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 In brain computer interface (BCI) research, electroencephalography (EEG) is the 

most widely used method due to its noninvasiveness, high temporal resolution and 

portability. Most of the EEG-based BCI studies are aimed at developing 

methodologies for signal processing, feature extraction and classification. In this 

study, an experimental EEG study was carried out with six subjects performing 

imagery mental and motor tasks. We present a  multi-class EEG decoding with a 

novel pairwise output coding method of EEGs to improve the performance of self-

induced BCI systems. This method involves an augmented one-versus-one 

multiclass classification with less time and reduced number of electrodes. 

Furthermore, a train repetition number is introduced in the training step to optimize 

the data selection. The difference among right and left hemispheres is also 

searched. Finally, the difference between experienced and novice subjects is also 

observed.  

The experimental results have demonstrated that, the use of proposed classification 

algorithm produces high classification accuracies (98%) with nine channels. 

Reduced numbers of channels (four channels) have 100% accuracies for mental 

tasks and 87% accuracies for motor tasks with Support Vector Machines (SVM). 

The classification accuracies are quite high though the proposed one-versus-one 

technique worked well compared to the classical method. The results would be 

promising for a real-time study. 
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1. Introduction 

A brain-computer interface (BCI) is a communication 

system that translates the brain signals into commands 

for communication or for controlling external devices 

without requiring any peripheral muscular activity [1-

3]. Electroencephalogram (EEG) is the most efficient 

and widely used recording modality in BCIs due to its 

non-invasive measurement procedure, portability and 

reasonable cost [2]. Due to the large numbers of 

methodologies developed for signal processing, feature 

extraction and classification of EEG data, there are no 

gold standards on data processing and machine learning 

algorithms [4-6]. The output of a BCI contains the 

decoding of the intended task and then it is transferred 

to the related device. The discrimination of the tasks is 

done with a classifier. A number of linear and nonlinear 

classifiers have been studied for classification of EEG 

signals under different conditions like Linear 

Discriminant Analysis (LDA), Support Vector 

Machines (SVM), Neural Networks (NN) and its 

special implementations, Bayes Quadratic, Common 

Spatial Patterns (CSP), Hidden Markov Models and 

hybrid classifiers [6-10].  

It is concluded from the literature [2-4] that, the EEG 

data has a non-Gaussian nature and differs from person 

to person so the features and classifiers should adapt 

that changing character. Therefore, it is difficult to suit 

a single feature extraction or classification algorithm 

for the EEG signal. Many BCI methodologies are tried 

in the literature and the studies that rely on mental task 

or motor imagery discrimination are regarded as 

flexible methods [5,6]. The mental task based BCI 

studies enable independence to the user and to the 

system developer without the need for an extra monitor 

or a gaze tracker. Decoding mental tasks can be done 

with event related potentials (ERP), visually evoked 

http://www.ams.org/msc/msc2010.html
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potentials (VEP) and with EEG. ERPs and VEPs  

require additional interfaces, such as screens of 

alphanumeric characters or gaze tracking devices.  

The principal aim of this study is to introduce a multi-

class EEG decoding for BCIs, with a novel pairwise 

output coding method. For building binary classifiers, 

one-versus-all (OVA) or one-versus-one (OVO) 

classification techniques are generally used. The choice 

between the two methods is based on the computation 

time and data storage.  OVO seems faster and more 

memory efficient especially with LDA and SVM 

classifiers [11]. In the classical OVO scheme, a 

classifier is trained between each pair of classes and the 

final class of a test sample can be predicted by the max-

win voting strategy. Whereas ties can arise in the voting 

and that could affect the final prediction badly [11]. 

Different from the literature, a new modification is 

added to the validation step, in which a train repetition 

number is introduced, is implemented while 

determining the training data of the classifiers. The 

train data are randomly selected from the rest of the test 

set, and they are obtained with multiple training 

sessions. The final performance of the classifiers was 

compared with the classical OVO results showing a 

higher classification ability. 

  Moreover, this study introduces a new data set 

which was recorded during mental and motor task 

experiments at Mechanical Engineering Department of 

Karadeniz Technical University. Whereas most of the 

previous studies were generally conducted from 

common  two data source which are Keirn and Aunon’s 

five class mental task data [12] and and Schlögl and 

Pfurtscheller’s four class motor imagery data [7]. Huan 

and Palaniappan [13] designed a bi-state BCI for the 

five class mental task data given in [12], and they used 

three different feature extraction methods with NN-

classifiers. Flores and friends [14] also developed an 

architecture based on adaptive neuro-fuzzy inference 

systems through recurrent neural networks. They used 

five class mental task data in [12]. Solhjoo and friends 

[15] used the dataset in [7]. They studied the 

performance of Hidden Markov Models in 

classification. Tolić and Jović [16] classified the 

wavelet transformed EEG signals with Neural 

Network. They studied with the mental task data from 

[12] and imagined motor tasks [17]. Apart from their 

work, experimental paradigm enables a user centered 

flexible environment for performing real time BCI 

applications in the future.   

Furthermore, one more significant contribution of this 

study is the channel reduction to shorten the data 

processing time for online BCI applications.  

Depending on the demand from final-users of BCI 

applications, portable and easy-to-use devices are 

encouraged to be developed [4]. 

This paper is organized as follows. Section 2 gives a 

brief description of the recording procedure of the 

experimental design and the data used. Section 3 

presents the details of the feature extraction approach 

and Section 4 contains the improved one-versus-one 

classification mode for LDA and SVM classifiers. In 

Section 5, the multiclass classification performance of 

classifiers for six subjects is reported along with a 

discussion of the results. Finally, the concluding 

remarks are given in Section 6.  

