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We design adaptive algorithms for both cancellation and estimation of un-
known periodic disturbance, by feedback of state–derivatives (i.e., without
position information for mechanical systems) for the plants which are modeled
as a linear time invariant system. We consider a series of unmatched unknown
sinusoidal signals as the disturbance. The first step of the design consists of
the parametrization of the disturbance model and the development of observer
filters. The result obtained in this step allows us to use adaptive control tech-
niques for the solution of the problem. In order to handle the unmatched
condition, a backstepping technique is employed. Since the partial measure-
ment of the virtual inputs is not available, we design a state observer and the
estimates of these signals are used in the backstepping design. Finally, the
stability of the equilibrium of the adaptive closed loop system with the con-
vergence of states is proven. As a numerical example, a two-degree of freedom
system is considered and the effectiveness of the algorithms are shown.
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1. Introduction

Active disturbance cancellation arises in many ap-
plications such as automotive [1] and marine sys-
tems [2–4]. The internal model principle which
relies on modeling the disturbance as the output
of an exosystem and duplicating its effect to the
input channel, is the one of the most popular tech-
nique for the solution [5, 6].

The internal model principle differs according to
the type of the considered system, uncertainties
and the measured signals. In [7], the harmonic
control arrays is employed for the parametrization
of the sinusoidal signals. The solutions for linear
systems are given in [8–11]. The plants that con-
tain nonlinear dynamics are proposed in [12–15].
Most of disturbance cancellation problems can
also be formulated as an output regulation prob-
lem. In these references, it is assumed that the
measurements of the state are available for feed-
back. Since the accelerometer is the major sensor

that are used in mechanical applications, the di-
rect usage of the acceleration measurement in the
feedback draws the attention of the researchers.

In [16], acceleration measurement is used together
with velocity and position to suppress the vibra-
tion. The term state–derivative feedback is widely
used in the literature for the case where only the
derivative of the considered states are available for
measurement. That corresponds to acceleration
and velocity feedback without using position in-
formation in mechanical systems. The pole place-
ment technique and stability results for state–
derivative is given in [17] and [18]. The adaptive
cancellation algorithms by state derivative feed-
back for matched disturbance in a known linear
plant is given in [19]. The solution for the case
where the unknown disturbance is unmatched and
the state of the actuator dynamics is available for
the measurement is given in [20].
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In this note, the problem where the actuator
states are not measured but its derivative is avail-
able for a control design, is considered. The de-
sign by the derivative of the actuator state is
given in [21]. The main difference between [21]
is the number of the state of the actuator dynam-
ics. In the present study, an arbitrary m– di-
mensional general linear system is considered for
the actuator dynamics whereas it is restricted by
one, in [21]. We consider two cases; first case is
state and disturbance estimation in the open loop,
and the second case is disturbance cancellation in
the closed loop case. Firstly, a parametrization
of the unknown disturbance signal is performed.
Observers are developed for the unknown distur-
bance and the unmeasured actuator state for open
loop case. We show that perfect state and ob-
server estimations are achieved. The results that
are obtained in the open loop case, is used while
designing an active cancellation algorithm for the
control input. An adaptive control technique is
employed for the design of observer based control
and update laws. Finally, we prove the stability
of the equilibrium of the closed-loop adaptive sys-
tem and the convergence of the state with perfect
disturbance estimation.

The outline of the note is given as follows. Sec-
tion 2 is dedicated to state the problems in de-
tails. The observer designs, theorem that states
the convergence and its proof are given in Sec-
tion 3. The backstepping adaptive controller de-
sign with the statement of the stability theorem is
presented in Section 4. The theorem is proven in
Section 5. As a numerical example, a two–degree
of freedom mechanical system is considered. The
simulation results of the example are discussed in
Section 6. Lastly, concluding remarks are given
in Section 7.

2. Problem statement

We consider a general representation of a linear
time invariant system which is given as follows

ẋ(t) =Anx(t) +Bn
(
bTx p(t) + aTxx+ ν(t)

)
, (1)

ṗ(t) =Amp(t) +Bm
(
bTp p(t) + aTp x+ u(t)

)
, (2)

where

An =

[
0n−1 In−1

0 0Tn−1

]
, Am =

[
0m−1 Im−1

0 0Tm−1

]
,

(3)

Bn =

[
0n−1

1

]
, Bm =

[
0m−1

1

]
, (4)

ax = [a11, · · · , a1n]T , ap = [a21, · · · , a2n]T ,
(5)

bx = [b11, · · · , b1n]T , bp = [b21, · · · , b2n]T , (6)

with 0i = [0, . . . , 0]T ∈ Ri, the states x =
[x1, . . . , xn]T ∈ Rn, p = [p1, . . . , pm]T ∈ Rm, input
u ∈ R and disturbance signal ν ∈ R given by

ν(t) =

q∑
i=1

gi sin(ωit+ φi), (7)

where i 6= j ⇒ ωi 6= ωj , ωi ∈ Q+, gi, φi ∈ R.
In the given system, the disturbance signal and
the control input are separated by m integrators.
This situation makes the input u(t) and ν(t) un-
matched. The input of system (1) is bTx p(t) that
is called virtual input. Because bTx p(t) is not the
main control input, and it has its own dynamics
given by (2). The main aim is to design a control
law for u(t) such that the signal bTx p(t) cancels
the effect of the disturbance while maintaining
the boundedness of all signals. Since state p(t)
and disturbance ν(t) are not measured, observers
are designed to estimate these signals.

