ar(x) (ap(xr) > a > 0,z € Q),
p(a), ¥(x) (x€Q), f(t.z) (t€(0,1), € Q) are

given smooth functions.

2. Stability Estimates for High Order
Difference Schemes

In the present section the third and the fourth
order absolutely stable difference schemes and
stability estimates for the solutions of these dif-
ference schemes are presented. These difference
schemes are obtained in [I§]. The discretization
of problem ([I]) with Neumann condition or mixed
conditions is carried out in two steps. In the first
step, the grid sets are defined as

Qp ={x =z, = (h1r1,...

7h/mrm)a
r = (rl,. ..
hiNj=1,5=1,--

'7m}7

QhZQhﬂQ,ShZQhﬂS,

and difference operator Ay is given by the formula

D (mt) @

r=1

x h __
Ahum_

acting in the space of grid functions u”(x) for
all z € Sp,. Note that Aj is a self-adjoint posi-
tive definite operator in Lg(Qh) with the domain

D(A%) = { (z) € W2, (Qh> “ — () on sh}
The spaces Lqj, = Lg(Qh), Wy, = W, (Qh> and
w3 =W3 ((Zh) of the grid functions

gah(:c) ={p(hiri, ..., hpmrm)}

are defined on ﬁh, equipped with norms

1/2
2
h h
= hi...h :
HSO ‘L2(Qh) Z ‘90 (x)’ ! "
ey,
HSO Wi, 7L,

1/2
m 2
+ Z (@h)i ) hi...hm )
xETTZl ZTr,Jr
and
h _ | n
[l =1l
" 2 1/2
2 Z( ") | b
ﬁ r=1
) 1/2
3 (wh) L hyhe |
zeﬁh —1 TrZr,Jr
respectively.

Using difference operator A7 the following NBVP

2’Uh X

o Ee) L Azoh(t,x) = fh(t, @),
0<t<l, x €y,
v"(0,7) = Z vl (N, z) + M (x),z € Qp,

") z Biuf (N, @) + (), 2 €
(3)

\

is obtained.

In the next step problem (3] is replaced by the
third order of accuracy difference scheme

T 2(“k+1($) —2ul (35)"‘% 1(35)) QAI (:r)

+5 Az (uk+1(x)+“‘k 1(55)) % (A )QUZH(%)

= ( ): fi(x) = 2f"(tw) + 5 (/M (trer, 7))
+fh(tk 171‘)) -7 (- Afh(tk+1a ) + fi(ther, )
z‘kfk7'1<k<N—1 Nt =1,2 € Qy,

ule) = Z o {uly (@)

47l (u& jo(@) =l (@) Oy = D7)
+§ Efw = Afuly (@) O = D/

5 (Fym =748 (s, @) = s, g2 00))
x (A = Wi/l )3} + (@) z € O,

472 (A5)") 77 (uh (@) - (@)

= 325577 (thy ) — s @)
(i1 = Az, 1 (@) O = Dy/717)

3 (=7 Ah( ufy (@) =y g 1))
(= W/ 710 + 3 (F = ARy
AR (e ) =y /Tm}wh (@),
v el (@) = 317 0.0) + 41 {0,2).

-~ Nl

/N

4o

X

(4)

Theorem 1. Let 7 and |h| be sufficiently small
numbers. Then, the solution of difference scheme
{4) satisfies the following stability estimates:
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mae ot
0<k<N

+ max

|, T (i) - ) oy (0) + ARG
Lon  0<k<N Wan TIQAh(“QH(I)‘F“Ll( )) 727 ? (AR)” uj(2) + 1z (A7)

+
(u
+

=~

1( )+uk 1(-”)) fk( ), fk( Z th(tk x)

(fh(ik+1 )+ Mt @) + B (AL (b, 2) + £l (B, @)
—1a & (M (thrr, @) + f1 (tg—1, )

SRR E =

Lan Lan Wi, e ) e

ul() = (T~ 5 (a2 + 7 (ap®)

o { (3 - urrl) - 24 (- o))
(ul ) =l @) + (1= 3527 (3 = D)’
g (2 = 0o/r]) ) g+ 58 (3 = ) i