2. Materials and methods 

2.1.Experimental setup and data description 

A 64 channel Biosemi ActiveTwo EEG system was 

used to record the EEG data. All experiments were 

carried out at the Mechanical Engineering Department 

of Karadeniz Technical University [18]. Apart from the 

literature, the recordings were all performed eyes 

closed which enables participants to concentrate 

thoroughly. Furthermore, eye blinks and eye 

movements produce a high amplitude signal called 

electrooculogram (EOG) that can be many times 

greater than the EEG signals which are regarded as 

artifacts [19,20]. For a good and accurate classification, 

the artifacts added to the EEG signal during the 

recording session must be removed from the signal 

itself.  One way of solving this problem is to reject the 

eye blinked segments or the whole trial of that signal. 

However this can also cause to miss the valuable part 

of the data and additionally this could not be efficient 

when there is limited data [21]. 

1) Participants:  The study was performed with 6 

healthy participants who were initially naïve to the use 

of an EEG and the tasks except Subject 1. The 5 men 

and 1 women, with a mean (standard deviation, SD) age 

of 30.5 (14.4), had no medical diseases and were all 

right-handed. Each volunteer participated in several 

sessions over a period of 2-3 weeks. All of the 

participants signed the informed consent form before 

the experiments. 

2) Procedure : The subjects were seated on a 

comfortable chair in a dim lighted, silent room during 

the recordings. Before each trial, they were informed 

about the type of the task (resting state, multiplication, 

right hand, etc.) by auditory cues. The sequence of 

mental and motor tasks was as follows: resting state, 

mental arithmetic, imagination of right hand 

movement, imagination of left hand movement, and 

imagination of letter ‘A’ (see Figure 1). Each trial 

lasted 10 seconds and the interval between consecutive 

tasks was about 3-4 seconds. The first 2 seconds in trial 

were the task preparation time for the subject. The 

experiments comprised of 5 experimental runs of 20 

trials each (100 trials per task in total). The details of 

each task are provided below: 

• Resting state (RS): The subjects were asked to sit 

and relax as much as possible without thinking 

anything.  

• Mental arithmetic task (MA): The subjects were 

given a two-digit multiplication problem to solve in 

mind without vocalizing or any movement (e.g. 24×76 
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=?). The problems were not repeated. After the trial, the 

subject verified whether he reached the solution or not.  

• Right hand imagination task (RH): The subjects 

were told to imagine right hand movement. 

• Left hand imagination task (LH): The subjects were 

required to imagine left hand movement.  

• Letter ‘A’ imagination task (LA): The subjects were 

told to imagine the letter ‘A’ in their mind.  

3) Recordings: EEG data were recorded from the 

subjects during the experiment, using a 64-Channel 

Biosemi ActiveTwo EEG system with Ag/AgCl 

electrodes  The international 10-20 electrode placement 

system was used. The grounding electrodes CMS and 

DRL were mounted on the back of the head. The EEG 

signals were sampled at 512 Hz. 

 4) Channel selection:  We selected 9 channels from 

four different brain regions and hemispheres, i.e. 

frontal (F3/4), central (C3/4), parietal (P3/4, Pz) and 

occipital (O1/2). Because, each region was constituted 

with an EEG pair where different EEG rhythms can 

distinguish patterns of neuronal activity associated with 

specific motor and cognitive processing functions. Any 

change in brain patterns could result from different 

forms of processing or computation in the brain and 

represent different rhythmic states [7,9-

11,13,16,21]. Hence, the alpha wave can be detected 

primarily from the occipital lobe (O1 and O2), but also 

from the parietal (P3 and P4) and frontal regions (F3 

and F4) of the cerebral cortex. The motor imagery of 

human right/ left hand is typically reflected in EEG 

spectra in the beta rhythm obtained from C3 and C4, 

and mental arithmetic is mostly reflected in frontal 

cortex at F3 and F4.  Feature extraction and 

classification were performed at each single channel. 

 

Figure 1. Order of the experiments 

 

2.2. Data preprocessing 

The raw data obtained from the Biosemi system is 

transferred to the Matlab environment. The raw data 

was normalized by Cz channel’s data by subtracting it 

from the remaining 63 channels. The data were visually 

inspected, the beginning two seconds part was excluded 

from the entire 10 seconds signal because of the rough 

changes at the beginning of the imagination task. Then, 

the rest 8 seconds signal is divided into two 4 seconds 

signal by making 200 trials for each task. At the final 

stage, totally 6000 data samples (200 data samples x 5 

tasks x 6 subjects) are collected to be analyzed. For 

online BCI studies, the user could be trained for some 

trials before the online application instead of excluding 

the data. The signal analyses are done on the data 

samples of 10 channels separately, (F3, F4, C3, C4, Cz, 

P3, P4, Pz, O1 and O2) which are given in Figure 2.  

Before the feature extraction step, the EEG signal was 

filtered using the 10th order 50Hz low-pass digital 

Butterworth filter. 

 

Figure 2. International 10-20 electrode placement system 

with the selected 10 channels in yellow 

 

2.3. Feature extraction  

Many feature extraction methods from basic [22] to 

highly complex ones [23-25] are proposed in BCI 

history. As the accuracy, ease of use, efficiency and 

speed are important parameters to consider [26], the 

feature extraction approach proposed in [27] is used in 

this study. This method relies on the band powers of 

EEG signal which is a common and powerful technique 

to distinguish different frequencies [28-30 ]. There, a 

stable pattern in the PSD was observed with different 

amplitudes for all subjects and for all tasks. This 

biologically phenomenon allows a classification 

between different mental tasks. Based on this biological 

phenomenon, we extracted three features from the 

alpha (8-13 Hz) and beta (13-30 Hz) bands of PSD by 

searching the local peak values in the alpha and beta 

bands separately.  The PSD based on Welch 

Periodogram: a hamming window of 1024 points was 

used with a 50% overlap between adjacent windowed 

sections was computed first. Then the first feature is 

selected as the highest PSD peak value in the alpha 

band (8-13 Hz), which is referred to as f1 in the Figure 

3. The second and third features are the arbitrary first 

and second highest PSD peak values in beta band (13-

30 Hz) , which are referred to as f2 and f3 in Figure 3. 
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Figure 3.  Proposed feature extraction scheme. The curve 

indicates the PSD of EEG in alpha and beta bands. We select 

the highest PSD peak value in the alpha band and first two 

highest PSD peak values in the beta band as the features. 

