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 This paper is about obtaining some new type of integral inequalities for functions 

from the Lipschitz class. For this, some new integral inequalities related to the 

differences between the two different types of integral averages for Lipschitzian 

functions are obtained. Moreover, applications for some special means as 

arithmetic, geometric, logarithmic, 𝑝-logarithmic, harmonic, identric are given. 
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1. Introduction 

Convexity theory has appeared as a powerful 

technique to study a wide class of unrelated problems 

in pure and applied sciences. It is well known that 

theory of convex sets and convex functions play an 

important role in mathematics and the other pure and 

applied sciences. 
 

Definition 1. A function 𝑓: 𝐼 ⊆ ℝ → ℝ  is said to be 

convex if the inequality 

 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) 

 

is valid for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1]. If this inequality 

reverses, then 𝑓 is said to be concave on interval 𝐼 ≠
∅. This definition is well known in the literature. 

 

The research of beautiful inequalities which have 

symmetry is very interesting 

and important to Analysis and PDE. A well-known 

example is the famous Hermite-Hadamard inequality 

which was first published in [1]. 

   

If 𝑓: 𝐼 → ℝ  is a convex function on the interval 𝐼, then 

for any 𝑎, 𝑏 ∈ 𝐼 with 𝑎 ≠ 𝑏 we have the following 

double inequality 

 

𝑓 (
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≤
𝑓(𝑎) + 𝑓(𝑏)

2
    (1) 

 

This double inequality is known as Hermite-

Hadamard integral inequality for convex functions in 

the literature. Note that some of the classical 

inequalities for means can be derived from (1) for 

appropriate particular selections of the mapping 𝑓. 

Both inequalities hold in the reversed direction if 

mapping 𝑓 is concave.  

 

Definition 2. [2] Let 𝐼 ⊂ ℝ\{0} be a real interval. A 

function 𝑓: 𝐼 → ℝ is said to be harmonically convex, if 

 

𝑓 (
𝑥𝑦

𝑡𝑥 + (1 − 𝑡)𝑦
) ≤ 𝑡𝑓(𝑦) + (1 − 𝑡)𝑓(𝑥) 

 

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1]. If this inequality is 

reversed, then the function 𝑓 is said to be 

harmonically concave.  

 

Definition 3. [2] Let 𝑓: 𝐼 ⊆ ℝ\{0} → ℝ be a 

harmonically convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 <
𝑏, If 𝑓 ∈ 𝐿[𝑎, 𝑏] then the following inequalities hold: 

 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) ≤

𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎

≤
𝑓(𝑎) + 𝑓(𝑏)

2
     (2) 

mailto:imdati@yahoo.com
http://www.ams.org/msc/msc2010.html


260                                          İ. İşcan et al. / IJOCTA, Vol.8, No.2, pp.259-265 (2018) 

Definition 4. (Beta function) The beta function 

denoted by 𝛽(𝑚, 𝑛) is defined as 

 

𝛽(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥

1

0

. 

 

Definition 5. (Hypergeometric function) [3] The 

hypergeometric function denoted by 𝐹12 (𝑎, 𝑏; 𝑐; 𝑧) is 

defined by the integral equality 

 

𝐹12 (𝑎, 𝑏; 𝑐; 𝑧) 

=
1

𝛽(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1

1

0

(1 − 𝑧𝑡)−𝑎𝑑𝑡,  

𝑐 > 𝑏 > 0, |𝑧| < 1. 
 

Definition 6. (𝑀-Lipschitz Condition) [4]  𝑓: 𝐼 → ℝ is 

said to satisfy the Lipschitz condition if there is a 

constant 𝑀 > 0 such that 

 
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦|    ∀𝑥, 𝑦 ∈ 𝐼. 

 

Theorem 1. [4] If 𝑓: 𝐼 → ℝ is convex, then 𝑓 satisfies 

a Lipschitz condition on any closed interval [𝑎, 𝑏] 
contained in the interior 𝐼° of 𝐼. Consequently, 𝑓 is 

absolutely continuous on [𝑎, 𝑏] and continuous on 𝐼°. 

 

In [5], the inequalities related to left-hand side and 

right-hand side of the inequality (1) for Lipschitzian 

mappings as follow: 

 

Theorem 2. [5] Let 𝑓: 𝐼 ⊆ ℝ → ℝ be an 𝑀- 

Lipschitzian mapping on 𝐼 and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. 