+

N’g‘ﬁw\u

< M max H h‘
< 1[19@_1 7t

M=

sl il
T|¥ w2, T f1,1 Lo

>

X

-2 < h h h
max T u —2uy +uy_ ) ‘
1<k<N—1 H k+1 Bt TR L,

12 (2~ 0/m) o+ 5 (B = Do) A
_LAJi(f‘—[)\ /7’])4 /\/T]} Lp( )J‘EQh,
g o], < 12 D
0<k<N W2h Lop _ <17 ﬁAT (I+ ir (A’I‘)l/2 72 (ATL,)3>71
—1(th _ h h XZﬁk{( ~ 5 (¥ [A/TD
+2§2n§a1§—1 HT (fk a fk_l)’ Lan + Hw ngh +5 (40

f*[/\'/f])4) ("[A,/T]* U /7] )
+(f (i) <% Aif( )
T R B e
Wi e Wan 5 f{’ﬁ/ﬂ@ bur) 'ﬁf[’;/r]( [A/ﬂy
3

—*Af A E =N/
where My does not depend on T, h, ©"(x), i " /*]/ (A [ /]) ; )
¢h(x)’ f{ll and f,?, 1<k<N. — 140 i m (TK*P\J‘/T]) }+w‘(m),zeﬂ,,,4

(6)

This theorem is proved in [25] under the following is obtained.

.
assumption Theorem 2. Let 7 and h be sufficiently small

numbers. Then, solution of difference scheme (@)

A\ 3 A A 2 obeys the following stability estimates:
1 S|ZE | 2R
o[- 32 -4
max UZ+UZ—1 4 max “Z+1_“Z—1
7 A Ak 3 1<k<N 2 1<k<N-1 27
A :
T T
<M J2t],,, + 1]
A 1A Au 2 = [1<%1<a§7<_1 Ji L2h+ v Lap
k k k
BBk g, ol
T )
¥ Wi, 2,2 Lon
3
-] } o [ -2 )
h h
ik U1 — Y1
= Z\ak\kar |2 - 2] N (s
k 1 W21h
h h
U, +u
7 )\k M7 )\k Akl + max |[—& k=L < M Hf1h
— — <1. 1<k<N 2 )
12 T 36 T w2,
(5) (s s
+ [ (- ),

In the third step replacing problem (B]) by the \ \ ,
fourth order of accuracy difference scheme prob- + HI/J H T H‘P H , T7 Hf 2,2H ) ] :
lem W2h W2h WQh
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Here My does not depend on 7, h, ©"(x), ¥"(z),
féfQ and f,?,l <k <N.

This theorem is proved in [25] under the following
assumption

A 31\ YRlk
(S oo
2171 T
b MTIEE 1A el
I P S | R AU
6|7 T 24 | T T
A A 1A Yalk
+Z!ﬁk\{1+ =k [’“} +5 Tk_|:7’k:|
1A MTE 1A el
P E I VR | A EA O KV
6|7 T 24 | T T
e 12
+Zlak|2m|{1+ [T]
k=1
D[] L e AT
210 71 T 91| 7 T
1

-y

8
} < 1. (7)

576

3. Numerical Analysis

In the present section some examples are pre-
sented to verify theoretical statements. Finite
difference method is used and symbolic computa-
tions are carried out by Matlab. Three problems
for one dimensional hyperbolic equations with the
Neumann boundary conditions and mixed type
boundary conditions are considered. Results of
numerical experiments are presented in tables and
are analyzed.

The grid set [0,1]x [0, 7] of a family of grid
points depending on the small parameters 7 and
h with

[0,1] x

[O,W]h: {(tk,xn):tk :]{ZT,OS k SN,

Nt =1,2, =nh, 0<n<M Mh=mr}

is considered.

Example 1. Let us consider problem

Q?u(tx)  Pultw) ¢
ot? o2 €
O0<t<l,0<x<m,

2

(sin” z — 2 cos 2x),

0.2 = (1, ) + yu(h, )
+(1 - Le 1—1—106 2)sm2x 0<z<m,
ut(()?x) = 10“1?(1 l’)

10“1‘/(% x)
+(—1+ f5e7! + e 2)81n2x
[ uz(t,0) =ug(t,m) =0

for one-dimensional hyperbolic equation with con-
stant coefficients.