3. Classification taxonomy 

Classification is the act of  assigning a predefined class 

to each instance. For this discrimination, we  used LDA 

and SVM classification methods because of their good 

performances[6,7]. Both of these classification 

methods were originally designed for binary 

classification, but in this study they are adapted for 

multi-class problems. The simplest form is to build 

independent binary problems and to predict the score 

according to each binary classifiers result. The structure 

of binary classifiers are build with one-versus-all 

(OVA), one-versus-one (OVO) or the error correcting 

code techniques which are commonly used. The 

decision between OVO and OVA totally depends on 

the data type. It is stated that OVO is faster and more 

memory efficient than the OVA [31]. Regarding with 

this truth, an extended approach of OVO technique 

which is tested with LDA and SVM is developed in this 

study.   

 

3.1.  LDA classifier 

LDA is an easily implemented, classical classification 

method. Hence, it is very popular and is often used as 

the baseline method for comparison with different 

classification methods. In this method, the data is 

projected onto a lower-dimensional vector space such 

that the ratio of the between-class distance to the 

within-class distance is maximized. Therefore, 

maximum discrimination is obtained. The optimal 

projection can be computed by applying the 

eigendecomposition on the scatter matrices. 

According to Fisher’s two class LDA, the multivariate 

observations x are transformed to univariate 

observations y such that the y’s derived from the two 

classes are separated as much as possible [8]. First of 

all, the feature vector x is mapped by the following 

linear transformation in (1): 

T
y=V x                                                                   (1)                                                                                                                                                                               

                                                                                                          

where V represents the projection matrix. It is 

determined by maximizing the ratio of between-class 

variance to within-class variance. The within-class 

variance matrix and between-class variance matrix are 

defined below with equations (2) and (3):
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where K is the number of classes, and µi  is the mean 

vector of the class i,  Li   is the number of samples 

within-class  i  and µ is the mean of the entire training 

sample set. The projection matrix V is calculated by 

eigenvectors of matrix 
1

W BS S
 . Once the 

transformation is done, the classification is then 

performed in the transformed space based on some 

distance metric, such as Euclidean distance given in (4);      

2

i i

i

( , ) (p -q )d p q                                           (4)                                                                                                   

The final class is attained  as 
arg min ( , )k kd zV V

, 

upon the arrival of the new instance z (a row vector). 

Here, k is the centroid of the k-th class.  

    

The extended OVO approach is built to apply this 

binary LDA method to multiclass classification. We 

implemented a computer program for LDA algorithm 

in MATLAB® for two-class and multi-class 

classification.  

 

The multi-class case consists of several two-class runs. 

In a classical OVO approach, K(K-1)/2 binary 

classifiers are built. A new example is tested according 

to the max-win voting strategy among the classifiers, 

and the class with the maximum number of votes is 

assigned. In some cases, ties can arise and the 

computation for that run is neglected. This is 

disadvantageous when there is limited data. Apart from 

the existing OVO approach, the proposed approach in 

this study uses K binary classifiers to classify the K 

class data. The data and the class labels are introduced 

as  
1

,
N

i i i
x y


  where ix R  are training samples with 

input vectors and  1, 1iy      are class labels. 

Different from the literature, by means of each 

electrode channel’s separate classification result, the 

final class label is attained. 

 

The extended OVO approach can be explained in 

following steps:  

We have five classes in this study. Each class contains 

200 data samples per subject and per electrode channel, 

in total 1000 data samples per subject. In theory, we 
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used 50% of the data for testing and 50% for training 

which means that the data of a subject is split equally 

as training and testing. This selection is made randomly 

by a two-fold cross validation in each run.  

Step 1: For each binary classifier, select 50 train data 

for all task pairs. A task pair contain 100 data. K=5 

binary classifiers are built as a module, for instance k1-

k1,k1-k2,k1-k3,k1-k4,k1-k5, as depicted in Figure 4. 

As the proposed method constructs K task pairs for K 

class data, we use ½ of the train data of each class.  

Label half of the train data as +1 and -1 in each 

classifier. As a result of this methodology, 50 train data 

of the same class will be labeled as +1 and another 50 

train data from the same class will be labeled as -1 (k1-

k1).  The rest of the pairs (k1-k2,k1-k3,k1-k4,k1-k5)  

are constructed such that 50 train data from one class 

will be labeled as +1 and another 50 train data from the 

other class will be labeled as -1.  

Step 2: Take another random 50 test data which are 

totally different from the train data, from any of the 

classes. As we don’t know the test class label, we will 

compare it with all the K classes. By considering k1-k1 

case, if it’s true class is k1, the greatest possible 

majority of a test sample will definitely be 50. The 50 

is not the final classification performance value, it is 

only a mathematical way for us to predict the class 

labels. Alike pair’s comparisons will be different from 

50. It is the key point which enables us to predict the 

test class label. The program is designed to compute all 

nine channels’ percentages separately. The highest 

classification performance results are observed on all of 

the nine channels. Then, the predicted class labels are 

attained by using max-win voting strategy among nine 

channels. The predicted class labels are displayed as 

P1, P2, P3, P4 and P5 in Figure 4. In Table 1, the K 

class module results that give way to decision on final 

class label is indicated. You will see from Table 1 that, 

the task pairs Task1- Task1, Task2-Task2, Task3-

Task3, Task4-Task4 and Task5-Task5 

have values around 50. The task pair results are 

independent from each other.   

