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In this paper we introduced the conformable derivatives and integrals of radial
basis functions (RBF) to solve conformable fractional differential equations via
RBF collocation method. For that, firstly, we found the conformable deriva-
tives and integrals of power, Gaussian and multiquadric basis functions utiliz-
ing the rule of conformable fractional calculus. Then by using these derivatives
and integrals we provide a numerical scheme to solve conformable fractional
differential equations. Finally we presents some numerical results to confirmed
our method.
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1. Introduction

Recently, the question of how to take non-integer
order of derivative or integration was phenome-
non among the scientists. However together with
the development of mathematics knowledge, this
question was answered via Fractional Calculus
which is a generalization of ordinary differenti-
ation and integration to arbitrary (non-integer)
order. Then In conjunction with the develop-
ment of theoretical progress of fractional calcu-
lus, a number of mathematicians have started to
applied the obtained results to real world prob-
lems consist of fractional derivatives and inte-
grals [1, 2].

An significant point is that the fractional deriva-
tive at a point x is a local property only when a
is an integer; in non-integer cases we cannot say
that the fractional derivative at x of a function
f depends only on values of f very near x, in
the way that integer-power derivatives certainly
do. Therefore it is expected that the theory in-
volves some sort of boundary conditions, involv-
ing information on the function further out. To
use a metaphor, the fractional derivative requires
some peripheral vision. As far as the existence
of such a theory is concerned, the foundations
of the subject were laid by Liouville in a paper

from 1832. The fractional derivative of a function
to order a is often now defined by means of the
Fourier or Mellin integral transforms. Various
types of fractional derivatives were introduced:
Riemann- Liouville, Caputo, Hadamard, Erdelyi-
Kober, Grunwald-Letnikov, Marchaud and Riesz
are just a few to name [3, 4].

Now, all these definitions satisfy the property
that the fractional derivative is linear. This is
the only property inherited from the first de-
rivative by all of the definitions. However, all
definitions do not provide some properties such
as Product Rule (Leibniz Rule), Quotient Rule,
Chain Rule, Rolls Theorem and Mean Value The-
orem. In addition most of the fractional deriva-
tives except Caputo-type derivatives, do not sat-
isfy Dα (f) (1) = 0 if α is not a natural number.

Recently, a new local, limit-based definition of
a so-called conformable derivative has been for-
mulated in [5, 6], with several follow-up papers
[1, 2, 7–16]. This new idea was quickly gener-
alized by Katugampola [17, 18]. This new def-
inition forms the basis for this work and is re-
ferred to here as the Conformable derivative (Dα

will henceforth be referring to the Conformable
derivative). This definition has several practical
properties which are summarized below.
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Note that if f is fully differentiable at t; then the
derivative is Dα (f) (t) = t1−αf ′(t). (Here, op-
erators of a very similar form, tαD1, have been
applied in combinatorial theory [18]). Of course,
for t = 0 this is not valid and it would be useful
to deal with equations and solutions with sin-
gularities. Additionally it must be noted that
conformable derivative is conformable at α = 1,
as

lim
α→1

Dα (f) = f ′,

but
lim

α→0+
Dα (f) 6= f ′.

On the other hand radial basis functions method
is one of the more practical ways of solving frac-
tional order of models. The most significant
property of an RBF technique is that there is
no need to generate any mesh so it called mesh-
free method. One only requires the pairwise dis-
tance between points for an RBF approximation.
Therefore it can be easily applied to high di-
mensional problems since the computation of dis-
tance in any dimensions is straightforward. On
the other hand in order to solve partial differ-
ential equations (PDEs) in [19, 20] Kansa pro-
posed RBF collocation method which is mesh-
free and easy-to-handle in comparison with the
other methods. Not only integer order PDEs [21]
but also Kansa’s approach has been used frac-
tional order of PDEs [22].

In this paper we find the conformable derivatives
and integrals of needed function of RBF inter-
polation such as powers, Gaussians and multi-
quadric. This derivatives play a significant role
in the numerical solution of conformable differ-
ential equations by the help of RBF method.

The remainder of this work is organized as fol-
lows: In Section 2, the related definitions and
theorems are summarised. In Section 3, the
conformable derivative and integrals have been
obtained for the radial basis functions which will
use in the RBF computations. Numerical ex-
periments are given in Section 4, while some
conclusions and further directions of research are
discussed in Section 5.

2. Preliminaries

2.1. Review of fractional derivatives and
integrals

Here we review the Riemann-Liouville fractional
derivatives and integrals introduced in [3, 4, 23].