The exact solution of this problem is

u(t,z) = e tsin’ .

In approximately solving problem (&), third and
fourth order of accuracy difference schemes (H)
and (@) are used respectively.

In the first step, applying simple formulas

u(xn+1)—2u,5§n)+u(rnf1) _ u// (IL’n) —-0 (h2) 7 (9)

35u(0)—104u(0+7)+114u(0+27)—56u(0+37)+11u(0+47)

1272

(10)

—5u(0)+18u(h)—24u(2h)+14u(3h)—3u(4h)
273

—u"(0)=0(r"), (11)

and using difference scheme (), the second or-
der of accuracy in t third order of accuracy in x
difference scheme
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R T 2 uf o —2uffuk
T2 3 h2
k k k k— ko1’ ke
_1 uni%_Qu"ﬁ»l—‘runtll + un+%_2u" 1+un—%
6 h2 h2
k41 k1 k41, k41, K+l
_|_ﬁ Up o —dun +6un " —du, T, Ty ) g
12 h4 = ©n»
k_ [2,—tp 4 1(o—tpt1 —tk-1
Pn = {36 + 6(6 e )

f%e_tkﬂ } sin?z,, — 2 {%e‘tk
+e(ethrt 4 e7t1) + %e‘tkﬂ } cos 22,
th=kr, 1<k<N-—1N7=1,
Tp=nh,2<n<M-2, Mh=m,

N/2
Ug — %usL /2 _ lunN
=(1-Lel—Le2)sinz,,0<n<M
= 0 10 mE ==
1
Up — un)
72 (g ) 2w —un )+ (g~ )
12 h?
_’_i (g o= 9)—4(uy —uf 1 ) +6(up, —uf) )
144 h4
+*4(U}L_1*u%—l)*(u}b—z*“g—z) _ N
h4 - L)On7
N _ (et 7 1ty
n =T s — )sine
T T
+HE+ 5+ %7—1 — 157 — 5T") cos2x
+(%e—1 + %6_5), 2<n<M-2

for the approximate solution of problem (§]) is ob-
tained. By rearranging like terms of the problem,
the following linear system

AUpni2+ BUpni1+CUp+ DUp_1+ EU,—2 = Ry,
(13)

2<n<M-2

with (N + 1) x (N + 1) matrix coefficients

0 0 0 O 0 0 0
0 0 2 O 0 0 0
0 0 0 =z 0 0 0
A= i AR
0 0 0 O z 0 0
0 0 0 O 0 =z O
| —r r 00 0 0 0]
0 0 O 0 0 07
Yy ow v 0 0 O
0 vy w 0 0 O
B = : )
0 0 O w v 0
0 0 O y w v
s —s 0 0 0 0

1 0 0 0 ¢ o0... 0 &
Il n m 0 0 0 0
0O [ n m 0 0 O
C:
0O 0 O n m 0
0O 0 O l nom
L —t ¢t 0 0 0 0
D=B, E=A,
(1 0 0 0 0]
010 0 0
0 0 1 0 0
R=1| . . R
0 0 O 1 0
000 01
where the entries are
72 1 72 2
r=——1079T=-—-— — = —_——
1214 6h2  3p4 T T3p2
1 1 N 1 N 72
= =M = — —_— R
Y= 72T 2 Ty T
_ 2,4, 11
"= 72 7 3R27 72 3R’
A 2 4
"= Tant T 1an2 T osent
-2 A
t=14+ — + —
+6h2+24h4’
and (N + 1) x 1 column matrices
o>
or,
r=1" L0<Ek<N,
Pr 1 (N1)x1
with
1 _ 1 1.
e =(1 To¢ I—Ee 2)sin? (z,),0 < n < M,
2 3 4
@52{_T+%_%+%}sm2(%)
6 12 ' 36
5 6 5 7
L 2
T i }cos T,
1 1
+(=e '+ —e2)sin? ()
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2 1

2
T _ .
———e e sm2xn,
12

In a similar manner the following formulas

Unt = [P+ Q(4I — any—1) " (Bar—1 +31)] 7}

2
49 {;e—tk + é(e—tk+l e 1) 4 %e—tk-H } 08 2, x {R+ Q4I — on,l)_l’yM,l} (15)
1<k<N-1, Uy-1=—-(P+Q) 'R (16)
u? -1
U% UM—2 = (4[ — aM—Z)
uk=1 . ,
uy! (N+1)x1 x {(5 + Bry—2)Unr—1 +ym—2},  (17)

0<k<N,s=n—-2n—1nn+1,n+2

is obtained.