 

Figure  4. Schematic explanation for extended OVO 

approach 

 

 

Step 3: Finally, the overall program is repeated 100 

times to obtain a mean value. 

 

3.2. SVM classifier 

SVM is a powerful classifier which has demonstrated 

its excellent generalization properties in various BCI 

applications [7,8,10].  The basic idea of SVM is finding 

the optimal separation hyperplane by maximizing the 

margin.  

The general SVM solution is obtained from the 

following optimization problem [32] given in (5): 
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Input vector  
n

ix R , and class labels  1, 1iy   

.  N is the number of training samples, w is the normal 

vector and b is the bias of the separation hyperplane. If 

( )x x  , then SVM is called linear, otherwise, if  x  

is mapped to a higher dimensional space, then it is 

called nonlinear SVM. In that case, the training data 

might not be separated without error, the slack variable 

0i    and c>0 have to be introduced. The output of 

a binary SVM classifier can be computed by the 

following expression in (6): 

1
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i
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where 0i   are Lagrangian multipliers obtained by 

solving a quadratic optimization problem, and 

( , )i jk x x  is called Kernel function. The most 

commonly used kernel function is the Gaussian RBF 

function which is also used in this study as in (7), 

2

2
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2

i j

i j

x x
k x x


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                            (7)                                                                                                                   

   is the user defined parameter which shows the 

kernel function’s width. 

MATLAB’s SVM package which is originally 

designed for binary classification is applied for 

multiclass classification according to the improved 

OVO approach that is used in LDA. 
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Table 1. Proposed final class label decision table 