The disturbance ν(t) that is given by (7) can be
also written as the output of a linear exosystem
which is given by,

ẇ(t) = Sw(t) (8)

ν(t) = hTw(t) (9)

where w ∈ R2q. The eigenvalues of S depend
on the unknown frequencies of disturbance signal
ν(t). Since the initial condition of the exosystem,
( w(0)) represents the uncertainty of amplitude
and phase, the output vector hT can be consid-
ered as known. Therefore, it is possible to obtain
an observable (hT , S) pair.

In order to guarantee the invertibility and to avoid
any discontinuity in the design, it is assumed that
the terms a11 6= 0 and b21a11 − a21b11 6= 0 (As-
sumption 1). We also assume that the number
of the distinct frequencies, q is known (Assump-
tion 2). The given assumptions are sufficient
for observer based control design and show the
boundedness of signals. However, the all modes
of the exosystem assumed to be excited (i.e.,
w(0) 6= 0) to show the perfect state and distur-
bance estimations, as well as, the convergence of
the state x(t) (Assumption 3).

The main difference between the problem state-
ment given in this note and [21] is the dimension
of p(t). In [21] p(t) is restricted as a scalar signal.
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However, in this note there is not any restriction
on the dimension of p(t) and it can be an m di-
mensional vector where m is an arbitrary positive
integer. Thus this note provides a solution for
more general systems.

3. State and disturbance observer
design

This section consists of two parts; the first part
explains the details of parametrization and ob-
server filters of disturbance signal, in the second
part the state observer design for the virtual con-
trol input p(t) is given.

3.1. Parametrization of disturbance signal

The disturbance representation given by (8) is not
suitable for an observer design since the eigenval-
ues of system matrix S are on the imaginary axis.
The first step of observer design for disturbance is
to represent it as the output of a stable LTI sys-
tem. To this end, we employ the approach given
in [22]. Consider the Sylvester equation

MS −GM = lhT . (10)

where M ∈ R2q×2q is the solution of the equation.
As it is discussed in [23], the solution M is unique
and invertible if and only if (hT , S) is an observ-
able pair, (G, l) is a controllable pair and the set
of eigenvalues of S and G are discrete. There-
fore, by choosing G ∈ R2q×2q as a Hurwitz matrix
and vector l ∈ R2q such that the pair (G, l) is
controllable, we guarantee that M is unique and
invertible. We transform state of the exosystem
w(t) to a new state z(t) as follows z = Mw. By
using (10) with the state transformation, exosys-
tem (8)–(9) is transformed into the form

ż(t) = Gz(t) + lν(t), (11)

ν(t) = θT ż(t), (12)

where

θT = hT (MS)−1. (13)

It is also possible to obtain the derivative of dis-
turbance ν(t) by differentiating (12) and substi-
tuting z̈ = Gż + lν̇. The parametrized form of
disturbance derivative is given by

ν̇(t) = βT ż(t), (14)

where

βT =
1

1− θT l
θTG. (15)

It is necessary to show that the term 1−θT l, that
appears in the denominator is not equal to zero.
Post-multiplying (10) by (MS)−1 and substitut-
ing (13), we obtain the following equation

I − lθT = GMS−1M−1. (16)

Calculating the determinant of both sides of (16)
and employing the Sylvester’s determinant theo-
rem [24] yield

1− θT l = det(GMS−1M−1) (17)

Recalling that det(GMS−1M−1) = det(G) det(M)
det(S−1) det(M−1) and det(M−1) = 1

(detM) , we

obtain

1− θT l = det(G) det(S−1). (18)

Recalling the fact that the determinant of a ma-
trix is the multiplication of its eigenvalues and
noting that G and S have no eigenvalues on the
origin, we show that 1− θT l 6= 0.

The disturbance signal and its derivative are rep-
resented as the output of a known and stable
LTI system whose input is itself, ans thus, un-
known. It is now possible to design an observer
to estimate state z(t), since it is the state of ex-
ponentially stable linear time invariant system.
We present the following lemma that explains the
benefits of developed observer filters.

Lemma 1. The unknown disturbance ν(t) and
ν̇(t) are represented in the form

ν(t) =θT ξ(t) + θT δ(t), (19)

ν̇(t) =βT ξ(t) + βT δ(t), (20)

where

ξ(t) =η(t) +Nẋ(t), (21)

η̇(t) =G (η(t) +Nẋ(t))−N
(
Anẋ(t) +Bn

(
bTx ṗ(t)

+ aTx ẋ(t)
))
, (22)

with

N =
1

BT
nBn

lBT
n , (23)

where
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NBn = l (24)

and the estimation error

δ(t) = ż(t)− ξ(t), (25)

obeys the equation

δ̇(t) = Gδ(t). (26)

Proof. Using the fact that NAn = 0 from (3),
(4) and (24), the equation (26) is obtained by dif-
ferentiating (25) and using derivative of (1), (11)
and (21). Substitution of (25) into (12) and (14)
yields (19) and (20), respectively.

