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1. Introduction

The aim of mathematical biology is to develop
mathematical equations and to describe some
physical problems encountered in biology. Not-
ing that, the establishment of such mathematical
formula is achieved using the concept of differenti-
ation or more practically the notion of derivatives.
There exist two classes of differentiation in the lit-
eratures. The first one is based on the concept of
rate of change [8-11,21]. The second one is based
on the convolution of some functions including ex-
ponential decay law and the generalized Mittag-
Leffler law. The derivatives based on exponential
appear naturally in many problems in nature as
being able to describe the effect of fading memory.
This class of derivative has been applied in sev-
eral research papers for instance [5,7,13,15,16,18-
20,22]. However, it was noted by several experts
in the field that, this new derivative does not have
a non-local kernel as its corresponding integral is
not fractional, thus a new kernel was suggested
by Atangana and Baleanu [6] where after some
manipulations, the exponential decay kernel was

replaced by the generalized Mittag-Leffler kernel.
This last derivative, therefore appears to be a very
powerful mathematical tools form modeling real
world problems as the generalized Mittag-Leffler
function is combination of the power law and ex-
ponential decay law.

Several research papers have been published using
this new concept of fractional differentiation with
Mittag-Leffler. More importantly the results ob-
tained in [1-4,6] revealed that, the new concept of
more adequate for modeling real world problems
to take into account the non-locality and also to
have a memory effect. We shall note that the
choice of a kernel is very important when mod-
eling real world problems. When looking at ex-
perimental data obtained from real world obser-
vations, we can see that, many biological prob-
lems may not always follow the power law based
on the function x−α which is the kernel mostly
used in the literature nowadays. For instance
the case of Rubella, which is also known as the
German measles or more precisely the three-day
measles is enveloped and has a single-stranded
RNA genome. The virus spreads via breathing
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18 İ. Koca / IJOCTA, Vol.8, No.1, pp.17-25 (2018)

route and photocopies in the nasopharynx and
lymph nodes. This virus can only be detected
in the stream blood after a period of between 5 to
7 days when the infection has taken place, later
spreads throughout the body. With its properties
of teratogenic and the ability of overpass the pla-
centa and infecting the fetus where it stops cells
developing or destroys them. Such a complex
dynamic will be suitable to portray a more ad-
vance concept of power with of course a non-local
concept which is the property inherited by the
newly established derivative with fractional order
called Atangana-Baleanu derivatives [6]. This pa-
per is therefore devoted to the analysis of the dy-
namic of the spread of Rubella virus exploring the
Atangana-Baleanu fractional derivative. The aim
of the research in this field, requires the use of
the new fractional derivative for Rubella disease
virus. The exactness and uniqueness of the solu-
tion of the fractional model is proved by applying
the fixed-point theorem.

The remainder part of this paper is broken into
sections. In Section 2, we give the definitions of
the new fractional derivative with non-singular
and non-local kernel. Section 3 deals with the
existence of solutions for the spread of rubella dis-
ease model via Picard-Lindelof method. In Sec-
tion 4, we provide a special solution of the model
which is considered using Atangala-Balenau de-
rivative in Caputo sense. Finally in Section 5,
some numerical results obtained at different in-
stances of fractional order are presented to justify
the suitability of the adopted derivative.

2. New fractional derivative with

non-singular and non-local kernel

Let us remind the definitions of the new fractional
derivative with non-singular and non-local kernel
[6].

Definition 1. Let f ∈ H1(a, b), b > a, α ∈
[0, 1] then, the definition of the new fractional de-
rivative (Atangana-Baleanu derivative in Caputo
sense) is given as:

ABC

a Dα

t (f (t)) =
B(α)

1− α

t
∫

a

f
′

(x)Eα

[

−α
(t− x)

α

1− α

]

dx,

(1)

where ABC
a Dα

t is fractional operator with Mittag-
Leffler kernel in the Caputo sense with order α

with respect to t and B(α) = B(0) = B(1) = 1 is
a normalization function [12].