The modified Gauss elimination method is used
and the following formula

U, = anJrlUnJrl + Bn+1Un+2 + Yn+1,
n=M-2,..2,1,0

is applied where «o;,0; (j = 1,..., M) are (N +
1) x (N +1) square matrices and ~; are (N+1) x 1
column matrices for the solution of difference
scheme (I2). From that one can obtain formu-

las a1, Bntt, Va1

ﬁnJrl = _(C + Day, + Eﬂnfl + Eanflan)_lAy
On41 = _(C + Day, + Efp1 + Ean—lan)il
X(B + Dﬁn + Eanflﬁn%
Yn+1 = +(C + Doy, + Eﬁn—l + Ean—lan)il
X (Rpn — Dyn — Ean—17n — Evn-1),
(14)
where n =2 : M — 2 and

0
0
Y2 = : )
0
4/5 0 0
0 4/5 0
Qg = . . . R
0 0 4/5
“1/5 0 0
0 —1/5 0
P2 = : :
0 0 ~1/5

where

1
P @(11[ + 981 — 2ar—2Bnm-1),

1
— (=181 4+ 9apr—1

@= 5

—2(ap—20p—1 + Br—2))

1
R = Gih(gyM,l —20m—2YM-1 — 2YM—2)

are obtained. The system

Up=aqUy + B1Uzs +m (18)

where

-1__ h_._
OCIZTT 1751:07712511 190'2

is used for the boundary condition u(t,0) = 0 of
third order of accuracy difference scheme. Here

A1 A2 A3 M X5 O ... 07
a b a O ... ... ... 0

0 a b a O

T —
: 0 a b a O
0 ... 0 a b «a
_O 0 )\5 )\4 )\3 )\2 )\1_
(19)
with
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AL = <—1—35h+5h2>
h 2472 1273 )’
N = <1o4h_18h2>
2472 1273 )7
N = <_114h+24}12)
2472 1273 )7
A ETARIT
2472 1273 )7
Ay = <—11h+3hQ>
2472 12713 )7
a = _i b_<_1+h>
2727 h 12)°

In the next step difference scheme ([@l) and the for-
mulas

—3u(l)+4u(l—-h)—u(l—-2h) . =
o —u (1) =0 (h?),

1
o3 (—17u (0) + 71u (0 + 7) — 118u (0 + 27)

+98u (0 4 37) — 41u (0 4 47) + 7u(0 4 57))

w(0) —2u (0+7) +u (04 27) _ (0)20(7_3)

T2

are used to obtain second order of accuracy in
t and fourth order of accuracy in x difference
scheme

o+1 -1 K kb
up ' —2ub+ub ™5 [ up g —2udtun
72 6 h?2
k+1 k41, k+1 k—1 k-1, k-1
_ 1 Up 1 —2un tu, Ty + Up 1= 2un FU,
12 h2 h2

k k k_ gk k
72 [ Upyo—dup g FOun —duy _ Fup
72 ht

P k41 k+1 k41 k41 k41
+ T2 un+274un+1+6u" 74un—1+un—2
144 ht

1 k—1 k—1 k—1 k—1
u 74un+1+6u" 74un—1+un—2 _ .k
- Ap7l7

—(3 + R)etn + etion) b eos 2z,
ty=kr, 1<k<N-1,Nr=1,

Tp=nh,1<n<M-1,Mh=m,
o = —%efl—ﬁe 2)sin? (),
OgngM',(u,ll—un)

+6 Un — u%o) —4 (ULA} —up_y
+(un,2 - ’Uznfz)] = ¥n>
s 3 4 5\ .
oN = —T+%—%+%—%>Sln2(xn)

5 .7 5 8 .
_m']— — m'f )C052£En

1 .
+7(f5et + e 2) sin? (zy,)