Definition 1. The left-sided Riemann-Liouville
fractional derivative of order α of function u(t)

is described as

αDt
au(t) =

1

Γ(τ − α)

∫ t

a
(t− ξ)τ−α−1u(ξ)dξ, t > a

where τ = ⌈α⌉.
Definition 2. The right-sided Riemann-
Liouville fractional derivative of order α of func-
tion u(t) is described as

αDb
tu(t) =

(−1)τ

Γ(τ − α)

∫ b

t
(ξ − t)τ−α−1u(ξ)dξ, t < b

where τ = ⌈α⌉.
Definition 3. The left-sided Riemann-Liouville
fractional integral of order α of function u(t) is
described as

αIt
au(t) =

1

Γ(α)

∫ t

a
(t− ξ)α−1u(ξ)dξ, t > a

Definition 4. The right-sided Riemann-
Liouville fractional integral of order α of function
u(t) is described as

αIb
tu(t) =

1

Γ(α)

∫ b

t
(ξ − t)α−1u(ξ)dξ, t < b

Then Khalil et.al. [6] have introduced the con-
formable fractional derivative and integrals by
following definition.

Definition 5. Let u : [0,∞) → R. The con-
formable derivative of u(t) of order α described
by

α
Du(t) = lim

η→0

u(t+ ηt1−α)− u(t)

η

where α ∈ (0, 1) and for all t > 0. In other words
if u(t) is differentiable, then

α
Du(t) = t1−αf ′(t),

where prime denotes the classical derivative op-
erator.

Similarly, one can define the conformable frac-
tional integral operator.

Definition 6. Let u : [0,∞) → R. The left sided
conformable integral of u(t) of order α described
by

α
I
t
au(t) =

∫ t

a
tα−1u(t)dt, t > a

where α ∈ (0, 1) and the integral is classical inte-
gral operator.

Definition 7. Let u : [0,∞) → R. The right
sided conformable integral of u(t) of order α de-
scribed by

α
I
b
tu(t) =

∫ b

t
(−t)α−1u(t)dt, t < b

where α ∈ (0, 1) and the integral is classical inte-
gral operator.
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2.2. Radial basis function method

One of the properly approach to solving PDE is
radial basis functions (RBFs). The main idea of
the RBFs is to calculate distance to any fixed
center points xi with the form ϕ(‖x−xi‖2). Ad-
ditionally RBF may also have scaling param-
eter called shape parameter ε. This can be
done in the manner that ϕ(r) is replaced by
ϕ(εr). Generally shape parameter have been cho-
sen arbitrarily because there are no exact conse-
quence about how to choose best shape param-
eter. Some of the RBFs are listed in Table 1.

Table 1. Radial basis functions.

RBFs ϕ(r)

Multiquadric (MQ)
√
1 + r2

Inverse Multiquadric (IMQ) 1√
1+r2

Inverse Quadratic (IQ) 1
1+r2

Gaussian (GA) e−r2

The main advantageous of RBF technique is that
it does not require any mesh hence it called mesh-
free method. Therefore the RBF interpolation
can be represent as a linear combination of RBFs
as follows:

s =
N
∑

i=1

aiϕ(‖x− xi‖2)

where the ai’s the coefficients which are usually
calculated by collocation technique. Some of the
greatest advantages of RBF interpolation method
lies in its practicality in almost any dimension
and their fast convergence to the approximated
target function.

3. Conformable derivatives of RBFs in

one dimension

In order to construct conformable derivatives
and integrals we will make use of the frac-
tional calculus. Namely the relationship between
Riemann-Liouville fractional integral and con-
formable fractional integral can be given as fol-
lows:

Definition 8. Let α ∈ (ǫ, ǫ + 1], then the
left sided relationship between Riemann-Liouville
fractional integral and conformable fractional in-
tegral is

α
I
t
au(t) =

ǫ+1 It
a{(t− a)θ−1u(t)}

Here if α = ǫ+ 1 then θ = 1 since θ = α− ǫ.

Theorem 1. Let θ > −1 and t > a

α
I
t
a(t− a)γ =

Γ(α− ǫ+ γ)

Γ(α+ 1 + γ)
(t− a)α+γ

Proof.

α
I
t
a(t− a)γ =ǫ+1 It

a{(t− a)θ−1(t− a)γ}
=ǫ+1 It

a(t− a)γ+α−ǫ−1

=
1

Γ(ǫ+ 1)

∫ t

a
(t− ξ)ǫ

× (ξ − a)γ+α−ǫ−1dξ

=
Γ(γ + α− ǫ)

Γ(γ + α+ 1)
(t− a)γ+α

�

Theorem 2. Let θ > −1 and t > a

α
I
b
t(b− t)γ =

Γ(α− ǫ+ γ)

Γ(α+ 1 + γ)
(b− t)α+γ

Proof. The proof is similar to Theorem 1. �

For instance if we take a = 0 and
b = 0 for the above results, we obtain

α
I
t
0(t)

γ =
Γ(α− ǫ+ γ)

Γ(α+ 1 + γ)
(t)α+γ and α

I
0
t (−t)γ =

Γ(α− ǫ+ γ)

Γ(α+ 1 + γ)
(−t)α+γ respectively. Now, simi-

larly, we can get the conformable derivative of
function (t − a)γ . Namely, the derivative of
(t− a)γ is

α
D(t− a)γ = γt1−α(t− a)γ−1.

and again if we choose a = 0, we get
α
D(t)γ = γtγ−α.