Definition 2. Let f ∈ H1(a, b), b > a, α ∈
[0, 1] and not differentiable then, the definition of

the new fractional derivative (Atangana-Baleanu
fractional derivative in Riemann-Liouville sense)
is given as:

ABR

a Dα

t (f (t)) =
B(α)

1− α

d

dt

t
∫

a

f(x)Eα

[

−α
(t− x)

α

1− α

]

dx.

(2)

Definition 3. The fractional integral of order α

of a new fractional derivative is defined as:

AB
a Iαt {f(t)} =

1− α

B(α)
f(t)

+
α

B(α)Γ(α)

t
∫

a

f(y)(t− y)α−1dy. (3)

When α is zero, initial function is obtained and
when α is 1, the ordinary integral is obtained.

3. Existence of solutions for the spread

of rubella disease model

Let us consider the following model employing the
Atangana-Baleanu fractional derivative in Caputo
sense :

ABC
0 Dα

t S (t) = B(a)− [λ(a, t) + P (a) + µ(a)]S (t) ,

ABC
0 Dα

t E (t) = λ(a, t)S (t)− (σ + µ(a))E (t) ,

ABC
0 Dα

t I (t) = σE (t)− (β + µ(a)) I (t) , (4)

ABC
0 Dα

t R (t) = βI (t)− µ(a)R (t) ,

ABC
0 Dα

t V (t) = D(a)S (t)− µ(a)V (t) ,

where S (t) , E (t) , I (t) , R (t) , V (t) are suscep-
tible, latent, infectious, recovered and vaccinated
parameters respectively. P (a) is a parameter for
which immunized by vaccination and λ(a, t) is the
force of infection of age a at time t. Finally, σ is
the latent rate and β is the infection rate [14]. The
aim of this section is to find existence of solutions
for rubella disease model with Atangana-Balenau
fractional derivative. The system state is made
up with S,E, I, R, V . The above system (4) can
be converted to Volterra type integral equation
with the Atangana-Baleanu fractional integral.

Theorem 1. The following time fractional ordi-
nary differential equation

ABC
0 Dα

t (f (t)) = u(t), (5)
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has a unique solution with taking the inverse
Laplace transform and using the convolution the-
orem below [4]:

f(t) =
1− α

B(α)
u(t)+

α

B(α)Γ(α)

t
∫

a

u(y)(t−y)α−1dy.

(6)

By the theorem above, the model can be written
as (7):
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


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




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
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
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
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






















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








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































































S(t)− g1(t) =
1−α
B(α) {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1

×{B(a)− [λ(a, y) + P (a) + µ(a)]S (y)} dy,

E(t)− g2(t) =
1−α
B(α) {λ(a, t)S (t)− (σ + µ(a))E (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1

×{λ(a, y)S (y)− (σ + µ(a))E (y)} dy,

I(t)− g3(t) =
1−α
B(α) {σE (t)− (β + µ(a)) I (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {σE (y)− (β + µ(a)) I (y)} dy,

R(t)− g4(t) =
1−α
B(α) {βI (t)− µ(a)R (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {βI (y)− µ(a)R (y)} dy,

V (t)− g5(t) =
1−α
B(α) {D(a)S (t)− µ(a)V (t)}

+ α
B(α)Γ(α)

t
∫

0

(t− y)α−1 {D(a)S (y)− µ(a)V (y)} dy,

(7)

The above system (7) of equations can be itera-
tively represented as:























S0(t) = g1(t),
E0(t) = g2(t),
I0(t) = g3(t),
R0(t) = g4(t),
V0(t) = g5(t).

