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1. Introduction and preliminaries Chebyshev inequality, the reader is refer to [2H6].

This article is based on the well known Chebyshev

functional [I]: We also need to introduce the Pélya and Szegé in-

equality [7]:

T(f,g) fbfg dxfb92

b

- ! /f<x>g<w>dm (s f@)

b—a
bia/bf(x)dx bia/bg(fﬁ)dx , <\/> \/7>

pt Using the above Pélya-Szego inequality, Dragomir
and Diamond [8] established the following Griiss
where f and g are two integrable functions which  type inequality:
are synchronous on [a, b], i.e

Theorem 1. Let f,g : [a,b] — Ry be two inte-

(F(z) — fF(y)(g(x) — g(y)) > 0 grable functions so that

for any z,y € [a,b], then the Chebyshev inequal- 0<m< fz) <M <oo

ity states that T'(f,g) > 0. and
For some recent counterparts, generalizations of 0<n<g(x)<N<o
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for a.e. x € [a,b.
Then, we have

IT(f,9;a,D)|
< LM —m)(N —n)

4 VmnMN
I I
Xb—a/a f(ac)dxb_a/a g(x)dx.

The constant 5 is best possible in () in the sense
it can not be replaced by a smaller constant.

For our purpose, we recall some other preliminar-
ies: We note that the beta function B(a,f) is
defined by (see, e.g. [9, Section 1.1])

B(a, §) 2
Uty ety (R@) >0

_ [ eta-oa G20
P(0)1(8) )
T(at4) o deCik).

where I' is the familiar Gamma function. Here
and in the following, let C, R, RT and Z; be the
sets of complex numbers, real numbers, positive
real numbers and non-positive integers, respec-
tively, and let R{ := R* U {0}.

Definition 1. (see, e.g., [10], [11]) Let [a,b]
(—00 < a < b < ) be a finite interval on
the real axis R. The Riemann-Liouville fractional
integrals(left-sided) of order o € C, Re(a) > 0 of
a real function f € L(a,b), is defined:

(Jorf) (z) (3)
Lot f(t)
o F(a)/a (x =)t

dt (x> a).

Definition 2. (see, e.g., [10], [11]) Let (a,b)
(0 < a < b < o0) be a finite or infinite inter-
val on the half-azis RT. The Hadamard fractional
integrals(left-sided) of order o € C, Re(a) > 0 of
a real function f € L(a,b) are defined by

(He\ f) (x) (4)
1 r rzya—l1
= T / (g 7) fit)‘“

Definition 3. (see, e.g., [10/, [11]) Let (a,b)
(—o0 <a < b<o0) be a finite or infinite interval
on the half-azis RY. Also let Re(a) > 0,0 > 0
and n € C. The Erdelyi-Kober fractional inte-
grals (left-sided) of order o € C of a real function
f € L(a,b) are defined by

(a <x<b)

(Ig'i‘,o’,nf) (IL‘) (5)
gp—oletn) rr yo(n+1)-1
T T(a) /a (2 — ta)1_af(t) dt

0<a<z<b< ).

Definition 4. [12] Let [a,b] C R be a finite in-
terval. The Katugampola fractional integrals (left-
sided) of order o € C, p > 0 Re(ax > 0) of a real
function f € XE(a,b) are defined by

(15, f) (x) (6)
-« T p—1
- g(a) /a = i tp)l_af(t) dt.

Definition 5. (see, e.g., [10], [11]) Let a con-
tinuous function by parts in R = (—o0,00). The
Liouwille fractional integrals (left-sided) of order
a € C, R(a) >0 of a real function f, are defined

by

(x> a)

(IS f) (z) (7)
Lo f@)
= ——r—dt R).
ol e L
Here, the space X% (a,b) (ce R, 1 < p < 00) con-
sists of those complex-valued Lebesgue measur-

able functions ¢ on (a,b) for which [[¢| x» < oo,
with

b . da 1/p
lellxe = ([P ) " (<p<o)

and
[l x2 = esssup,e(qp [ (x)]]-

In particular, when ¢ = 1/p (1 < p < o0), the
space X% (a,b) coincides with the classical LP(a, b)
space.