Then we have the inequalities 

 

|𝑓 (
𝑎 + 𝑏

2
) −

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

| ≤
𝑀

4
(𝑏 − 𝑎) 

 

and 

 

|
𝑓(𝑎) + 𝑓(𝑏)

2
−

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

| ≤
𝑀

3
(𝑏 − 𝑎). 

 

Corollary 1. Let 𝑓: I ⊆ ℝ → ℝ be a convex and 

differentiable function on interval 𝐼 and 𝑎, 𝑏 ∈ 𝐼 with 

𝑎 < 𝑏 and 𝑀 = 𝑠𝑢𝑝𝑡∈[𝑎,𝑏]|𝑓
′(𝑡)| < ∞. Then we have 

the inequalities 

 

0 ≤
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥 − 𝑓 (

𝑎 + 𝑏

2
) ≤

𝑀

4
(𝑏 − 𝑎)

𝑏

𝑎

 

 

and 

 

0 ≤
𝑓(𝑎) + 𝑓(𝑏)

2
−

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≤
𝑀

3
(𝑏 − 𝑎) 

 

See [5-8] and references therein for more information 

about the Hadamard-type inequalities for the 

Lipschitzian functions. 

 

2. Main results 

In this section, we obtain some new inequalities 

related to integral means given in the inequalities (1) 

and (2) for Lipschitzian mappings. 

 

Theorem 3. Let 𝑓: 𝐼 ⊆ (0, ∞) → ℝ be an 𝑀-

Lipschitzian mapping on interval 𝐼 and 𝑎, 𝑏 ∈ 𝐼 with 

𝑎 < 𝑏. Then following inequality holds: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

|

≤
𝑀(𝑏 − 𝑎)2

6𝑏
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
) 

 

Proof: Since 𝑓 is 𝑀-Lipschitzian function on interval 

𝐼, for ∀𝑥, 𝑦 ∈ [𝑎, 𝑏] 
 

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦|. 
 

Here, for arbitrary 𝑡 ∈ [0,1], if we take 

 

𝑥 = 𝑡𝑏 + (1 − 𝑡)𝑎, 𝑦 =
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
 

 
then 

 

|𝑓[(𝑡𝑏 + (1 − 𝑡)𝑎] − 𝑓 (
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
)| 

≤ 𝑀 |(𝑡𝑏 + (1 − 𝑡)𝑎 −
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
| 

                                                                         

= 𝑀 |
𝑡2𝑎𝑏 + 𝑡(1 − 𝑡)(𝑏2 + 𝑎2) + (1 − 𝑡)2𝑎𝑏 − 𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
| 

=
𝑀𝑡(1 − 𝑡)(𝑏 − 𝑎)2

𝑡𝑎 + (1 − 𝑡)𝑏
. 

 

Consequently, we get the following inequality: 

 

|𝑓(𝑡𝑏 + (1 − 𝑡)𝑎 − 𝑓 (
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
)|

≤
𝑀𝑡(1 − 𝑡)(𝑏 − 𝑎)2

𝑏 − 𝑡(𝑏 − 𝑎)
 

 

If we take integral the last inequality on 𝑡 ∈ [0,1] and 

use property of modulus, we have 

 

|∫ 𝑓[𝑡𝑏 + (1 − 𝑡)𝑎]𝑑𝑡 − ∫ 𝑓 (
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
) 𝑑𝑡

1

0

1

0

| 

≤ ∫ |𝑓(𝑡𝑏 + (1 − 𝑡)𝑎 − 𝑓 (
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
)| 𝑑𝑡

1

0

 

≤ 𝑀(𝑏 − 𝑎)2 ∫
𝑡(1 − 𝑡)

𝑏 [1 − 𝑡 (1 −
𝑎
𝑏

)]
𝑑𝑡

1

0
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=
𝑀(𝑏 − 𝑎)2

𝑏
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
) 𝛽(2,2) 

 

If we make the change of variables 𝑢 = 𝑡𝑏 + (1 − 𝑡)𝑎 

and 𝑢 =
𝑎𝑏

𝑡𝑎+(1−𝑡)𝑏
 in the integrals on the left side of 

the last inequality respectively, we have the following 

inequality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

𝑏

𝑎

| 

≤
𝑀(𝑏 − 𝑎)2

6𝑏
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
) 

 

This completes the proof of theorem. 