(8)

Sn+1(t) =
1− α

B(α)

×{B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)} (9)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

×{B(a)− [λ(a, y) + P (a) + µ(a)]Sn (y)} dy,

En+1(t) =
1− α

B(α)
{λ(a, t)Sn (t)− (σ + µ(a))En (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {λ(a, y)Sn (y)− (σ + µ(a))En (y)} dy,

In+1(t) =
1− α

B(α)
{σEn (t)− (β + µ(a)) In (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {σEn (y)− (β + µ(a)) In (y)} dy,

Rn+1(t) =
1− α

B(α)
{βIn (t)− µ(a)Rn (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {βIn (y)− µ(a)Rn (y)} dy,

Vn+1(t) =
1− α

B(α)
{D(a)Sn (t)− µ(a)Vn (t)}

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× {D(a)Sn (y)− µ(a)Vn (y)} dy.

As the exact solution of the iterative formula of a
Picard series used here converges toward the ex-
act solution as the number of series terms tends to
infinity. If we take the limit with greater than n,
we expect to obtain the exact solution of equation
as below:































lim
n→∞

Sn (t) = S (t) ,

lim
n→∞

En (t) = E (t) ,

lim
n→∞

In (t) = I (t) ,

lim
n→∞

Rn (t) = R (t) ,

lim
n→∞

Vn (t) = V (t) .

3.1. Existence of solution via

Picard-Lindelof method

Let us define the following operator for showing
the existence of solution:

f1(a, t) = B(a)− [λ(a, t) + P (a) + µ(a)]S (t) ,

f2(a, t) = λ(a, t)S (t)− (σ + µ(a))E (t) ,

f3(a, t) = σE (t)− (β + µ(a)) I (t) , (10)

f4(a, t) = βI (t)− µ(a)R (t) ,

f5(a, t) = D(a)S (t)− µ(a)V (t) .

Let

N1 = sup
C[b,c1]

‖f1(a, t)‖ , N2 = sup
C[b,c2]

‖f2(a, y)‖ ,

N3 = sup
C[b,c3]

‖f3(a, z)‖ , N4 = sup
C[b,c4]

‖f4(a, p)‖ ,

N5 = sup
C[b,c5]

‖f5(a, r)‖ , (11)
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where

C [b, c1] = [t− b, t+ b]× [x− c1, x+ c1] = B1 × C1,

C [b, c2] = [t− b, t+ b]× [x− c2, x+ c2] = B1 × C2,

C [b, c3] = [t− b, t+ b]× [x− c3, x+ c3] = B1 × C3,

C [b, c4] = [t− b, t+ b]× [x− c4, x+ c4] = B1 × C4,

C [b, c5] = [t− b, t+ b]× [x− c5, x+ c5] = B1 × C5.

(12)

We will make use of Banach fixed-point theorem
using the metric on C [b, ci] , (i = 1, 2, ..., 5) made
by the uniform norm

‖X(t)‖
∞

= sup |f(t)|
t∈[t−b,t+b]

. (13)

The next operator is defined between the two
functional spaces of continuous functions, Pi-
card’s operator as follows:

O : C(B1, C1, C2, C3, C4, C5)

→ C(B1, C1, C2, C3, C4, C5). (14)

For simplicity, let us define fi(a, t) = X(t),
fi(a, 0) = X0(t), (i = 1, 2, ..., 5) . Then the system
is reduced the following:

OX(t) = X0(t) + F (t,X(t))
1− α

B(α)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1F (y,X(y))dy,

(15)

where X is the matrice of given as

X(t) =























S(t)
E(t)
I(t)
R(t)
V (t)

, X0(t) =























S(0)
E(0)
I(0)
R(0)
V (0)

, (16)

F (a,X(t)) =























f1(a, t)
f2(a, t)
f3(a, t)
f4(a, t)
f5(a, t)

.