 
Tasks Percentages % with Standard deviations ± 

Training 

set 
Test set F3 F4 C3 C4 P3 P4 Pz O1 O2 

Task1 

Task1 

50.28   

±9.62 

49.90 

±9.51 

 50.98 

±10.11 

50.98 

±8.81 

 50.80 

±14.63 

50.18 

±9.94 

 51.00 

±10.10 

49.50 

±9.29 

49.96 

±10.13 

Task2 
 2.64 

±1.86 

1.84 

±2.23 

 4.76 

±2.89 

7.78 

±2.82 

 4.48 

±2.99 

4.74 

±3.03 

 6.32 

±3.47 

5.64 

±3.28 

7.70 

±4.33 

Task3 
 9.62 

±4.14 

9.98 

±3.79 

 9.84 

±4.73 

8.60 

±3.28 

 11.66 

±4.79 

14.40 

±4.64 

 14.14 

±4.46 

20.40 

±6.72 

33.44 

±7.20 

Task4 
 10.96 

±4.41 

10.38 

±4.19 

13.74  

±4.95 

7.54 

±3.13 

 14.72 

±5.31 

14.54 

±4.87 

 17.14 

±5.49 

26.56 

±6.96 

34.98 

±8.14 

Task5 
 14.70 

±6.22 

15.88 

±6.18 

 20.04 

±6.23 

28.76 

±7.16 

 13.26 

±5.59 

16.22 

±5.21 

 16.62 

±4.43 

15.36 

±5.64 

21.44 

±6.50 

Task1 

Task2 

 3.82  

±2.77 

5.38 

±2.97 

6.44  

±3.44 

9.42 

±4.06 

 24.90 

±6.25 

10.32 

±3.72 

10.72  

±4.11 

20.16 

±4.84 

22.34 

±5.18 

Task2 
 49.74  

±9.17 

49.32 

±9.86 

 49.52 

±9.54 

50.70 

±10.11 

 48.08 

±15.84 

51.52 

±9.47 

 51.92 

±9.90 

50.26 

±9.77 

51.90 

±9.48 

Task3 
 23.50 

±5.70 

23.24 

±5.68 

 24.20 

±5.64 

48.20 

±8.29 

 33.60 

±7.72 

28.34 

±6.32 

 26.52 

±5.95 

29.38 

±6.48 

28.44 

±6.08 

Task4 
 21.82 

±5.15 

21.98 

±5.88 

 22.18 

±6.04 

43.96 

±8.28 

 31.06 

±7.53 

26.66 

±5.96 

 24.32 

±5.38 

25.20 

±6.50 

27.76 

±6.04 

Task5 
 16.86 

±5.68 

16.04 

±5.17 

 20.98 

±7.36 

23.28 

±6.66 

 33.32 

±6.22 

24.30 

±6.48 

 25.16 

±6.05 

33.54 

±7.37 

33.24 

±6.65 

Task1 

Task3 

 10.44 

±3.97 

9.66 

±4.24 

 8.50 

±3.48 

9.60 

±3.89 

 26.98 

±7.21 

13.74 

±5.54 

 12.70 

±4.39 

35.14 

±7.44 

31.08 

±7.72 

Task2 
 29.78 

±6.30 

30.24 

±6.59 

 32.84 

±6.23 

41.56 

±8.16 

 27.36 

±6.44 

27.96 

±6.36 

 26.00 

±5.99 

26.66 

±6.06 

21.76 

±6.85 

Task3 
49.76 

±10.57 

50.32 

±10.49 

 47.86 

±10.28 

51.50 

±9.41 

 49.86 

±14.44 

51.70 

±9.67 

 51.78 

±9.02 

51.00 

±9.70 

50.40 

±8.98 

Task4 
42.74   

±10.04 

40.68 

±9.16 

46.20  

±9.29 

38.72 

±8.65 

 47.38 

±13.53 

46.04 

±10.12 

 47.16 

±9.67 

47.86 

±8.53 

47.98 

±9.22 

Task5 
22.60   

±7.28 

24.78 

±7.16 

 25.94 

±6.88 

23.14 

±5.63 

 34.12 

±8.43 

26.12 

±8.35 

 29.08 

±8.35 

39.38 

±8.76 

36.86 

±7.37 

Task1 

Task4 

 13.86 

±4.79 

14.10 

±5.35 

 13.98 

±4.67 

11.08 

±4.56 

 32.64 

±7.46 

16.50 

±5.01 

 18.56 

±5.61 

42.34 

±8.72 

33.44 

±9.84 

Task2 
 25.04 

±6.33 

28.80 

±6.61 

 27.14 

±6.65 

46.30 

±8.04 

 22.54 

±6.85 

25.48 

±5.48 

 22.88 

±5.79 

21.16 

±5.67 

19.94 

±5.68 

Task3 
 50.28 

±8.67 

53.34 

±9.00 

 45.16 

±8.51 

47.88 

±7.28 

46.86 

±12.34 

51.70 

±9.84 

 51.38 

±10.15 

44.34 

±9.16 

48.98 

±11.67 

Task4 
 49.94 

±9.61 

51.24 

±10.49 

50.70  

±9.05 

49.94 

±9.89 

 52.26 

±16.25 

51.26 

±9.38 

 50.74 

±10.69 

50.30 

±10.43 

48.72 

±12.10 

Task5 
 29.04  

±7.12 

29.70 

±7.15 

 31.62 

±7.84 

25.64 

±6.51 

 34.72 

±7.66 

25.88 

±6.15 

 30.26 

±6.89 

33.42 

±7.23 

36.94 

±8.34 

Task1 

Task5 

 22.12 

±5.39 

23.88 

±5.85 

 23.48 

±6.54 

25.12 

±6.81 

31.96  

±6.84 

31.78 

±6.70 

 25.32 

±6.16 

31.20 

±6.57 

36.92 

±7.49 

Task2 
 22.72 

±6.25 

23.06 

±5.70 

 24.76 

±6.20 

19.42 

±6.05 

 33.02 

±6.57 

27.02 

±6.05 

 29.12 

±6.21 

31.52 

±6.50 

29.04 

±6.10 

Task3 
38.32   

±7.40 

36.56 

±6.81 

 27.98 

±6.68 

22.86 

±5.75 

 41.78 

±9.80 

30.44 

±5.98 

 30.26 

±7.17 

46.78 

±7.17 

44.16 

±8.06 

Task4 
 36.46  

±8.27 

33.70 

±6.93 

 28.62 

±6.41 

16.92 

±5.28 

 38.28 

±8.87 

27.56 

±6.41 

 29.14 

±6.99 

42.54 

±6.48 

39.46 

±8.64 

Task5 
50.54   

±9.17 

50.00 

±10.50 

 49.36 

±8.96 

49.10 

±8.97 

47.86  

±14.07 

50.80 

±8.36 

 48.48 

±9.15 

51.32 

±9.53 

51.08 

±10.24 

 

4. Results and discussion 

The classification performance of the proposed 

approach and the regular OVO with LDA and SVM 

were given in Table 2 for all six subjects and nine 

channels. The classification performance per mental 

and motor task is defined as the number of correct 

predictions in a run over the total number of data points 

in that run and expressed in % for 100 times trials. In 

the tables, a two group representation is performed. 
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First group represents the results of extended OVO 

approach and the next group shows the results of 

regular OVO approach. The leftmost column represents 

the subjects from one to six, the next column shows the 

classifiers, the following five columns represent the 

classification accuracies of five tasks and the last 

column represents the mean values of all tasks. All 

computations were done by using the same number of 

train and test data.  It is seen from Table 2 that, the data 

of Task1 is finely discriminated from the rest in all the 

subjects. The highest classification rates are 100 with 

SVM and 99.96 with LDA for Subject1. It is 99.90 for 

Subject 2 with SVM, 63.90 for Subject 3 with SVM, 

75.92  for Subject 4 with SVM, 83.44  for Subject 5 

with SVM and finally 79.39  for Subject 6 with LDA. 

Moreover, the classification performances of Task 2 

and Task 5 are fairly good for Subject 1 and Subject 2, 

and medially for the rest four subjects. The 

classification results of motor tasks, Task 3 and Task 4 

which are Imagination of Right Hand and Imagination 

of Left Hand, are lower than the mental task results. 

The highest rates are again observed with Subject 1 

which is 75.44 for Task 3 and 75.20 for Task 4 which 

are obtained with SVM. The highest mean values of 

subjects for different tasks with LDA are 79.34 and 

81.64 with SVM. The overall performances of all 

subjects show that the results are subject dependent. 

Hence, more trained subjects (Subject 1, familiar with 

EEG and BCI studies) produce a higher classification 

performance. To be able compare  the proposed 

extended OVO approach with the regular OVO 

approach, the classification accuracies of five tasks and 

the mean values of all tasks were also included in Table 

2. The maximum mean classification performances of 

subjects were achieved by Subject 2  as 69.36%  with 

LDA and  61.95 % with SVM which are very poor 

when compared with extended OVO results (81.38 % 

LDA and 89.98 % SVM). The mean classification 

results calculated due to six subjects and also for five 

tasks show that extended OVO approach performs 

better than the regular method which is the superiority 

of the proposed approach. The reason for this 

performance drop may be the occurrence of many ties 

at the max-win voting strategy during the final class 

decision of regular OVO approach.  It is clear in Table 

2 that the classification performance of Task 1 and Task 

2 data samples are very high for all six subjects with 

both methods. An important finding from Table 2 is 

that Task 3 and Task 4 (the motor imagery tasks) have 

very low performance results for both OVO approaches 

(54.83% mean with extended OVO and  58.37% mean  

with regular OVO). The computation times for both 

classifiers are given in Table 7. The proposed method 

has shorter computation times (0.9 seconds for LDA 

and 2.42 seconds for SVM) than the regular OVO 

approach (3.44 seconds with LDA and 4.21 seconds 

with SVM). 