 

Proposition 1. Let  𝑝 ∈ (1, ∞)\{2} and 𝑎, 𝑏 ∈ ℝ with 

0 < 𝑎 < 𝑏. Then 

 

|𝐿𝑝
𝑝

− 𝐺2𝐿𝑝−2
𝑝−2

| ≤
𝑝𝑏𝑝−2(𝑏 − 𝑎)2

6
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
), 

 

where 𝐺 = 𝐺(𝑎, 𝑏) and 𝐿𝑝 = 𝐿𝑝(𝑎, 𝑏) are geometric 

and 𝑝-logarithmic means respectively. 

  

Proof: If the 𝑓(𝑥) = 𝑥𝑝 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 3, the inequality  

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫ 𝑢𝑝𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫

𝑢𝑝

𝑢2
𝑑𝑢

𝑏

𝑎

| 

 

is obtained. If the integral is calculated,  

 

|
1

𝑏 − 𝑎
∫ 𝑢𝑝𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫

𝑢𝑝

𝑢2
𝑑𝑢

𝑏

𝑎

| 

= |
𝑏𝑝+1 − 𝑎𝑝+1

(𝑏 − 𝑎)(𝑝 + 1)
−

𝑎𝑏(𝑏𝑝−1 − 𝑎𝑝−1)

(𝑏 − 𝑎)(𝑝 − 1)
| 

= |𝐿𝑝
𝑝

− 𝐺2𝐿𝑝−2
𝑝−2

|. 

 

From Corollary 1, if 𝑀 = 𝑠𝑢𝑝𝑡∈[𝑎,𝑏]|𝑓
′(𝑡)| < ∞  is 

taken for the right side of the inequality, then 𝑀 =
𝑝𝑏𝑝−1. So, we get 

 

|𝐿𝑝
𝑝

− 𝑎𝑏𝐿𝑝−2
𝑝−2

| ≤
𝑝𝑏𝑝−2(𝑏 − 𝑎)2

6
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
). 

 

 

Proposition 2. Let 𝑝 ∈ (1, ∞)\{2} and 𝑎, 𝑏 ∈ ℝ with 

0 < 𝑎 < 𝑏. Then 

 

|𝐿−1 −
𝐴

𝐺2
| ≤

(𝑏 − 𝑎)2

6𝑏𝑎2
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
), 

 

where 𝐺 = 𝐺(𝑎, 𝑏), 𝐴 = 𝐴(𝑎, 𝑏)  and 𝐿 = 𝐿(𝑎, 𝑏) are 

geometric, arithmetic and logarithmic means 

respectively. 

 

Proof: If the 𝑓(𝑥) =
1

𝑥
 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 3, we have the following 

equality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫ 𝑢−1𝑑𝑢

𝑏

𝑎

−
𝑎𝑏

𝑏 − 𝑎
∫ 𝑢−3𝑑𝑢

𝑏

𝑎

| 

= |𝐿−1 −
𝐴

𝐺2
|. 

 

Using the Corollary 1, if 𝑀 = 𝑠𝑢𝑝𝑡∈[𝑎,𝑏]|𝑓
′(𝑡)| < ∞  

is taken for the right side of the inequality, then 𝑀 =
1

𝑎2. So, we get 

 

|𝐿−1 −
𝐴

𝐺2
| ≤

(𝑏 − 𝑎)2

6𝑏𝑎2
𝐹12 (1,2; 4; 1 −

𝑎

𝑏
). 

 

Theorem 4. Let 𝑓: I ⊂ ℝ → ℝ be an 𝑀-Lipschitzian 

function on interval 𝐼 and 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐼 with 𝑎 ≤ 𝑥 <
𝑦 and 𝑎 < 𝑏. Then following inequality holds: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

|

≤
𝑀

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎]. 

 

Proof: Since 𝑓 is an 𝑀-Lipschitzian function on 

interval 𝐼, for ∀𝑣, 𝑤 ∈ 𝐼 

 
|𝑓(𝑣) − 𝑓(𝑤)| ≤ 𝑀|𝑣 − 𝑤|. 