Let us assume that the physical problem under
investigation satisfies followings:

‖X(t)‖
∞

≤ max{c1, c2, c3, c4, c5}. (17)

‖OX(t)−X0(t)‖ (18)

=

∥

∥

∥

∥

∥

∥

F (t,X(t)) 1−α
B(α) +

α
B(α)Γ(α)

t
∫

0

(t− y)α−1F (y,X(y))dy

∥

∥

∥

∥

∥

∥

≤
1− α

B(α)
‖F (t,X(t))‖

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1 ‖F (y,X(y))‖ dy

≤
1− α

B(α)
N = max{N1, N2, N3, N4, N5}

+
α

B(α)
Nbα < bN ≤ c = max{c1, c2, c3, c4, c5},

where we demand that

b <
c

N
.

Also we evaluate the following equality

‖OX1 −OX2‖∞ = sup
t∈B

|X1 −X2| . (19)

Nonetheless using the definition of our defined op-
erator, we have

‖OX1 −OX2‖

=

∥

∥

∥

∥

∥

∥

∥

∥

{F (t,X1(t))− F (t,X2(t))}
1−α
B(α)

+ α
B(α)Γ(α)

t
∫

0

(t− l)α−1

{

F (l, X1(l))
−F (l, X2(l))

}

dl

∥

∥

∥

∥

∥

∥

∥

∥

(20)

≤
1− α

B(α)
‖F (t,X1(t))− F (t,X2(t))‖ (21)

+
α

B(α)Γ(α)

t
∫

0

(t− y)α−1

× ‖F (l, X1(y))− F (l, X2(y))‖ dy

≤
1− α

B(α)
q ‖X1(t)−X2(t)‖

+
αq

B(α)Γ(α)

t
∫

0

(t− y)α−1 ‖X1(y)−X2(y)‖ dy

≤

{

1− α

B(α)
q +

αqbα

B(α)Γ(α)

}

‖X1(t)−X2(t)‖

≤ bq ‖X1(t)−X2(t)‖ .

with q < 1 since F is a contraction we have that
bq < 1, thus the defined operator O is a contrac-
tion. So system has a unique set of solution.

4. Special solutions via iteration

approach

The aim of this section is to provide a special
solution of the model which is considered using
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Atangala-Balenau derivative in Caputo sense. Let
us apply the Sumudu transform on both sides of
equation (4) together with an iterative method.
We shall give the Sumudu transform of Atangana-
Balenau fractional derivative in Caputo sense be-
low:

Theorem 2. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]
then, the Sumudu transform of Atangana-Balenau
fractional derivative in Caputo sense is given as:

ST
{

ABC
0 Dα

t (f (t))
}

(22)

=
B(α)

1− α

(

αΓ(α+ 1)Eα(−
1

1− α
pα)

)

× (ST (f(t))− f(0)) .

Proof. Proof of the theorem can be found in
[4]. �

To solve Equation (4), we apply the Sumudu
transform of the Atangana-Balenau fractional de-
rivative of f(t) on system with both sides. Then
we obtain below:

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (S(t))− S(0)) (23)

= ST {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (E(t))− E(0))

= ST {λ(a, t)S (t)− (σ + µ(a))E (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (I(t))− I(0))

= ST {σE (t)− (β + µ(a)) I (t)} ,

B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (R(t))−R(0))

= ST {βI (t)− µ(a)R (t)} ,
B(α)
1−α

(

αΓ(α+ 1)Eα(−
1

1−α
pα)

)

(ST (V (t))− V (0))

= ST {D(a)S (t)− µ(a)V (t)} .

Rearranging, we obtain following inequalities
where,

ST (S(t)) = S(0)

+ θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]S (t)} ,

ST (E(t)) = E(0)

+ θ ∗ ST {λ(a, t)S (t)− (σ + µ(a))E (t)} ,

ST (I(t)) = I(0)

+ θ ∗ ST {σE (t)− (β + µ(a)) I (t)} ,

ST (R(t)) = R(0)

+ θ ∗ ST {βI (t)− µ(a)R (t)} ,

ST (V (t)) = V (0)

+ θ ∗ ST {D(a)S (t)− µ(a)V (t)} .

For simplicity, here

θ =
1− α

B(α)
(

αΓ(α+ 1)Eα(−
1

1−α
pα)

) ,

is considered and ”∗” means multiplication sign .