Another point which is observed for this subject is 

reducing the number of electrodes from 9 to four 

depends on the cortex placements (Table 3). Four 

electrodes F3, F4, C3 and C4 are selected because they 

are at the frontal regions and sensorimotor area of the 

cortex and moreover they are more important for 

recognition of mental and motor tasks than the rest of 

the channels. The results of this study also supports this 

truth that during motor tasks while the classification 

accuracies with four channels (F3, F4, C3, C4) are 

higher, increasing the number of channels to nine does 

not increase the classification accuracy. So, it can be 

concluded that, the use of four channels (F3, F4, C3 and 

C4) data is enough also for the motor task 

classifications. 

In Tables 4-5, the classification results of each classifier 

for left (F3, C3, P3, O1) and right (F4, C4, P4, O2) 

hemisphere electrodes and the midline electrode (Pz) is 

given. The classification results of (F3 C3 P3 O1 Pz) 

are as follows: for Task 1 100 with LDA and 100 with 

SVM, for Task 2 95.10 with LDA and 100 with SVM, 

for Task 3 47.54 with LDA and 81.44 with SVM, and 

for Task 4 57.66 with LDA and 69.06 with SVM and 

finally for Task 5 90.64 with LDA and 99 with SVM. 

Whereas, the classification results at Table 4 are very 

close to the results of Table 5 which means that we 

cannot judge about hemispheric changes under these 

circumstances for this subject. However, during the 

imaginary tasks, the performance of the task results are 

much more dependent on how well the imagination 

performed. Both 5-electrode configurations had better 

classification results for right than for left arm 

movement imagination (see Tables 4-5), instead for 

having better results for the corresponding arm 

movement. A possible explanation for this fact could 

be that the dominant hand characteristics may affect the 

classification results. 

One important point of this study is to obtain an ideal 

training data without discarding noisy or bad data 

during the analysis. While working with an online BCI 

system, it would be difficult to discard the data. For this 

reason, a parameter called the train repetition number is 

introduced to select a fine train data set. The train data 

set is randomly selected for n times (n=1,…,5). The 

selection of train data set is different from cross-

validation. Here, the selection of a fine train data set is 

searched. First, the data is split to equal number of train 

and test sets. Then, by keeping the test set unchanged, 

train set is formed after n repetitions (n=1,…,5). As the 

n increases, the computation time increases which is 

not preferred for online applications. The effect of 

repetition number to the computation time for LDA and 

SVM classifiers is given in Table 6. It is obvious from 

the table that, the response time of  LDA is faster than 

the SVM’s and reducing the number of electrodes used 

from nine to four makes a 0.25 seconds time consuming  

with LDA, on the other hand, this is about 0.56 seconds 

with SVM. 
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Table 2. Multi-class classification results with standard deviations for 9 electrodes with extended OVO and regular OVO 

approaches. S:Subjects, C:Classifiers, M:Mean 

It was observed that, the classification performances of 

motor tasks are so low compared to the other tasks. 

Using several train repetition numbers also affects the 

classification accuracy of Right Hand Imagination task 

results which are displayed in Figure 5 and Figure 6. By 

considering Figure 6 and Table 6, the train repetition 

number three is suggested for optimum classification 

accuracy. As it is noticed in Figures 5-6, any increase 

in train repetition number also increases accuracy at 

15.2 in LDA and at 12.1 in SVM for right hand 

imagination task. 

The accuracy, sensitivity and specificity values for the 

classifiers are obtained for the two class case and the 

results of a binary SVM are given in Table 8. 

Sensitivity and specificity measures are used to 

measure the statistical performance of a binary 

classification test. Sensitivity is defined as the 

proportion of number of true positives to the total 

number of true positives and number of false negatives. 