 

Here, for arbitrary 𝑡 ∈ [0,1], if we take 

 

𝑣 = 𝑡𝑏 + (1 − 𝑡)𝑎, 𝑤 = 𝑡𝑦 + (1 − 𝑡)𝑥, 
 

then 

 
|𝑓[𝑡𝑏 + (1 − 𝑡)𝑎] − 𝑓[𝑡𝑦 + (1 − 𝑡)𝑥]| 

≤ 𝑀|𝑡(𝑏 − 𝑦) + (1 − 𝑡)(𝑎 − 𝑥)| 

≤ 𝑀[𝑡|𝑏 − 𝑦| + (1 − 𝑡)|𝑎 − 𝑥|]. 

 

If we take integral the last inequality on 𝑡 ∈ [0,1] and 

use the property of modulus, we have 
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|∫ 𝑓[𝑡𝑏 + (1 − 𝑡)𝑎]𝑑𝑡 − ∫ 𝑓[𝑡𝑦 + (1 − 𝑡)𝑥]𝑑𝑡
1

0

1

0

| 

≤ |∫ (𝑓[𝑡𝑏 + (1 − 𝑡)𝑎] − 𝑓[𝑡𝑦 + (1 − 𝑡)𝑥])𝑑𝑡
1

0

| 

≤ ∫ |𝑓[𝑡𝑏 + (1 − 𝑡)𝑎] − 𝑓[𝑡𝑦 + (1 − 𝑡)𝑥]|𝑑𝑡
1

0

 

≤ 𝑀 ∫ [𝑡|𝑏 − 𝑦| + (1 − 𝑡)(𝑥 − 𝑎)]𝑑𝑡
1

0

. 

 

If we make the change of variables 𝑢 = 𝑡𝑏 + (1 − 𝑡)𝑎 

and 𝑢 =  𝑡𝑦 + (1 − 𝑡)𝑥 in the integrals on the left side 

of the last inequality respectively, we have the 

following inequality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

|

≤
𝑀

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎]. 

 

This completes the proof of theorem. 

 

Proposition 3. Let 𝑝 > 1 and 𝑎, 𝑏, 𝑥, 𝑦 ∈ ℝ with 0 <
𝑎 ≤ 𝑥 < 𝑦  and 𝑎 < 𝑏. Then 

 

|𝐿𝑝(𝑎, 𝑏) − 𝐿𝑝(𝑥, 𝑦)| ≤  
𝑝𝑏𝑝−1

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎], 

 

where 𝐿𝑝 = 𝐿𝑝(𝑎, 𝑏) is 𝑝-logarithmic mean.  

 

Proof: If the 𝑓(𝑥) = 𝑥𝑝 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 4, we have the following 

equality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫ 𝑢𝑝𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑢𝑝𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
𝑏𝑝+1 − 𝑎𝑝+1

(𝑏 − 𝑎)(𝑝 + 1)
−

𝑦𝑝+1 − 𝑥𝑝+1

(𝑦 − 𝑥)(𝑝 + 1)
| 

= |𝐿𝑝(𝑎, 𝑏) − 𝐿𝑝(𝑥, 𝑦)| 

≤  
𝑝𝑏𝑝−1

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎], 

 

where 𝑀 = 𝑝𝑏𝑝−1. 

 

Proposition 4. Let 𝑎, 𝑏, 𝑥, 𝑦 ∈ ℝ with 0 < 𝑎 ≤ 𝑥 < 𝑦  

and 𝑎 < 𝑏. Then 

 

|𝐿−1(𝑎, 𝑏) − 𝐿−1(𝑥, 𝑦)| ≤
1

2𝑎2
[|𝑏 − 𝑦| + 𝑥 − 𝑎], 

 

where 𝐿 = 𝐿(𝑎, 𝑏) is logarithmic mean. 

 

Proof: If the 𝑓(𝑥) =
1

𝑥
 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 4, we have the following 

equality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫

1

𝑥
𝑑𝑥 −

1

𝑦 − 𝑥
∫

1

𝑥
𝑑𝑥

𝑦

𝑥

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
𝑙𝑛

𝑏

𝑎
−

1

𝑦 − 𝑥
𝑙𝑛

𝑦

𝑥
| 

 = |𝐿−1(𝑎, 𝑏) − 𝐿−1(𝑥, 𝑦)|. 