2<n<M-20<k<N,
W — 0 = b 45u) —154ud +214u —156u3+61ud —10uf
1 0~ 2 1272

B (17uf — Tlud + 118u2

~ i
—98uf + 41luf — Tuf)
ul = ) =y (450l — 154u) ! + 2140

~156u) 7+ 61ud ! — 10u) )
g (17l — 71 1180

7986\]_3 + 41uév_4 — 7uév_5) Juk — uf

k+1_o k,, k-1
:g<7"o 2ug g _¢§>, 1<k<N-1

T

(20)

for the approximate solution of problem (§]). By
rearranging coefficients in the problem we have
again the (N + 1) x (N + 1) linear system (I3])
with matrix coefficients

ro0 0 0 0 0 07
T T 0 0 0
T Yy 0 0 0
A= : ,
0 0 O y x 0
0 0 O T Yy x
L —-r r 0 . 0O 0 0 |



On stable high order difference schemes for hyperbolic problems with the Neumann boundary conditions 67

0o 0 O 0 0 07
vow v 0 0 O
0 v w 0 0 O
B = ,
0 0 w v 0
0 O 0 voow v
| s —s O 0 0 0 |
1 0 0 ...0 F 0 0 F
m n m 0 0 0 O
0 m n m 0 0 O
C =
0O 0 O n m 0
0O 0 O m n m
L -t t O 0 0 0 |
D=B, E=A,
1 0 0 0 0]
010 0 0
0 01 0 0
R: . )
000 ...10
_0 00 ... 0 1_
and with entries
72 72 1 72
xr= —-": = — = - — —
144t ? T Tt 1212~ 3604
5 n 72
W=——s + ——
6h%  18h%’
1,1 2
m=-—-+—-—4+—
72 6h?  24h%’
_ 2+ 5 T2
P A DY
A4 A4 -2
"= Taantt T 3ent T 12n2
2 A4
t=1+ — + —.
+6h2+24h4
Here UF and ¢k are defined as
ug
1
Uk = s ,
N
Us 1 (N+1)x1

0<k<N,s=n—-2,n—1,nn+1,n+2.

4
k “n

1
oh =gt = gp¢ ?)sin’ (@), 0 < < M,
10 1
7'2 T3 7'4 ’7'5 .
o = <_7-+2—6+24+24>S1D2($n)

5 72

1 7 —tk+1 —tk—1 12
+(ﬁ — m)(e +e ) ¢ sin“(xy,)

5 72 —te
+{(—3+9)6

1 72 ¢ _t
5 1—8)(6 Bl 7 1) 5 cos 22y,

+{73_T4_7T5 15

25
7@77 — 4327_8} COS 2$n
1 1
(—=e 4 —e_%) sin? (z,,) .

10° 10

In exactly the same manner as Example 1 the
linear system for the fourth order of accuracy dif-
ference scheme is solved with the following new
formulas

Unt = [P+ Q4 — ans—1) " (Bar—1 + 31)] !
x [R+ QA — anr—1) tym—1],  (21)

Uni—1 = [(Br—2 + 5I) — (4 — apg—a)anr—1] ™"
x [(4] — ap—2)ym—1 — Ym—2]  (22)
Uni—g = (41 — app_a) (23)

X{(5I + Brr—2)Uni—1 +ym—2}

where

1

P 12h

(251 4 36501 — 16ap—26n—1

+3(am—sanm—28m-1+ Br—3Bm-1)]
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Q= ﬁ [—481 + 36cpr—1 82;&3” - azgig’m) = e !(sin®x — 2 cos 2x),
0<t<l0<z<m,

u(0,z) = %u(l,x) + %U(%ﬂ?)

+(1 — %6_1 — Tl()e*%)siHQ z,0<z <,
u (0, ) = Tl()ut(l,a:) + Tlout(%, )

+(-1+ fe 1+ %067%) sin?2,0 <z <,
u(t,0) = uy(t,m) =0, 0<t <1

—16(ap—2ap—1 + Brr—1)

+3(apr—zanr—2anr—1 + ap—3By—2 + an—18m-3)],

\

1 or one dimensional hyperbolic equation.
R = o 136701 = 16(ar—2ynr-1 + ar-2) ! w I
Note that this problem is similar to Example 1,
with different mixed boundary conditions. Again

+3 (ap—3apm—27M—1 exact solution of the problem is

2

tsin? .