Let 0 <a <z <b< oo Also,let p € X(a,b),
a,p € RY, and 3, n, k € R. Then, the fractional
integrals (left-sided and right-sided) of a function
¢ are defined, respectively, by (see [13])

("2 00) (@) (8)

B plfﬁxn /:v FP(n+1)—1 ( )d
T T(@) o @yt

and
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(58, 0) @) (9)
- pl By b FEtp—1
= e ). G

Remark 1. The fractional integral (8]) contains
five well-known fractional integrals as its particu-
lar cases (see also [I3H15]):

(i) Setting k = 0, 7 = 0 and p = 1 in (§),
the integral operator () reduces to the
Riemann-Liouville fractional integral (3]
(see also [10} p. 69]).

(i) Setting k =0,7n=0,a=—oo0 and p =1

in (), the integral operator () reduces

to the Liouville fractional integral (T) (see

also [10, p.79]).

Setting 8 = «, kK = 0, n = 0, and taking

the limit p — 07 with L’'Hospital’s rule in

[®)), the integral operator (8) reduces to

the Hadamard fractional integral () (see

also [10, p. 110]).

Setting 8 = 0 and kK = —p(a +n) in (),

the integral operator (§]) reduces to the

Erdélyi-Kober fractional integral (B (see

also [10, p. 105)).

(v) Setting = o, k = 0 and n = 0 in (§),
the integral operator (§]) reduces to the
Katugampola fractional integral (6l (see
also [12]).

(iii)

The principle aim of the present paper is to es-
tablish new Pdlya-Szego inequalities and other of
Chebyshev type by using generalized Katugam-
pola fractional integration theory.

2. Main Results

In this section, we establish some new Chebyshev
type inequalities involving the Katugampola frac-
tional integration approach. Thanks to (2)), we
obtain (see [15, Eq. (3.1)])

pl_ﬁxﬁ Tp(77+1)_1

v T
prte(nta) n+1
- ot 1) (10)
PP (a+n+1)

= A2 (o)

(o, z€R™; B, p,n, K ER).

We also let

(7180 0) (@) 1= (P13580) (@),

Lemma 1. Let B,k € R, z, a, p € R", and
NS ]Rar. Let f and g be two positive integrable
functions on [0,00). Assume that there exist four
positive integrable functions vy, ve, w1 and wa,
such that:

0 <wi(r) < f(7) < wa(r)
0<wi(r) <g(r) <ws(r) (11)
(r €[0,z],z > 0)

Then the following inequality holds:

p[%f {wiws 2} (m)ﬂlﬁf {vivag?} ()
(Mﬁf’f {(v1w1 4 vawa) fg} (@)2

1
<>,
!

(12)

Proof. From (), for 7 € [0,z], x > 0, we can
write

i) S0)
(25507 2 9)
and
#2) ()
(0 am) =e )
Multiplying (I3) and (4], we get
v(r) S0 (f@) _w)
(25 -10) G - am) =
From the above inequality, we can write
T)wi(7) + v2(T)w2(7)) f(7)9(T) (15)

(v1(
> wy(7)wa (1) f2(7) + v1(T)va(7) g% (7).

Multiplying both sides of (IH) by

plfﬁxn FP(n+1)—1

I(a) (xp—7P)l-a

and integrating the resulting inequality with re-
spect to 7 over (0,x), we get

P13l {(iwr + vawn) fa} (x)
> pI,‘i’,f {wlef2} (x) + plr?f {U1U292} (x)
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Applying the AM-GM inequality, i.e. (a+b >
2vab, a,be R"), we have

p[;if {(viwr + vown) fg} (x)

> 20/ I3 {wrwa f2} (2)P I3 {v1vag?) (x)

which implies that

plg‘,’f {w1w2f2} (a:)plg"f {U1U292} (x)
1

< 1 (Pfgi’,? {(viw1 + vows) fg} (aj))Q .

So, we get the desired result. O

Corollary 1. If vy = m, vo = M, w1 = n and
wo = N, then we have

("5 1) @) (713 e?) (@)
(12 19) @)

2
1 mn MN
< Sy =y —
- 4( MN mn

Remark 2. Setting x = 0, n = 0 and p = 1
in Lemma [, yields the inequality in [16, Lemma
3.1].