Now, by using the above results, one can find
the conformable derivatives and integration of
radial basis functions. Additionally throughout
this and next sections nCk denotes the combina-

tion of n and k such that nCk =
n!

(n− k)!k!
.

3.1. For ϕ(t) = tm (power basis function)

Theorem 3. For a 6= 0, t > a and m ∈ N

α
I
t
at

m = (t−a)α
m
∑

k=0

mCka
m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t−a)k.

Proof. In order to prove the above theorem we
use the Taylor expansion of tm about the point
t = a. Namely,

tm =
m
∑

k=0

mCka
m−k(t− a)k. (1)
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If we substitute the equation (1) into conformable
integration definition, we have

α
I
t
at

m =α
I
t
a

m
∑

k=0

mCka
m−k(t− a)k

=
m
∑

k=0

mCka
m−kα

I
t
a(t− a)k

=
m
∑

k=0

mCka
m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)α+k

= (t− a)α
m
∑

k=0

mCka
m−k

× Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k.

�

Theorem 4. For b 6= 0, b > t and m ∈ N

α
I
b
tt

m = (b− t)α
m
∑

k=0

m
∑

k=0

mCka
m−k

× Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− b)k.

Proof. The proof is similar to Theorem 3. �

Theorem 5. For a 6= 0, t > a and m ∈ N

α
D(t)m =

t1−α

t− a

m
∑

k=0

mCkka
m−k(t− a)k. (2)

Proof. In order to prove the above theorem we
use the Taylor expansion of tm about the point
t = a again. In other words if we substitute the
equation (1) into conformable integration defini-
tion, we have

α
Dtm =α

D

m
∑

k=0

mCka
m−k(t− a)k

=
m
∑

k=0

mCka
m−kα

D(t− a)k

=
m
∑

k=0

mCka
m−kt1−αk(t− a)k−1

=
t1−α

t− a

m
∑

k=0

mCkka
m−k(t− a)k.

�

3.2. For ϕ(t) = e(−t2/2) (Gaussian basis
function)

Now we can make use of the conformable deriva-
tives and integration of power basis function, we
are able to find out the Gaussian basis function
derivatives and integrations.

Theorem 6. For a 6= 0, t > a and m ∈ N

α
I
t
ae

−t2/2 = (t− a)α
∞
∑

m=0

(−1)m

2mm!

2m
∑

k=0

2mCka
2m−k

× Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k.

Proof. In order to prove the above theorem we

use the Taylor expansion of e−t2/2 about the
point t = 0. Namely,

e−t2/2 =
∞
∑

m=0

(−1)m

2mm!
(t)2m. (3)

If we substitute the equation (3) into conformable
integration definition, we have

α
I
t
ae

(−t2/2) =α
I
t
a

∞
∑

m=0

(−1)m

2mm!
(t)2m

=
∞
∑

m=0

(−1)m

2mm!
α
I
t
at

2m

=

∞
∑

m=0

(−1)m

2mm!

[

(t− a)α
2m
∑

k=0

× 2mCka
2m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k

]

= (t− a)α
∞
∑

m=0

(−1)m

2mm!

2m
∑

k=0

× 2mCka
2m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k.

�

Theorem 7. For a 6= 0, b > t and m ∈ N

α
I
b
te

−t2/2 = (b− t)α
∞
∑

m=0

(−1)m

2mm!

2m
∑

k=0

2mCka
2m−k

× Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− b)k.

Proof. The proof is similar to Theorem 7. �

Theorem 8. For a 6= 0, t > a and m ∈ N

α
De−t2/2 = t1−α

∞
∑

m=0

(−1)m2m

2mm!
(t)2m−1.

Proof. Similarly by using the Taylor expansion
of Gaussian function about t = 0 we can calculate
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the conformable derivative of it. That is,

α
De−t2/2 =α

D

∞
∑

m=0

(−1)m

2mm!
(t)2m

=
∞
∑

m=0

(−1)m

2mm!
α
Dt2m

=
∞
∑

m=0

(−1)m

2mm!
t1−α2mt2m−1

= t1−α
∞
∑

m=0

(−1)m2m

2mm!
(t)2m−1.