+an—3ym—2 + Bu—3vm—1 +7M-3)] - ult,z) =e
In finding the approximate solution of problem
For the boundary condition u,(¢,0) = 0, the sys- @5), the method of first example is applied.
tem (I8) with the matrix Third and fourth orders of accuracy difference
schemes (), (@) are used. Approximating the

- boundary condition u,(¢,7) = 0 the following for-

F A X A3 M A5 X O .0 mulas
a b a 0 ... ... ... ... 0
0 b a 0 R 0
T=10 0 a« b a 0 .. .. °: Unt = =[P+ Q(4I — apr—1) ™ (Bu—1+3)]
0 a4 b a0 x{R+ Q4 — ar—1) a1}
L O 0 X A5 A Az Ao Ar
(24) Uu1=—-(P+Q)'R

and the new entries
Uni—o = (41 — apr—2) " {(5I4+Brr—2)Unr—1+var—2}

2
A1=< 1 45h  17h ) where

h 2472 T 2478

1
154h  71h? P=_—(11I +98y-1 — 2an—2Bvm—1)Un,s
Ay = -, 6h
2412 2473
1
Q = th [—18[ + 9aM_1

o (2140 118h?
57\ 24r2 T a3 )
=2 (apr—20p—1 + Brr—2)| Un—1

156h  98h>
M= 12l ) 1
R = o (9va1-1 = 2007-2701-1 = 2vMm-2),
N = 61h n 41h? _ 10h Th? ) for the third order of accuracy difference scheme
> 2472 " 2473 )7 70T \our2 T 9473”7 and
P Un = —[P+Q(4I — apr1) " (Bar—1 +30)] "
2727 h = 72
is considered. x{R+ Q4I — aM_l)_lfyM_l},

Example 2. Consider Uni—1 = [(Bar—2 +5I) — (41 — apg—o)apr—1]~*
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are used in the formulae which were presented in
x[(4] — anr—2)ym-1 — Ym-2] (4.

Example 3. Consider the NBVP with mized con-
Uni—2 = (41 — anr—2)  {(5I4+Brr—2)Uni—1+var—2}, dition

where 8283; z) 9 j;fcgf) e"t(sin® x — 2 cos 2z),
O0<t< 1 0 <z <m,
Lot
P = ——[25] + 368pm-1 — 16ap—28m—1 uld,z) = 101 u( 1:5) 0 (2 @)
12h (1—106 — 16¢ 2)sin?z,0<z <7

ug (0, ) = 10“15(1755) 10“15(% )

+(—1+ s5e7t + He ;)Sl r,0<zx<m7

[ uz(t,0) =u(t,m) =0, 0<t<1

48T + 36cps—1 (26)

+3(anm—san—28m-1 + Bru-38m-1)]

@= 12h[

for one dimensional hyperbolic equation.

—16(ap—sapr—1 + 1)+ 3(apy—sap—sap—
(crr—z0nr—1 + Par—) (anr—sanr—sen—1 Note that this problem is similar to problem

of Examplel with different boundary conditions.

+anr—3Ba—2 + an—18m-3)], Exact solution of this problem is
ot 2
R= o [36va7—1 — 16(cns—avar—1 + Yar—2) u(t,z) =e "sin”x.
The approximate solution of problem (26]) is ob-
+3((anr—30n—2YM -1 tained by a similar procedure as in the first exam-

ple. Third and fourth order of accuracy difference

schemes (), (@) are used and the system
+an—3ym—2 + Brm—3VM—1+ Ym—3)]

for the fourth order of accuracy difference scheme

Up = U U
are used. For the boundary condition u(¢,0) =0 0=l +Alz+m

the following initial matrices with
0 0 ... 0 -1 h "1 0
00 ... 0 aq h 761 » V1 9 Pn
a1 = : : ’ is considered. Matrices T, \;,7 = 1,...,6;a,b are
0 O 0 defined by ([9) and (24]) and are considered for
(N+1)X(N+1) the boundary condition u,(t,0) = 0. Approximat-
00 0 ing boundary condition u(t,7) = 0, the following
0 0 0 formulas
B =
00 ..0 Unv—2=ay-1Un—1+vm-1,
(NFL)x(N+D) Um-3=am—-2Upm—2+ Bu—2Un—1 + Y2,
0 Uv—3=4Upn—2 —5Upn 1,
0
’71 = ’72 = . 5 and
0 (N+1)x1 -1
Upi—1 = [(By—2 + 51) — (41 — apr—2)aps—1]
4/5 0 0
vy = 0 4(5 (? 7 x[(4] — apr—2)Ym—1 — Ym—2]
: are used.
0 0 ... 4/5 o
(N+1)x(N+1) The errors for the approximations are computed
by the formula
~1/5 0 0