On the other hand, specificity is defined as the ratio of 

number of true negatives over the total number of true 

negatives and false positives. The definition of 

sensitivity and specificity are given in Table 7. All 

calculations are performed by writing a MATLAB 

  Extended OVO                        Regular OVO 

S           C Task 1 Task 2 Task 3 Task 4 
Task 

5 

    M 

 
Task 1 Task 2 Task 3 Task 4 Task 5  

S1 

LDA 
99.96 

±0.19 

97.88 

±1.28 

48.90 

±4.14 

61.18 

±4.68 

90.66 

±3.16 
79.71 

94.00 

±0.10 

26.00 

±5.18 

56.00 

±6.16 

  48.00 

±3.98 

74.00 

±3.56 
59.20 

SVM 
100 

±0.00 

100 

±0.00 

75.44 

±5.03 

75.20 

±4.23 

99.28 

±0.75 
89.98 

93.00 

±2.00 

50.00 

±5.10 

38.00 

±7.03 

44.00 

±4.28 

72.00 

±5.75 
59. 40 

S2 

LDA 
95.88 

±2.19 

75.56 

±5.10 

55.00 

±4.72 

80.50 

±2.22 

100.00 

±0.00 
81.38 

91.08 

±0.19 

75.56 

±7.44 

45.50 

±3.76 

50.50 

±2.22 

83.50 

±4.00 
69.36 

SVM 
99.90 

±0.10 

53.30 

±3.90 

50.40 

±4.50 

65.76 

±3.88 

95.22 

±1.98 
72.91 

86.10 

±4.22 

73.30 

±4.20 

39.40 

±5.50 

30.76 

±3.12 

80.22 

±2.18 
61.95 

S3 

LDA 
60.90 

±6.88 

73.20 

±5.16 

50.00 

±6.28 

45.18 

±7.13 

64.20 

±5.98 
58.69 

59.90 

±3.48 

61.20 

±5.00 

30.40 

±6.28 

45.18 

±7.13 

64.20 

±5.98 
52.17 

SVM 
63.90 

±7.12 

91.96 

±1.24 

55.16 

±2.78 

65.00 

±4.44 

52.32 

±5.22 
65.66 

65.20 

±5.16 

81.16 

±4.08 

55.26 

±7.12 

50.10 

±4.66 

49.72 

±4.42 
60.28 

S4 

LDA 
65.00 

±2.78 

75.04 

±1.56 

45.44 

±5.82 

38.16 

±7.64 

75.48 

±3.32 
59.82 

55.04 

±8.18 

63.84 

±5.56 

40.32 

±4.20 

29.16 

±6.10 

55.14 

±4.03 
48.70 

SVM 
75.92 

±3.00 

78.20 

±4.28 

42.00 

±6.34 

45.00 

±5.28 

77.28 

±4.18 
63.68 

60.96 

±2.08 

68.20 

±2.98 

46.00 

±4.34 

55.00 

±3.70 

70.28 

±2.10 
60.08 

S5 

LDA 
71.00 

±3.66 

75.66 

±2.27 

39.30 

±5.76 

42.50 

±5.34 

69.72 

±4.12 
59.63 

64.00 

±3.66 

70.66 

±2.27 

40.30 

±5.76 

41.50 

±5.34 

63.72 

±4.12 
56.03 

SVM 
83.44 

±1.02 

71.56 

±2.98 

55.79 

±4.34 

57.95 

±4.72 

77.16 

±2.16 
69.18 

73.44 

±1.02 

70.06 

±2.98 

67.70 

±4.34 

53.90 

±4.72 

66.16 

±2.16 
66.25 

S6 

LDA 
79.39 

±2.06 

72.98 

±2.74 

54.90 

±5.70 

49.00 

±5.52 

76.00 

±4.54 
66.45 

55.39 

±4.08 

68.08 

±3.24 

53.90 

±4.10 

47.30 

±5.60 

60.50 

±3.98 
57.03 

SVM 
66.72 

±5.02 

78.44 

±2.72 

50.22 

±5.12 

41.34 

±4.86 

73.92 

±3.08 
62.12 

56.72 

±4.86 

70.34 

±4.12 

55.60 

±4.70 

51.34 

±3.86 

68.12 

±5.18 
60.42 

M 
LDA 78.68 78.91 48.92 52.75 79.34 67.72 69.29 60.89 44.40 43.60 66.84 57.19 

SVM 81.64 78.38 54.83 58.37 79.19 70.48 72.57 68.84 50.32 47.50 67.75 61.39 
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script.  Accuracy is used to see how well the result of a 

binary classifier correctly identified [33]. Hence, an 

accuracy of 100 means that the tested values are exactly 

the same as the true values. The results are obtained for 

each electrode channel separately. The overall 

accuracies of Task 1 are around 90. The overall 

sensitivity values are around 87 and the overall 

specificity values are around 92. These results also 

support the good classification ability of the proposed 

method and the classifiers. 

 

 
Table 3. Multi-class classification results of Subject 1 for 4 

channels, (F3 F4 C3 C4) 

 

 

 
Table 4. Multi-class classification results of Subject 1 for 5 

channels, (F3 C3 P3 O1 Pz) 

 

 

 
Table 5. Multi-class classification results of  Subject 1 for 5 

channels, (F4 C4 P4 O2 Pz) 

 

 

 

 

Table 6. Effect of repetition number to computation time. 

C:Classifiers, NE:Number of electrodes 

 

 

 

Figure 5. Change in classification accuracy for 

right hand imagination with LDA 

 

 

 

Figure 6. Change in classification accuracy for 

right hand imagination with SVM 

 

 

 

 

 

 

 

 

Classifier 
Test Data 

Mean 
Task 1 Task 2 Task 3 Task 4 Task 5 

LDA 

Accuracy  100 95.10 47.54 57.66 90.64 78.188 

Standard 

Deviation 
±0.00 ±1.76 ±4.95 ±4.15 ±2.72  

SVM 

Accuracy  100 100 81.44 69.06 99.00 89.900 

Standard 

Deviation 
±0.00 ±0.00 ±3.53 ±4.59 ±0.90  

Classifier 
Test Data      

Mean Task 1 Task 2  Task 3 Task 4 Task  5 

LDA 

Accuracy   99.96 89.58  46.48 54.80 89.36  76.036 

Standard 

Deviation 
 ±0.19 ±2.79  ±5.51 ±4.86 ±2.59  

SVM 

Accuracy   100  100  87.04 72.66 99.56  91.852 

Standard 

Deviation 
 ±0.00 ±0.00 ±3.55 ±4.31 ±0.61  

Classifier 
                            Test Data 

Mean 
Task 1 Task 2 Task 3 Task 4 Task 5 

LDA 

Accuracy  100 94.72 47.88 57.16 89.58 77.868 

Standard  

Deviation 
±0.00 ±2.63 ±4.73 ±5.26 ±2.19  

SVM 

Accuracy  100 99.96 79.70 69.74 98.92 89.664 

Standard 

 Deviation 
±0.00 ±0.19 ±4.02 ±3.50 ±0.89  

C NE 

Repetition Number  

1 2 3 4 5 Regul

ar 

OVO 

 Computation Time (seconds) 

LDA 
9 0.90  1.33  1.78  2.24  2.64  3.44 

4 0.65  0.85  1.03  1.23  1.43   

SVM 
9 2.42  4.18  5.54  7.21  8.85  4.21 

4 1.82  2.94 3.70  4.76  6.00   
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Table 7. Calculation of sensitivity and specificity 
 Disease present Disease absent 