�

The new representation of the disturbance given
in (19) and (20) provides benefits to use adaptive
control method in the design. In the next section,
the design for the state observer together with up-
date law for unknown constant θ are discussed.

3.2. Reciprocal state-space representation
and observer design

A standard state space form of a linear system is
useful for a state or output feedback design. On
the other hand, the reciprocal state–space (RSS)
representation that relies on switching state and
state–derivatives in the equation, provides advan-
tages for state–derivative feedback design [16]. In
this form, it is possible to employ similar tech-
niques that are developed for state and output
feedback problems.

Substituting (19) into (1), the RSS form of system
(1) is written as

x(t) =ATn ẋ(t) +
1

a11
B̄n

(
ẋn(t)− aTxATn ẋ(t)

− bTx p(t)−
(
θT ξ(t) + θT δ(t)

) )
. (27)

where B̄n =
[

1, 0n−1

]T
. Substituting (27)

into (2), we obtain

ṗ(t) =Amp(t) +Bm

(
b̄Tp p(t) + āTpA

T
n ẋ(t) +

a21

a11

× ẋn(t)− a21

a11

(
θT ξ(t) + θT δ(t)

)
+ u(t)

)
,

(28)

where

āp =ap −
a21

a11
ax = [ā1, · · · , ān]T , (29)

b̄p =bp −
a21

a11
bx =

[
b̄1, · · · , b̄n

]T
. (30)

Using the fact b̄1 = a11b21−b11a21
a11

, under Assump-

tion 1 and 2, the RSS form of (28) is obtained
as

p(t) =ATmṗ(t) +
1

b̄1
B̄m

(
ṗm(t)− b̄TpATmṗ(t)

− āTpATn ẋ(t)− a21

a11
ẋn(t)

+
a21

a11

(
θT ξ(t) + θT δ(t)

)
− u(t)

)
, (31)

where B̄m =
[

1, 0m−1

]T
. The state observer

in the RSS form of (31) is designed as follows

p̂(t) =ATmṗ(t) +
1

b̄1
B̄m

(
ṗm(t)− b̄TpATmṗ(t)

− āTpATn ẋ(t)− a21

a11
ẋn(t) +

a21

a11
θ̂T ξ(t)

− u(t)

)
+ cep

(
ṗ(t)− ˙̂p(t)

)
, (32)

where cep > 0 and in state space form it is written
as

˙̂p(t) =− 1

cep
p̂(t) +

1

cep

(
ATm + cepIm −

1

b̄1
B̄m

× b̄TpATm
)
ṗ(t) +

1

cep b̄1
B̄m

(
ṗm(t)− āTp

×ATn ẋ(t)− a21

a11
ẋn(t) +

a21

a11
θ̂T ξ(t)− u(t)

)
.

(33)

The signals p̂(t) and θ̂(t) are the estimates of un-
measured signal p(t) and unknown constant θ, re-
spectively. Although the signal ṗ(t) is measured,

the signal ˙̂p(t) is also needed for representing the
dynamics of the state observer and the observer
error systems. Defining

ep(t) =p(t)− p̂(t), (34)

θ̃(t) =θ − θ̂(t), (35)

and subtracting (31) from (32), we obtain the er-
ror dynamics of the state observer in the RSS form
as follows,
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ep(t) =− cep ėp(t) +
a21

b̄1a11
B̄m

(
θ̃T (t)ξ(t)

+ θT δ(t)
)
. (36)

The update law for θ̂ is designed as follows

˙̂
θ(t) = κ

a21

b̄1a11
ξ(t)B̄T

mėp(t) (37)

where κ > 0. It should be noted that update law,
˙̂
θ(t), is implementable since all signals given in
(37) are measured including ėp(t).

Comparing the state observer given in [21] and
given in (32), it is seen that they are not similar.
Since the dimension of p(t) is restricted as one
in [21], the observer designed can not be used for
the given problem in this note.

We state the following theorem for the designed
observers.

Theorem 1. Consider the system dynamics (2),
filter (21), (22), state observer (33) and the up-
date law (37), under Assumptions 1–3, for initial

conditions p(0) ∈ Rm, θ̂(0) ∈ R2q, ep(0) ∈ Rm, the

signals ep(t), θ̃(t), δ(t), ν(t)− θ̂T (t)ξ(t) converge to
zero as t→∞.

Before proving the theorem, we state the following
lemma since it is used in the proof of theorems.

Lemma 2. There exists ρ > 0 such that for all
t0 ≥ 0, the following holds

Qp(ρ, t0) =

∫ t0+ρ

t0

ξ(t)ξT (t) dt

− 1

ρ

∫ t0+ρ

t0

ξ(t) dt

∫ t0+ρ

t0

ξT (t) dt > 0.

(38)

Proof.