 

From Corollary 1, since 𝑀 =
1

𝑎2, the following 

inequality 

 

|𝐿−1(𝑎, 𝑏) − 𝐿−1(𝑥, 𝑦)| ≤
1

2𝑎2
[|𝑏 − 𝑦| + 𝑥 − 𝑎] 

 

is obtained. 

 

Proposition 5. Let 𝑎, 𝑏, 𝑥, 𝑦 ∈ ℝ with 0 < 𝑎 ≤ 𝑥 < 𝑦  

and 𝑎 < 𝑏. Then 

 

|
𝑒𝑏 − 𝑒𝑎

𝑏 − 𝑎
−

𝑒𝑦 − 𝑒𝑥

𝑦 − 𝑥
| ≤

𝑒𝑏

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎]. 

 

Proof: If the 𝑓(𝑥) = 𝑒𝑥 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 4, we have the following 

inequality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫ 𝑒𝑢𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑒𝑢𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
𝑒𝑏 − 𝑒𝑎

𝑏 − 𝑎
−

𝑒𝑦 − 𝑒𝑥

𝑦 − 𝑥
| 

≤
𝑒𝑏

2
[|𝑏 − 𝑦| + 𝑥 − 𝑎]. 

 

Proposition 6. Let 𝑎, 𝑏, 𝑥, 𝑦 ∈ ℝ with 0 < 𝑎 ≤ 𝑥 < 𝑦  

and 𝑎 < 𝑏. Then 

 

|𝑙𝑛𝐼(𝑥, 𝑦) − 𝑙𝑛𝐼(𝑎, 𝑏)| ≤
1

2𝑎
[|𝑏 − 𝑦| + 𝑥 − 𝑎], 

 

where 𝐼 = 𝐼(𝑎, 𝑏) is identric mean. 

 

Proof: If the 𝑓(𝑥) = −𝑙𝑛𝑥 convex mapping defined 
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on interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 4, we have the following 

equality: 

 

|
1

𝑏 − 𝑎
∫ 𝑓(𝑢)𝑑𝑢 −

1

𝑦 − 𝑥
∫ 𝑓(𝑢)𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

= |
1

𝑏 − 𝑎
∫ −𝑙𝑛𝑢𝑑𝑢 −

1

𝑦 − 𝑥
∫ −𝑙𝑛𝑢𝑑𝑢

𝑦

𝑥

𝑏

𝑎

| 

 

= |1 −
𝑙𝑛𝑏𝑏 − 𝑙𝑛𝑎𝑎

𝑏 − 𝑎
− (1 −

𝑙𝑛𝑦𝑦 − 𝑙𝑛𝑥𝑥

𝑦 − 𝑥
)| 

= |− [𝑙𝑛
1

𝑒
(

𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎

] + [𝑙𝑛
1

𝑒
(

𝑦𝑦

𝑥𝑥
)

1
𝑦−𝑥

]| 

= |𝑙𝑛𝐼(𝑥, 𝑦) − 𝑙𝑛𝐼(𝑎, 𝑏)|. 

 

From Corollary 1, since 𝑀 =
1

𝑎
, the following 

inequality 

 

|𝑙𝑛𝐼(𝑥, 𝑦) − 𝑙𝑛𝐼(𝑎, 𝑏)| ≤
1

2𝑎
[|𝑏 − 𝑦| + 𝑥 − 𝑎]. 

 

Theorem 5. Let 𝑓: I ⊂ (0, ∞) → ℝ be an 𝑀-

Lipschitzian function on interval 𝐼 and 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐼 

with 𝑎 ≤ 𝑥 < 𝑦 and 𝑎 < 𝑏. Then following inequality 

holds: 

 

|
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

𝑓(𝑢)

𝑢2
𝑑𝑢 

𝑦

𝑥

| 

≤
𝑀

𝑏 − 𝑎
{𝑎𝑥|𝑏 − 𝑦|[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)] 

+𝑏𝑦|𝑎 − 𝑥|[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)]} 

 

Proof: Since 𝑓 is an 𝑀-Lipschitzian function on 

interval 𝐼, for ∀𝑣, 𝑤 ∈ 𝐼 

 

|𝑓(𝑣) − 𝑓(𝑤)| ≤ 𝑀|𝑣 − 𝑤|. 
 