We next obtain the following recursive formula;

Sn+1(t) = Sn(0) (24)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}} ,

En+1(t) = En(0)

+ST−1 {θ ∗ ST {λ(a, t)Sn (t)− (σ + µ(a))En (t)}} ,

In+1(t) = In(0)

+ST−1 {θ ∗ ST {σEn (t)− (β + µ(a)) In (t)}} ,

Rn+1(t) = Rn(0)

+ST−1 {θ ∗ ST {βIn (t)− µ(a)Rn (t)}} ,

Vn+1(t) = Vn(0)

+ST−1 {θ ∗ ST {D(a)Sn (t)− µ(a)Vn (t)}} .

Therefore, the solution of equation (24) approxi-
mate to following

S(t) = lim
n→∞

Sn(t), (25)

E(t) = lim
n→∞

En(t),

I(t) = lim
n→∞

In(t),

R(t) = lim
n→∞

Rn(t),

V (t) = lim
n→∞

Vn(t).

4.1. Application of fixed-point theorem

for stability analysis of iteration

method

Let (X, ‖.‖) be a Banach space and H a self-map
of X. Let yn+1 = g(H, yn) be recurcive proce-
dure. Suppose that, F (H) the fixed-point set of
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H has at least one element and that ynconverges
to a point p ∈ F (H). Let {xn}⊂X and de-
fine en = ‖xn+1 − g(H,xn)‖ . If lim

n→∞

en = 0 im-

plies that lim
n→∞

xn = p, then the iteration method

yn+1 = g(H, yn) is H-Stable. Then let we assume
that, our sequence {xn} has an upper boundary .
If all these conditions are satisfied for yn+1 = Hyn
which is known as Picard’s iteration, consequently
the iteration is H-Stable. We shall then state the
following theorem.

Theorem 3. Let (X, ‖.‖) be a Banach space and
H a self-map of X satisfying

‖Hx −Hy‖ ≤ K ‖x−Hx‖+ k ‖x− y‖ ,

for all x, y in X where 0 ≤ K, 0 ≤ k < 1. Suppose
that H is Picard H-Stable [17].

Let us consider the following recursive formula
equation (27) with (4) where

θ =
1− α

B(α)
(

αΓ(α+ 1)Eα(−
1

1−α
pα)

) , (26)

is the fractional Lagrange multiplier.

Theorem 4. Let H be a self-map defined as (27)
as below.

H(Sn(t)) = Sn+1(t) = Sn(t) (27)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}} ,

H(En(t)) = En+1(t) = En(t)

+ST−1 {θ ∗ ST {λ(a, t)Sn (t)− (σ + µ(a))En (t)}} ,

H(In(t)) = In+1(t) = In(t)

+ST−1 {θ ∗ ST {σEn (t)− (β + µ(a)) In (t)}} ,

H(Rn(t)) = Rn+1(t) = Rn(t)

+ST−1 {θ ∗ ST {βIn (t)− µ(a)Rn (t)}} ,

H(Vn(t)) = Vn+1(t) = Vn(t)

+ST−1 {θ ∗ ST {D(a)Sn (t)− µ(a)Vn (t)}} .

Then (27) is H-stable in L1(a, b) if following
statement can be obtained.

(1− [λ(a, t) + P (a) + µ(a)]A(γ)) < 1, (28)

(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)) < 1,

(1 + σD(γ)− (β + µ(a))E(γ)) < 1,

(1 + βF (γ)− µ(a)G(γ)) < 1,

(1 +D(a)H(γ)− µ(a)J(γ)) < 1.

Proof. Let we start with showing that H has a
fixed point. To achieve this, we evaluate the fol-
lowings for all (n,m) ∈ N× N.

H(Sn(t))−H(Sm(t)) = Sn(t)− Sm(t) (29)

+ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)}}

−ST−1 {θ ∗ ST {B(a)− [λ(a, t) + P (a) + µ(a)]Sm (t)}} .