Lemma 2. Let 8,k € R, z, a, 0, p € RT, and
n € Ra'. Let f and g be two positive integrable
functions on [0,00). Assume that there exist four
positive integrable functions vi, vo, w1 and wo
satisfying condition (I1l). Then the following in-
equality holds:

PISP {vrva} (2)PI0F {wiws} (x)
<PIOP{ 2} ()P 100 {g?} ()

<1 (PI;;“;E {orf} @°10F {ung} (&) (16)

— 4
2
10 {vaf} ()P 197 {vag} <~’C>) :

Proof. From ([II), we get

(a8-w8) >

and

which lead to

wa(§)  wi(€ €)
F2(r) | o(r)us(r)
27O T o ©m© 1)

Multiplying both sides of (IZ) by w1 (€)w2(£)g?(€),

we get

vi(7) f(T)w1(€)g(§) + va(T) f(T)w2(£)g(€)
> w1 (w2 (&) f2(1) + vi(r)va(T)g*(§).  (18)

Multiplying both sides of (I8) by

(=B g2s pp(n+1)—1 gplnrtl)—1
L(a)T(0) (xr — 7P)t=e (2P — £P)1-0
and integrating the resulting inequality with re-
spect to 7 and & over (0,z)%, we get

P10 {or f} () 100 {wig) (x)
I (oo f} ()P 1) {vag} ()
> L2 {17 (@) I {wwn) (2)
+PI0P {vroa} (@) I0F { g%} (x).

Applying the AM-GM inequality, we have

PIE (o f} (2)PI0E {wig) (2)
HPISP {va f} (2)PIDE {v2g} (2)

> 2\/PIE {2} (2)P Iy {wnwa} (x)

I3 {orvs} (2108 {92} ().

So, we get the desired inequality of (I6]). O

Corollary 2. If vy = m, vo = M, w1 = n and
we = N, then we have

Remark 3. Setting x =0, n =0 and p =1 in
Lemmal2 yields the inequality in [16, Lemma 3.3].
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Lemma 3. Suppose that all assumptions of

Lemma [ are satisfied. Then, we have:

PP 2} (@) Iyl {a?) (= (19)
a f f
Proof. Using the condition (III), we get
ptBgr [r -1
I(a) /0 (xr — Tp)lfaf (T)dr
pl=Byr = pe(rtl)—1 o (7)
= F(a) /O (xp _ Tp)l—a w1 (,/_) f(T)g(T)dT
which leads to
Il (1) (@) gpw{gg}(;ﬁ). (20)
Similarly, we have
pl=Byr = gptntl)—
') /0 (zP — é‘p)l 09 (f)df
pl=Bgh [x epD=1 ()
=T /0 (2P — €P)10 0y (€) F(&)g(&)de,
which implies
p#ﬂfﬂws”%{f?}m. (21)

Multiplying (20) and (21]), we get the inequality
of (I9). O

Corollary 3. If vi = m, vo = M, w; = n and
wo = N, then we have

(535?) @ ("13#9) @) _ nn
(12 19) @) (*1359) (@)~

mn

Remark 4. Setting k =0, n =0 and p =1 in
Lemmal3 yields the inequality in [16, Lemma 3.4).

Theorem 2. Let 3,k € R, z, o, 0, p € RT, and
n € Rg. Let f and g be two positive integrable
functions on [0,00). Assume also that there exist
four positive integrable functions vy, v, w1 and
we satisfying the condition (I1l). Then the follow-
ing inequality holds:

AR (om) ("5 f9) ()
+AL2(0,m) ("I fg) (@)
= (1 ) @) (*189) @)
- (mis) @) (1) @

|G1(f,v1,v2)(2) + Ga(f, v1, v2) ()] /2
x|Ga(g, w1, ws) () + Ga(g, wi, ws) ()] /2

(22)

IA

where

Gl(f7 U1, UZ)(J;)
_ AZRO,m)
_ Aax(n)
2
(P15 {0+ 02} (@)
X
oIk {viva} (x)
— (7132 1) @) ("1585) (@)

and

Go(f,wi,wa)(x)
_ AfR(a,n)
4
(PI;‘;;E {(w1 +w2)f} (37))2
T (e} (o)
~ (P157) @) (P12 F) (@)

Proof. Let f and g be two positive integrable
functions on [0,00). For 7,¢ € (0,x) with z > 0,
we define H(1,&) as

H(r,§) = (f(1) = f(&) (9(7) — 9(£)) ,
equivalently,
H(r.) (23)
= f(m)g(r) + F(€)g(&) — f(7)9(&) — F(&)g(T)

Multiplying both sides of ([23) by

p ret)=1 - ep(nt1)—1
L(a)T(0) (zp — rP)l=e (2P — £P)1-0

2(1-B) 5.2w
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and double integrating the resulting inequality

with respect to 7 and & over (0, )2, we get

22k n+1

gp(n+1) 1
X WH(T, £)drde

= Az (em) (P12 ) (@)
+AL(0,m) (”ﬁ’ff 9) (z)
—(Pg1) (@) (°1929) (@)