Here, for arbitrary 𝑡 ∈ [0,1], if we take 

 

𝑣 =
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
, 𝑤 =

𝑥𝑦

𝑡𝑥 + (1 − 𝑡)𝑦
 

 

then 

 

|𝑓 (
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
) − 𝑓 (

𝑥𝑦

𝑡𝑥 + (1 − 𝑡)𝑦
)| 

≤ 𝑀 |
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
−

𝑥𝑦

𝑡𝑥 + (1 − 𝑡)𝑦
| 

≤ 𝑀
𝑡𝑎𝑥|𝑏 − 𝑦| + (1 − 𝑡)𝑏𝑦|𝑎 − 𝑥|

[𝑡𝑎 + (1 − 𝑡)𝑏][𝑡𝑥 + (1 − 𝑡)𝑦]
. 

If we take integral the last inequality on 𝑡 ∈ [0,1] and 

use the property of modulus and changing variable,  

we have 

 

|
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

𝑓(𝑢)

𝑢2
𝑑𝑢 

𝑦

𝑥

| 

≤ 𝑀 {𝑎𝑥|𝑏 − 𝑦| ∫
𝑡

[𝑡𝑎 + (1 − 𝑡)𝑏][𝑡𝑥 + (1 − 𝑡)𝑦]
𝑑𝑡

1

0

 

+ 𝑏𝑦|𝑎 − 𝑥| ∫
1 − 𝑡

[𝑡𝑎 + (1 − 𝑡)𝑏][𝑡𝑥 + (1 − 𝑡)𝑦]
𝑑𝑡

1

0

} 

= 𝑀 {𝑎𝑥|𝑏 − 𝑦| ∫
𝑡𝑑𝑡

[𝑏 + 𝑡(𝑎 − 𝑏)][𝑦 + 𝑡(𝑥 − 𝑦)]

1

0

+ 𝑏𝑦|𝑎 − 𝑥| ∫
𝑡

[𝑎 + 𝑡(𝑏 − 𝑎)][𝑥 + 𝑡(𝑦 − 𝑥)]
𝑑𝑡

1

0

} 

≤ {
𝑎𝑥|𝑏 − 𝑦|

(𝑏 − 𝑎)(𝑦 − 𝑥)
∫

𝑡𝑑𝑡

[𝑡 +
𝑏

𝑎 − 𝑏
] [𝑡 +

𝑦
𝑥 − 𝑦

]
 

1

0

 

+
𝑏𝑦|𝑎 − 𝑥|

(𝑏 − 𝑎)(𝑦 − 𝑥)
∫

𝑡𝑑𝑡

[𝑡 +
𝑎

𝑏 − 𝑎
] [𝑡 +

𝑥
𝑦 − 𝑥

]

1

0

}      (2) 

 

If the integrals in (2) are calculated, we get 

 

∫
𝑡

[𝑡 +
𝑏

𝑎 − 𝑏
] [𝑡 +

𝑦
𝑥 − 𝑦

]
𝑑𝑡

1

0

 

=
1

(𝑏 − 𝑎)(𝑦 − 𝑥)
[𝑙𝑛

𝑥

𝑦
+

𝑏(𝑦 − 𝑥)

𝑎𝑦 − 𝑏𝑥
𝑙𝑛

𝑎𝑦

𝑏𝑥
] 

=
1

𝑏 − 𝑎
[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)],                         (3) 

 

and 

 

∫
𝑡

[𝑡 +
𝑎

𝑏 − 𝑎
] [𝑡 +

𝑥
𝑦 − 𝑥

]
𝑑𝑡

1

0

 

=
1

𝑏 − 𝑎
[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)].       (4) 

 

By substituting (3) and (4) in (2), desired result can be 

obtained. 

 

            This completes the proof of theorem. 

 

Proposition 7. Let  𝑝 ∈ (1, ∞)\{2} and 𝑎, 𝑏 ∈ ℝ with 

0 < 𝑎 < 𝑏. Then 

 

|𝐺2(𝑎, 𝑏)𝐿𝑝−2
𝑝−2

(𝑎, 𝑏) − 𝐺2(𝑥, 𝑦)𝐿𝑝−2
𝑝−2

(𝑥, 𝑦)| 

≤
𝑝𝑏𝑝−1

𝑏 − 𝑎
{𝑎𝑥|𝑏 − 𝑦|[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)] 
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+𝑏𝑦|𝑎 − 𝑥|[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)]}, 

 

where 𝐺 = 𝐺(𝑎, 𝑏), 𝐿𝑝 = 𝐿𝑝(𝑎, 𝑏) and 𝐿 = 𝐿(𝑎, 𝑏)are 

geometric, 𝑝-logarithmic and logarithmic means 

respectively. 