ξ̇(t) = Gξ(t) + lν̇(t), (39)

where ν̇(t) =

q∑
i=1

ωigi cos(ωit+ φi). The proof for

the signal given by (40) is given in [19]. Using
(26), time derivative of (25) yields

ξ̇(t) = Gξ(t) + lν̇(t), (40)

where ν̇(t) =

q∑
i=1

ωigi cos(ωit+ φi). The proof for

the signal given by (40) is given in [19]. �

Proof of Theorem 1: We show the stability to-
gether with the convergence. The closed-loop sys-

tem of (ep(t), θ̃(t)) is written as

ζ̇(t) = E(t)ζ(t) + F (t)δ(t), (41)

where

E(t) =

[
− 1
cep
Im

κ a21
cep b̄1a11

ξ(t)B̄T
m

a21
cep b̄1a11

B̄mξ(t)
T

− κ
cep

(
a21
b̄1a11

)2
ξ(t)ξ(t)T

 ,
(42)

F (t) =

 a21
cep b̄1a11

B̄mθ
T

− κ
cep

(
a21
b̄1a11

)2
ξ(t)θT

 , (43)

ζ(t) =
[
ep(t), θ̃T (t)

]T
. (44)

Since system matrix, E(t) and input vector, F (t)
are time dependent, system (41) is a linear time
varying system. The proof consists of two steps;
first the homogeneous part is considered and the
exponential stability of the equilibrium ζ(t) = 0 is
shown, as the second step the signal convergence
is proven by employing the results both given in
Lemma 2 and the first step of the proof.

For the first step, we choose the Lyapunov func-
tion as follows

VLTV =
1

2
ζ(t)TPLTV ζ, (45)

where

PLTV =

[
Im 0m×2q

02q×m
1
κI2q

]
. (46)

The time derivative of VLTV is given by

V̇LTV = ζ(t)TC(t)CT (t)ζ(t). (47)

where

C(t)T =
1
√
cep

[
−Im a21

b̄1a11
B̄mξ(t)

T )
]
, (48)

we get

V̇LTV =
1

2
ζ(t)T

(
ET (t)PLTV + PLTVE(t)

)
ζ(t)

=− ζ(t)TC(t)CT (t)ζ(t) ≤ 0. (49)

This proves the stability of equilibrium. However,
we can not make any conclusion on the exponen-
tial stability. Therefore, we need to employ the
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series of theorems and lemmas given in [25]. Us-
ing (49), we obtain

ET (t)PLTV + PLTVE(t) + αCT (t)C(t) ≤ 0,
(50)

for some α > 0. The exponential stability of
the equilibrium of the homogeneous part of (41)
is proven by showing the uniform complete ob-
servable (UCO) property of the pair (C(t), E(t))
[25]. In order to simplify the problem, we employ
the following property which is given as follows;
for a bounded H(t), the pairs (C(t), E(t)) and
(C(t), E(t) + H(t)C(t)T ) have the same (UCO)
property [25]. Choosing H(t) = C(t), the system
for the pair (C(t), E(t)+H(t)C(t)T ) is written as

Ẏ (t) =0, (51)

y(t) =C(t)TY (t) (52)

The state transition matrix of (51) is Φ(t) =
I(m+2q). Therefore, (C(t), E(t) + H(t)C(t)T ) is
a UCO pair if there exist α2, α3, ρ > 0, such that
the observability gramian satisfies

α2I ≥
∫ t0+ρ

t0

C(t)CT (t) dt ≥ α3I, (53)

for all t0 ≥ 0 [25]. The boundedness of ξ(t) can
be shown by (40) then, recalling (48), the upper
bound of (53) is satisfied. We show the lower
bound in (53). Calculating the integral in (53)
yields

X =

∫ t0+ρ

t0

C(t)CT (t) dt

=
1

cep

[
ρIm

− a21
b̄1a11

∫ t0+ρ
t0

ξ(t) dtB̄T
m

(54)

− a21
b̄1a11

B̄m
∫ t0+ρ
t0

ξT (t) dt(
a21
b̄1a11

)2 ∫ t0+ρ
t0

ξ(t)ξT (t) dt

 .
(55)

The lower bound argument is shown by conclud-
ing that X is positive definite. To this end, we
use Schur complement. The Schur complement of
ρIm of block matrix X is given by,

Sh =
1

cep

(
a21

b̄1a11

)2(∫ t0+ρ

t0

ξξT dt

−1

ρ

∫ t0+ρ

t0

ξ dt

∫ t0+ρ

t0

ξT dt

)
.

(56)

According to Schur compliment, it is concluded
that X is positive definite if and only if Sh is pos-
itive definite by denoting Imρ is a positive definite
matrix. We need to show that Sh is positive defi-

nite. Noting that 1
cep

(
a21
b̄1a11

)2
is a positive scalar,

according to Lemma 2 there exists a positive ρ
such that for all t0 > 0, then Sh > 0. Hence,
(C,E +HCT ) is UCO, which implies that (C,E)
is UCO. Therefore, the state transition matrix
Φ(t, t0) corresponding to E(t) in (41) satisfies

‖ Φ(t, t0) ‖≤ κ0e
−γ0(t−t0) (57)

for some positive constants κ0, γ0. Recalling that
G is Hurwitz, the solution of (26) yields

|δ(t)| = |eG(t−t0)δ(0)| ≤ κ1e
−γ1(t−t0)|δ(0)| (58)

for some positive constants κ1, γ1. Solving (41)
yields

ζ(t) =Φ(t, 0)ζ(0) +

∫ t

0
Φ(t, τ)F (τ)δ(τ)dτ. (59)

Since ξ(t) is bounded, from (40), it is concluded
that F (t) is bounded. Using (57)–(59), we get

|ζ(t)| ≤κ0e
−γ0t|ζ(0)|+

κ1κ0 sup
0≤τ≤t

|F (τ)|(
γ0 − 1

2 min{γ0, γ1}
) |δ(0)|

× e−
1
2

min{γ0,γ1}t. (60)

Finally, by considering (60), we prove that ζ(t) =[
ep(t), θ̃T (t)

]T
converge to zero as t → ∞.

