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 In this work, we develop a formulation for the approximate-analytical solution of 

fractional partial differential equations (PDEs) by using conformable fractional 

derivative. Firstly, we redefine the conformable fractional Adomian 

decomposition method (CFADM) and conformable fractional modified 

homotopy perturbation method (CFMHPM). Then, we solve some initial 

boundary value problems (IBVP) by using the proposed methods, which can 

analytically solve the fractional partial differential equations (FPDE). In order to 

show the efficiencies of these methods, we have compared the numerical and 

exact solutions of the IBVP. Also, we have found out that the proposed models 

are very efficient and powerful techniques in finding approximate solutions for 

the IBVP of fractional order in the conformable sense.  
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1. Introduction 

Fractional differential equations have an important 

role in modelling and describing certain problems 

such as diffusion processes, chemistry, engineering, 

economic, material sciences and other areas of 

application. Zhang [1] used a finite difference method 

for the fractional PDEs. Ibrahim [2] interpreted 

holomorphic solutions for nonlinear singular 

fractional differential equations. Odibat and Momani 

[3, 4] applied several different types of methods to 

fractional PDEs and compared the results they 

obtained.  

On the other hand, several researchers [5-17] have 

applied the homotopy perturbation/analysis methods 

(HPM/HAM) and Adomian decomposition method 

(ADM) to solve different kinds of fractional ordinary 

differential equations (ODEs), fractional partial 

differential equations (ODEs), integral equations (IEs) 

and integro-differential equations (IDEs). Among 

them Javidi and Ahmad [18] proposed a numerical 

method which is based on the homotopy perturbation 

method and Laplace transform for fractional PDEs. In 

[19], LHPM which is a combination of the HPM and 

Laplace Transform (LT) has been employed for 

solving one-dimensional partial differential equations. 

Recently, [20-22] introduced a new fractional 

derivative called conformable derivative operator 

(CDO) and by the help of this operator, the behaviors 

of many scientific problems have been solved and 

some solution methods have been developed. Many 

researchers [23-27] have studied on CDO in 

engineering, physical and applied mathematics 

problems. The aim of this study is to construct CADM 

and CMHPM by using conformable derivative. Many 

linear and nonlinear fractional PDEs can be solved 

with these methods. We have solved two fractional 

order PDEs with these mentioned methods and 

compared the numerical and approximate-analytical 

solutions in term of figures and tables. When looking 

at the results, it is obvious that these methods are very 

effective and accurate for solving fractional partial 

differential equations. 

2. Some preliminaries 

In this section, we give some basic concepts of 

conformable fractional derivative and its properties. 

Definition 1. Given a function  : 0, .f    Then 

the conformable derivative of f  order  0,1   is 

defined by [20]:  

  
   1

0
lim

f t t f t
CD f t















 
   (1) 
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for all 0.t   

Theorem 1. [20] Let  0,1   and ,f g  be  

differentiable at a point 0.t   Then;  

(i)      CD af bg aCD f bCD g        for all 

, ,a b  

(ii)  k kCD t kt 





   for all ,k   

(iii)    0CD f t   for all constant functions 

  ,f t k   

(iv)      ,CD fg fCD g gCD f        

(v)  
   

2
/ ,

gCD f fCD g
CD f g

g

 



 




   

(vi) If  f t  is differentiable, then 

    1 .
d

CD f t t f t
dt







    

 

Definition 2. [20, 27] Let f  be an n times 

differentiable at .t  Then the conformable derivative of 

f  order   is defined as: 

  
        

1 1

0
lim

f t t f t
CD f t

   








            




 
  

for all  0, , 1 .t n n    Here     is the smallest 

integer greater than or equal to .   

  

Lemma 1. [20, 27] Let f  be an n times 

differentiable at .t  Then  

    CD f t t f t
  



      
   

for all  0, , 1 .t n n  
 

3. Conformable fractional adomian decomposition 

method 

Consider the following nonlinear fractional partial 

differential equation: 

          , , , ,L u x t R u x t N u x t v x t           

(2) 

where L CD    is a linear operator with 

conformable derivative of order  1 ,n n      

R  is the other part of the linear operator, N  is a non-

linear operator and  ,v x t  is a non-homogeneous 

term. In Eq. (2), if we apply the linear operator to 

Lemma 1, we obtain the following equation [28]:  

 
       

,
, , , .

u x t
t R u x t N u x t v x t

t



 



  
  

  


  


 

Applying the inverse of linear operator 

 
11

1

1 1

0 0

1
. ,

nt

n n

n n

L d d d



  
  







   
      to both sides 

of Eq. (2), we obtain  

        

 

1 1 1

1

, , ,

, .