 

Proof: If the𝑓(𝑥) = 𝑥𝑝 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 5, we have the following 

equality: 

 

|
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

𝑓(𝑢)

𝑢2
𝑑𝑢 

𝑦

𝑥

| 

= |
𝑎𝑏

𝑏 − 𝑎
∫

𝑢𝑝

𝑢2
𝑑𝑥

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

𝑢𝑝

𝑢2
𝑑𝑥 

𝑦

𝑥

| 

= |
𝑎𝑏(𝑏𝑝−1 − 𝑎𝑝−1)

(𝑏 − 𝑎)(𝑝 − 1)
−

𝑥𝑦(𝑥𝑝−1 − 𝑦𝑝−1)

(𝑦 − 𝑥)(𝑝 − 1)
| 

 

From Corollary 1, since 𝑀 = 𝑝𝑏𝑝−1, the following 

inequality 

 

|
𝑎𝑏(𝑏𝑝−1 − 𝑎𝑝−1)

(𝑏 − 𝑎)(𝑝 − 1)
−

𝑥𝑦(𝑥𝑝−1 − 𝑦𝑝−1)

(𝑦 − 𝑥)(𝑝 − 1)
| 

= |𝐺2(𝑎, 𝑏)𝐿𝑝−2
𝑝−2

(𝑎, 𝑏) − 𝐺2(𝑥, 𝑦)𝐿𝑝−2
𝑝−2

(𝑥, 𝑦)| 

≤
𝑝𝑏𝑝−1

𝑏 − 𝑎
{𝑎𝑥|𝑏 − 𝑦|[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)] 

+𝑏𝑦|𝑎 − 𝑥|[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)]} 

 

Proposition 8. Let 𝑝 ≥ 1 and 𝑎, 𝑏 ∈ ℝ with 0 < 𝑎 <
𝑏. Then 

 
|𝐻−1(𝑎, 𝑏) − 𝐻−1(𝑥, 𝑦)| 

≤
1

𝑎2(𝑏 − 𝑎)
{𝑎𝑥|𝑏 − 𝑦|[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)] 

+𝑏𝑦|𝑎 − 𝑥|[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)]}, 

 

where 𝐻 = 𝐻(𝑎, 𝑏) and 𝐿 = 𝐿(𝑎, 𝑏) are harmonic and 

logarithmic means respectively. 

 

Proof: If the 𝑓(𝑥) =
1

𝑥
 convex mapping defined on 

interval [𝑎, 𝑏] is applied to the left side of the 

inequality in Theorem 5, we have the following 

equality: 

 

|
𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

𝑓(𝑢)

𝑢2
𝑑𝑢 

𝑦

𝑥

| 

= |
𝑎𝑏

𝑏 − 𝑎
∫

1
𝑥

𝑥2
𝑑𝑥

𝑏

𝑎

−
𝑥𝑦

𝑦 − 𝑥
∫

1
𝑥

𝑥2
𝑑𝑥 

𝑦

𝑥

| 

 

So, we get 

 
|𝐻−1(𝑎, 𝑏) − 𝐻−1(𝑥, 𝑦)| 

≤
1

𝑎2(𝑏 − 𝑎)
{𝑎𝑥|𝑏 − 𝑦|[𝑏𝐿−1(𝑎𝑦, 𝑏𝑥) − 𝐿−1(𝑥, 𝑦)] 

+𝑏𝑦|𝑎 − 𝑥|[𝐿−1(𝑥, 𝑦) − 𝑎𝐿−1(𝑎𝑦, 𝑏𝑥)]}. 

 

3. Conclusions 

In this paper, some new type integral inequalities 

related to the differences between the two different 

types of integral averages for Lipschitzian functions 

are obtained. The significance of the obtained 

inequalities is that: some approaches of the same type 

averages to each other at different points are given in 

here first time. Similar studies can also be obtained for 

fractional integrals. 
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