Since θ̃(t) tends to zero, in other words, the
perfect estimation of unknown constant param-
eter θ is achieved, from Lemma 1, and noting
that δ(t) converges to zero, we also prove that

ν(t)− θ̂T (t)ξ(t). �

The result of Theorem 1 enables us to estimate
unknown disturbance signal ν(t) with unmea-
sured state p(t) for an open loop case. The perfect
estimation relies on the excitation of all modes of
the disturbance signal. This provides the persis-
tence of excitation that is given in Lemma 2.

In the next section, the algorithm for the input
u(t) to cancel the disturbance in the system is
given.

4. Active disturbance cancellation

We design an active disturbance cancellation al-
gorithm for the actual input u(t) by employing a
backstepping technique. This technique is firstly
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proposed by Petar Kokotovic for the control de-
sign of nonlinear system which are in strict feed-
back form [26]. However, the usage of this method
is not restricted by only a special class of nonlin-
ear systems. In [27], adaptive controller design
methodology without any over parametrization
for systems that contain parametric uncertain-
ties which are unmatched with the actual input
is given based on aforementioned technique. The
idea behind the backstepping is to find a control
law that transform the closed loop system to a
desired form step by step, this can also be seen as
recursive method. Particularly, in the considered
problem, firstly we design a law for the virtual
control input p(t) then by backstepping, we reach
the actual control input. It is called virtual con-
trol, since it is not the actual input but it is seen as
the input of the subsystem. Therefore, the main
role of actual input to drive the virtual input so
that the state of the considered system is driven
to a desired set. Since p(t), is not measured, this
technique can not be applied directly. This prob-
lem is handled by using the result obtained in the
previous section. Using (36) and (34), we repre-
sent the unmeasured p(t) as follows,

p(t) =p̂(t)− cep ėp(t) +
a21

b̄1a11
B̄m

(
θ̃T (t)ξ(t)

+ θT δ(t)
)
. (61)

4.1. Backstepping design

We can now consider the problem as an adaptive
control design. Substituting (19), (61) into (27)

and recalling θ = θ̃(t)+ θ̂(t) from (35) , we obtain

x(t) =ATn ẋ(t) +
1

a11
B̄n

(
− bTx p̂(t) + cepb

T
x ėp(t)

+ ẋn(t)− aTxATn ẋ(t)− θ̂T ξ(t)

−
(
a21b11

b̄1a11
+ 1

)(
θ̃T ξ(t) + θT δ(t)

))
.

(62)

It is possible to consider bTx p̂(t) as the virtual
controller for a backstepping design since the dy-
namic of p̂(t) depends on only measured signals.

The backstepping procedure consist of the follow-
ing steps; (1) designing a controller bTx p̂(t) that
both cancels the disturbance and stabilize the sys-
tem, (2) defining the error between the desired
and actual value bTx p̂(t), this step can be consid-
ered as a state transformation, (3) by taking the
time derivative of the defined error term, we find

the dynamics of error. In the last step, we reach
the actual control input.

First Step: The desired value of bTx p̂(t) is designed
by

p̂d(t) = −a11Kẋ(t)− θ̂T (t)ξ(t) + ẋn(t)− aTxATn ẋ(t),
(63)

where the control gain K = [k1, · · · , kn] ∈ R1×n

is chosen so that
(
ATn + B̄nK

)
is Hurwitz with

P = P T > 0 that is the solution of

Acl
−TP + PAcl

−1 = −2
(

2 +
cep
2

)
I. (64)

where

Acl =
(
ATn + B̄nK

)−1
. (65)

Second Step: we define the following error term,

ed(t) = bTx p̂(t)− p̂d(t). (66)

Third Step: Taking the derivative of (66), we ob-
tain

ėd(t) =− 1

cep
bTx p̂(t) +

(
1

cep
bTx
(
ATm + cepIm

− 1

b̄1
B̄mb̄

T
pA

T
m

)
+ (a11kn − 1) bTx

)
ṗ(t)

+

(
−b11

cep b̄1
āTpA

T
n + a11KAn

+ aTxA
T
nAn + (a11kn − 1) aTx

)
ẋ(t)

+
b11a21

cep b̄1a11
θ̂T (t)ξ(t) + θ̂T (t)Gξ(t)

+
˙̂
θT (t)ξ(t) +

(
θ̂T (t)l + (a11kn − 1)

)
×
(
βT ξ(t) + βT δ(t)

)
+

b11

cep b̄1

(
ṗm(t)

− a21

a11
ẋn(t)− u(t)

)
. (67)

The representation (20) is used for ν̇(t). In
this way, we transform (x(t), p(t)) system into
(x(t), ep(t), ed(t)) system where the uncertainties
are now matched with the real actuator.