L L u x t L R u x t L N u x t

L v x t

   



  

   





 


  (3) 

The conformable ADM suggests the solution  ,u x t  

be decomposed into the infinite series of components  

   
0

, , .n

n

u x t u x t




   (4) 

The nonlinear function in Eq. (2) is decomposed as 

follows:   

   0 1

0

, , , , ,n n

n

N u A u u u




   (5) 

where 
nA  is the so-called Adomian polynomials. 

These polynomials can be calculated for all forms of 

nonlinearity with respect to the algorithms developed 

by Adomian [29].  

Substituting (4) and (5) into (3), we obtain  

  1 1 1

0 0 0

,0 .n n n

n n n

u u x L v L R u L A  

  
  

  

  

   
      

   
    

 (6) 

By using Eq. (6), the iteration terms are obtained by 

the following way: 

          

  1

0

1 1

1 0 0

1 1

1

,0 ,

,

, 0.n n n

u u x L v

u L Ru L A

u L Ru L A n



 

 





 

 

 

  

 

  

   

  (7) 

Then, the approximate-analytical solution of Eq. (2) is 

obtained by  

   
0

, , .
k

k n

n

u x t u x t


  

Finally, we obtain the exact solution of Eq. (2) as  

   , lim , .k
k

u x t u x t



 

4. Conformable fractional modified homotopy 

perturbation method 

In this section, some basic solution steps and 

properties of modified homotopy perturbation method 

are given in the conformable sense (CMHPM) 

definition. We introduce a solution algorithm in an 

effective way for the nonlinear PDEs of fractional 

order. Firstly, we consider the following nonlinear 

fractional equation:  

       , , , , , , ,t x xx x xxCD u x t L u u u N u u u v x t

     

 (8) 

where 0,t   L  is a linear operator, N  is a nonlinear 

operator, v  is a known analytical function and 

, 1 ,tCD m m      is the Conformable fractional 

derivative of order ,  subject to the initial conditions  

   ,0 , 0,1, , 1.k

ku x v x k m    

According to the homotopy technique, we can 

construct the following homotopy:  
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   

 

, , ,

, , ,

m

x xxm

m

x xx tm

u
L u u u v x t

t

u
p N u u u CD u

t






 



 
   

 

  (9) 

 or evenly,  

 

   

,

, , , , ,

m

m

m

x xx x xx tm

u
v x t

t

u
p L u u u N u u u CD u

t










 
    

 

 (10) 

where  0,1 .p  Here, the homotopy parameter p  

always changes from zero to unity. In case 0,p   Eq. 

(9) becomes the linearized equation   

     

   , , , ,
m

x xxm

u
L u u u v x t

t


 


 

and Eq. (10) becomes the linearized equation  

              

 , .
m

m

u
v x t

t





 

If we take the homotopy parameter 1,p   Eq. (9) or 

Eq. (10) turns out to be the original differential 

equation of fractional order (8). As the basic 

assumption is that the solution of Eq. (10) can be 

written by using a power series in :p  

    
2 3

0 1 2 3 .u u pu p u p u      

At the end of the solution steps, we approximate the 

solution as:  

   
0

, , .n

n

u x t u x t




  

5. Numerical examples 

In this section of the study, we show the effectiveness 

and appropriateness of the CADM and CMHPM by 

applying them to two different problems.  

 

Example 1. We consider the linear time-fractional 

initial boundary value problem [30] 
2

2
, 0, , 0 1,

u u u
x u t x R

xt x






  
      

 
 (11) 

with the initial condition  

                   ,0u x x   (12) 

and the boundary conditions  

          ,0 1, 0, 0.xu x u t    (13) 

Firstly, we will solve this problem by using the 

proposed conformable Adomian decomposition 

method of fractional order. Let L CD
t



   


 


 be 

a linear operator, then if we apply the operator to Eq. 

(11) we have  

        
2

2
, .

u u
CD u x t x u

xx


 
  


  (14) 

By using the Lemma 1, we can write the Eq. (14) as  

    
  2

1

2

,
.

u x t u u
t x u

t xx


  

  
 

  (15) 

Now, we apply the inverse of operator L   which is 

 1

1

0

1
.

t

L d 






 
   to both sides of Eq. (15), we get  

   
2

1

2
, ,0 .

u u
u x t u x L x u

xx






  
    

 
  

According to the iteration terms (7) and the initial 

condition (12), we can write the iterations and the 

decomposition series terms as: 

 0

2

1 0 0

1 02

2 2
1 1 1

2 12 2

2 3
1 2 2

3 22 3

2

1 2 1

2

,0 ,

2 ,

4 ,
2!

8 ,
3!

1
2 .