�

3.3. For ϕ(t) =
√
1 + t2 (Multiquadric basis

function)

Similarly one can compute the conformable
derivatives and integrations.

Theorem 9. For a 6= 0, t > a and m ∈ N

α
I
t
a

√

1 + t2 = (t− a)α
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m

×
2m
∑

k=0

2mCka
2m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k.

Proof. In order to prove the above theorem we
use the Taylor expansion of

√
1 + t2 about the

point t = 0. Namely,

√

1 + t2 =
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
(t)2m. (4)

If we substitute the equation (4) into conformable
integration definition, we have

α
I
t
a

√

1 + t2 =α
I
t
a

∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
(t)2m

=
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
α
I
t
at

2m

=
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m

×
[

(t− a)α
2m
∑

k=0

2mCka
2m−k

× Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k

]

= (t− a)α
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m

×
2m
∑

k=0

2mCka
2m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(t− a)k.

�

Theorem 10. For a 6= 0, b > t and m ∈ N

α
I
b
t

√

1 + t2 = (b− t)α
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m

×
2m
∑

k=0

2mCka
2m−k Γ(α− ǫ+ k)

Γ(α+ 1 + k)
(b− t)k.

Proof. The proof is similar to Theorem 9. �

Theorem 11. For a 6= 0, t > a and m ∈ N

α
D

√

1 + t2 = t1−α
∞
∑

m=0

(−1)m 2mCm2m

(1− 2m)4m
t2m−1.

Proof. Similarly by using the Taylor expansion
of multiquadric basis function about t = 0 we can
calculate the conformable derivative of it. That
is,

α
D

√

1 + t2 =α
D

∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
(t)2m

=
∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
t2m

=

∞
∑

m=0

(−1)m 2mCm

(1− 2m)4m
t1−α2mt2m−1

= t1−α
∞
∑

m=0

(−1)m 2mCm2m

(1− 2m)4m
t2m−1.

�

4. Numerical example

In this section we will give some results of numeri-
cal solution of conformable differential equations
to validate our numerical scheme. For that we
will use RBF interpolation method by the help of
collocation technique. Consider the general form
of following conformable differential equation:
α
Dy(t) + p(t)y(t) = q(t), y0(t) = y(t0). (5)

Let tj be equally spaced grid points in the inter-
val 0 ≤ tj ≤ K such that 1 ≤ j ≤ L, t1 = 0
and tL = K. Additionally, because collocation
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approach has been used we not only require an
expression for the value of the function

y(t) =
L
∑

k=1

akψ(‖x− xk‖) (6)

but also for the conformal derivative given in (5).
Thus, by conformal differentiating (6), we get

α
Dy(t) =

L
∑

k=1

aαkDψ(‖t− tk‖)

where α
D denotes the conformable derivative the

with respect to t. In order to compute con-
formable derivative of radial basis functions we
take the advantage of formulas which are derived
in the previous section. Then using the RBF col-
location method, one can compute the unknown
coefficients ak’s by solving following matrix sys-
tem:

L
∑

k=1

aαkDψ(‖xj − xk‖) + p(t)
L
∑

k=1

akψ(‖xj − xk‖)

= q(t), j = 2, . . . , L.

with boundary condition. In order to illustrate
this scheme by numerically we take the following
conformable differential equations:

(1)
α
Dy(t) + y(t) = 0

y0(t) = 1, yexact(t) = e−
1

α
tα

(2)
α
Dy(t) + αy(t) = 1 + tα

y0(t) = 0, yexact(t) =
tα

α
(3)

α
Dy(t) + y(t) =

√

1 + sin

(

2tα

α

)

y0(t) = 0, yexact(t) = sin

(

tα

α

)
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Figure 1. y(t) versus t using multi-
quadric basis function with ε = 10−4

for p(t) = 1 and q(t) = 0 for different
value of α.

Here we use the multiquadric basis func-
tion with ε = 10−4. In Figures 1, 2
and 3, we present the numerical solutions of
given conformable differential equations with
different α values. These results are in
accord with the exact solutions of them.
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Figure 2. y(t) versus t using multi-
quadric basis function with ε = 10−4

for p(t) = α and q(t) = 1 + tα for
different value of α.
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Figure 3. y(t) versus t using Mul-
tiquadric basis function with ε =
10−4 for p(t) = 1 and q(t) =
√

1 + sin
(

2tα

α

)

for different value of
α.

5. Conclusion

In this paper we gave the derivatives and inte-
grals of three kinds of radial basis functions such
as powers, Gaussians and multiquadric by using
the conformable derivatives and integrals which
are new type of fractional calculus. These find-
ings allow to solve conformable differential equa-
tions by the RBF’s. Then we gave three differen-
tial equations to show that this technique is ap-
plicable. These differential equations are solved
by the help of RBF collocation method.
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