_ (pfgff) () (plgffg) (2). (24)

Applying the Cauchy-Schwarz inequality for dou-

ble integrals, we can write

72k Tp(77+1
(xP —TP) (zp — 7P)1—a

§p n+1
XwH(T,wg)deé
12K FP(n+1)—
oo b
5/7 77+1 p (1 _ ﬁ) 2K

—_— 2 T —_—
(o — e =5 + T(@)T(0)

pln+1)— gotrt)=1
/ / $p—7—P l1-a :Up 5;;)1 gf (f)def

72k Tp(n+1
(xP —TP) (xp — 7P)1-c
¢r n+1)

1/2
< 2 ) <s>dnz§}

2 _ B)g2e (n+1)
X |:,0 ta / / J;p_n»]—p -«

g+t pP(1 = )a
“Gar—eo O gy

p(n+1)— 1% (n+1)— (§)d p
// (o — o)== (ar — gy ()T
22K 7_p(n—&-l
"o b, @

1% n+1 1/2
X WQ(T)Q(g)deﬁ]

drd€ +

Therefore,

225 17+1) 1

H(T, §)d7d§‘

< [Ag;fé(a,n) (7152 (@)
+AL20.m) (P52 1) (@)
() () @)
<|aztan (122) @)
+AZE0,m) ("I 0?) ()

2 ("I5:d9) (@) (*1529) <x>] RS

Applying Lemma [ with wy (1) = wa(7) = g(7) =
1, we get

L) (P12 1) (@)

o (5 =0 )
= 4 PIe {1} (z) '

This implies that

AL O,m) ("Il 12) ()
— ("1 1) @) (P1027 ) (@)
_ 80,0 (P13 () @)
A oIy {vivs} ()
(PI“ﬁf) ) (1521) @)
= Gi(f, 01, 02)(2). (26)

and

Ao n) (PIRES?) ()
— (12 1) @) (P S ) (@)

_ 228 (T @ + e @)
- PIpR {wiws} (2)
~(P131) @) (P17 ) @)

= Go(f,w1,w2) (). (27)

Similarly, applying Lemma [ with v(r) =
vo(T) = f(7) = 1, we have
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AZO.) (PI529%) ()
—(*1289) (@) (*1029) (@)

< Gi(g, w1, w2)(x) (28)
and

Az m) (P1024%) ()

— ("15289) @) (*1829) ()

< Ga(g,wr, wa)(x). (29)

Using (20)-(29), we conclude the desired re-
sult. g

Remark 5. Setting k =0, n =0 and p =1 in
Theorem [2, yields the inequality in [16, Theorem
3.6].

Theorem 3. Assume that all conditions of The-
orem (2) are fulfilled. Then, we have:

AR (asm) ("I f9) ()

_ (pj;;f ) (z) (pjngg) ()
< |G (f, 01, 02)(x)G(g, wi, wo) () |/?

where

(30)

G(u,v,w)(x)
AR ()
B 4

(73 {0+ w)u} (@))
X
oIk {ow} (x)

—((vr520) (@)2.

Proof. Setting a = 6 in ([22]), we obtain (30). O

Corollary 4. If vy = m, vo = M, w1 = n and
wo = N, then we have

G(f,m,M)(x)
2
A (CEOION

G(g:n, N)(Zw)
O () o)

Remark 6. We consider some particular cases of
the result in Theorem [3]

(i) Setting kK = 0, n = 0 and p = 1 in the
result in Theorem [ yields the inequality
in [I6, Theorem 3.7,

(ii) Setting 8 = 0 and Kk = —p(a +n) in the
result in inequality B0l yields to

L(n+1)
Mla+n+1)

- (Igt%pmf) () (I€+,pmg) (z)

< |G(f,v1, U2)(x>G(g,wl,w2)(x)‘1/2

where

(I(()X+,pmfg) (v)

G(u,v,w)(x)

~ T(n+1)

AT (a+n+1)

S {0+ w)u} (@)
Ig—l—,p,n {UU)} (l’)

= (14 poy) ()

(iii) Setting f = «, kK =0 and n = 0 in the re-
sult in Theorem [3, under the correspond-
ing reduced assumption, we obtain

Tat1) (P18, fg) (x)

= (PI5+.f) (@) (*Ig49) (@)

< |G(f,v1,v2) ()G (g, wi, ws) ()| /2

where

G(u,v,w)(x)
P

T AT(a+1)

I8 {0 + wyu ()
oI5, {vw} (z)

—((*18w) ()"
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