Let us consider (29) and apply norm on both sides
and without loss of generality

‖H(Sn(t))−H(Sm(t))‖ (30)

=

∥

∥

∥

∥

∥

∥

Sn(t)− Sm(t)

+ST−1

{

θ ∗ ST

{

B(a)− [λ(a, t) + P (a) + µ(a)]Sn (t)
− (B(a)− [λ(a, t) + P (a) + µ(a)]Sm (t))

}}

∥

∥

∥

∥

∥

∥

≤ ‖Sn(t)− Sm(t)‖ (31)

+
∥

∥ST−1 {θ ∗ ST {− [λ(a, t) + P (a) + µ(a)] (Sn(t)− Sm(t))}}
∥

∥ .

Now we obtain :

‖H(Sn(t))−H(Sm(t))‖ ≤ ‖Sn(t)− Sm(t)‖

× (1− [λ(a, t) + P (a) + µ(a)]A(γ)), (32)

where A(γ) is the ST−1 {θ ∗ ST} . Since all solu-
tions have same role also we have following:

‖H(En(t))−H(Em(t))‖ ≤ ‖En(t)− Em(t)‖

× (1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)),

‖H(In(t))−H(Im(t))‖ ≤ ‖In(t)− Im(t)‖

× (1 + σD(γ)− (β + µ(a))E(γ)),

‖H(Rn(t))−H(Rm(t))‖ ≤ ‖Rn(t)−Rm(t)‖

× (1 + βF (γ)− µ(a)G(γ)),

‖H(Vn(t))−H(Vm(t))‖ ≤ ‖Vn(t)− Vm(t)‖

× (1 +D(a)H(γ)− µ(a)J(γ)). (33)

For

(1− [λ(a, t) + P (a) + µ(a)]A(γ)) < 1,

(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ)) < 1,

(1 + σD(γ)− (β + µ(a))E(γ)) < 1,

(1 + βF (γ)− µ(a)G(γ)) < 1,

(1 +D(a)H(γ)− µ(a)J(γ)) < 1, (34)

then H-self mapping has a fixed point. Also non-
linear mapping H has to satisfy the conditions. So
let we assume

K = (0, 0, 0, 0, 0)

k =























(1− [λ(a, t) + P (a) + µ(a)]A(γ))
(1 + λ(a, t)B(γ)− (σ + µ(a))C(γ))

(1 + σD(γ)− (β + µ(a))E(γ))
(1 + βF (γ)− µ(a)G(γ))

(1 +D(a)H(γ)− µ(a)J(γ))

,

(35)
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then all conditions of Theorem 3 hold. This com-
pletes the proof. �

5. Numerical Simulation

In this part, we present the numerical replication
of the model for different values of fractional or-
der using the proposed numerical scheme. The

numerical simulations are shown in figure 1, 2, 3,
and 4. Figures 1 is considered alpha to be 0.95,
figure 2 is considered alpha to be 0.65, figure 3 is
considered alpha to be 0.45 and finally in figure
4 is considered alpha to be 0.05. The paremeters
used in this simulations are given below:

B = 100, P = 0.3, λ = 0.4,
µ = 0.4, σ = 0.3, β = 0.4

. (36)

n
Figure 1 : Numerical simulation of solution for α = 0.95

Figure 2 : Numerical simulation of solution for α = 0.65
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Figure 3 : Numerical simulation of solution for α = 0.45

Figure 4 : Numerical simulation of solution for α = 0.05

6. Conclusion

In this work, we have extended the model of
rubella disease to the concept of fractional dif-
ferential based on the Mittag-Leffler. We stud-
ied the existence of the generalized model using
the fixed-point theorem. We presented the deriva-
tion of the solution using the Sumudu transform
of Atanagana-Balenau derivative in Caputo sense.
The stability analysis of the method is validated
with the H-stable approach. Finally. Numerical
simulations presented for different values of α.
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