As it is realized from (66), if ed(t) converges to
zero, the virtual controller tends to its desired
value which cancels the disturbance effect and sta-
bilize system (1).

In the next section, the adaptive controller and
the main theorem are given.
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4.2. Adaptive controller

Considering the transformed system (1), (36) and
(67) and their RSS forms, we design the following
adaptive controller

u =ṗm(t)− a21

a11
ẋn(t) +

cep b̄1

b11

(
− 1

cep
bTx p̂(t)

+

(
1

cep
bTx

(
ATm + cepIm −

1

b̄1
B̄mb̄

T
pA

T
m

)
+ (a11kn − 1) bTx

)
ṗ(t) +

(
−b11

cep b̄1
āTpA

T
n

+ a11KAn + aTxA
T
nAn + (a11kn − 1) aTx

)
ẋ(t)

+
b11a21

cep b̄1a11
θ̂T (t)ξ(t) + θ̂T (t)Gξ(t) +

˙̂
θT (t)ξ(t)

+
(
θ̂T (t)l + (a11kn − 1)

)
β̂T (t)ξ(t)

− 1

a11
ẋT (t)PB̄n

+

(
1

2

(
θ̂T (t)l + (a11kn − 1)

)2
+ ced

)
ed(t)

)
,

(68)

where ced > 0. The dynamics to update parame-
ter estimation is given by

˙̂
θ =κθ

1

b̄1a11
ξ(t)

(
a21B̄

T
mėp(t)

− a21b11 − b̄1a11

γa11
ẋ(t)TPB̄n

)
, (69)

˙̂
β =κβ

(
θ̂T (t)l + (a11kn − 1)

)
ξ(t)ed(t). (70)

with

γ =
1

a2
11

λmax

(
B̄T
nPb

T
x bxPB̄n

)
. (71)

Both control and update laws consist of only mea-
sured signals.

As it is seen by comparing the controller (68) and
the one designed in [21], they are different than
each other. It is not possible to employ the con-
troller in [21] to stabilize the system given in the
problem statement of this note.

Remark 1. Although parameter θ represents
the same property, the update laws given for
θ̂(t) in the open loop estimation and the closed
loop cancellation are slightly different. The up-
date law (69) employed in closed loop cancella-
tion contains an extra term, which is given by

−κθξ(t)a21b11−b̄1a11b̄1a211
ẋ(t)TPB̄n. The backstepping

technique causes the extra term in the update law.

Remark 2. We design the control and update
laws for the case where all state-derivative mea-
surements are accurate. That might not be the
case in the implementation of algorithms to ac-
tual systems, since the measurements providing
by sensors in the applications may contain noise
unless an appropriate filtering is applied. In adap-
tive control, measurement noise and unmodeled
dynamics may harm the stability of the equilib-
rium due to drift in the estimation of the param-
eters. However, there exist simple robustification
tools for mostly update laws to eliminate the ef-
fect of noise and unmodeled dynamics [25]. One of
the appropriate robustification tools can be em-
ployed together with the proposed algorithm to
provide robustness with respect to measurement
noise and unmodeled dynamics. The main draw-
back of the these tools is the trade off between
robustness and the convergence.

We define the following signal

ξ̃ =ξ − ξ, (72)

where ξ =
t∫

0

eG(t−τ)Glν̇(τ)dτ that is used in the

stability statement.

Theorem 2. Consider closed-loop system that is
composed of the plant (1),(2) driven by the un-
known disturbance signal (8), (9), the disturbance
observer dynamics (21), (22), the state observer
(33) and the adaptive controller (68)–(70). Under
Assumptions 1 and 2, the followings hold:

• For all initial conditions, all signals are

bounded and ẋ(t), ėp(t), ed(t), ξ̃, δ converge
to zero as t→∞,
• In addition, for all w(0) ∈ R2q such

that Assumption 3 holds, the signals

x(t), ep(t), θ̃, ν(t) − θ̂T ξ converge to zero
as t→∞.

5. Stability proof

The proof of Theorem 2 is given as follows.

Proof of Theorem 2: The transformed closed sys-
tem with the state observer is given as follows

ẋ(t) =Aclx(t)− 1

a11
AclB̄n

(
− ed(t) + cepb

T
x ėp(t)

−
(
a21b11

b̄1a11
+ 1

)(
θ̃T ξ(t) + θT δ(t)

))
,

(73)
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ėp(t) =− 1

cep
ep(t) +

a21

cep b̄1a11
B̄m

(
θ̃T (t)ξ(t)

+θT δ(t)
)
, (74)

ėd =−
(

1

2

(
θ̂T (t)l + (a11kn − 1)

)2
+ ced

)
ed(t)

+
(
θ̂T (t)l + (a11kn − 1)

)(
β̃T (t)ξ(t)

+βT δ(t)
)

+
1

a11
ẋT (t)PB̄n (75)

where

β̃(t) = β̂(t)− β. (76)

We consider the following Lyapunov function,

V =
1

2

(
xTPx+ γe2

p + e2
d +

γ

κθ
θ̃T θ̃ +

1

κβ
β̃T β̃

+ εδδ
TPδδ

)
(77)

where

GTPδ+PδG = −2I, (78)