2 !

n
nn

n n

u u x x

u u t
u L x u x

xx

u u t
u L x u x

xx

u u t
u L x u x

xx

u t
u L x x

x n





































 



 

  
    

 

  
    

 

  
    

 

 
  

 

  (16) 

So, by using the decomposition series in Eq. (16), the 

approximate solution of Eq. (11) obtained by 

Adomian decomposition method in conformable sense 

is 

   
0 0

, , 2 .
!

nk k
n

k n n
n n

t
u x t u x t x

n



 

     

From the last equation we obtain the approximate 

analytical solution of the problem as 

       
 2

, lim , .

t

k
k

u x t u x t xe






    

Then the exact solution of the Eq. (11) subject to the 

initial condition (12) and the boundary conditions (13) 

for special case of 1,   is obtained as  

                  2, .tu x t xe   

Secondly, we solve the Eq. (11) by using the modified 

homotopy perturbation method in conformable sense. 

If we consider the initial condition (12) and according 

to the homotopy (9), we can obtain the following set 

of linear partial differential equations:  

 

 

 

0

0

2

0 0 01

0 0 12

2

2 1 1 1

1 1 22

0, ,0 ,

, ,0 0,

, ,0 0,

u
u x x

t

u u uu
x u CD u u x

t t xx

u u u u
x u CD u u x

t t xx










 



  
     

  

   
     

  

  

 (17) 

By solving the Eq. (17) according to 0 1 2, ,u u u and 3 ,u  

the first several components of the modified 

homotopy perturbation solution for Eq. (11) are 
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derived as follows: 

 

 

 

 

  

0

1

2
2

2

3 2
2

3

3 3 3 2

, ,

, 2 ,

2
, 2 2 ,

2

4 4
, 2 4

3 2

4 4 2
,

2 3 3 3 2

u x t x

u x t xt

t
u x t x t t

t t
u x t x t t

t t t
x





  





   





  





 
   

 

 
    

 

 
        

  

and so on, in this way the rest of components of the 

homotopy can be obtained. Then the approximate 

solution of Eq. (11) is given by  

         

  

0 1 2 3

3 2 3
2

3 3 2

, , , , ,

4 6 4
1 6 6 .

3 2 2 3

4 2

3 3 2

u x t u x t u x t u x t u x t

t t t
x t t

t t
x

 

 

  

 

 

 

    

 
          

 
    

  

Then the exact solution of the Eq. (11) subject to the 

initial condition (12) and the boundary conditions (13) 

for special case of 1,   is obtained with CMHPM as 

                   2, .tu x t xe   

The following Figure 1 shows CMHPM, CADM and 

exact solutions for various values of .  According to 

the Figure 1, it can be say that the numerical results 

found are very close to the exact solution results.   

0.0 0.2 0.4 0.6 0.8 1.0
0

3

6

9

12

15

18

21

 

 u
 (

x
, 
t)

t

 CADM

 CMHPM

 Exact

 CADM

 CMHPM

 Exact

 CADM

 CMHPM

 Exact

 

Figure 1. Comparison the numerical solutions and the exact 

solutions at 0.6x   for various values of .  

Example 2. Now let us consider the following time-

fractional diffusion equation [31] 

2

2
, 0, , 0 1,

u u
t x R

t x






 
    

 
  (18) 

with the initial condition  

            ,0 sin .u x x   (19) 

subject to the boundary conditions  

    ,0 cos , 0, 0.xu x x u t    (20) 

Solve the problem by using CADM. Let us apply the 

linear operator to Eq. (18), then we obtain  

 
 2

2

,
, , 0, , 0 1,

u x t
CD u x t t x R

x
 


    


 

 (21) 

Also, we can write the Eq. (21) as  

   2

1

2

, ,
, 0, , 0 1,

u x t u x t
t t x R

t x

 
 

    
 

 

 (22) 

Applying the inverse of operator L   to both sides of 

Eq. (22), we have  

   
 2

1

2

,
, ,0 .

u x t
u x t u x L

x






 
     

  

Using Eq. (7) and the initial condition (19), we can 

obtain the iterations in conformable sense as:  

 

 

0

2

1 0

1 2

2 2
1 1

2 2 2

2 3
1 2

3 2 3

2

1 1

2

,0 sin ,

sin ,

sin ,
2!

sin ,
3!

sin 1 .
!

n
nn

n n

u u x x

u t
u L x

x

u t
u L x

x

u t
u L x

x

u t
u L x

x n





































 



 

 
   

 

 
  

 

 
   

 

 
   

 

  (23) 

Then, by using the obtained values in Eq. (23) the 

approximate solution of Eq. (18) is obtained as  

     
0 0

, , sin 1 .
!

nk k
n

k n n
n n

t
u x t u x t x

n



 

      

Using the last equation we obtain the approximate 

analytical solution of the proposed problem  

        , lim , sin .
t

k
k

u x t u x t xe







    

The exact solution of the Eq. (18) with the initial 

condition (19) for special case of 1,   is found as  

               , sin tu x t xe   

which is the same solution with [31]. Now, let us 

consider the solution of problem (18) with CMHPM. 