|
N[

B2 = ) . . M—1 )
: : " : N _ o7k
0 0 ... —1/5 By = dnax | (Z ‘“(t’f’%) Un >

(N+1)x(N+1)
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Table 1. Error analysis for the approximate solutions of ().

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  0,000211

Fourth order of accuracy difference scheme 0,00009415

0,00006181

0,00001866

0,00002605

0,000005752

Table 2. CPU times for the approximate solutions of (g]).

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  2.3078

Fourth order of accuracy difference scheme 2.3473

13.5915

13.5283

68.6596

67.7495

Table 3. Error analysis for the approximate solutions of (25)).

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  0,0004817

Fourth order of accuracy difference scheme 0,00009781

0,0002047

0,00001979

0,0001138

0,00001954

Table 4. CPU times for the approximate solutions of (20]).

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  2.3031

Fourth order of accuracy difference scheme 1.7361

13.5165

13.5241

68.2402

68.8427

Table 5. Error analysis for the approximate solutions of (20)).

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  0,0037

Fourth order of accuracy difference scheme 0,00009415

0,0011

0,00001866

0,0004602

0,000005752

Table 6. CPU times for the approximate solutions of (2]).

N=20, M=400

N=30, M=900

N=40, M=1600

Third order of accuracy difference scheme  1.7006

Fourth order of accuracy difference scheme 1.7401

13.4295

13.4628

68.1728

68.0591

Here u (11, r,) represents exact solution and UF

e From Table 1 and Table 2, it can be no-

represents numerical solution at (tx,z,). We de-
note the third order of accuracy difference scheme
@) as TO and the fourth order of accuracy dif-
ference scheme (@) as FO. Errors and the related
CPU times are represented in Table 1,3,5 and Ta-
ble 2,4,6 respectively, for different M and N val-
ues. The implementations are carried out by Mat-
lab 7.9.0 software package and obtained by a PC
System 64bit, Intel R Core TM i5 CPU, 3.20 GHz,
3.60Hz, 4000Mb of RAM.

The following conclusions can be noted from the
tables above for the comparison of the numerical
results presented in the tables.

ticed that approximately the same accu-
racy is achieved by TO with data error
,N=40, M=1600 and by FO with data er-
ror N=30, M=900 in different CPU times;
68.6596s and 13.5283s, respectively. This
means the use of the difference scheme FO
accelerates the computation with a ratio
of more than 68.66/13.5~5.08 times, that
is, FO is considerably faster than TO.

In Table 3 and Table 4, almost the
same accuracy is achieved by TO with
error ,N=40, M=1600 and by FO with
error N=20, M=400 in different CPU
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times; 68.6596s and 13.5283s, respec-
tively, which means that the wuse of
the difference scheme FO accelerates the
computation with a ratio of more than
68.24/1.73~/39.44 times, which shows that
FO is faster than TO.

e In Table 5 and Table 6, it is noted that ap-
proximately similar accuracy is achieved
by TO with data error ,N=40, M=1600
and by FO with data error N=20, M=400
in different CPU times; 68.1728s and
1.7401s, respectively. This means that the
use of the difference scheme FO acceler-
ates the computation with a ratio of more
than 68.17/1.74~39.17 times, that is, FO
is approximately faster than TO.

e It can be concluded from the tables that
numerical results become approximately
the same for larger N and M values
for each difference scheme in the reliable
range of the CPU times and this shows
that the approximate solutions of problem
@®), @5), 26]) are accurate.

e In conclusion, the fourth order of accu-
racy difference scheme is more accurate
than the third order of accuracy difference
scheme when considering the CPU times
and the error levels.
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