εδ =

(
a21b11

b̄1a2
11

+
1

a11

)2

λmax

(
θB̄T

nPPB̄nθ
T
)

+

(
γ
a21b11

b̄1a11

)2

λmax

(
θB̄mB̄

T
mθ

T
)

+ λmax

(
ββT

)
. (79)

The derivative of V with respect to time, in view
of (20),(69),(70) and (73)–(75), is given by

V̇ =−
(

2 +
cep
2

)
ẋT (t)ẋ(t)− γcep ėTp (t)ėp(t)

−
(

1

2

(
θ̂T (t)l + (a11kn − 1)

)2
+ ced

)
e2
d(t)

+
1

a11
ẋTPB̄n

(
cepb

T
x ėp(t)−

(
a21b11

b̄1a11
+ 1

)
θT δ(t)

)
+

a21

b̄1a11
ėTp B̄mθ

T δ +
(
θ̂T (t)l + (a11kn − 1)

)
×
(
β̃T (t)ξ(t) + βT δ(t)

)
βT δed − ε2δδT δ.

(80)

Using Young’s inequality, we get

V̇ ≤− ẋT (t)ẋ(t)−
γcep

2
ėTp (t)ėp(t)− ced

e2
d(t)−

εδ
2
δT (t)δ(t). (81)

From (81), we conclude

V (t) ≤ V (0). (82)

Defining

Θ(t) =
[
xT (t), ep(t), ed(t), θ̃

T (t), β̃T (t), δT (t)
]T
,

(83)

and using (77) and (82), we get

|Θ(t)|2 ≤M1 |Θ(0)|2 , (84)

for some M1 > 0. Taking derivative of (72) and
using (40) yield

˙̃
ξ(t) = Gξ̃(t). (85)

Since G is Hurwitz, using (85), we get

∣∣∣ξ̃(t)∣∣∣ ≤M2e−α1t
∣∣∣ξ̃(0)

∣∣∣ , (86)

for some M2, α1 > 0. By using (84) and (86), we
obtain

|Ξ(t)| ≤M4 |Ξ(0)| (87)

where

Ξ(t) =
[
ΘT (t), ξ̃T (t)

]T
, (88)

for some M4 > 0. From (87), it is concluded that
all signals are bounded for all initial conditions.
Since the closed loop dynamics given by (73)–(75)
are continuous in Ξ and t, (81) is also continuous
in Ξ and t. Moreover, (81) is zero at Ξ = 0.
Therefore, we conclude that ẋ(t), ėp(t), ed(t) and
δ converge to zero as t → ∞, by the LaSalle-
Yoshizawa theorem. This proves part 2 of Theo-
rem 2.

We now prove the convergence of x(t). To this
end we first need to show the convergence of

ep(t), θ̃(t)). This part is similar to the proof of

Theorem 1. The system of (ep(t), θ̃(t)) is written
as

ζ̇(t) = E(t)ζ(t) + Fd(t)d(t), (89)

where E(t) and ζ(t) are given by (42) and (44),
respectively and
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Fd(t) =

[
0m×n

κθ
a21b11−b̄1a11

γa211b̄1
ξ(t)B̄T

nP

a21
cep b̄1a11

B̄mθ
T

− κθ
cep

(
a21
b̄1a11

)2
ξ(t)θT

 ,
(90)

d(t) =
[
ẋ(t), δT (t)

]T
. (91)

As it is seen the the homogeneous part of systems
(41) and (89) are same. The only difference is
the input matrices. We have already shown the
exponential stability of the homogeneous part in
the proof of Theorem 1. The boundedness of d(t)
and Fd(t) is concluded from (91) and (90), re-
spectively. Noting that d(t) goes to zero, from
(89) and (57), it follows that ζ(t) is bounded and

ζ(t) =
[
ep(t), θ̃T (t)

]T
→ 0 as t → ∞. Since

δ(t), θ̃(t), ėp(t), ed(t)→ 0 and Acl is Hurwitz, from
(73), it is shown that x(t) converges to zero as
t→∞. In addition, from (19), we conclude that

θ̂T (t)ξ(t)− ν(t)→ 0 as t→∞. This proves part
2 of Theorem 2. �

6. Example

We consider a two–degree of freedom system
which is illustrated in Figure 1, as a simulation
example.

ν̄(t)

mx

mp

cxkx

kp

zx(t)

zp(t)

Floor

F (t)

Figure 1. The dynamical system
considered for numerical example.