In order to obtain the solution, we use the homotopy 

and following set of linear partial differential 

equations:  
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 

 

 

0

0

2

0 01

0 12

2

2 1 1

1 22

0, ,0 sin ,

, ,0 0,

, ,0 0,

u
u x x

t

u uu
CD u u x

t t x

u u u
CD u u x

t t x










 



 
   

  

  
   

  

  (24) 

By solving Eq. (24) according to 
0 1,u u and 

2 ,u  the 

first three components of the modified homotopy 

perturbation solution for Eq. (18) are obtained as 

follows: 

 

 

 

 

  

0

1

2 2

2

3 2
2

3

3 3 3 2

, sin ,

, sin ,

, sin ,
2 2

2
, sin ,

6 2

sin
2 3 3 3 2

u x t x

u x t t x

t t
u x t x t

t t
u x t x t t

t t t
x





  





   





  



 

 
    

 

 
     

 

 
        

  

and so on, in this manner the rest of components of the 

homotopy can be obtained. The approximate solution 

of problem (18) is given by  

       

  

0 1 2

2 3 2

3 3 3 2

, , , ,

3 3
sin 1 3

2 6 2

sin
2 3 3 3 2

u x t u x t u x t u x t

t t t
x t

t t t
x



  



   



  

   

 
     

 

 
        

  

Then, for the special value of 1,   the exact solution 

of the Eq. (18) subject to the initial condition (19) is 

obtained with CMHPM as  , sin tu x t xe  which is 

the same solution with obtained CADM one. 

 

Table 1. Absolute errors    , ,ku x t u x t  obtained with 

CADM for Example 2. 

x    t  

 
 0.1 0.3 0.5 0.7 

0.1 

0.20    

0.45    

0.80    

6.08E-04 

5.24E-03 

6.49E-01 

1.80E-03 

1.80E-02 

1.80E-02 

3.45E-04 

5.06E-02 

1.28E-01 

4.80E-02 

3.56E-02 

5.69E-01 

0.4 

0.20    

0.45    

0.80   

6.82E-04 

5.42E-04 

3.96E-02 

9.03E-04 

6.07E-03 

5.80E-03 

3.33E-05 

8.43E-03 

1.45E-02 

3.15E-04 

8.62E-04 

5.69E-03 

0.7 

0.20    

0.45    

0.80   

5.39E-03 

4.44E-02 

8.43E-02 

6.03E-04 

5.24E-02 

3.94E-01 

1.75E-05 

3.08E-02 

7.80E-02 

9.03E-05 

5.56E-03 

3.78E-02 

1.0 

0.20    

0.45    

0.80   

4.32E-05 

3.74E-04 

6.20E-02 

4.80E-03 

6.92E-02 

3.42E-01 

3.35E-04 

5.42E-02 

5.06E-02 

3.07E-03 

9.10E-02 

6.05E-02 

 

According to Table 1, we can say about the solution of 

Eq. (18) that the absolute error values are very small 

for various values , x  and .t  

In addition, in the following Figure 2 and Figure 3, the 

graphs of solution functions of Eq. (18) with respect to 

the CADM and the exact solution for 0.70   are 

shown, respectively.  

 

Figure 2. CADM solution with 0.70   for Example 2. 

 

Figure 3. Exact solution with 0.70   for Example 2. 

In the following Figure 4 and Figure5, the sketches of 

solution functions of Eq. (18) with respect to the 

CMHPM and the exact solution for 0.30   are 

shown, respectively.  

According to the Figure 2, Figure 3, Figure 4 and 

Figure 5, we can say that the numerical results 

obtained from CADM and CMHPM are very close to 

the exact solution values. 
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Figure 4. CMHPM solution with 0.30   for Example 2. 

 
Figure 5. Exact solution with 0.30   for Example 2. 

6. Conclusion 

We have found out approximate solutions with two 

numerical methods for time-fractional linear partial 

differential equations. These methods are based on 

conformable derivative (CD) which is extremely 

popular in the last years. In this study, firstly, by using 

the CD, we have redefined ADM and MHPM. Then 

we have demonstrated the efficiencies and accuracies 

of the proposed methods by applying them to two 

different problems. It is found that the approximate 

solutions generated by our methods are in complete 

agreement with the corresponding exact solutions. 

Besides, in view of their usability, our methods are 

applicable to many initial-boundary value problems 

and linear-nonlinear partial differential equations of 

fractional order. 
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