Test 

Positive 

a (TP) b (FP) 

Test 

Negative 

c (FN) d (TN) 

 Sensitivity Specificity 

 a/(a+c) d / (b+d) 

TP:True Positive, FP:False Positive, FN:False Negative, 

TN:True Negative 

 

5. Conclusion 

The main research finding of this study is proposing 

an alternative solution step that brings about an 

extended approach for one-versus-one classification of 

data. With this method, the computation time and the 

data storage are lessened. One other finding is the 

necessity of certain electrode channels required for BCI 

systems. For mobile BCI systems, reduced number of 

all technical equipment including electrode channels 

are preferred. Therefore, in this study, a four channel 

system provides results that are on par with more 

channels which is a success.  We obtained better 

classification performance with SVM; on the other 

hand less computation time with LDA which is a fact. 

A thorough comparison between mental and motor 

tasks and between right and left hemispheres were 

searched. For homogenous seperation of train data, a 

repetition number is introduced. Moreover, the 

difference between the experinced and novice subjects 

were searched and it is concluded that the a short 

training period for subjects before the online 

applications will improve the overall performance.  

It is also observed that, selecting the proper electrode 

channel is an important task. In this study, it is 

concluded that, the use of frontal and central lobe 

electrodes would be enough to distinguish some basic 

tasks especially mental and motor tasks separately with 

the proposed features and classifiers.  

The main contribution of this paper is its original 

extended OVO output coding methodology which can 

be used instead of regular OVO algorithm during the 

multiclass classification scenarios. An extra 

contribution is the use of less channel data that reduces 

the processing time and producing a quick response.  

 

 

 

 
Table 8. Accuracy, Sensitivity and Specificity values for a two-class SVM 

 

Tasks  Channels Percentages % 

Training  

set 

Test 

set 
F3 F4 C3 C4 P3 P4 Pz O1 O2 

Task 1 

Task 2 

T
a

sk
 1

 

 

Accuracy 
96.80 

±1.66 

96.76 

± 1.54 

94.17 

± 1.95 

92.69 

± 2.42 

84.93 

± 3.14 

92.44 

± 2.08 

91.71 

± 2.17 

86.82 

± 2.51 

84.31 

± 2.96 

Sensitivity 
96.27 

±2.65 

95.11 

± 2.73 

93.80 

± 2.74 

91.39 

± 3.84 

78.60 

± 3.98 

90.38 

± 3.15 

89.75 

± 2.95 

82.00 

± 3.41 

80.21 

± 3.90 

Specificity 
97.47 

±1.94 

98.66 

± 1.55 

94.71 

± 2.78 

94.39 

± 3.08 

95.46 

± 3.08 

94.95 

± 2.68 

94.09 

± 3.04 

93.77 

± 3.32 

90.31 

± 4.28 

Task 1 

Task 3 

Accuracy 
90.40 

±2.42 

90.80 

± 2.57 

90.28 

± 2.56 

91.55 

± 2.24 

81.57 

± 2.94 

86.37 

± 2.66 

87.33 

± 3.03 

71.80 

± 3.32 

67.54 

± 3.63 

Sensitivity 
88.96 

±3.79 

89.83 

± 3.73 

90.66 

± 4.02 

90.02 

± 3.53 

77.89 

± 3.96 

86.16 

± 4.25 

86.99 

± 4.24 

69.24 

±4.09  

68.52 

± 4.86 

Specificity 
92.32 

±3.30 

92.09 

± 3.05 

90.42 

± 4.23 

93.54 

± 3.20 

87.14 

± 4.50 

87.06 

± 3.59 

88.13 

± 4.16 

76.25 

± 5.11 

67.26 

± 4.02 

Task 1 

Task 4 

Accuracy 
89.21 

±2.76 

89.20 

± 2.71 

86.92 

± 3.16 

91.83 

± 2.65 

77.52 

±3.73  

85.61 

± 3.16 

83.84 

± 2.83 

65.93 

± 3.87 

66.38 

± 3.51 

Sensitivity 
87.37 

±3.84 

86.77 

±3.89  

86.64 

± 4.07 

89.21 

± 4.00 

73.51 

± 4.29 

84.25 

± 4.12 

82.90 

± 4.05 

63.81 

± 3.90 

67.48 

± 4.53 

Specificity 
91.71 

±4.14 

92.36 

± 3.60 

87.60 

± 4.22 

65.16 

± 2.95 

84.07 

± 5.14 

87.53 

± 4.21 

85.37 

± 4.00 

69.91 

± 6.03 

65.91 

± 3.80 

Task 1 

Task 5 

Accuracy 
81.43 

±3.33 

80.65 

± 3.09 

77.74 

± 3.24 

73.46 

± 3.84 

76.67 

± 3.65 

76.02 

± 3.15 

79.58 

± 3.69 

75.82 

± 3.46 

69.55 

± 3.76 

Sensitivity 
78.87 

±4.43 

77.91 

± 4.35 

77.13 

± 4.84 

73.84 

± 4.88 

72.23 

± 4.37 

71.92 

± 3.74 

76.20 

± 4.47 

72.32 

± 3.78 

67.41 

± 4.10 

Specificity 
85.24 

±4.62 

84.70 

± 4.22 

79.23 

± 4.53 

73.76 

± 4.76 

84.47 

± 4.86 

83.08 

± 5.13 

84.78 

± 5.07 

81.55 

± 5.40 

73.28 

± 5.40 
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Finally, the study imparts that multiclass SVM using 

extended technique and combined with the proposed 

feature extraction algorithm can be used for 

classification of motor task EEG signals for various 

applications when verified with more subjects.  

For further study, the current results obtained from this 

study would be supported with different BCI data sets.  
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