The mass denoted by mx is forced by an unknown
disturbance ν̄(t) and connected to another mass,
mp which is actuated by a force input. The sys-
tem dynamics are given by

mxz̈x(t) =− kx (zx(t)− zp(t))
− cx (żx(t)− żp(t)) + ν(t), (92)

mpz̈p(t) =− kpzp + kx (zx(t)− zp(t))
+ cx (żx(t)− żp(t)) + F (t). (93)

Choosing the state as x(t) =
[
zx(t), żx(t)

]T
and p(t) =

[
zp(t), żp(t)

]T
, we obtain aTx =[

− kx
mx
, − cx

mx

]
, bTx =

[
kx
mx
, cx

mx

]
, aTp =[

kx
mp
, cx

mp

]
and bTp =

[
−kx+kp

mp
, − cx

mp

]
. The

disturbance is ν(t) = ν̄(t)
mx

and the input is u(t) =
F (t)
mp

. The system parameters are chosen as mx =

10,mp = 5, kx = 10, kp = 5, cx = 10. The mass
denoted by mx is driven by the unknown peri-
odic disturbance ν̄(t) and the states of mass mp

through the connected spring and damper. The
mass mx is the subject system to stabilize. The
effect of the input F (t) reaches the main system
through the dynamics of mp whose order is more
than one. Therefore, it should be noted that the
design given in [21] can not be used for this ex-
ample. By employing the developed algorithms,
we present the results for estimation and active
disturbance cancellation.

6.1. Observer based disturbance and state
estimation

In this case, the only aim is estimation. The

unknown disturbance signal ν(t) = ν̄(t)
mx

=

sin( 2π
3.5 t) + 0.5 sin(2π

4 t+ π
4 ) + 0.5 sin(2π

3 t+ π) and

initial condition x(0) = p(0) =
[
−0.5 −0.5

]T
.

The update and estimations gains is chosen
as κ = 15000 and cep = 20. The pair

(G, l) is l =
[

0T5 , 1
]T

, G =

[
05 I5

0 0T5

]
+

l
[
−527.8− 1146.1− 1024.2− 482.5− 126.4− 17.5

]T
which is controllable. Since the critical signal is
the position of mp, we have plotted its estimate
in Figure 2. The estimation of the disturbance
together with the actual signal are plotted in
Figure 3. From Figures 2 and 3, it is seen that
|zp(t)− ẑp(t)| converge to zero and the estimate of

unknown disturbance, θ̂T (t)ξ(t) converges to the
actual disturbance signal, thus perfect estimation
is achieved, as Theorem 1 states.
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0 10 20 30 40 50 60
Time (sec)

-1

-0.5

0

0.5

1

1.5

zp(t)
ẑp(t)

Figure 2. Estimation of the ac-
tuator state ẑp(t) for the ob-
server based estimation.

0 10 20 30 40 50 60
Time (sec)

-3

-2

-1

0

1

2

3

Disturbance{8(t)

Open Loop Estimation{3̂(t)T 9(t)

Figure 3. The actual distur-
bance signal ν(t) and its esti-

mate, θ̂T (t)ξ(t), for the observer
based estimation.

6.2. Active cancellation

In this case, the aim is to actuate mass mp by
F (t) so that the zp(t), ż(p) cancel the disturbance
on mass mx. The unknown disturbance ν(t) =
ν̄(t)
mx

= 2 sin(2π
3 t) + sin(2π

t + π
4 ) and the initial con-

ditions of the states are chosen same as the first
case. The control gain K is chosen such that the
eigenvalues of A−1

cl are −3 and −4. The gains are
ced = 350, cep = 0.2, κθ = 50 and κβ = 10. The

pair (G, l) is l =
[

0T3 , 1
]T

, G =

[
03 I3

0 0T3

]
+

l
[
−48.51− 75.91− 43.63− 10.90

]T
which is

controllable. The state of mass mx is given in Fig-
ure 4. The result of the disturbance estimation is
presented in Figure 5. From Figures 4 and 5 it is
observed that zx(t), żx(t) converge to zero and the

estimate of unknown disturbance, θ̂T (t)ξ(t) con-
verges to the actual disturbance signal, thus per-
fect estimation is achieved, as Theorem 2 states.

0 5 10 15 20 25 30 35 40
Time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

zx

_zx

Figure 4. Position, zx(t), and
velocity, żx(t), of mass mx when
the cancellation algorithm is on.
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0
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Disturbance{8(t)

Open Loop Estimation{3̂(t)T 9(t)

Figure 5. The actual distur-
bance signal ν(t) and its esti-

mate, θ̂T (t)ξ(t), for the active
cancellation.
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7. Conclusions

In this note, we consider an active disturbance
cancellation problem for the case where the dis-
turbance signal which is modeled as the sum of
q sinusoidal functions, and the real control input
of the system are unmatched. Moreover, the only
available measurements for the feedback are the
state derivatives. Two algorithms are developed;
the first one is to estimate the unmeasured distur-
bance and states in the open loop, the second one
is to cancel the effect of the disturbance and main-
tain the state convergence in the closed loop case.
To this end, observers are designed for both the
unknown disturbance and the unmeasured state
that appears as the virtual control input in the
system. We perform a backstepping procedure to
handle the unmatched condition and obtain the
control and update laws by using the estimate of
the unmeasured state as the virtual control input.
The stability of the equilibrium of the closed-loop
adaptive system and the the convergence of state
derivatives, ẋ, to zero in time are shown. By as-
suming all modes of the disturbance signal are ex-
cited, we also achieve to prove that the state x(t)
converges to zero as t → ∞ and the estimate of
disturbance, θ̂T (t)ξ(t) converges to actual distur-
bance signal, ν(t). We illustrate the effectiveness
of developed algorithms by performing numerical
simulations for a two–degree of freedom spring–
damper–mass system. The simulation results also
verify that the developed algorithms are working
correctly as the given theorems state.
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